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ABSTRACT
A key operation in network analysis is the discovery of cohesive
subgraphs. The notion of k-truss has gained considerable popu-
larity in this regard, based on its rich structure and efficient com-
putability. However, many complex networks such as social, bio-
logical and communication networks feature uncertainty, best mod-
eled using probabilities. Unfortunately the problem of discovering
k-trusses in probabilistic graphs has received little attention to date.

In this paper, given a probabilistic graph G, number k and pa-
rameter � 2 (0, 1], we define a (k, �)-truss as a maximal con-
nected subgraph H ✓ G, in which for each edge, the probability
that it is contained in at least (k � 2) triangles is at least �. We
develop an efficient dynamic programming algorithm for decom-
posing a probabilistic graph into such maximal (k, �)-trusses. The
above definition is local in that the “witness" graphs that has the
(k � 2) triangles containing an edge in H may be quite differ-
ent for distinct edges. Hence, we also propose global (k, �)-truss,
which in addition to being a local (k, �)-truss, has to satisfy the
condition that the probability that H contains a k-truss is at least
�. We show that unlike local (k, �)-trusses, the global (k, �)-truss
decomposition on a probabilistic graph is intractable. We propose
a novel sampling technique which enables approximate discovery
of global (k, �)-trusses with high probability. Our extensive exper-
iments on real datasets demonstrate the efficacy of our proposed
approach and the usefulness of local and global (k, �)-truss.

1. INTRODUCTION
Network data analytics play a key role in many scientific fields

such as biological, social and communication networks [18]. A
large body of such real-world networks are associated with uncer-
tainty, due to the data collection process, machine-learning meth-
ods employed at preprocessing, or privacy-preserving reasons. For
instance, in Protein-Protein Interaction (PPI) networks, the edges
represent interactions between proteins, which are derived through
noisy and error-prone lab experiments and therefore entail un-
certainty [19]; Moreover, many edges (interactions) in PPI net-
works are actually predicted by biologists using algorithms based
on features of the proteins, instead of being actually observed in

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGMOD’16, June 26-July 01, 2016, San Francisco, CA, USA
c� 2016 ACM. ISBN 978-1-4503-3531-7/16/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2882903.2882913

v1

v2

v3

q2q1

1

0.5

0.5

0.5

1

1

(a) Unceratin graph G (b) Possible world G1

0.5

0.5

0.5
p2p1

p3

0.7
0.7 0.7

0.7 v1

v2

v3

q2q1 p2p1

p3

Figure 1: A running example

experiments [29]. Naturally, the predictions are associated with
certain confidence levels, which are best modeled by probabili-
ties [11, 12, 29]. As another example, in social networks, link pre-
diction and peer influence motivate the need to model interactions
between users with uncertainty, and in mobile ad-hoc networks,
mobile nodes move and connect to each other, and a link between
nodes can be unreliable and may fail with a certain probability.
We model such uncertain networks as probabilistic graphs, also re-
ferred to as uncertain graphs in the literature. Each edge in a prob-
abilistic graph is associated with a probability of existence [16,27].

In many network analysis tasks, a fundamental problem is to
identify various cohesive subgraphs [33]. Many notions of cohe-
sive subgraphs have been proposed in the literature; these include
cliques, quasi-cliques [24], n-clans [22], n-club [22], k-plexes [28].
The computation of all the above cohesive subgraphs is NP-hard.

A popular notion of cohesive subgraph that has found many re-
cent applications is k-truss. A k-truss of a graph, is a subgraph in
which each edge is contained in at least (k � 2) triangles within
that subgraph, i.e., its support is at least (k � 2). A k-truss is max-
imal if it is not a proper subgraph of any other k-truss. For ex-
ample, in Figure 1(a), ignoring probabilities, the entire graph G
is a 2-truss but not a 3-truss. The subgraph induced by the nodes
{q
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, q
2

, v
1

, v
2

, v
3

} is a 4-truss, and the subgraph induced by all
nodes but p

1

is a 3-truss. All of these are maximal k-trusses; the
subgraph induced by {q

1

, v
1

, v
2

, v
3

} is a non-maximal 4-truss. The
set of all maximal k-trusses of a graph G, for various k, forms the
truss decomposition of G. Recently, due to its efficient computabil-
ity and cohesive structure, truss decomposition has attracted a lot
of attention, and has been studied in various settings, including in-
memory [9], external-memory [33], and dynamic graphs [15]. Un-
like the aforementioned types of cohesive subgraphs, k-trusses [10]
can be computed in polynomial time, similar to k-cores [2].

The closest work to us is the probabilistic extension to k-cores
[4]. In addition to laying down the semantics, the authors provide
efficient algorithms for finding subgraphs of probabilistic graphs
that are k-cores with probability over a given threshold. A detailed
comparison with this work appears in Section 2 but it’s worth not-
ing that k-trusses enjoy much more cohesiveness than k-cores.
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Figure 2: A local (k, �)-truss of G in Figure 1: k = 4, � = 0.125.

The discovery of k-truss in uncertain graphs can be beneficial for
a wide range of application domains. For instance, in network sci-
ence domain, k-trusses as dense subgraphs can represent cohesive
groups or communities. k-trusses have successfully become the ba-
sis of several community models [15,20]. Moreover, k-truss can be
used to speed up the computation of finding maximum cliques as
a k-clique must be in a k-truss, which can be significantly smaller
than the original graph; Also, k-truss is a useful tool for visual-
ization of complex networks [37]. All above applications can be
naturally extended to uncertain graphs. In biology, a fundamental
task is to detect and identify functional modules, which technically
are cohesive subnetworks of proteins, from probabilistic PPI net-
works [1, 11, 12, 25, 29]. Modules capture subnetworks of proteins
strongly expressed together by genes. Thus, detecting modules is
highly important and valuable as it helps “assess the disease rel-
evance of certain genes” [11], which further help critical clinical
diagnosis of diseases such as cancer. Last but not the least, prob-
abilistic k-truss can be directly applied to task-driven team for-
mation in uncertain social networks, e.g., DBLP collaboration net-
work, LinkedIn (with predicted links), etc. We conduct a case study
on DBLP and report detailed results in Section 6.

In light of the above, mining k-trusses in probabilistic graphs
is a pressing need. However, to the best of our knowledge, truss

decomposition over probabilistic graphs has not been studied yet.

In this paper, we present a principled extension of k-truss defini-
tions in the presence of uncertainty, and propose efficient k-truss
decomposition algorithms. Given a probabilistic graph G, integer
k and parameter � 2 (0, 1], we define local (k, �)-truss to be a
connected subgraph H ✓ G, in which for each edge, the probabil-
ity that it is contained in at least (k � 2) triangles is no less than
�. For example, consider the probabilistic graph G in Figure 1(a),
the probability that the edge (q

1

, v
1

) is contained in two triangles
is 0.5 · (0.5 · 1) · (0.5 · 1) = 0.125. Figure 2(a) shows a local
(4, 0.125)-truss H

1

in G. For each edge e 2 H
1

, the probability
that e is contained in at least 2 triangles is at least 0.125.

As with truss decompositions over deterministic graphs, we are
interested in finding maximal local (k, �)-trusses. However, effi-
cient extraction of local (k, �)-trusses raises challenges. In proba-
bilistic graphs, to check if an edge belongs to a local (k, �)-truss,
the basic operation is to check if the edge has a large enough proba-
bility to be contained in at least (k�2) triangles. A straightforward
extension of the deterministic triangle counting operation leads to
combinatorial blow-ups and is inefficient. Therefore, existing truss
decomposition algorithms for deterministic graphs do not work for
probabilistic graphs. Fortunately, local (k, �)-truss has many de-
sirable features. The key point is that the probability of edge sup-
port can be computed in polynomial time, relying only on the local
structure. In other words, we can avoid its evaluation for every pos-
sible world of G. Specifically, we are able to exploit this “locality”
and develop an efficient dynamic programming algorithm for find-
ing a decomposition of a probabilistic graph into maximal local
(k, �)-trusses, for various k, given a parameter � 2 (0, 1].

The above definition of truss is local in that the “witness" graphs
having the (k � 2) triangles containing an edge in H may be quite

different for different edges. To mitigate this, we explore another,
“global" notion: in a global (k, �)-truss H ✓ G, for each edge in
H, the probability that it is contained in a k-truss must be at least
�. We show that unlike local (k, �)-truss, the global (k, �)-truss
decomposition of a probabilistic graph is intractable: specifically,
even computing the exact probability that a given subgraph con-
tains a k-truss connecting its nodes is in general #P-hard. Given
this, we tackle this issue with a novel sampling scheme that en-
ables an efficient estimation of the said probability. We also show
that there are instances where the number of maximal global (k, �)-
trusses can be exponential. Thus, we develop a heuristic approach
combined with the sampling technique above for obtaining global
(k, �)-trusses. Each solution reported by our algorithm is guaran-
teed to be a maximal global (k, �)-truss with high probability.

To summarize, we make the following contributions:
• We define local and global (k, �)-truss over probabilistic

graphs and motivate the problem of probabilistic truss decom-
position associated with these notions (Section 3.1).

• We show that every global (k, �)-truss is also a local (k, �)-
truss. We also show that computing the probability that a given
probabilistic graph contains a k-truss connecting all its nodes
is #P-hard and that there are instances where a given proba-
bilistic graph has exponentially many maximal (k, �)-trusses
even when k and � are fixed (Section 3.2).

• We show that the support probability of any edge, on which lo-
cal (k, �)-truss is based, is monotone w.r.t. k. Leveraging this
and the structural locality, we develop an efficient dynamic
programming algorithm for finding all maximal local (k, �)-
trusses of a probabilistic graph, given � (Section 4).

