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ABSTRACT
Community search enables personalized community discov-

ery and has wide applications in large real-world graphs.

While community search has been extensively studied for

undirected graphs, the problem for directed graphs has re-

ceived attention only recently. However, existing studies

suffer from several drawbacks, e.g., the vertices with varied

in-degrees and out-degrees cannot be included in a com-

munity at the same time. To address the limitations, in this

paper, we systematically study the problem of community

search over large directed graphs. We start by presenting a

novel community model, called D-truss, based on two dis-

tinct types of directed triangles, i.e., flow triangle and cycle

triangle. The D-trussmodel brings nice structural and compu-

tational properties and has many advantages in comparison

with the existing models. With this new model, we then

formulate the D-truss community search problem, which is

proved to be NP-hard. In view of its hardness, we propose

two efficient 2-approximation algorithms, named Global and

Local, that run in polynomial time yet with quality guaran-

tee. To further improve the efficiency of the algorithms, we

devise an indexing method based on D-truss decomposition.

Consequently, the D-truss community search can be solved

upon the D-truss index without time-consuming accesses

to the original graph. Experimental studies on real-world

graphs with ground-truth communities validate the quality

of the solutions we obtain and the efficiency of the proposed

algorithms.
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1 INTRODUCTION
Community search is an important tool for network anal-

ysis, which aims to find the densely connected subgraphs

containing the query vertices [28]. To date, a lot of research

efforts have been devoted to the study of community search

over large graphs, of which the majority focus on undirected

graphs [11, 15, 17]. However, in reality, directed graphs are

ubiquitous, such as social network, Web network, gene reg-

ulatory network, and so on [2]. Discovering communities

in large directed graphs is of great significance. For exam-

ple, the users of Twitter can be modelled as a directed social

network graph, where each vertex represents a user and an

edge from vertex i to vertex j means user i follows user j.
In this directed graph, the users following a common set of

accounts may constitute a community.

To find cohesive communities, many models have been

proposed for undirected graphs, e.g., k-core, k-truss, and
clique. Among them, the k-truss model has received con-

siderable attention due to its strong structural cohesiveness

and high computational efficiency [1, 6, 14]. Specifically, k-
truss is defined based on undirected triangles. By definition,

every edge in a k-truss is contained in at least k triangles.
1

However, k-truss is unsuitable for directed graphs. This is

because undirected graphs have only one type of triangles

while directed graphs could contain two types of triangles,

i.e., cycle triangle and flow triangle [29]. A cycle (flow) tri-

angle is a cyclic (acyclic) directed graph of three vertices.

1
In some studies, k-truss is defined that every edge is contained in at least

k − 2 triangles.
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Figure 1: Triangles in Graphs
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Figure 2: A Directed Graph

Figure 1 shows the three different types of triangles. The

cycle triangle and flow triangle can be used to construct dif-

ferent kinds of communities in directed graphs. For example,

suppose Figure 2 represents a social network graph. The

vertices A, B, C, and D form a community, in which every

edge is contained in a cycle triangle. On the other hand, for

the community consisting of A, G, H, I, and J, every edge is

associated with a flow triangle. Obviously, these two com-

munities exhibit distinct features: the former is a group of

strongly connected users, whereas the latter is a group of

weakly connected users following a common user (vertex

H). However, if we simply employ the k-truss model for this

directed graph, it would take these two communities as a

single truss community and cannot distinguish them.

Recently, Fang et al. [12] have explored community search

over large directed graphs based on a D-core (also called

(k, l)-core) model [13]. In particular, given a directed graph

G , a query vertex q, two positive integers k and l , it returns a
connected subgraph G ′ ⊆ G such that G ′ contains q and for

every vertex inG ′, its in-degree and out-degree are no less

than k and l , respectively. However, the D-core model may

suffer from one significant limitation. For directed graphs,

there may exist some special vertices, namely those with

high in-degree and low out-degree (e.g., authorities and key

opinion leaders) and those with low in-degree and high out-

degree (e.g., hubs and followers) [20]. Unfortunately, the

D-core model usually returns the communities with only

one type of such vertices. If we try to include both types of

such vertices, both k and l should be set to be low, which

may result in a sparse community. For example, in Figure

2, for the community {A, G, H, I, J}, G’s in-degree and H’s

out-degree are both 0. If we want to retrieve G and H at the

same time, we should set k = l = 0; in this case, however, the

entire graph would be returned as a (0, 0)-core community.

To address the aforementioned limitations of the existing

studies, in this paper, we systematically study the problem of

community search over large directed graphs. First of all, we

present a new community model, called D-truss (also called

(kc ,kf )-truss), for directed graphs. Specifically, D-truss takes
cycle triangle and flow triangle as its cornerstone. In a D-

truss, every edge should form cycle triangles (flow triangles)

with at least kc (kf ) other vertices. D-truss can overcome the

drawbacks of k-truss and D-core, and brings nice structural

and computational properties. Back to the example shown in

Figure 2, if we want to search (1, 0)-truss with node A as the

query vertex, the community {A, B, C, D} will be retrieved;

otherwise, if we want to search (0, 1)-truss with node A as

the query vertex, the community {A, G, H, I, J} can be found.

Based on the D-truss model, we formally define our prob-

lem of D-truss community search (DCS). Specifically, DCS

aims to find the subgraph: (1) containing the query vertices;

(2) being a D-truss; and (3) having the minimum diameter.

It is worth mentioning that we additionally impose the di-

ameter constraint in our problem definition to avoid the so-

called "free-rider effect" [31]. Intuitively, community search

is user-centered and personalized and, thus, the returned

community should be relevant to the given query. However,

in some cases, the vertices that are far away from the query

vertices and irrelevant to them may be included in the resul-

tant community. Therefore, we use the minimum diameter

to eliminate those vertices.

We prove that the DCS problem is NP-hard. Being an

NP-hard problem, the D-truss community search is highly

challenging. To efficiently solve the problem, we design two

polynomial 2-approximation algorithms, i.e., Global and Lo-

cal. Note that the approximation is with respect to the min-

imum diameter. In particular, Global works in a top-down

manner while Local runs in a bottom-up fashion. Moreover,

we propose an indexing method to further improve the effi-

ciency of the algorithms. More specifically, we first employ

D-truss decomposition to compute all possible D-trusses in

the entire graph. Then, we record the skyline trussness (to

be defined in Section 6.1) for every edge and compact them

in an index. Thus, when searching the D-truss community,

the algorithms only need to traverse the index to check the

dominance relationship of edges’ skyline trussnesses instead

of time-consuming accesses to the original graph.

Overall, we make the following contributions in this paper:

• We present a novel community model called D-truss

for community search over large directed graphs. We

highlight the advantages and interesting properties of

D-truss in comparison with the state-of-the-art mod-

els.

• We formally define the D-truss community search

problem and show that the problem is NP-hard by

a reduction to the maximum clique problem.



• We develop two efficient 2-approximation algorithms,

i.e., Global and Local, for our problem. To further im-

prove the efficiency of the algorithms, we propose an

indexing method based on D-truss decomposition.

• We conduct extensive experimental studies on real-

world graphs with ground-truth communities. Experi-

mental results validate the quality of the solutions we

obtain and the efficiency of the proposed algorithms.

Roadmap: The rest of the paper is organized as follows.

Section 2 reviews the related work. Section 3 introduces the

D-truss model and formally defines the problem of D-truss

community search. Section 4 analyzes the hardness and prop-

erties of our problem. Section 5 proposes two approximation

algorithms, followed by an index-based method proposed

in Section 6. Section 7 presents our experimental results.

Finally, we conclude this paper in Section 8.

2 RELATEDWORK
Community search is first introduced by Sozio and Gio-

nis [28]. Since then, numerous community models have

been proposed, such as k-core, k-truss, k-clique, and so on
[11, 15, 17]. In particular, k-core-based community search

returns the community in which the degree of every vertex

is no less than k [3, 8, 28]. It is well known that the k-core
community is not guaranteed to be cohesive. To ensure the

cohesiveness of the retrieved community, clique has also

been considered for community search [34]. However, as the

clique model is too restrictive, some relaxed variants have

been investigated [7, 30]. More recently, k-truss has been
extensively explored [1, 14, 18]. In addition, Wu et al. [31]

propose query biased density to reduce the free-rider effect

for the returned community. Besides simple graphs, com-

munity search has also been investigated for more complex

graphs, such as community search over attributed graphs

[9, 16], geo-social graphs [4, 10, 35], temporal graphs [25],

multi-valued graphs [23], and weighted graphs [22, 24].

The above studies mainly focus on undirected graphs.

There are also some recent works targeting on community

analysis for directed graphs. In particular, community de-

tection on directed graphs aims to find all the communities

in a given directed graph [19, 21, 26, 27, 32, 33]. However,

only few work has explored community search over directed

graphs, based on core-based models [12]. To the best of our

knowledge, so far no work has investigated truss-based com-

munity search over directed graphs.

In summary, (i) the techniques of community search over

undirected graphs do not capture the directionality of edges

and, thus, are not applicable to community search over di-

rected graphs; (ii) the community detection over directed

graphs finds all communities from a graph, which is ineffi-

cient and cannot be used for the community search as it does

not take query vertices into consideration; (iii) as analyzed in

Section 1, existing studies of community search on directed

graphs suffer from some drawbacks. As such, it is essential

to propose more effective models and develop more efficient

algorithms for community search over large directed graphs.

3 PROBLEM FORMULATION
Let G = (VG , EG ) be a directed, simple, and unweighted

graph with a set V of vertices and a set E of edges. We call

this graph G a digraph for short. Let n = |VG | andm = |EG |
be the numbers of vertices and edges, respectively. W.l.o.g

we assume in this paper thatm ≥ n − 1 [18]. A subgraph

H = (VH , EH ) ofG satisfiesVH ⊆ VG and EH = {⟨u,v⟩ ∈ EG :

u,v ∈ VH }. For an edge ⟨u,v⟩, we sayu is an in-neighbor ofv
and v is an out-neighbor of u. For a vertex v in H , we denote

the set of in-neighbors of v by N+H (v) = {u : ⟨u,v⟩ ∈ EH }
and the in-degree of v by deg+H (v) = |N

+
H (v)|. Similarly, we

denote the set of out-neighbors ofv byN−H (v) = {u : ⟨v,u⟩ ∈
EH }, and the out-degree of v by deg−H (v) = |N

−
H (v)|. The

degree of vertex v in H is defined as degH (v) = deg+H (v) +
deg−H (v). Next, we provide a formal definition of D-truss and

formulate the problem of D-truss community search.

3.1 D-truss
A triangle is a subgraph of three vertices connected to each

other by three edges [6]. In a digraph, there exist two types

of triangles: cycle triangles and flow triangles [29]. Specifi-

cally, each vertex in a cycle triangle formed by three vertices

u,v,w , denoted by △Cuvw , has in-degree and out-degree of

exactly one, respectively. A flow triangle, denoted by △Fuvw ,

is a connected graph composed of three vertices having out-

degrees equal to zero, one, and two, respectively. Figures 1(b)

and 1(c) give examples of a cycle triangle and a flow triangle,

respectively. With the cycle and flow triangles, we formally

introduce the definitions of cycle support and flow support

below.

Definition 3.1. (Cycle Support). Given a digraph H and

an edge e = ⟨u,v⟩∈ EH , the cycle support of e in H is defined

as the number of vertices that can form cycle triangles with

e in H , denoted by csupH (e) = |{w ∈ VH : △Cuvw in H }|.

Definition 3.2. (Flow Support). Given a digraph H and

an edge e = ⟨u,v⟩∈ EH , the flow support of e in H is defined

by fsupH (e) = |{w ∈ VH : △Fuvw in H }|.

On the basis of cycle support and flow support, we define

D-truss as follows.

Definition 3.3. (D-truss). Given a digraphG and two inte-

gerskc andkf , a subgraphH ⊆G is a D-truss, also denoted as

(kc ,kf )-truss, if ∀e ∈ EH , csupH (e) ≥ kc and fsupH (e) ≥ kf .

A D-truss H is a maximal D-truss if there exists no D-

truss H ′ ⊆ G satisfying H ′ ⊃ H .
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Figure 3: An example of D-truss

Example 1. Consider an example of digraph G in Figure 3.

The edge ⟨v2,v5⟩ forms one cycle triangle with vertex v7 in
△Cv2v5v7

and two flow triangles with v7 and v6 in △
F
v2v5v7

and

△Fv2v5v6

, respectively. Hence, csupG (⟨v2,v5⟩) = 1 and

fsupG (⟨v2,v5⟩) = 2. As the edge ⟨v9,v5⟩ is not involved in any
cycle triangle or flow triangle, csupG (⟨v9,v5⟩) = fsupG (⟨v9,v5⟩)
= 0. There exist several different D-trusses. H1 and H2 are (1,

1)-trusses, and H3 is a (0, 1)-truss. Note that both H2 and H3

are maximal D-trusses of G but H1 is not.

From the definition, D-truss takes cycle triangle and flow

triangle as its cornerstone. This makes sense as both triangles

are ubiquitous in digraphs [29]. Besides the social network

example mentioned in the Introduction, another example

is word network of the Edinburgh Associative Thesaurus.

In this network, a directed link from nodes (i.e., words) i
to j exists if word j comes to mind when word i is shown
as a stimulus. Both the cycle triangle and flow triangle are

meaningful. Specifically, the words constituting a cycle tri-

angle have an equal relationship with each other such that

each word can recall all other words. On the other hand,

the words constituting a flow triangle have a hierarchical

relationship such that some words can remind other words

but the converse rarely occurs. For example, the words "Sick",

"Disease", and "Medicine" can form a cycle triangle while the

words "Sick", "Disease", and "Cancer" can constitute a flow

triangle.

3.2 D-truss Community Search
Before formally defining the problem of D-truss commu-

nity search, we first introduce the concepts of connectivity,

distance, and diameter in digraph G.
For any two vertices u and v inG , we say that u can reach

v (denoted as u → v), if and only if there exists a directed

path from u to v in G. If u → v and v → u both hold, we

say that u and v are strongly connected; if either u → v or

v → u holds,u andv are weakly connected; if neitheru → v
nor v → u holds, u and v are disconnected. A subgraph H
of G is strongly connected if every pair of vertices in H is

strongly connected in H . We say that H is weakly connected

if every pair of vertices in H is at least weakly connected in

H . The distance from u to v in G, denoted by distG ⟨u,v⟩, is
the length of the shortest directed path from u to v in G. If

v is not reachable from u, we say distG ⟨u,v⟩ = +∞. In the

following, we give a definition of diameter in digraphs [2, 5].

Definition 3.4. (Diameter). The diameter of digraph H ,

denoted by diam(H ), is the maximum distance among all

pairs of vertices inH , i.e., diam(H ) =maxu ,v ∈VH distH ⟨u,v⟩.