• We develop a sampling scheme for approximating the proba-
bility of a graph containing a connected k-truss. We present
an exact search algorithm and an efficient heuristic for finding
approximate maximal global (k, �)-trusses (Section 5).

• Using extensive experiments on eight real datasets, we test
our proposed algorithms for finding maximal local and global
(k, �)-trusses. The results show that our algorithms signifi-
cantly outperform natural baselines and alternative techniques
based on probabilistic extensions to k-cores [4] (Section 6).

2. RELATED WORK
There are mainly two categories of previous work that are related

to ours: querying and mining over probabilistic graphs and dense
subgraph mining.

2.1 Probabilistic Graphs
The body of work on querying and mining probabilistic graphs

is the closest to our work. In the literature, the studies on un-
certain graphs have mainly focused on querying [17, 27, 30] and
mining, specifically frequent subgraph mining [38, 39], dense sub-
graph mining [4, 23] and clustering [18, 21]. Jin et al. [17] study
the distance-constraint reachability problem, which is a generaliza-
tion of the classic two terminal reliability problem: for a pair of
nodes find the probability that their shortest path distance is under
a threshold. This problem is #P-hard and they propose sampling
schemes and experimentally show that they are efficient and pro-
duce accurate estimates. Potamias et al. [27] study the k-nearest
neighbors problem over uncertain graphs and propose sampling
strategies for answering k-nearest neighbor queries efficiently.

Zou et al. [38, 39] consider the problem of discovering frequent
pattern subgraphs in an input probabilistic graph. One of the key
properties that helps efficient discovery of frequent pattern graphs
is monotonicity: if a pattern graph is frequent then any subgraph of
that pattern is also frequent. Jin et al. [16] investigate the problem
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of discovering highly reliable subgraphs of probabilistic graphs, in
which the connectivity holds with a high probability. This prob-
lem is intractable and the authors develop an efficient approach us-
ing a combination of sampling and frequent cohesive set discovery.
Bonchi et al. [4] extend the notion of k-core to probabilistic graphs.
Since k-cores are a kind of dense subgraphs, a comparison with [4]
appears in the next subsection. The problem of finding truss decom-
position over probabilistic graphs has not been studied before, to
our knowledge. Specifically, the notions of local and global (k, �)-
trusses proposed in this paper are novel. None of the techniques
proposed in the aforementioned related work can be directly used
to find maximal local/global (k, �)-trusses. One unique challenge
we face in case of global (k, �)-trusses, unlike some of the related
work, is the lack of any monotonicity properties (see Section 5):
given two probabilistic graphs H

1

⇢ H
2

, if one of them is a global
(k, �)-truss, then the other may or may not be a (k, �)-truss. This
makes their discovery particularly challenging. Furthermore, unlike
highly reliable subgraphs, our global (k, �)-trusses needs to be not
just connected, but also be densely connected with high probability.

2.2 Dense Subgraph Mining
In deterministic graphs, there are various definitions of dense

subgraph patterns, including clique [5, 7, 34, 35], quasi-clique [31],
k-core [2, 6] and k-truss [9, 33]. Truss decomposition has been
studied in various settings, including in-memory algorithms [9,36],
external-memory algorithms [33], and MapReduce algorithm [10].
However, as far as we know, probabilistic truss decomposition has
not been studied yet. Based on the k-truss definition [9], we propose
two novel types of local and global (k, �)-truss definitions appro-
priate for probabilistic graphs. Core decomposition has also been
studied in both in-memory and external memory [6] settings. Re-
cently, Bonchi et al. [4] extend the core decomposition from deter-
ministic graphs to probabilistic graphs. They define a (k, ⌘)-core as
a subgraph of a probabilistic graph in which the degree of each node
is at least k, with probability no less than ⌘. Our local (k, �)-truss
is similar to (k, ⌘)-core, since both are defined on the local struc-
ture. (k, �)-Truss emphasizes the number of triangles supporting an
edge, but (k, ⌘)-core focuses on node degree. It is well-known that
k-trusses enjoy a higher density (e.g., clustering coefficient) than
k-cores and are more cohesive. This property carries over to prob-
abilistic graphs and is also borne out by our experiments (see Sec-
tion 6). On the other hand, in this paper, we also propose a global
(k, �)-truss, that is based on the probability of each edge belonging
to a connected k-truss possible world. This is a graph-level, holistic
constraint, which has no parallel in any of the previous work, to the
best of our knowledge.

3. TRUSSES IN PROBABILISTIC GRAPHS
k-Truss in deterministic graphs. Let G = (V,E) be an undi-
rected, unweighted simple graph, with vertices V and edges E ✓
V ⇥ V . A cycle of length 3 is called a triangle; we let 4uvw de-
note a triangle with vertices u, v, w 2 V . Let H = (VH , EH) be
an induced subgraph of G, i.e., VH ✓ V and EH = {(u, v) 2
E | u, v 2 VH}. Henceforth, by subgraph we mean an induced
subgraph. For any edge e = (u, v) 2 EH , we define the sup-
port of e in H as the number of triangles in H that contain e:
supH(e) = |{4uvw | (u,w), (v, w) 2 EH}|. A subgraph H of G
is called a k-truss iff the support of every edge in this subgraph is
at least k � 2. Formally,

DEFINITION 1 (k-TRUSS). Let H = (VH , EH) be a sub-
graph of G = (V,E) and k � 2 be any integer. Then, H is a
k-truss if and only if for all e 2 EH , supH(e) � k � 2.

A k-truss H is maximal if it is not a subgraph of any other k-
truss. Given a deterministic graph G, the task of truss decomposi-
tion is to compute all maximal k-trusses of G for all 2  k  k

max

,
where k

max

is the largest support of any edge [33]; we do not need
to know this value beforehand, since the decomposition process
will automatically reveal it. A useful notion in truss decomposition
is the trussness of an edge e in a graph G, defined as the maximum
k for which e is contained in a k-truss subgraph of G.

Truss decomposition can be done in polynomial time using an it-
erative removal algorithm [9,33]. Observe that any connected graph
is itself a 2-truss by definition, and thus we start from k = 3. The
algorithm iteratively removes edges whose support is smaller than
k�2 and updates the support of affected edges, until the remaining
graph is a k-truss (or empty). The update is crucial for correctness,
since when (u, v) is removed, all triangles4uvw disappear and the
support of (u,w) and (v, w) should be decreased by 1. As long
as the remaining graph is not empty, we increment k by 1 and re-
peat the iterative edge removal process. We stop when the graph is
empty, and the current k is thus k

max

. This algorithm is due to [9],
which is then improved by [33] using hashing and sorting, achiev-
ing O(m1.5

) time and uses O(m+ n) space complexity.
Probabilistic graphs. Let G = (V,E, p) denote a probabilistic
graph, where p : E ! [0, 1] is a function that maps each edge
e 2 E to its existence probability p(e). Each edge is typically as-
sumed to exist independently [16]. A well-known approach to an-
alyzing and reasoning about probabilistic graphs is to use possible
worlds: each possible world is a deterministic graph instantiation
of G, where only a subset of edges exist for certain. Notice that by
definition, a possible world retains all nodes of G.

For a deterministic graph G = (V,EG) where EG ✓ E, the
probability that G is observed as a possible world of G can be cal-
culated as follows.

Pr[G|G] =
def

Y
e2EG

p(e)
Y

e2E\EG

(1� p(e)). (1)

We use G v G to indicate that G is a possible world of G.

EXAMPLE 1. Consider the probabilistic graph G in Figure 1(a)
and the possible world G

1

v G in Figure 1(b). By applying Eq. (1),
we have Pr[G

1

|G] = 0.74 ⇥ 0.56 = 0.0037515625.

3.1 Probabilistic Trusses
Local (k, �)-truss. Next, we extend the concept of k-truss to prob-
abilistic graphs. Let supG(e) denote the support of e = (u, v) in
G, and let N(u) ⇢ V denote the set of structural neighbors of u
in G. Here, by a structural neighbor of u, we mean any node v that
is adjacent to u according to the graph structure of G, ignoring any
probabilities. Thus, N(u) is a deterministic set. Clearly, supG(e) is
a random variable which can take on any integer value from zero
to ke =

def

|N(u) \N(v)|, the maximum possible support of e in
any possible world of G.

By definition of possible worlds, given any t 2 [0, ke], the prob-
ability that supG(e) � t is the sum of the probability mass of all
possible worlds G v G such that the (deterministic) support of e in
G is no less than t. Mathematically,

Pr[supG(e) � t] =
X

GvG
Pr[G|G] · I(supG(e) � t), (2)

where I(supG(e) � t) is an indicator function which takes on 1 if
supG(e) � t, and 0 otherwise. If e 62 EG, I(supG(e) � t) =

def

0.
Intuitively, a subgraph H of G 1 can be regarded as a cohesive

subgraph of G if the support of every edge in H is no less than
1Note that H is still a probabilistic graph.
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a threshold with high probability. Following this intuition, we de-
fine local (k, �)-truss as follows, where by a connected subgraph
H ✓ G, we mean any subgraph H which is connected as a graph,
ignoring probabilities.

DEFINITION 2 (LOCAL (k, �)-TRUSS). Let G = (V,E, p)
be a probabilistic graph and H ✓ G any connected subgraph.
Given a threshold � 2 [0, 1], and an integer k � 2, we say H is a
local (k, �)-truss, iff for every e 2 EH, Pr[supH(e) � k�2] � �,
i.e., for each edge, the probability that it has a support no less than
(k � 2) in H is at least �.