Note that if a directed graph is not strongly connected, its

diameter is infinity. For example, in Figure 3, the diameter

of G is diam(G) = +∞ as distG ⟨v5,v9⟩ = +∞. On the basis

of the above definitions, we formally define the problem of

D-truss community search as follows.

Problem 1. (D-Truss Community Search). Given a di-

graph G(VG , EG ), two integers kc and kf , and a set of query

vertices Q ⊆ VG , the D-truss community search (DCS) is to
find a weakly connected subgraph H ∗ ⊆ G satisfying:

(1) Q ⊆ V (H ∗);
(2) H ∗ is a D-truss ;
(3) diam(H ∗) should be the minimum among all subgraphs

satisfying conditions (1) and (2).

In the definition, condition (1) requires that the community

contains the query vertex set Q ; condition (2) makes sure

that the community should be densely connected; condition

(3) requires that each vertex in the community should be as

close to other vertices as possible, which excludes irrelevant

vertices from the answer. All the three conditions together

ensure that the returned community is a cohesive subgraph

with good quality.

Example 2. Consider the graph G in Figure 3. Assume that

kc = 1, kf = 1, and vertex v4 is the query vertex. Then, the

answer to the DCS problem is the (1, 1)-truss H1. Although

H2 is also a (1, 1)-truss satisfying the first two constraints of

the problem, diam(H2) = 4 > diam(H1) = 2 and vertices v5,
v7, and v8 in H2 have loose connections with v4. Thus, H1 is

considered better than H2.

4 PROBLEM ANALYSIS
In this section, we first analyze the hardness of the DCS

problem. Next, we discuss the properties of the D-truss com-

munity and show its advantages against the existing models.

4.1 Hardness
To show the hardness of the DCS problem, we first prove

another problem, the k-diClique problem defined in Problem

2, is NP-hard. After that, we reduce the k-diClique problem
to the D-truss community search problem.

Problem 2. (k-diClique Problem). Given a digraph G,
the k-diClique problem is to check whether there exists a k-
diClique H (VH , EH ) of G such that ∀u,v ∈ VH , ⟨u,v⟩ ∈ EH ,
and |VH | = k .



Theorem 4.1. The k-diClique problem is NP-hard.

Proof. We consider the decision version of the maximum

clique problem, that is, to check whether there exists a k-
clique in an undirected graph G = (VG, EG) for a given k .
We reduce this NP-hard problem to the k-diClique problem.

For thek-diClique problem,we construct a digraphG(VG , EG )
from the undirected graph G as follows. Let VG = VG and

EG = {⟨u,v⟩, ⟨v,u⟩ : (v,u) ∈ EG }. Obviously, a k-clique
H exists in G iff there exists a k-diClique H in G where

VH = VH . As such, the k-diClique problem is NP-hard. □

Next, we present the decision version of the D-truss com-

munity search (dDCS) problem as follows.

Problem 3. (dDCSProblem).Given a digraphG = (VG , EG ),
a query set Q , three integers kc , kf , and d , the dDCS problem
aims to check whether there exists a D-truss community H
with diam(H ) = d in G.

Theorem 4.2. The dDCS problem is NP-hard.

Proof. We reduce the k-diClique problem to the dDCS
problem. Specifically, given an instance of the k-diClique
problem defined on a digraph G with parameter k , we con-
struct a new digraph G ′ for the dDCS problem as follows.

First, we copy G to G ′. Second, we add a set of dummy ver-

tices VQ (|VQ | ≥ 1) into G ′, i.e., VG′ = VG ∪ VQ . Third, for
each vertex v ∈ VQ and u ∈ VG′ − {v}, we add two edges

⟨u,v⟩ and ⟨v,u⟩ into G ′, i.e., EG′ = EG∪ {⟨u,v⟩, ⟨v,u⟩ : v ∈
VQ ,u ∈ VG′ − {v}}. Based on G ′, we set Q = VQ , d = 1, and

kc = kf = k + |Q | − 2 for the dDCS problem. In the follow-

ing, we show that the instance of the k-diClique problem is

a YES-instance iff the corresponding instance of the dDCS
problem is a YES-instance.

(⇒) : Suppose a k-diClique H exists inG. The subgraph H ′

induced byVH ∪VQ inG ′ is a strongly connected (k + |Q | −2,
k + |Q | − 2)-truss with a diameter of 1. Thus, H ′ is also a

YES-instance of the dDCS problem.

(⇐) : Suppose a D-truss H ′ is a YES-instance of the dDCS
problem in digraph G ′ and H is the subgraph induced by

VH ′ −VQ inG . First, H ′ must contain at least kc + 2 = k + |Q |
vertices and thus H must contain at least kc + 2 − |Q | = k
vertices, i.e., |VH | ≥ k . Second, as diam(H ′) = 1, it follows

that H is a k ′-diClique where k ′ ≥ k . Thus, an existing

H ′′ ⊆ H is also a YES-instance of thek-diClique problem. □

4.2 Properties of D-truss Community
This section analyzes the properties of D-truss communities.

Property 1 (Minimum Degree). For each vertex v in a

D-truss H , degH (v) ≥ max{2kc ,kf + 1} holds.

Proof. Each edge of the D-truss H has at least kc cycle
triangles and kf flow triangles. First, consider the cycle tri-

angles. If a vertex is in a cycle triangle, it must be the head

of an edge and the tail of another edge. When the vertex

v is the head of an edge e , deg+H (v) ≥ kc since e is con-

tained in kc different cycle triangles. Similarly, we can derive

deg−H (v) ≥ kc when the vertexv is the tail of an edge. Hence,

degH (v) = deg+H (v) + deg
−
H (v) ≥ 2kc . Second, consider the

flow triangles. If an edge e is contained in kf different flow

triangles and v ∈ e , degH (v) = deg+H (v) + deg
−
H (v) ≥ kf + 1.

Therefore, degH (v) ≥ max{2kc ,kf + 1}. □

Property 2 (Strong Connectivity ). For a D-trussH with

kc ≥ 1, each pair of vertices in a weakly connected component

of H is strongly connected.

Proof. A digraphG is said strongly connected if any two

vertices in G are reachable from each other. Consider two

vertices u, v in a weakly connected component of a D-truss.

If ⟨u,v⟩ ∈ E or ⟨v,u⟩ ∈ E, there must be a cycle triangle con-

taining u and v . Therefore, u and v are reachable from each

other. On the other hand, if neither ⟨u,v⟩ ∈ E nor ⟨v,u⟩ ∈ E,
there must exist an undirected path {(v1,v2), ..., (vn−1,vn)}
where v1 = u and vn = v , as H is weakly connected. Since

kc ≥ 1, for any i ∈ [1,n − 1], the vertices vi and vi+1 are
contained in a cycle triangle, meaning that vi and vi+1 are
reachable. By transitivity, u and v are also reachable. □

Property 3 (Partially Hierarchical Structure). Given

two different maximal D-trusses H1: (k
1

c ,k
1

f )-truss and H2:

(k2c ,k
2

f )-truss, if k
1

c ≥ k2c and k1f ≥ k2f , it is obvious that

H1 ⊆ H2; if k
1

c ≥ k2c and k
1

f ≤ k2f , or k
1

c ≤ k2c and k
1

f ≥ k2f ,

then H1 ⊉ H2 and H1 ⊈ H2.

4.3 Comparison with Existing Models
In this section, we compare D-truss with the existing models

of community search and highlight its advantages.

Undirected k-Truss Community Model [1, 14, 18], D-
core Community Model [12, 13]. As explained in the In-

troduction, the undirected k-truss community model and the

D-core community model suffer from some limitations. Our

D-truss community model can address those limitations. In

particular, as D-truss is based on both of the cycle triangle

and flow triangle, it can distinguish the communities with

different structures. However, our D-truss-based community

search needs to consider both of the edge’s cycle support

and flow support, which makes the algorithm design more

complex and challenging.

Flow/Cycle Truss [29]. While targeting on the problem

of community detection, Takaguchi and Yoshida [29] have

proposed cycle truss and flow truss based on the cycle triangle

and flow triangle. The differences between the flow/cycle

truss and the D-truss are two-fold. First, the definition of the

support is different. The support of an edge e for a flow/cycle
truss is the number of triangles e is involved in, whereas e’s



v1v4
v9

v10

v2

v3

v5

v6v7

v8

v11

Figure 4: Running Example
support for a D-truss is the number of vertices that can form

flow/cycle triangles with e . As the edge e may be involved in

multiple triangles with the same vertex, counting the number

of vertices can avoid redundance. Second, the flow/cycle truss

assumes that a community has only flow triangles or cycle

triangles. However, in reality, a community may contain

both flow triangles and cycle triangles. For the above two

reasons, we believe that the D-truss is more preferable than

the flow/cycle truss. In addition, as will be shown by the

experimental results in Section 7, the communities returned

by our model achieve a higher quality than the other models.

5 ALGORITHMS FOR D-TRUSS
COMMUNITY SEARCH

In view of the hardness of the DCS problem, in this section,

we propose two efficient 2-approximation algorithms.

5.1 Global Algorithm
This section presents the first algorithm, called Global. We

start by giving a definition of query distance in digraphs.

Given a digraph G and two vertex sets R1,R2 ⊆ VG , the
directed distance from R1 to R2 is defined as distG ⟨R1,R2⟩

= maxu ∈R1,v ∈R2
distG ⟨u,v⟩. Furthermore, the bi-directed dis-

tance between two vertex sets R1 and R2 is defined as

distG (R1,R2) = max{distG ⟨R1,R2⟩, distG ⟨R2,R1⟩}. Based on

this, we give the definition of query distance as follows.

Definition 5.1. (Query Distance). Given a query vertex

setQ and a set of verticesX in digraphH , the query distance

distH (X ,Q) is defined as the bi-directed distance between Q
and X in H .

For simplicity, we use distG (v,Q) to represent the query
distance between vertex v (i.e., {v}) and Q in digraph G.
Moreover, we use distG (G,Q) to represent the query dis-

tance between vertices VG and Q in digraph G. With the

above definitions, we present the details of Global in Algo-

rithm 1. Specifically, the algorithm first invokes a procedure

to find a maximal D-truss containing the query vertex set Q ,

which is outlined in Algorithm 2. Then, it iteratively removes

the farthest vertex v from the query vertex set Q and main-

tains the remaining graph as a D-truss, until the remaining

graph does not contain Q or is no longer a D-truss (lines

3-8). Note that, in each iteration, after removing the farthest

Algorithm 1 Global Algorithm

Input: a digraph G; a query vertex set Q ; integers kc and kf
Output: a connected D-truss H∗ with the minimum diameter

1: i ← 0;

2: Gi ← FindDTruss(G, Q , kc , kf ) using Algorithm 2;

3: while Q ⊆ VGi do
4: v ← FindFarthestVertex(Gi , Q);
5: distGi (Gi ,Q) ← distGi (v,Q);
6: Delete vertex v and its incident edges from Gi ;
7: Maintain Gi as D-truss by removing vertices/edges;

8: Let the remaining graph as Gi+1; i ← i + 1;
9: H∗← argmin

H ∈{G0,G1, ...,Gi−1 }

distH (H ,Q);

10: return H∗

vertex, we maintain the D-truss by deleting the edges whose

cycle/flow support is smaller than kc /kf . Moreover, if there

are multiple vertices sharing the same largest query distance,

these vertices are all deleted in one iteration. Then, we can

obtain a list of candidate D-truss graphs at the end of the iter-

ations. Finally, the D-truss with the minimum query distance

is returned as the answer (lines 9-10).

The procedure of finding the maximal D-truss containing

Q is elaborated in Algorithm 2. Recall the minimum degree

property of D-truss (Property 1) states that every vertex v of

a D-truss H must satisfy degH (v) ≥ max{2kc ,kf + 1}. Thus,
the algorithm first iteratively deletes all disqualified vertices

and their incident edges from the original graph G, where
each vertex v has degG (v) < max{2kc ,kf + 1} (lines 1-12).
It then computes the cycle support and flow support for

each edge remained in G (lines 13-16). Next, the algorithm

iteratively removes the edges whose cycle support is smaller

than kc or flow support is smaller than kf (lines 17-25). Note

that the step of D-truss maintenance in Algorithm 1 (line 7)

can use the similar operations shown in the lines 13-25 of

Algorithm 2. Hence, the details of D-truss maintenance are

omitted in this paper.

Example 3. We use the running example in Figure 4 to il-

lustrate the Global algorithm. Let vertexv3 be the query vertex
and kc = kf = 1. The algorithm first finds the maximal (1,

1)-truss D0 containing v3, i.e., the subgraph in the grey region.

Then, it proceeds to delete vertex v7, which has the maximum

query distance of 4. After deleting vertex v7 and its incident

edges, the subgraph composed by {v1,v2,v3,v4,v5,v6} is still
a (1, 1)-truss, denoted as D1. Next, the algorithm continues to

delete the vertex having the maximal query distance, i.e., v6
and v5, in the following two iterations, and obtain two more (1,

1)-trusses, i.e, D2: {v1,v2,v3,v4,v5} and D3: {v1,v2,v3,v4}.
Finally, the algorithm returns D3, which has the minimum

query distance of 1. Note that D3 is also the (1, 1)-truss having

the minimum diameter, which is equal to 1 as well.

5.1.1 Theoretical Analysis. We now analyze the quality ap-

proximation and time complexity of the Global algorithm.



Algorithm 2 FindDTruss

Input: a digraph G; a query vertex set Q ; integers kc and kf
Output: a maximal D-truss of G
1: Let Lv and Le be empty queues of vertices and edges respec-

tively;

2: for each vertex v ∈ VG do
3: Compute degG (v) = deg+G (v) + deg

−
G (v);

4: if degG (v) < max{2kc ,kf + 1} then
5: Lv ← Lv ∪ {v};
6: while Lv , ∅ do
7: Pop out a vertex v from Lv ;
8: for vertex u ∈ N+G (v) ∪ N

−
G (v) do

9: degG (u) ← degG (u) − 1;
10: if degG (u) < max{2kc ,kf + 1} ∧ u < Lv then
11: Lv ← Lv ∪ {u};
12: Remove v and its incident edges from G;
13: for each edge e ∈ EG do
14: Compute csupG (e) and fsupG (e);
15: if (csupG (e) < kc or fsupG (e) < kf ) then
16: Le ← Le ∪ {e};
17: while Le , ∅ do
18: Pop out an edge ⟨u,v⟩ from Le ;
19: N(u) ← N+G (u) ∪ N

−
G (u); N(v) ← N+G (v) ∪ N

−
G (v);

20: for each vertexw ∈ N(u) ∩ N(v) do
21: for e ∈ {⟨w,u⟩, ⟨w,v⟩, ⟨u,w⟩, ⟨v,w⟩} ∩ EG do
22: Update csupG (e) and fsupG (e) accordingly;
23: if (csupG (e) < kc or fsupG (e) < kf ) then
24: Le ← Le ∪ {e};
25: Remove the edge ⟨u,v⟩ from G;
26: return graph G;

Quality Analysis. Assume that Hд is the D-truss commu-

nity containing Q returned by Global and H ∗ is an opti-

mal solution to the D-truss community search problem. For

α ≥ 1, we say that Global achieves α-approximation iff

diam(Hд) ≤ α · diam(H ∗).