The name “local” reflects that the support of each edge is evalu-
ated individually, and there is no graph-wise global constraint that
H must satisfy. The requirement that H is connected is natural,
since it is possible to have two totally-separated connected compo-
nents while still all edges have high support with high probability.
For instance, as mentioned in Section 1, the subgraph H

1

shown in
Figure 2(a) is a local (k, �)-truss where k = 4 and � = 0.125.

We are interested in finding all local (k, �)-trusses that are max-
imal, i.e., those that are not proper subgraphs of any other lo-
cal (k, �)-truss. We formulate this problem as Local Probabilistic
Truss Decomposition, dubbed LOCALDECOMP.

PROBLEM 1 (LOCALDECOMP). Given a probabilistic graph
G = (V,E, p) and a threshold � 2 [0, 1], find all maximal local
(k, �)-trusses of G, for all 2  k  k

max

, where k
max

is the
maximum support of any edge in G.

Global (k, �)-truss. As noted earlier, a local (k, �)-truss does
not have to satisfy any graph-wise global constraints: specifically,
while Definition 2 ensures that for each edge, there are enough pos-
sible worlds where its support is � (k � 2), it does not ensure that
the (k� 2) supporting triangles of different edges in H are present
together in a fraction � � of the possible worlds. To mitigate this,
we propose a stronger definition of a (k, �)-truss which naturally
incorporates a global constraint, thus strengthening the cohesive-
ness of a probabilistic truss. In the definition below, notice that all
nodes of H are required to be connected in any connected possible
world H of H. Formally,

DEFINITION 3 (GLOBAL (k, �)-TRUSS). Let G = (V,E, p)
be a probabilistic graph. Given a threshold � 2 [0, 1], and an inte-
ger k � 2, a connected subgraph H = (VH, EH) of G is a global
(k, �)-truss, iff for each edge e 2 EH,

↵k(H, e) =
def

X

HvH
Pr[H|H] · I(H, k, e) � �, (3)

where I(H, k, e) is an indicator function taking on 1 if the possible
world H (thus VH = VH) is a connected, deterministic k-truss
containing e, and 0 otherwise.

Every global (k, �)-truss is also a local (k, �)-truss, as we show
below. Hence, global (k, �)-truss is a stronger and stricter notion,
which intuitively corresponds to more cohesive (probabilistic) sub-
graphs.

LEMMA 1. Let G = (V,E, p) be a probabilistic graph and
H ✓ G be a global (k, �)-truss. Then H is also a local (k, �)-
truss, for the same k and �.

PROOF. Every connected k-truss containing an edge e clearly
has at least (k � 2) triangles containing that edge. The lemma fol-
lows from this and the fact that H is connected.
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Figure 3: Two global (k, �)-trusses of G in Figure 1. Here, k = 4

and � = 0.125.

EXAMPLE 2. Figure 3 depicts two global (4, 0.125)-trusses
H

2

,H
3

✓ G, where G is shown in Figure 1. In both cases, the
only supporting possible world is the one where all edges exist,
whose existence probability is (0.5)3 ·13 = 0.125. Moreover, both
H

2

and H
3

are maximal global (4, 0.125)-trusses and there ex-
ists no other global (4, 0.125)-truss in G. To compare global and
local (k, �)-trusses, first, we note that H

2

and H
3

are also local
(4, 0.125)-trusses, but the local (4, 0.125)-truss H

1

in Figure 2(a)
is not a global one. In fact, H

1

is a global (4, 0.56)-truss, because
the only possible world of H

1

that is a connected k-truss containing
all nodes in H

1

is the one shown in Figure 2(b), and its existence
probability is 0.56.

We are interested in the problem of finding all maximal global
(k, �)-trusses of a given probabilistic graph. Formally:

PROBLEM 2 (GLOBALDECOMP). Given a probabilistic
graph G = (V,E, p) and a threshold � 2 [0, 1], find all maximal
global (k, �)-trusses of G, for all 2  k  k

max

, where k
max

is
the maximum support of any edge in G.

3.2 Hardness Results
As we shall see in Section 4, LOCALDECOMP can be solved

in polynomial time. However, GLOBALDECOMP is generally in-
tractable, since even computing ↵k(H, e) is #P-hard.

THEOREM 1. Given a probabilistic graph H and an edge e in
H, computing ↵k(H, e) as in Eq. (3) is #P-hard.

PROOF. The reduction is from the NETWORK RELIABILITY
problem [16,32]. For a probabilistic graph G, its network reliability,
i.e., the probability that G is connected, is defined as

conn(G) =
X

GvG
Pr[G|G] ·C(G), (4)

where G is a possible world of G, and C(G) is an indicator function
taking on 1 if G is connected, and 0 otherwise. It is known that
computing conn(G) is #P-hard [16].

Given an instance of NETWORK RELIABILITY with G, we con-
struct an instance of the problem of computing ↵k(·, ·) as follows.
Let v be an arbitrary vertex in G. We create a dummy node w and
an edge (w, v) with p(w, v) = 1. Let the resulting graph be H.

We show the following claim: a possible world G =

(VG, EG) v G is connected iff H = (VG[{w}, EG[{(w, v)}) v
H is a connected 2-truss that contains (w, v). The “if” direction is
trivial. Now consider “only if”. Since G is connected, then there
exists a path between v and any other node in VG. Also, since the
edge (w, v) is in H , then there is also a path connecting w with
any other node in VG. Thus H is connected, contains (w, v) by
construction, and is a 2-truss by definition.

Due to the one-to-one correspondence established between the
possible worlds of G and H in the above claim, and the fact that
Pr[G|G] = Pr[H|H] as p(w, v) = 1, we can see that conn(G) =
↵k(H, (w, v)). The theorem follows.
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GLOBALDECOMP is as least as intractable as evaluating
↵k(H, k, e): since � can be any real number in [0, 1], checking if
↵k(H, e) � � requires that ↵k(H, e) be computed to arbitrary ac-
curacy. In addition, we show that the number of solutions to GLOB-
ALDECOMP can in fact be exponential in graph size, adding an-
other major computational challenge.

LEMMA 2. There are probabilistic graphs G and parameter �,
such that the number of maximal global (k, �)-trusses is exponen-
tial in |VG |. This is true even for fixed k.

PROOF. Please refer to Appendix.

Both Theorem 1 and Lemma 2 indicate the intrinsic hardness
of GLOBALDECOMP. Although GLOBALDECOMP may have an
exponential number of answers, it is still important to study for
the following reasons. First, compared with the local (k, �)-truss,
global (k, �)-truss is a more stringent and holistic definition, which
ensures that the entire subgraph has a certain probability to exist
as a k-truss. In critical applications such as identifying functional
modules from protein-protein interaction networks, modules with a
high probability of existence as a whole are more useful for making
sure that any medical or clinical assessments are correct. In addi-
tion, as an analogy, consider the seminal Frequent Item-set (Pat-
tern) Mining problem, where the number of satisfying item-sets is
exponential in the number of items. However, this is still an ex-
tremely useful problem with wide applications. Besides, the num-
ber of frequent item-sets can be controlled by adjusting parameters
such as support and confidence. In our global (k, �)-truss decom-
position problem, we can control the size of output by fine-tuning
the value of k and �. For a reasonably large k and �, the number
of satisfying subgraphs is unlikely to be enormous in real appli-
cations. This claim is experimentally verified on real datasets in
Section 6.3. Finally, in Section 5.1, we make use of Hoeffding’s
inequality to develop a Monte Carlo sampling method, which lays
the foundations of an approximation algorithm for finding maximal
global (k, �)-trusses.

4. LOCAL PROBABILISTIC TRUSS DE-
COMPOSITION

We now describe an algorithm for solving LOCALDECOMP. The
general idea is based on the iterative edge removal process for truss
decomposition in deterministic graphs [9, 33]. However, there are
significant computational challenges brought about by probabilistic
graphs. For example, we must combat the complications introduced
by the combinatorial nature of the triangles in which an edge may
participate. We will first give an outline of the algorithm and then
describe two challenging tasks, namely computing and updating
edge support probabilities, in detail.

4.1 Algorithmic Framework
For an edge e = (u, v) 2 EG , let ⇢G(e, t) denote the

probability that the support of edge e is at least t in G, i.e.,
�G(e, t) =

def

Pr[supG(e) � t]. Furthermore, let �G(e) =

def

[�G(e, 1),�G(e, 2), . . . ,�G(e, ke)] be the vector of support prob-
abilities of e for all possible t from 1 to ke. We refer to �G(e) as
the edge support probability vector. When it is clear from the con-
text, we drop the subscript G.

Note that the edge support probabilities in �(e) are well-defined
only when e actually exists. Hence, in what follows, we assume
that e does exist for the purpose of computing �(e). The “true”
edge support probabilities can be easily derived by multiplying
�(e) with p(e) element-wise.

Algorithm 1 Local (k, �)-truss decomposition
Require: G = (V,E, p); � 2 [0, 1]
Ensure: trussness score ⌧(e) of each edge e 2 E
1: for all e 2 E do
2: compute �(e) using Algorithm 2
3: for k  2 to n do
4: while 9e = (u, v) such that �(e, k � 1)p(e) < � and

�(e, k � 2)p(e) � � do
5: ⌧(e) k
6: remove e from G
7: for w 2 N(u) \N(v) do
8: update �

(w,u) and �
(w,v) {cf. Section 4.3}

9: if G is empty then
10: break

Monotonicity of �(e). In designing the decomposition algorithm,
we make use of the fact that the edge support probabilities in �(e)
are monotonically non-increasing. That is, for all e 2 E, we have
�(e, 1) � �(e, 2) � . . . � �(e, ke). This holds true by definition,
because

�(e, k) = Pr[supG(e) = k] + �(e, k + 1) � �(e, k + 1).

Overview. Algorithm 1 presents the pseudo-code for our local
(k, �)-truss decomposition procedure. We begin by computing the
edge support probability vector �(e) for all e 2 E (lines 1-2).
Then, the algorithm iteratively finds all local (k, �)-trusses starting
from k = 2. For any particular k, if there exists an edge e such that
�(e, k� 1)p(e) < � and �(e, k� 2)p(e) � �, then e belongs to a
local (k, �)-truss, but does not belong to any local (k+1, �)-truss.
Then e will be assigned a trussness score of k, denoted by ⌧(e),
and removed from the graph (lines 4-6). After the removal of e, all
triangles in which this edge participates shall also be removed, and
thus the support of the other two edges in each such triangle shall
be updated (lines 7-8). This iterative process goes on until all edges
are removed from the graph (lines 9-10). The value of k at which
we stop is thus k

max

.
After obtaining the trussness score of all edges, we can easily

construct all maximal local (k, �)-trusses, for a particular k, by
piecing together all edges e with ⌧(e) � k. Note that by Def-
inition 2, the output trusses for LOCALDECOMP must be con-
nected subgraphs of G. Thus, after Algorithm 1, we perform a post-
processing step to extract all connected components. We have the
following:

THEOREM 2. Algorithm 1, with post-processing on connectiv-
ity, finds all and only maximal local (k, �)-trusses of G, for all
2  k  k

max

.

PROOF. Please refer to Appendix.

Although computing and updating edge support in determinis-
tic graphs can be considered straightforward, it is far from trivial
to compute and update edge support probabilities in probabilistic
graphs. Next we give a dynamic programming algorithm for this
task. We defer time complexity analysis of Algorithm 1 to the end
of this section.

4.2 Computing Edge Support Probabilities
By definition, �(e, t) = Pr[supG(e) � t], and thus

�(e, t) = 1�
Xt�1

i=0

Pr[supG(e) = i]

81



Therefore, it is helpful for us to determine the formulas for com-
puting Pr[supG(e) = i], given any i.

Zero triangles. Consider the special case of edge e having zero
support, i.e., Pr[supG(e) = 0]. Two cases arise: (i). e does not
even exist, which happens with probability 1 � p(e); (ii). e ex-
ists but does not participate in any triangles, which happens with
probability p(e) ·Qw2N(u)\N(v)(1� p(w, u)p(w, v)). Thus,

Pr[supG(e) = 0] = (1� p(e))

+ p(e)
Y

w2N(u)\N(v)

(1� p(w, u)p(w, v)). (5)

The case of e not existing is not interesting, but for our dy-
namic programming algorithm in Section 4.2.1, we need to con-
sider case (ii) above. Thus, the probability of zero support reduces
to
Q

w2(N(u)\N(v))(1�p(w, v)p(w, u)) under the assumption that

e exists.

Multiple triangles. Now, we consider the probability that edge e
participates in one or more triangles. The most naive approach is to
consider, for each 1  i  ke, all sets of i triangles, and sum up
all the probabilities as a final result.

Pr[supG(e) = i] =
X

W✓N(u)\N(v),|W |=i
Y

w2W

p(w, u)p(w, v)
Y

w2N(u)\N(v)\W
(1� p(w, u)p(w, v)).

However, enumerating all subsets of N(u) \ N(v) of size i
can be prohibitively expensive. The time complexity is (

n
i ) where

|N(u)\N(v)| 2 O(n), and thus is potentially exponential in n. To
avoid this exponential blow-up, we devise a dynamic programming
algorithm to compute Pr[supG(e) = i], 1  i  ke, in polynomial
time, as described next.

4.2.1 Dynamic Programming for Pr[supG(e) = i]

Our purpose is to identify the structure of the problem so that
we can derive a recursive formula for dynamic programming. Con-
sider an edge e = (u, v) and a fixed common neighbor w 2
N(u) \ N(v). Note that if e participates in i triangles in G, then
either (i).4uvw exists and e participates in i� 1 other triangles in
G excluding4uvw, or (ii).4uvw does not exist and e participates
in i other triangles. Thus, Pr[supG(e) = i] can be computed as a
linear combination of the probabilities that e has i�1 or i triangles
in G excluding 4uvw. According to this rule, we can take advan-
tage of the results of subproblems Pr[supG(e) = j], 0  j  i�1,
to calculate Pr[supG(e) = i].

The recursion. Given a probabilistic graph G = (V,E, p) and an
edge e = (u, v) 2 E, we denote by W =

def

N(u) \ N(v) =

{w
1

, ..., wke}, the set of all common neighbors of u and v in G, or-
dered arbitrarily. Given a subset W` = {w

1

, ..., w`} ✓ W , where
1  `  ke, we denote by Pr[supG(e) = i|W`] the probabil-
ity that e participates in i triangles with common neighbors from
W`. For clarity of exposition, we use f(i, `) as a shorthand for
Pr[supG(e) = i|W`]. Now, for any two consecutive subsets W`�1

and W`, the following recursive formula holds:

f(i, `) = p(w`, u)p(w`, v)f(i� 1, `� 1)

+ (1� p(w`, u)p(w`, v))f(i, `� 1), (6)

where �1  i  ke and 0  `  ke. Note that i = �1 and ` = 0

are “dummy” cases to set up the base cases:

Algorithm 2 Dynamic programming for computing �(e)

Require: G = (V,E, p), an edge e = (u, v) 2 E.
Ensure: �(e) = [�(e, 1),�(e, 2), . . . ,�(e, ke)]
1: f(0, 0) 1

2: f(�1, `) 0, for all 0  `  ke
3: for ` 0 to ke do
4: for i `+ 1 to ke do
5: f(i, `) 0

6: for i 0 to ke do
7: for ` 1 to ke do
8: f(i, `)  p(w`, u)p(w`, v)f(i � 1, ` � 1) + (1 �

p(w`, u)p(w`, v))f(i, `� 1)

9: �(e, 0) 1

10: for t 1 to ke do
11: �(e, t) �(e, t� 1)� f(t, ke)

• f(0, 0) = 1;
• f(�1, `) = 0, for all 0  `  ke;
• f(i, `) = 0, whenever i > `.
For any i, the value f(i, ke) is the desired edge support proba-

bility Pr[supG(e) = i].
Lines 1-8 of Algorithm 2 describe the dynamic programming

procedure. After these steps, we can get the desired edge support
vector �(e) via a single linear scan (lines 9-11), thanks to the fol-
lowing equations:

�(e, t) = �(e, t� 1)� Pr[supG(e) = t� 1]

= �(e, t� 1)� f(t� 1, ke). (7)

Time complexity of Algorithm 2. For each edge e = (u, v),
Algorithm 2 runs in O((min{d(u), d(v)})2) time, where d(u)
is the degree of u in G. The entire dynamic programming pro-
cedure (lines 1-8) takes O(k2

e) time, where ke = |N(u) \
N(v)| 2 O(min{d(u), d(v)}). Calculating �(e) (lines 9-11)
takes O(ke) time. As a result, the total time complexity is
O((min{d(u), d(v)})2).
4.3 Updating Edge Support Probabilities

We now describe how to update �(e) for edge e = (u, v) if the
triangle 4uvw is deleted from G where w 2 N(u) \ N(v), ow-
ing to the removal of e

1

= (u,w) or e
2

= (v, w). Recall that the
update step is fundamental and crucial in our (k, �)-truss decom-
position algorithm (line 8 of Algorithm 1). A naive approach is to
compute �(e) from scratch by Algorithm 2 whenever the update is
needed, but it will again incur O((min{d(u), d(v)})2) overhead.

Assume, without loss of generality, that e
1

= (u,w) was re-
moved from G (the case of e

2

= (v, w) being removed can be
similarly analyzed). The following formula holds:

Pr[supG(e) = i|W ] = (1�p(e
1

)p(e
2

)) Pr[supG(e) = i|W\{w}]
+ p(e

1

)p(e
2

) Pr[supG(e) = i� 1|W \ {w}]
Re-arranging terms, we have:

Pr[supG(e) = i|W \ {w}] =
Pr[supG(e) = i|W ]� p(e

1

)p(e
2

) Pr[supG(e) = i� 1|W \ {w}]
1� p(e

1

)p(e
2

)

Thus, to update �(e), we only need to update f(t, ke) using the
following rule:

fnew
(i, ke) =

fold
(i, ke)� p(e

1

)p(e
2

)fnew
(i� 1, ke)

1� p(e
1

)p(e
2

)

, (8)

82



where the superscripts old and new correspond to before and after
the edge e

1

is removed. Then, �(e) can be efficiently updated via
a linear scan using fnew in O(ke) time as per Eq. 7. Furthermore,
we can see that the update rule in Eq. 8 applies regardless of which
edge, e

1

or e
2

, is the one being removed.