Lemma 5.2. distHд (Hд,Q) ≤ distH ∗ (H ∗,Q)

Proof. Assume that {G0, ...,Gi−1} is the list of candidate

D-truss graphs obtained by Global. We have

Gi−1 ⊆ ... ⊆ G1 ⊆ G0 and G0 ⊆ G. Obviously, Hд ∈

{G0, ...,Gi−1} and H ∗ ⊆ G0. We prove the lemma with the

help of Gi−1. Specifically, we consider two cases of the rela-

tionship between Gi−1 and H
∗
:

• (Case I) H ∗ ⊆ Gi−1. Assume that the vertex v∗ ∈ VH ∗

has the largest query distance in H ∗, i.e., distH ∗ (v∗,Q)
= distH ∗ (H ∗,Q). Obviously, v∗ ∈ VGi−1 . We show that

distGi−1 (v
∗,Q) = distGi−1 (Gi−1,Q). Otherwise, suppose

that distGi−1 (v
∗,Q)< distGi−1 (Gi−1,Q); then theremust

exist another vertex u , v∗ having distGi−1 (u,Q) =
distGi−1 (Gi−1,Q). Thus, Global can obtain a new D-

truss by deleting u from Gi−1, indicating that Gi−1 is

not the last D-truss obtained by Algorithm 1. This is a

contradiction. Thus, distGi−1 (v
∗,Q) = distGi−1 (Gi−1,Q)

holds. Therefore, we have distH ∗ (H ∗,Q)= distH ∗ (v∗,Q)

≥ distGi−1 (v
∗,Q) = distGi−1 (Gi−1,Q). As distHд (Hд,Q)

≤ distGi−1 (Gi−1,Q), we have distHд (Hд,Q) ≤ distH ∗ (H ∗,Q).
• (Case II) H ∗ ⊈ Gi−1. Since H ∗ ⊆ G0, there exists

j ∈ [0, i − 2] such that H ∗ ⊆ G j and H
∗ ⊈ G j+1. Thus,

there must exist a vertex v∗ ∈ VH ∗ such that v∗ ∈ G j ,

v∗ < G j+1, andv
∗
is deleted in line 6 of Algorithm 1.We

prove this statement by contradiction. Suppose other-

wise no vertex ofH ∗ is deleted in line 6 of Algorithm 1.

Then, no vertices/edges ofH ∗ would be deleted in line 7
of Algorithm 1, since H ∗ itself satisfies the constraints
of D-truss. Thus, H ∗ ⊆ G j+1, which is a contradic-

tion. As v∗ is deleted in line 6 of Algorithm 1, we have

distG j (v
∗,Q) = distG j (G j ,Q). Hence, distH ∗ (H ∗,Q) ≥

distH ∗ (v∗,Q) ≥ distG j (v
∗,Q) = distG j (G j ,Q). As

distHд (Hд,Q) ≤ distG j (G j ,Q), we have distHд (Hд,Q)
≤ distH ∗ (H ∗,Q).

Hence, the proof is completed. □

Lemma 5.3. Given a digraph G and a query vertex set Q ,
we have distG (G,Q) ≤ diam(G) ≤ 2distG (G,Q).

Proof. This lemma holds for the triangle inequality of

directed distances. □

Theorem 5.4. Algorithm 1 finds a 2-approximation solution

for the D-truss community search problem.

Proof. According to Lemmas 5.2 and 5.3,

diam(Hд )

2
≤

distHд (Hд,Q) ≤ distH ∗ (H ∗,Q) ≤ diam(H ∗). Hence, diam(Hд)

≤ 2diam(H ∗) holds. □

Complexity Analysis. In the following, we analyze the

time complexity of Algorithms 1 and 2. Let t be the total

number of iterations taken by Algorithm 1 andm′ = |EG0
| ≤

m. Let N(v) = {u : ⟨u,v⟩ ∈ EG or ⟨v,u⟩ ∈ EG } and N∗(v) =
{u ∈ N(v) : degG (u) ≥ degG (v)}.

Lemma 5.5. For a vertex v in G, |N∗(v)| ≤
√
2m.

Proof. For a vertex u ∈ VG , if degG (u) ≥ degG (v), then
degG (u) ≥ |N

∗(v)|. Thus,
∑
u ∈N∗(v) degG (u) ≥ |N

∗(v)|·degG (v)
≥ |N∗(v)|2. In addition,

∑
u ∈N∗(v) degG (u) ≤

∑
u ∈VG degG (u)

= 2m. Combining the above two inequalities, we have |N∗(v)|2

≤ 2m. Therefore, |NB∗(v)| ≤
√
2m. □

Lemma 5.6. Algorithm 2 takes O(m1.5) time.

Proof. Algorithm 2 first deletes all the vertices whose

degree is less than max{2kc ,kf + 1}. This step takes O(m +
n) = O(m) time. Then, it removes all the edges whose cy-

cle support and flow support do not satisfy the require-

ments of D-truss. For each edge deletion, all triangles in-

volving this edge should be enumerated. This step has a

time complexity of O(
∑
⟨u ,v ⟩∈EG min{degG (u), degG (v)}) =

O(
∑
v ∈VG (degG (v) · |N

∗(v)|)) ⊆ O(
∑
v ∈VG (degG (v) ·

√
2m)) =

O(m1.5). Overall, Algorithm 2 takes O(m1.5) time. □



Theorem 5.7. Algorithm 1 takes O(m1.5 + t ·m′1.5) time,

wherem′ = |EG0
| and t is the number of iterations incurred.

Proof. First, Algorithm 1 finds the maximal D-truss ofG ,
which takesO(m1.5) time as analyzed in Lemma 5.6. Then, it

iteratively deletes the vertex with the largest query distance

starting fromG0 withm
′
edges. In each iteration, Algorithm 1

needs to process two tasks: (i) it computes the query distance

using O(|Q | ·m′) time; (ii) it performs D-truss maintenance

using O(m′1.5) time. As |Q | ≪m′, the time cost of each iter-

ation isO(m′1.5). Hence, the time complexity of all iterations

is O(t ·m′1.5). In total, Algorithm 1 takes O(m1.5 + t ·m′1.5)
time. □

5.1.2 Optimizations. We propose two optimization tech-

niques of smart deletion and binary search to accelerate the

process of Algorithm 1.

Smart Deletion. We first optimize the Global algorithm

based on the following observation.

Observation 1. Consider two sequential D-trusses Gi and

Gi+1 in Algorithm 1, where Gi+1 is the D-truss obtained by

deleting the vertex having the largest query distance from Gi .

Obviously, Gi+1 is not the final answer if distGi+1 (Gi+1,Q) >
distGi (Gi ,Q). The Global algorithm may generate many such

useless D-trusses.

Following this observation, a way to improve Global is to

reduce the generation of useless intermediate D-trusses as

much as possible. That is, if it is found that distGi+1 (Gi+1,Q)
> distGi (Gi ,Q), we continue to delete all the vertices whose

query distances are no less than distGi (Gi ,Q). After deleting
these vertices, we need to maintain the remaining graph as

a new D-truss. If the query distance of the new D-truss is

not less than distGi (Gi ,Q), we repeat the above process until
getting a new D-truss whose query distance is less than

distGi (Gi ,Q) or no such D-truss exists.