Time complexity of Algorithm 1. The cost of computing �(e)
for all e 2 E (lines 1-2) is O(

P
(u,v)2E(min{d(u), d(v)})2)

✓ O(d
max

P
(u,v)2E min {d(u), d(v)}) ✓ O(d

max

⇢|E|), where
d
max

is the maximum degree and ⇢ is the arboricity of graph G,
i.e., the minimum number of spanning forests needed to cover
all edges of G. Notice that ⇢  min{dmax,

p|E|} [8]. The en-
tire decomposition (lines 3-10) eventually will remove all edges
from G, and for each removal of an edge (u, v), we need to
update �((v, w)) and �((u,w)) for all w 2 N(u) \ N(v).
For each removal, the number of updates is at most 2|N(u) \
N(v)| 2 O(min{d(u), d(v)}). Since a single update can be
done in O(ke) ✓ O(min{d(u), d(v)}) time as discussed, the
total cost of doing updates pertaining to one edge removal is
O(

P
(u,v)2E(min{d(u), d(v)})2) ✓ O(d

max

⇢|E|). In addition,
edge selection (line 4) and edge removal (line 6) both can be done
in O(1) time by a variant of bin sort table [33]. Thus, the total time
complexity of Algorithm 1 is O(d

max

⇢|E|).
Space complexity of Algorithm 1. For each e = (u, v) 2 E, we
maintain a 2-dimensional table for dynamic programming in the-
ory. In the implementation, for computing each f(i, `), we only
need to keep two arrays as f(i � 1, ⇤) and f(i, ⇤), which con-
sumes O(min{d(v), d(u)}) space. Moreover, these two array can
be released after obtaining �(e). In addition, the edge support vec-
tor �(e) only uses O(min{d(v), d(u)}) space. The whole graph
itself takes O(|E|) space. Thus, the total space complexity is
O(|E|+P

(u,v)2E min{d(v), d(u)}) ✓ O(⇢|E|).

5. GLOBAL PROBABILISTIC TRUSS DE-
COMPOSITION

5.1 Monte Carlo Sampling
First, we show how to use Monte Carlo sampling to estimate

↵k(H, e) (Eq. (3)) to circumvent the #P-hardness of its exact com-
putation (Theorem 1). We apply a special case of the well-known
Hoeffding’s inequality [14], stated as follow. It specifies the mini-
mum number of possible world samples required to get a bounded
error for estimating ↵k(H, e).

PROPOSITION 1. Let X
1

, X
2

, . . . , XN be independent ran-
dom variables such that Pr[0  Xi  1] = 1. Let ¯X =

1

N

PN
i=1

Xi and µ = E[ ¯X]. Then,

Pr[| ¯X � µ]| � ✏]  2 exp

��2N✏2
�
. (9)

From Eq. (9), we have that for any � 2 (0, 1] and any ✏ 2 (0, 1],
Pr[| ¯X � µ| � ✏]  �, as long as N � 1

2✏2
ln(

2

�
).

Given an error upper bound ✏ and a probability guarantee �,
a naive strategy would be to sample N = d 1

2✏2
ln(

2

�
)e possible

worlds of H, for every subgraph H ✓ G, and estimate ↵k(H, e)
using the samples. This would be prohibitively expensive. Instead,
our overall strategy is to sample N = d 1

2✏2
ln(

2

�
)e possible worlds

of G, denoted DG =

def

{Gi}Ni=1

. As the existence of each edge
is independent, the resulting possible worlds are pairwise inde-
pendent. Consider any subgraph H ✓ G, we then obtain the N
possible worlds of H by “projecting” each Gi to H: Gi #H=

def

(VH, EGi \ EH). We also denote the projected world by Hi for

simplicity. An estimation of ↵k(H, e) is then obtained via Monte
Carlo sampling:

b↵k(H, e) =
XN

i=1

I(Hi, e, k)/N, (10)

where the indicator function I(Hi, e, k) is defined in Definition 3.
Notice that by Proposition 1, an estimate of ↵k(H, e) obtained by
sampling possible worlds of H is an unbiased estimate. Later, we
shall show that the estimate b↵k(H, e) obtained by sampling (pro-
jected) possible worlds of G (as in Eq. (10)) gives the same result
as the estimate obtained by sampling possible worlds of H.

We say that H is an (✏, �)-approximate global (k, �)-truss if for
any e 2 EH, b↵k(H, e) � �. The following theorem establishes the
theoretical foundation for our strategy that first samples N possi-
ble worlds of G and then projects them on to various subgraphs H
throughout the decomposition process.

THEOREM 3. Given a probabilistic graph G and parameters
✏ 2 (0, 1] and � 2 (0, 1], let DG = {G

1

, ..., GN} be N indepen-
dently sampled possible worlds of G, where N � 1

2"2
ln(

2

�
). Then,

for any given H ✓ G and for any given e 2 EH, we have

Pr[|b↵k(H, e)� ↵k(H, e)| � "]  �,

where b↵k(H, e) is computed according to Eq. (10) using the pro-
jected possible worlds DH =

def

{Gi #H}Ni=1

.

This is a non-trivial result, and to prove it, we first introduce
a few notations and then give a useful lemma. Consider any sub-
graph H ✓ G and an arbitrary H v H. Let X(H) denote the set
of possible worlds of G whose projection to H results in H , i.e.,
X(H) =

def

{G v G : G #H= H}.

LEMMA 3. Given a probabilistic graph G, a subgraph H ✓ G,
and any possible world H v H, we have

Pr[H|H] =

X
G2X(H)

Pr[G|G].
PROOF. Please refer to Appendix.

COROLLARY 1. Given any H ✓ G, 8e 2 EH, we have

↵k(H, e) =
X

GvG
Pr[G|G] · I(G #H, k, e).

PROOF. Please refer to Appendix.

Note that Theorem 3 follows upon applying Proposition 1 to the
result of Corollary 1. In particular, note that the probability of sam-
pling a given possible world H v H is the same as the probability
of sampling some possible world G v G such that G projects to H .
Thus, we only need to sample N possible worlds of G which can
be used to estimate ↵k(H, e) for any subgraph H ✓ G and edge
e 2 EH.

In what follows, we describe two algorithms for finding all max-
imal (✏, �)-approximate global (k, �)-trusses for a given � and all
possible k. For simplicity, we refer to such trusses as “satisfying
trusses” in our algorithm descriptions.

5.2 Theoretical Analysis on Global (k, �)-Truss
The search space for maximal global (k, �)-trusses is huge. This

is exacerbated by two challenging factors: (i) even computing the
probability that a given subgraph H ✓ G contains a k-truss that
connects all nodes of H is intractable (Theorem 1) and (ii) the
number of maximal global (k, �)-trusses can be exponential. In the
previous section, we tackled the first factor using sampling. As for
the second, a useful property that is often employed in efficient
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Figure 4: Two non-global (4, 0.125)-truss G0 and G00

discovery of frequent subgraphs is monotonicity. In our context,
this reduces to asking, given graphs H

1

⇢ H
2

, whether one of
them being a global (k, �)-truss has any implications for the other
graph. Unfortunately, this is not the case here.

EXAMPLE 3. In Figure 4, neither H0 nor H00 is a global (4,
0.125)-truss. For H0, none of its possible worlds is a connected 4-
truss containing node q

2

that is incident with just one edge. The
same reasoning can be applied to H00. Recall that as shown in Fig-
ure 3, H

2

is a global (4, 0.125)-truss. Since H00 ⇢ H
2

⇢ H0, we
can see that any monotonicity-driven pruning of search space does
not work.

On the other hand, global (k, �)-trusses do satisfy a monotonic-
ity property w.r.t. k: every (k + 1, �)-truss is also a (k, �)-truss.
This follows from the fact that every (k+1)-truss is also a k-truss,
although it is not guaranteed to be maximal. This observation can
be exploited to develop a search framework and a bottom-up ex-
ploration strategy. The idea of the search framework is to start with
a small k and find maximal global (k, �)-trusses. Then we remove
edges from them to find global trusses with larger k. In the bottom-
up exploration strategy, we start with a single edge and then expand
it by adding common neighbors of its endpoints and recursively fol-
lowing up until we obtain a maximal global (k, �)-truss.

One of the challenges in case of maximal global trusses is that
their number can be exponential (see Lemma 2 and the appendix).
The reason for this is that different maximal global trusses can over-
lap. In case of maximal local trusses, the edge support probability is
determined independently for each edge, so maximal local trusses
(for any given k) are always disjoint. This is the reason they can be
found efficiently.

5.3 Decomposition Algorithms
Overview. The decomposition process first samples N possible
worlds from G (Theorem 3). Then, starting from k = 2, we apply
local (k, �)-truss decomposition (Algorithm 1) to construct a can-
didate graph, in which we search for maximal (✏, �)-approximate
global (k, �)-trusses. The candidate graph varies with k, and higher
k corresponds to smaller candidate graph (details to follow), thanks
to the monotonicity property w.r.t. k discussed in the previous sec-
tion. Since exhaustive search is prohibitive, we propose two more
efficient search algorithms. The first one is a top-down, exact ap-
proach (Algorithm 4) that finds all satisfying trusses; The second
one is a bottom-up heuristic (Algorithm 5) that is not guaranteed to
find all satisfying trusses, but is significantly more efficient.
Backbone algorithm. Algorithm 3 is the backbone decomposition
algorithm. It first samples N = d 1

2✏2
ln(

2

�
)e possible worlds from

G to form DG = {Gi}Ni=1

(lines 1–2), which will be used for es-
timating edge supports. Next, we apply Algorithm 1 to obtain all
maximal local (k, �)-trusses in G for all possible k (line 3).