Binary Search. Equippedwith smart deletion, the algorithm

can avoid generation of many useless D-trusses . Conse-

quently, the algorithm can progressively converge to the

minimum query distance. However, in the worst case, the

algorithm reduces the query distance only by 1 in each iter-

ation, which is not efficient. To address this deficiency, we

employ a binary search technique to speed up the process.

In this way, the total number of iterations t is bounded by

O(logd0), where d0 = distG0
(G0,Q). The following example

illustrates how our binary search technique is employed for

Global.

Example 4. In Figure 4, assume that the maximal (1, 1)-

truss D0, whose query distance is 4, is already found. We set

the low and upper bounds of the query distance as dmin = 1

and dmax = 4, respectively. Then, the next query distance for

examination is d = 2.5. Thus, we delete the vertices whose

Algorithm 3 Local Algorithm

Input: a digraph G; a query vertex set Q ; integers kc and kf
Output: a D-truss Hl with a small diameter

1: G0← FindDTruss(G, Q , kc , kf ) using Algorithm 2;

2: d ← 1;

3: while d ≤ distG0
(G0,Q) do

4: Let Vd = Q ∪ {v ∈ VG : distG0
(v,Q) ≤ d};

5: Let Gd be the induced subgraph of G by vertices Vd ;
6: Gd ← FindDTruss(Gd , Q , kc , kf );
7: if Gd = ∅ then
8: d ← d + 1;
9: goto step 3;

10: S ← ∅;
11: for each vertex v ∈ VGd do
12: if distGd (v,Q) > d then
13: S ← S ∪ {v};
14: if S = ∅ then
15: Hl ← Gd ; Break;
16: Delete S and their incidents edges ES from Gd ;
17: Gd ← DTrussMaintain(Gd , kc , kf , ES );
18: goto step 7;

19: return Hl ;

query distances are larger than 2.5. Correspondingly, vertices

v7 and v6 are deleted and the (1, 1)-truss D1 composed by

{v1,v2,v3,v4,v5} is obtained. As the query distance of D1 is 2,

we set dmax = 2. Then, d = 1.5, and we delete vertexv5, whose
query distance is larger than 1.5. Hence, we get the (1, 1)-truss

D2 composed by {v1,v2,v3,v4}, which is the final answer.

5.2 Local Algorithm
The Global algorithm finds the D-truss community in a top-

down manner. In this section, we present another algorithm,

called Local, which works in a bottom-up manner. The basic

idea of Local is to find a possible D-truss Gd starting from

the minimum query distance of d (i.e., d = 1). If such a Gd
does not exist, we increase d and find the corresponding D-

truss Gd+1 iteratively. The algorithm terminates by finding

the D-truss with distGd (Gd ,Q) = d , which is returned as the

answer.

Algorithm 3 shows the details of the Local algorithm. It

first computes the maximal D-truss using Algorithm 2 (line

1). It then starts with d = 1 (line 2), and iteratively finds

the D-truss Gd with distGd (Gd ,Q) = d (line 2). Specifically,

it collects all vertices whose query distances are no greater

than d into Vd = Q ∪ {v ∈ VG : distG0
(v,Q) ≤ d} (line

4). Afterwards, it constructs Gd as the induced subgraph

of G by Vd (line 5). Next, the algorithm examines whether

Gd contains a D-truss DGd whose query distance is d , i.e.,
distGd (Gd ,Q) = d (lines 6-18). If such a D-truss Gd exists

(lines 14-15), it is returned as the final result of Hl (line 19).

Otherwise, the algorithm increases d by 1 for a new iteration.

Example 5. Consider our running example in Figure 4.

Assume that the maximal (1, 1)-truss D0 is already found.



We start with d = 1 and get the sub-digraph composed by

{v1,v2,v3,v4}, since these four vertices’ query distances are

equal to 1. As this sub-digraph is exactly a (1,1)-truss, it is

returned as the answer.

In the following, we analyze the quality approximation

and time complexity of the Local algorithm.

Lemma 5.8. For the communityHl returned by Algorithm 3,

distHl (Hl ,Q) ≤ distH ∗ (H ∗,Q) holds.

Proof. Suppose that distHl (Hl ,Q) > distH ∗ (H ∗,Q). Thus,
there exists another D-truss Gd satisfying distGd (Gd ,Q) <
distHl (Hl ,Q). However, according to the principle of Algo-

rithm 3, Hl has the minimum query distance, which is a

contradiction. □

Theorem 5.9. Algorithm 3 returns a 2-approximation solu-

tion for the D-truss community search problem.

Proof. Similar to the proof of Theorem 5.4, Theorem 5.9

can be proved by Lemmas 5.3 and 5.8. □

Letm′ = |EG0
| and δ = min{distG0

(G0,Q),n}, where G0

is the maximal D-truss of G containing Q .

Theorem 5.10. Algorithm 3 takesO(m1.5 +δ ·m′1.5) time.

Proof. The algorithm first finds the maximal D-truss in

O(m1.5) time, as shown in Theorem 5.6. Then, it examines

whether there exists a D-trussGd with distGd (Gd ,Q) = d . In
each iteration, it takes O(m′1.5) time to find the D-truss. In

total, the algorithm takes O(m1.5 + δ ·m′1.5) time. □

6 INDEX-BASED ALGORITHMS
Both Global and Local need to retrieve the maximal D-truss.

However, computing themaximal D-truss online from scratch

is very inefficient for large digraphs. Actually, all the possible

maximal D-trusses of a given digraph are determined, which

can be precomputed and stored in an index for speeding up

our algorithms. Motivated by this, in this section, we discuss

how to employ D-truss decomposition to accelerate our al-

gorithms. Specifically, we first present the details of D-truss

decomposition, i.e., to compute all the possible D-trusses

for a given digraph. Then, we develop an index to store the

results of D-truss decomposition. Finally, we describe how

to retrieve the maximal D-truss from the index.

6.1 D-truss Decomposition
In this section, we present an algorithm for D-truss decom-

position. First, we give some definitions. For a given edge

e = ⟨u,v⟩∈ EG , if e presents in a D-trussD(kc ,kf ), we say that
(kc ,kf ) is a trussness of edge e , denoted as T(e) = {(kc ,kf )}.
Note that an edge may belong to multiple D-trusses. Hence,

an edge may have multiple trussnesses.

Definition 6.1. (TrussnessDominance).Given two truss-
nesses (k1c ,k

1

f ) and (k
2

c ,k
2

f ) of an edge e , trussness (k1c ,k
1

f )

dominates trussness (k2c ,k
2

f ), denoted as (k2c ,k
2

f ) ≺ (k
1

c ,k
1

f ),

if and only if the following conditions hold: (1) k1c ≥ k2c and
k1f > k2f ; or (2) k

1

c > k2c and k
1

f ≥ k2f .

Definition 6.2. (Skyline Trussness). Given an edge e and
all its trussnesses T(e) = {(k1c ,k

1

f ), (k
2

c ,k
2

f ), ..., (k
n
c ,k

n
f )}, the

skyline trussness of e , denoted as ST(e), contains the truss-
nesses that are not dominated by others. Formally, ST(e) =
{(kic ,k

i
f ) ∈ T (e) : ∄(k

j
c ,k

j
f ) ∈ T (e), s.t., (k

i
c ,k

i
f ) ≺ (k

j
c ,k

j
f )}.

The problem of D-truss decomposition is to compute the

skyline trussness for every edge in digraph G. Algorithm 4

outlines the D-truss decomposition algorithm. It first com-

putes the cycle support and flow support of every edge in

G (lines 1-2). Then, assuming kf = 0, the algorithm com-

putes the (kc , 0)-truss, denoted by D(kc ,0), for kc from 0 to

kcmax (lines 5-20). When computing a specific D(kc ,0), it iter-
atively removes the edges whose cycle support is less than

kc (lines 7-18). Next, for all D-trusses D(kc ,0) for kc from 0

to kcmax , the algorithm finds the candidate skyline truss-

ness for every edge in D(kc ,0) (lines 21-28). Specifically, for
each D-truss D(kc ,0), the algorithm first sorts all the edges

in ascending order of their flow support (line 23). Then, an

edge e with the minimum flow support (denoted by kf ) is
examined (lines 25-26). The (kc ,kf ) is considered as the can-

didate skyline trussness of e and checked by the procedure

Compute_SkyTruss (line 27). After examination, the edge

e = ⟨u,v⟩ with the minimum flow support is deleted from

the current D-truss by employing the procedure DeleteEdge

(line 28). Note that if the removal of one edge affects other

edges’ support, the procedure will directly compute the sky-

line trussness of the affected edges. The process continues

until the current D-truss becomes empty (line 24).

Next, we describe the details of the two procedures, i.e.,

Compute_SkyTruss and DeleteEdge, as shown in Algorithm 5.

Specifically, for the procedureCompute_SkyTruss, when check-

ing a candidate skyline trussness of edge e , if it dominates

some existing skyline trussness in ST(e), the existing one is

deleted from ST(e) (lines 1-3). Otherwise, if the candidate
skyline trussness is not dominated by any existing skyline

trussness, it is added to ST(e) (lines 4-6). For the procedure
DeleteEdge, if an edge e = ⟨u,v⟩ is deleted, it updates the
cycle support and flow support of the edges incident to u or

v (lines 8-9). If the cycle support (or flow support) of these

edges does not satisfy the constraints of a (kc ,kf )-truss, these
edges are deleted by recursively calling the procedure of

DeleteEdge and their corresponding skyline trussnesses are

computed (lines 10-12).

Example 6. We use Figure 4 to illustrate the D-truss decom-

position. Assume that the (0,0)-truss has been examined and



Algorithm 4 D-truss Decomposition

Input: a digraph G = (VG , EG )
Output: skyline trussness for every edge in G
1: for each edge e ∈ EG do
2: Compute csupG (e) and fsupG (e);
3: kc ← 0; kf ← 0; D(0,0) ← G;
4: Let Le be an empty queue;

5: while G , ∅ do
6: kc ← kc + 1;
7: for each edge e = ⟨u,v⟩∈ EG do
8: if csupG (e) < kc then
9: Le ← Le ∪ {e};
10: while Le , ∅ do
11: Pop out an edge e = ⟨u,v⟩ from Le ;
12: Delete e from G;
13: N(u) ← N+G (u) ∪ N

−
G (u); N(v) ← N+G (v) ∪ N

−
G (v);

14: for each vertexw ∈ N(u) ∩ N(v) do
15: for e ′ ∈ {⟨w,u⟩, ⟨w,v⟩, ⟨u,w⟩, ⟨v,w⟩} ∩ EG do
16: Update csupG (e

′) and fsupG (e
′) accordingly;

17: if (csupG (e
′) < kc ) then

18: Le ← Le ∪ {e};
19: D(kc ,0) ← G;
20: Let the maximum flow truss as kcmax ← kc ;
21: for kc ← 0 to kcmax do
22: Let the graph H ← D(kc ,0);
23: Sort all edges e ∈ EH in ascending order of fsupH (e);
24: while D(kc ,0) , ∅ do
25: let e be an edge with the minimum fsupH (e) in H ;

26: kf ← fsupH (e);
27: Compute_SkyTruss(e,kc ,kf );
28: DeleteEdge(e,kc ,kf ,H );

Algorithm 5 Procedures

Procedure Compute_SkyTruss(e,kc ,kf )
1: for each trussness (k ′c ,k

′
f ) ∈ ST(e) do

2: if (k ′c ,k ′f ) ≺ (kc ,kf ) then
3: Delete (k ′c ,k

′
f ) from ST(e);

4: if (kc ,kf ) ≺ (k ′c ,k ′f ) then
5: Return; //(kc ,kf ) is dominated in ST(e).
6: ST(e) ← ST(e) ∪ {(kc ,kf )} ;

Procedure DeleteEdge(e,kc ,kf ,H )

7: Delete e = ⟨u,v⟩ from H ;

8: for each edge e ′ incident to u or v do
9: Update csupH (e

′) and fsupH (e
′) accordingly;

10: if csupH (e
′) < kc or fsupH (e

′) < kf then
11: Compute_SkyTruss(e ′,kc ,kf );
12: DeleteEdge(e ′,kc ,kf ,H );

the edge ⟨v7,v5⟩’s current skyline trussness is (0, 1). Next, we
examine the (1, 0)-truss (i.e., the grey area in Figure 4). Accord-

ing to the flow support in the (1, 0)-truss, the edge ⟨v7,v5⟩ (with
the minimum flow support being 1) is deleted. Then (1, 1) is

checked with the existing skyline trussness of edge ⟨v7,v5⟩. As
(1, 1) dominates (0, 1), (1, 1) is inserted into the skyline trussness

set of edge ⟨v7,v5⟩ while (0, 1) is deleted. Afterwards, the edge
⟨v7,v5⟩ is deleted and the cycle support and flow support of

v10

v8

(1, 1)

(2, 2)

(0, 3)

(2, 2) (0, 3) 

(0, 0) 

v2

v1

v5

v7 v6

v11

v9

v3

v4

Figure 5: D-truss Decomposition
edges ⟨v7,v6⟩, ⟨v6,v7⟩, and ⟨v6,v5⟩ are updated, after which
the edges ⟨v7,v6⟩ and ⟨v6,v7⟩ are also deleted. The (1, 0)-truss
is continuously examined until all edges are deleted. Finally,

we can find the skyline trussnesses for all the edges, as shown

in Figure 5.

6.2 Index-based Maximal D-truss Finding
We first introduce an index to store the skyline trussnesses of

all the edges in G. Then, we present an index-based method

to find the maximal D-truss.

D-Truss Index. The D-Truss index is constructed alike the

adjacency list. For every vertex v ∈ VG , we keep both its

in-neighbors N+(v) and out-neighbors N−(v), as well as the
skyline trussnesses of its incident edges.

Index-based Maximal D-truss Finding. The basic idea

is to use the query vertex set Q as seeds and find all the

edges of the maximal D-truss using a breath-first search.

Algorithm 6 gives the details. Specifically, it initializes a

queue Lv with the query vertex set Q and mark them as

visited (lines 1-2). Then, it pops out a vertex v from Lv and

examines all the edges incident to v (lines 4-12). If an edge e
has not been visited, we check the dominance relationship

between the skyline trussness of e and the given (kc ,kf ). If
there exists a skyline trussness of e dominating or equal to

(kc ,kf ) (denoted as (kc ,kf ) ⪯ (k
i
c ,k

i
f ) in line 9), it implies

that e belongs to the maximal D-truss and is added to G0

(lines 9-12). Moreover, the algorithm adds the unvisited edge

point to Lv . To find the remaining edges for the maximal

D-truss, the algorithm continues to visit all edges incident

to v ∈ Lv until Lv becomes empty.