The main decomposition procedure iterates over all possible k,
starting from 2. In each iteration, we first generate the candidate
set Ck that contains all edges that may be present in an (✏, �)-
approximate global (k, �)-truss (line 5). In order to prune this set
effectively, notice the following. An edge cannot belong to a global

Algorithm 3 Global (k, �)-truss decomposition
Require: G = (V,E, p); �, ✏, �
Ensure: All (✏, �)-approximate global (k, �)-truss H
1: N  d 1

2✏2
ln(

2

�
)e

2: DG  {G
1

, . . . , GN}, sampled independently from G
3: Apply Algorithm 1 on G for local (k, �)-truss decomposition.
4: for k  2 to n do
5: Ck  Eq. ((11))
6: if k > 2 then
7: Delete all edges with < k � 2 triangles in Ck (computed

without considering edge probabilities)
8: if Ck = ; then
9: break

10: for each connected component C of Ck do
11: Sk  all (✏, �)-approximate (k, �)-trusses in C, found by

Algorithm 4 or Algorithm 5
12: return all maximal (✏, �)-approximate (k, �)-trusses in

Sk, 8k

Algorithm 4 Top-down exact search (TopDownSearch)
Require: DG = {G

1

, ..., GN}, k, C = (VC , EC)
Ensure: all (✏, �)-approximate global (k, �)-trusses in C
1: Ans ;.
2: if 8e 2 EC such that b↵k(C, e) � � then
3: return C
4: else
5: for e 2 EC do
6: C0  C � {e} {remove e from C}
7: Delete edges in C0 having < k � 2 triangles
8: for each connected component C00 of C0 do
9: Ans Ans [ TopDownSearch(D, k, C00)

10: return Ans

(k, �)-truss unless it also belongs to a local (k, �)-truss. It also can-
not belong to a maximal (k, �)-truss unless it belongs to a maximal
global (k�1, �)-truss. Thus, edges outside this intersection can be
safely pruned. Complications arise when dealing with approximate
trusses, which are found by sampling. However, w.r.t. a given set of
N possible worlds, it is easy to verify that every (✏, �)-approximate
maximal global (k, �)-truss is also an (✏, �)-approximate maximal
global (k � 1, �)-truss. This observation allows us to prune the
candidate set Ck significantly, as follows.

Let Sk denote the set of all (✏, �)-approximate global (k, �)-
trusses produced by Algorithm 3 for any given k � 2. For conve-
nience, we define S

1

= EG , i.e., the set of all edges in the original
graph G and we let

S
Sk denote the union of the edge sets asso-

ciated with the satisfying trusses in Sk, for a given k. Hence, we
have:

Ck = {e 2 EH : H is a maximal local (k, �)-truss in G}
\ (

[
Sk�1

). (11)

For k = 2, C
2

reduces to the set of edges present in some max-
imal local (2, �)-truss. When k > 2, we perform an additional
pruning step by removing from Ck all edges that are contained in
less than k � 2 triangles (lines 6–7). The computation of triangles
in this step does not take edge probabilities into account, which is
equivalent to treating as if each edge had a probability of 1. Such
removal clearly further prunes our search space, as those removed
edges have no chance of being in any (✏, �)-approximate global
(k, �)-trusses.
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Algorithm 5 Bottom-up heuristic (BottomUpSearch)
Require: DG = {G

1

, ..., GN}, k, C = (VC , EC)
Ensure: all (✏, �)-approximate global (k, �)-trusses in C
1: Ans ;
2: for all e 2 EC do
3: Q {e} {Q is an induced graph on e.}
4: while 9e 2 Q such that supQ(e) < k � 2 do
5: Add k � 2 triangles of C that have e to Q
6: if 8e 2 EQ, such that b↵k(Q, e) � � then
7: Extend Q to be maximal by adding edges.
8: Ans Ans [{Q}
9: return Ans

After that, we search the subgraphs of each each connected com-
ponent of Ck to identify all satisfying (✏, �)-approximate global
(k, �)-trusses (lines 10–11). This is done by invoking a search-
ing sub-procedure, Algorithm 4 or Algorithm 5, which we describe
shortly. The whole process terminates as soon as the candidate set
Ck0 becomes empty, for a certain k0. By the monotonicity of global
(k, �)-trusses w.r.t. k mentioned above, for any k00 > k0, we know
Ck00 is also empty. Lastly, for each k such that Ck is non-empty, we
return all maximal subgraphs in Sk as output, which are guaranteed
to be the (✏, �)-approximate global (k, �)-trusses (line 12).

Top-down exact search. Algorithm 4 presents a DFS-based al-
gorithm for finding all satisfying trusses, namely maximal (✏, �)-
approximate global (k, �)-trusses, given as input k and a connected
component C of candidate graph Ck. The pseudo-code is mostly
self-explanatory. It first checks if C is itself a satisfying truss. If
so, then C is also maximal by construction, and thus is returned
(lines 2–3). Otherwise, we remove an edge from H, and recur-
sively remove all edges whose support is less than k� 2 as a result
(lines 6–7). Let the resulting graph be C0. We then recursively run
this search algorithm on each connected component of C0 (lines 8–
9). Finally, all satisfying trusses are gathered and returned to Algo-
rithm 3.

Bottom-up heuristic search. The above top-down approach may
suffer from inefficiency, as the search process that removes one
edge at a time can be expensive. To combat this, we propose
a bottom-up heuristic search method that provides significant
speedup, in exchange for incompleteness. That is, it may not dis-
cover all satisfying trusses.

The pseudo-code is presented in Algorithm 5. This search
method grows a potential satisfying truss from Q that is initial-
ized to a single edge from the candidate component. For each edge
e 2 Q, we repeatedly add into Q the edges that can form triangles
with e, until all edges in Q have a support of at least k�2 (lines 3–
5). We then check if Q satisfies the definition of (✏, �)-approximate
global (k, �)-truss w.r.t. DG : if so, it will be included in a candidate
solution. Since it may not be maximal, the algorithm will extend it
by adding local edges to achieve maximality (lines 6–8).

The above bottom-up building process is repeated for all edges.
As a heuristic, we rank edges in C in descending order of their edge
probability. Also, when we grow Q, it is possible that an edge e
may participate in more than k � 2 triangles, in which case we
randomly select k � 2 of these. The reason for not adding all such
triangles is that the more edges a subgraph includes, the more likely
there is an edge that violates the constraint for a global (k, �)-truss.
There are other options such as choosing those triangles whose
edges participate in the largest number of triangles. Such “look-
ahead” strategies involve additional overhead and we do not ex-
plore them further in this paper. A careful study of the trade-off

Network |VG | |EG | dmax |VC| |EC| #comp
FruitFly 3751 3692 27 2400 2771 435

WikiVote 7118 103689 1065 7066 103663 24
Flickr 24125 300836 546 21398 296202 840
DBLP 684911 2284991 611 581539 2169186 34132

BioMine 1008200 6742939 139624 961760 6688520 16242
LiveJournal 4847571 42851237 20333 4843953 42845684 914

Orkut 3072441 117185083 33313 3072441 117185083 1
Wise 58655849 261321033 278489 58655820 261321018 15

Table 1: Network statistics

introduced by such additional heuristics is an interesting question
for future work.

6. EXPERIMENTS
We conduct extensive experiments to test the effectiveness and

efficiency of our proposed algorithms for LOCALDECOMP and
GLOBALDECOMP. All algorithms are implemented in C++, and all
the experiments are conducted on a Linux Server with Intel Xeon
CUP X5570 (2.93 GHz) and 100GB main memory.

6.1 Dataset and Experimental Setup
We use eight real-world probabilistic graphs, whose basic statis-

tics are summarized in Table 1. For each network G, besides the
number of vertices |VG |, number of edges |EG | and maximum de-
gree dmax, we also report the size of the largest connected compo-
nent C(VC , EC) and the number of connected components (#comp).

Flickr (https://www.flickr.com/) is a popular online community
for sharing photos. The network data contains 24.1K nodes (rep-
resenting users) and 301K edges, where the probability of an edge
between two users is calculated by the Jaccard coefficient of the
interest groups of the two users [4, 27].

DBLP (http://dblp.uni-trier.de/) is a computer science bibliog-
raphy website. The probabilistic graph consists of 685K nodes
and 2.3M edges. Here, each node corresponds to an author, and
edges represent co-authorship relationships. Precisely, previous
work [4, 27] measures the probability of each edge based on an
exponential function of the number of collaborations.

BioMine is a snapshot of the database of the BioMine project
[13] containing biological interactions (http://BioMine.cs.helsinki.
fi/search/). The graph contains 1.01M nodes and 6.74M edges,
where the probability of an edge corresponds to the confidence that
the interaction actually exists [4, 27].

FruitFly is a protein-protein interaction (PPI) network [23], ob-
tained by integrating data from the BioGRID (http://thebiogrid.
org/) database and data from the STRING database [27]. WikiV-
ote, LiveJournal and Orkut are social networks downloaded
from the Stanford Network Analysis Project (http://snap.stanford.
edu/); Wise (http://www.wise2012.cs.ucy.ac.cy/challenge.html) is
a micro-blogging network from WISE 2012 Challenge. For these
four networks, the edge probabilities are assigned uniformly at ran-
dom from the interval [0, 1].
Comparison Methods. To evaluate the efficiency and effectiveness
of local and global (k, �)-truss decomposition methods, we test and
compare three algorithms proposed in this paper, namely, Local,
GTD, and GBU. Here, Local is the algorithm for LOCALDECOMP
by combining Algorithm 1 and Algorithm 2 using dynamic pro-
gramming strategies. GTD is the algorithm for GLOBALDECOMP
by combining Algorithm 3 and Algorithm 4. GBU is also an algo-
rithm for GLOBALDECOMP, which uses heuristic search strategies
by combining Algorithm 3 and Algorithm 5.
Evaluation Metrics. For efficiency, we report running time in sec-
onds. To evaluate the quality of an output truss, we use the follow-
ing two metrics. We define the density (cohesiveness) of a proba-
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Figure 5: Local (k, �)-truss decomposition: dynamic programming vs. baseline (re-computing edge support probabilities from
scratch after each edge removal) in terms of running time (in seconds)

bilistic graph H as

density(H) =

P
e2EH p(e)

1

2

|VH| · (|VH|� 1)

, (12)

where the numerator can be interpreted as the weighted sum of ex-
isting edges (where weights are existence probabilities) and the de-
nominator is the maximum number of possible edges H can have.
The second metric is the probabilistic clustering coefficient [26]:

PCC(H) =

3

P
4uvw2H p(u, v)p(v, w)p(w, u)

P
(u,v),(u,w)2E(H),v 6=w p(u, v)p(u,w)

. (13)

Note that, a graph H containing only a single edge is not considered
for PCC in experiments. For GTD and GBU, we set the parameters
✏ = 0.1 and � = 0.1, and randomly sample a total of N = 150

graphs where N � 1

2"2
ln(

2

�
) by Theorem 3.

6.2 Efficiency Evaluation
Local (k, �)-truss decomposition. For LOCALDECOMP, we test
the proposed method Local, and compare its efficiency with a naive
baseline, which still uses Algorithm 1 as its backbone, but when-
ever an update of edge support probabilities is needed (after an edge
removal), it computes the entire vector �(·) from scratch. The run-
ning time results are illustrated in Figure 5 by varying � from 0.1
to 0.9. Note that the Y-axis for Figure 5(b) – 5(h) is in log-scale.

Overall, as � increases, the requirement for a subgraph to be a
local (k, �)-truss becomes stricter, and the running time decreases.
This is expected, as more edges can be pruned quickly and the algo-
rithm enjoys working with a smaller graph. As can be seen, on all
datasets, the version that uses dynamic programming for updating
the probabilities is faster than the naive baseline. In particular, on
large datasets (from WikiVote to Wise), the dynamic programming
version is often more than one order of magnitude faster than the
baseline, indicating its superior efficiency and scalability.
Global (k, �)-truss decomposition. We next report the running
time of our decomposition for (✏, �)-approximate global (k, �)-
truss. As mentioned in Section 5, the top-down search algorithm
GTD may suffer from inefficiency issues due to the inherent hard-
ness of GLOBALDECOMP, and a bottom-up heuristic method GBU

is proposed to alleviate the issue.
As can be seen from Figure 6, on a small probabilistic graph

FruitFly, the GTD cannot finish in a reasonable amount of time for
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Figure 6: Running time (in secs) of GTD and GBU on FruitFly
Network � = 0.1 � = 0.3 � = 0.5 � = 0.7 � = 0.9
FruitFly 0.1 0.1 0.1 0.1 0.1
WikiVote 27.2 10.2 6.2 1.4 0.3
Flickr 40.9 11.7 11.4 11.1 11.0
DBLP 168 42.8 16.2 7.5 3.5
BioMine 2660 164 43.8 43.6 25.0
LiveJournal 24397 11828 4429 1173 146
Orkut 69870 33671 6178 2659 421
Wise 66085 49512 22861 8036 843

Table 2: Running time (in seconds) of GBU on all networks

� = 0.5 and 0.6. GTD can accomplish the task in reasonable for
� � 0.7, but is often orders of magnitude slower than GBU. This
indicates the scalability limitation of GTD. Thus, in subsequent ex-
periments, we keep using the bottom-up heuristic for GLOBALDE-
COMP, whose running time on all datasets are shown in Table 2. As
can be seen, similar to local (k, �)-truss decomposition, the run-
ning time decreases as � increases. The running time of GBU in-
creases essentially linearly with graph size. Since all graphs tested
have a single dominant connected component (see Table 1), these
findings are reliable and attest to the scalability of GBU over graphs
with millions of edges.
Memory Usage. In this experiment, we report the memory usage
of proposed methods with � = 0.5 in Figure 8. The black bar rep-
resents the space required for storing the graph on disk. As can
be seen, the memory usage of GBU is the same memory as for
Local. Both methods consume less than 20 times of graph size (see
Figure 8). Local (k, �)-truss decomposition takes O(⇢|EG |) space
complexity to store the edge support vectors, |EG | being the num-
ber of edges. It can be inferred from Figure 8 that ⇢ tends to be
small for real sparse networks. The memory consumption of GBU
mainly consists of the edge support vectors and N sampled graphs.
For an edge e 2 G, we use one bit ‘1’ or ‘0’ to record whether e
exists in each sampled graph Gj , 1  j  N . It takes 192 bits
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Figure 7: Quality Comparison on Fruit-Fly with � = 0.7 varying k
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Figure 8: Memory Usage of proposed methods on all networks

(6 bytes) to record all sample results for one edge. Thus, the total
memory cost of sampled graphs is significantly less than the cost
of edge support vectors. Once we obtain the local truss-ness of all
edges, we can release the memory used for storing edge support
vectors, before creating sample graphs. As a result, GBU still costs
the same memory as Local. Both methods show a good space scal-
ability to large real networks.

6.3 Quality Evaluation
Recall that our motivation of proposing global (k, �)-truss is

to extract more cohesive subgraphs through more stringent defini-
tions. To validate our proposal, in this experiment we directly com-
pare the cohesiveness of these two types of probabilistic trusses
using density and probabilistic clustering coefficient (PCC).

Figures 7(a)–(d) report the average density, the average PCC,
the average vertex number of (k, �)-truss and the number of (k, �)-
truss respectively found by all three methods on FriutFly2, for vary-
ing k, with � fixed at � = 0.7. Figures 7(a)-(b) show that the output
global (k, �)-trusses consistently achieve higher density and PCC

than the local ones, as expected. An exception is k = 5. For k = 5,
all three methods find the same one (k, �)-truss, which structurally
is a 5-clique. The heuristic method GBU achieves higher density
and PCC than GTD. The reason is two-fold. GBU always starts
the exploration from edges with high probability to form (k, �)-
truss, which potentially leads to a higher density and PCC than
GTD. Secondly, note that GBU cannot find all (k, �)-trusses as
GTD, and some of (k, �)-trusses found by GBU may not be max-
imal, which may also increase density. Generally, for both local
and global (k, �)-truss, density and PCC become larger as k in-
creases, as denser (k, �)-trusses will be found by removing edges
of low support and small probability. In Figure 7(c), GTD and GBU

both found smaller (k, �)-trusses than Local, reflecting that global
(k, �)-truss is a stricter definition than the local one. The (k, �)-
trusses of GBU are the smallest ones. In Figure 7(d), the number of
output (k, �)-trusses decreases as k goes up: indeed, increasing k
leads to stricter a requirement by definition. For GBU, as a heuristic
it may not discover some of the truly maximal satisfying trusses as
found by GTD; instead it may find some other non-maximal ones.
Thus, GBU sometimes outputs more trusses than GTD.

Next, we compare Local and GBU on larger networks. GTD is
not compared here owing to its efficiency limitation. We report the
2For all other datasets, under our parameter settings, GTD cannot
finish. Thus Figure 7 demonstrates using FruitFly.
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Figure 9: Quality Comparison between Local (k, �)-truss and
Global (k, �)-truss with � = 0.5 on all networks

results on average density and average PCC of all (k, �)-trusses
for all possible k with � = 0.5 in Figure 9 (a)-(b). The results of
the vertex size and the number of (k, �)-trusses on these datasets
are similar as FriutFly, and are thus omitted. As we can see, GBU
achieves higher density and PCC than Local on all networks. Once
again the superiority of global (k, �)-truss is established.

6.4 Comparisons with (k, ⌘)-Cores
In this experiment, we show that local (k, �)-truss is superior to

(k, ⌘)-core [4] as a type of cohesive probabilistic subgraphs when
we take into account, not just graph structure, but also the prob-

ability of existence of that structure. For fairness of comparison,
we use our local definition, since (k, ⌘)-core is defined in a similar
fashion to local (k, �)-truss. For a given ⌘, we use kcmax to denote
the maximum core number. Then, we set � = ⌘, and use ktmax to
denote the maximum truss number. For simplicity, we denote the
(kcmax, ⌘)-core by C and the (ktmax, �)-truss by T . Table 3 re-
ports the statistics of T and C on WikiVote, DBLP and Biomine.
The results of other datasets are similar and are omitted. We vary
the parameter ⌘ = � 2 {0.1, 0.5}. In terms of both the number
of vertices and edges, we can see that the size of T is significantly
smaller than that of C, which shows that the (ktmax, �)-truss and
(kcmax, ⌘)-core are indeed quite different in terms of the kinds of
cohesive subgraphs they extract. Note that ktmax is always smaller
than kcmax for all � = ⌘ 2 {0.1, 0.5}.

First, ignore the edge probabilities and consider only the graph
structure. The clustering coefficient of T is comparable to that of
C on all datasets, and on Wikivote, T has a higher clustering co-
efficient. In addition, both C and T had nearly clique structure on
DBLP and Biomine. However, this is not the true whole story as
this ignores the probability of existence of the structure present in
the found cores and trusses. As we can see, in terms of PCC and
density, the (ktmax, �)-truss clearly outperforms (kcmax, ⌘)-core
on all networks. This is because the (k, �)-truss takes the proba-
bility of an edge contained in triangles into consideration, whereas
(k, ⌘)-core does not. As a result, (k, �)-truss can prune edges with
small probability as well as those having a small porbability of be-
ing contained in many triangles, and achieve a higher density and
PCC. In conclusion, the results demonstrate that (ktmax, �)-truss
is significantly more cohesive and tightly-knit than the (kcmax, ⌘)-
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Network ⌘ = � VT /VC ET /EC ktmax/kcmax CCT /CCC PCCT /PCCC denT /denC

WikiVote 0.1 280/1080 7660/47873 8/21 0.386/0.200 0.220/0.100 0.115/0.041
WikiVote 0.5 82/985 891/44243 5/20 0.395/0.212 0.305/0.105 0.210/0.046
DBLP 0.1 34/112 261/6216 14/25 1.0/1.0 0.619/0.316 0.611/0.263
DBLP 0.5 10/114 45/6441 10/20 1.0/1.0 0.992/0.319 0.992/0.265
Biomine 0.1 102/199 5127/19701 33/58 0.996/1.0 0.539/0.280 0.539/0.279
Biomine 0.5 101/201 4996/20100 18/52 0.990/1.0 0.536/0.280 0.536/0.279

Table 3: Statistics of (k, �)-truss, T , and (k, ⌘)-core, C, on WikiVote, DBLP and Biomine. the number of vertices (VT /VC ), the
number of edges (ET /EC ), the maximum truss/core number (ktmax/kcmax), the clustering coefficient (CCT /CCC ), the probabilistic
clustering coefficient (PCCT /PCCC ) and the probabilistic density(denT /denC ) respectively.
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Figure 10: An example of task-driven team formation with query nodes ={“Jeffrey D. Ullman”, “Piotr Indyk”} and keywords
={“data”, “algorithm”}. In the plots, a wider line indicates a higher probability on the edge.

core, for � = ⌘, when we take both structure and its existence
probability into account.

6.5 Task-Driven Team Formation
We apply our local and global (k, �)-truss decomposition algo-

rithms to solve the task-driven team formation problem. The orig-
inal problem definition [4] is w.r.t. (k, ⌘)-core specifically. To be
able to perform this experiment, we adapt the definition and make it
specific w.r.t. (k, �)-truss: Given a probabilistic graph G = (V, E)
derived specifically for a task T , a query (Q,T ) with nodes Q ⇢ V
and task T , as well as � 2 (0, 1), find a local/global (k, �)-truss
from G that (i) contains all nodes in Q and (ii) has the highest
truss-ness k that satisfies �. The edge probabilities in G are defined
w.r.t. task T , following the authors of [4].

We use a DBLP collaboration network with meta-data obtained
from [4]. Each node represents an author, and an edge is drawn
between two authors if they co-authored at least one paper. The
resulting graph has 1.1M nodes and 4.1M edges. For each edge
(u, v), the data contains the titles of all papers coauthored by u
and v. Given a set W of keywords, the edge probability of (u, v)
represents the collaboration strength of papers co-authored by u
and v related to keywords W . For each edge, [4] takes the bag of
words of the titles of all papers coauthored by the two authors, and
applies the Latent Dirichlet Allocation (LDA) model [3] to infer its
topics and calculates the edge probability. The probabilistic graph
on keywords W is denoted GW .

We set ⌘ = � = 10

�11 as suggested by authors of [4] due to the
low edge probabilities in the data. The sample query is ({“Jeffrey
D. Ullman”, “Piotr Indyk”}, {“data”, “algorithm”}). Figure 10(a)
depicts a local (4, 10�11

)-truss containing both authors. The local
truss has 20 nodes, 67 edges, with density 0.002 and PCC 0.005.
Furthermore, we use the local (k, �)-truss shown in Figure 10(a) as
the input of global (k, �)-truss decomposition and obtain 17 global
(k, �)-trusses, one of which is shown in Figure 10 (b): It has 8
nodes, 28 edges, density 0.007, and PCC 0.007. Once again, the
superiority of global (k, �)-truss is shown.

In contrast, applying (k, ⌘)-core decomposition [4] to this query
results in a (5, 10�11

)-core with 1153 nodes, 13355 edges, with
density 6 · 10�5 and PCC 0.002. As we can see, team formation by
(k, �)-truss produces a much more desirable team, i.e., it is much

smaller and denser than (k, ⌘)-core. Intuitively, this is arguably bet-
ter for the task of writing a research paper related to “data” and
“algorithm” as it is unrealistic for 1153 researchers to collaborate.

7. SUMMARY AND FUTURE WORK
Motivated by applications in biological, social, and communi-

cation networks, we propose, for the first time, extensions to the
definition of a k-truss for probabilistic graphs. Our framework al-
lows for a local as well as a global version of a probabilistic truss, a
(k, �)-truss, to be precise. (k, �)-trusses correspond to probabilis-
tic cohesive subgraphs and we motivate the truss decomposition
problem for the world of probabilistic graphs as that of finding
maximal (local or global) (k, �)-trusses. We develop an elegant
and efficient dynamic programming algorithm for finding all max-
imal local (k, �)-trusses of a given probabilistic graph. For global
(k, �)-trusses, for a given probabilistic graph, the number of maxi-
mal global (k, �)-trusses can be exponential; also even computing
the probability of a given subgraph containing a k-truss that con-
nects all its nodes, a task needed for finding global (k, �)-trusses,
is #P-hard. We thus propose an approach that combines sampling
along with heuristic search, to find a subset of approximate (k, �)-
trusses efficiently. We conducted extensive experiments on 6 real
datasets. Our results demonstrate that our algorithms significantly
outperform natural baselines as well as alternative techniques based
on probabilistic extensions to k-cores. The experiments show the
efficiency and effectiveness of our proposed algorithms.

This work opens up several interesting questions. First develop-
ing further efficient and clever heuristics for finding maximal global
(k, �)-trusses is important. Second, given k, how to find maximal
(local or global) (k, �)-trusses for various possible �? Notice that
this problem is well defined even though � is a real number, since
there are only finitely many k-trusses in a (probabilistic) graph,
each of which must be a (k, �)-truss for some maximum possible
�. Finding efficient solution to this problem is wide open.
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Appendix: Additional Proofs
Proof of Lemma 2. Consider an extension of the graph G shown in
Figure 11, where there are n triangles attached to the central node,
instead of 4. Consider k = 3 and � = (1/2)3dn/2e. Then it can
be easily verified that a maximal global (k, �)-truss is a subgraph
of G consisting of dn/2e triangles. There are

�
n

dn/2e
�

such choices,
which is exponential in n.
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Figure 11: A “windmill” probabilistic graph

Proof of Theorem 2. We prove by contradiction. Suppose a max-
imal local (k, �)-truss H is not in the answer set of Algorithm 1.
First, for each edge e 2 H has �(e, k�2)p(e) � � by Definition 2,
thus ⌧(e) � k. Due to the fact that Algorithm 1 collects together all
edges e with ⌧(e) � k, no edges of H are missed by Algorithm 1.
Moreover, all edges of H are connected, and will be assigned into
the same component by the post-processing step. Thus, if H is not
in the answer set of Algorithm 1, the only possibility is that there
exists a larger local (k, �)-truss containing H. But this violates the
maximal property of H, a contradiction.

Proof of Lemma 3. First, the probability of a possible world H of
H is

Pr[H|H] =

Y
e2EH

p(e)
Y

e2EH\EH

(1� p(e)).

Next, for each possible world G v G such that G 2 X(H), we
have EG \ EH = EH ; we can divide the edge set EG into two
disjoint subsets E

1

and E
2

, where E
1

= EH and E
2

= EG \EH.
Since EG \EH = EH , we also have E

2

= EG \EH = EG \EH

and EH \ EG = EH \ EH . Then, we obtain the probability

Pr[G|G] =
Y

e2EG

p(e)
Y

e2E(G)\EG

(1� p(e))

=

Y
e2E1[E2

p(e)
Y

e2(EH[(E(G)\EH))\EG

(1� p(e)) (14)

=

Y
e2E1

p(e)
Y

e2E2
p(e)

Y
e2EH\EG

(1� p(e))
Y

e2(E(G)\EH)\EG

(1� p(e)) (15)

=

Y
e2EH

p(e)
Y

e2EH\EH

(1� p(e))
Y

e2E2
p(e)

Y
e2(E(G)\EH)\EG

(1� p(e))

= Pr[H|H]

Y
e2E2

p(e)
Y

e2(E(G)\EH)\E2
(1� p(e))

= Pr[H|H] Pr[G0|G0
], (16)

where G0
= (V (G), E(G) \ EH) and G0

= (V (G), E
2

) =

(V (G), EG \ EH). Also notice that in going from Eq. (14) to Eq.
(15), we have used the fact that EH \EG and (EG \EH) \EG are
disjoint. Now, clearly, G0 has no edges in any possible world of H,
and G0 v G0.

For a given possible world H v H, summing both sides of Eq.
(16) over all possible worlds of G that project to H , we have

X
G2X(H)

Pr[G|G] =
X

G2X(H)

Pr[H|H] Pr[G0|G0
].

That is,
X

G2X(H)

Pr[G|G] =
X

G2X(H)

Pr[H|H] Pr[G0|G0
]

= Pr[H|H]

X

G0vG0
Pr[G0|G0

]

= Pr[H|H].

This completes the proof.

Proof of Corollary 1. We define the indicator function I(G 2 XH)

which takes on 1 if G 2 XH , and 0 otherwise. From Definition 3
and Lemma 3, we have:

↵k(H, e) =
X

HvH
Pr[H|H] · I(H, k, e)

=

X

HvH

X

G2XH

Pr[G|G] · I(H, k, e)

=

X

GvG

X

HvH
I(G 2 XH) · Pr[G|G] · I(H, k, e)

=

X

GvG
Pr[G|G]

X

HvH
I(G 2 XH) · I(H, k, e), (17)

=

X

GvG
Pr[G|G] · I(G #H, k, e). (18)

The last equality follows from the fact that although the second
summation in (17) is over all H v H, the product I(G 2 XH) ·
I(H, k, e) is non-zero for at most one possible world of H, namely
G #H, and for this world, the product reduces to I(G #H, k, e).
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