Example 7. Consider our running example. We start from

the query vertexv3. The edges incident tov3 are first examined.

According to Figure 5, as all the edges incident tov3, except the
edge ⟨v10,v3⟩, dominate (1, 1) and all v3’s neighbors are not
visited, these edges are added to the result. Correspondingly,

v3’s in- and out-neighbors v1, v2, and v4 are inserted into

the queue. Then, the vertex v1 is popped from the queue and

examined. As v3 is visited, there is no need to check the edges
⟨v1,v3⟩ and ⟨v3,v1⟩. In addition, the skyline trussnesses of

edges ⟨v1,v8⟩, ⟨v1,v9⟩, ⟨v11,v1⟩ do not dominate (1, 1). These

three edges are not added to the result and thus the vertices v8,



Algorithm 6 Index-based Maximal D-truss Finding

Input: a digraph G; a query vertex set Q ; integers kc and kf
Output: The maximal D-truss of G
1: Queue: Lv ← Q ;
2: Mark all vertices of Q as visited;

3: Let G0 be an empty graph;

4: while Lv , ∅ do
5: Pop out a vertex v from Lv ;
6: for each unvisited edge e incident to v do
7: Mark e as visited;
8: for each skyline trussness (kic ,k

i
f ) ∈ ST(e) do

9: if (kc ,kf ) ⪯ (kic ,kif ) then
10: Add edge e into G0;

11: Lv ← Lv ∪ {u};
// u is another end point of edge e

12: Mark u as visited; Break;
13: return G0;

v9, v11 are not added to the queue. The algorithm continues

until the queue becomes empty. Finally, we get the D-truss

consisting of vertices {v1,v2,v3,v4,v5,v6,v7}, which is the

same as the result obtained by Algorithm 2.

Complexity Analysis. We analyze the complexity of Algo-

rithms 4 and 6, as well as the memory size of the D-truss

index. Let kcmax and kf max be the maximum cycle/flow

truss of a directed graph G, i.e., kcmax = maxkc {H ⊆ G :

H is (kc , 0)-truss} and kf max = maxkf {H ⊆ G : H is (0,kf )
-truss}. Algorithm 4 can be easily implemented in taking

O(min{kcmax , kf max } · m
1.5) time for D-truss decomposi-

tion and D-truss index construction. The space complexity

of Algorithm 4 and the memory size of the D-truss index

both take O(min{kcmax ,kf max } ·m) space. This is because
the largest cardinality of a skyline trussness set ST(e) will
not exceed O(min{kcmax ,kf max }) for any edge e in G. In
addition, Algorithm 6 takes O(min{kcmax ,kf max } ·m) time

for finding the maximal D-truss, which is much faster than

Algorithm 2.

7 EMPIRICAL EVALUATION
In this section, we conduct extensive experiments to evaluate

the effectiveness and efficiency of our proposed model and

algorithms. All experiments are conducted on a Linux Server

with 2.10 GHz six-core CPU and 188 GB memory running

Ubuntu 16.04.6. The algorithms are implemented in C++.

Datasets. We use six real-world datasets of directed net-

works in the experiments. Table 1 summarizes the statistics

of these networks.The EAT network is retrieved from the

Pajek datasets
2
and all other networks are obtained from

the Stanford Network Analysis Project.
3
Note that among

2
http://vlado.fmf.uni-lj.si/pub/networks/data/

3
http://snap.stanford.edu/

Table 1: Dataset statistics.
Dataset |VG | |EG | dmax kcmax kfmax

Email 1.0K 25.6K 544 14 21

EAT 23.1K 685K 1,106 3 8

Twitter 81.3K 1.8M 3,758 161 199

BerkStan 685K 7.6M 84,290 41 80

Wiki 1.8M 28.5M 238,607 36 37

Pokec 1.6M 30.6M 20,518 18 27

them, two networks of Email and Wiki have ground-truth

communities.

Queries and Parameters. We evaluate the performance of

all algorithms using different queries by varying the parame-

ters, including the query size |Q |, the degree rank, parameters

kc and kf , # vertices |VG |. For each network, we sort all ver-

tices in descending order of their degrees. A vertex is said

to be with degree rank of X%, if it belongs to the highest

X% degree in the network. For each experiment, we run 200

queries for community search and report the average results.

7.1 Quality Evaluation

Exp-1: QualityComparisons onGround-truthCommu-
nities. We assess the quality of community models using

two directed graphs with ground-truth communities, i.e.,

Email and Wiki. Specifically, Email is a communication net-

work between the members of a large European research

institution. There are 42 ground-truth communities, which

are respectively formed by the individuals of 42 departments.

Wiki is a web graph of Wikipedia hyperlinks. Each webpage

belongs to one or more categories. The webpages fall into

the same category form a ground-truth community.

We compare our model with five other state-of-the-art

community models, i.e., D-core [12], CF-truss [29], flow-

truss [29], cycle-truss [29], and k-truss [14]. Note that CF-
truss [29] is implemented by combining the results of flow-

truss and cycle-truss. To evaluate the quality of discovered

communities, we use five metrics, including recall, precision,

F1-score = 2 ·
r ecall×precision
recall+precision , community member similar-

ities CMS
in
and CMS

out
[12]. Both CMS

in
and CMS

out
are

metrics of computing the similarity among the members in

a community H , defined as follows:

CMS
in(H ) =

1

|VH |2

∑
u ∈VH

∑
v ∈VH

|N+H (u) ∩ N
+
H (v)|

|N+H (u) ∪ N
+
H (v)|

CMS
out(H ) =

1

|VH |2

∑
u ∈VH

∑
v ∈VH

|N−H (u) ∩ N
−
H (v)|

|N−H (u) ∪ N
−
H (v)|

We test two kinds of queries, i.e., single query vertex

(|Q | = 1) and multiple query vertices (|Q | > 1). For each

multiple-vertex query, we randomly select 2-10 vertices that

appear in a unique ground-truth community. To ensure a

fair comparison, we compare the best community with the

highest F1-score found by each community model.

http://vlado.fmf.uni-lj.si/pub/networks/data/
http://snap.stanford.edu/


Table 2: Quality comparison of different community search models on Email with ground-truth communities.
Model Precision Recall F1-Score CMSin CMSout Time (sec)

|Q | = 1 |Q | > 1 |Q | = 1 |Q | > 1 |Q | = 1 |Q | > 1 |Q | = 1 |Q | > 1 |Q | = 1 |Q | > 1 |Q | = 1 |Q | > 1

D-truss 0.5111 0.2539 0.3166 0.6848 0.3417 0.2859 0.3132 0.1493 0.3002 0.1352 0.0136 0.1283

CF-truss 0.0736 0.0561 0.6792 0.7904 0.1234 0.0974 0.1445 0.1095 0.1325 0.0967 0.3076 0.2734

Cycle-truss 0.0657 0.0516 0.6921 0.7944 0.1130 0.0914 0.1213 0.1005 0.1101 0.0885 0.3206 0.2908

Flow-truss 0.0707 0.0539 0.6864 0.7947 0.1199 0.0945 0.1396 0.1071 0.1268 0.0937 0.2979 0.2655

D-core 0.0573 0.0475 0.7586 0.8213 0.1039 0.0873 0.1097 0.1000 0.0921 0.0832 0.0009 0.0008
k-truss 0.0644 0.0534 0.7518 0.8589 0.1137 0.0969 0.1163 0.0977 0.0949 0.0771 0.0574 0.0622
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Figure 7: Effects of kc and kf on Community Quality

Table 2 shows the results for the Email dataset. Similar

performance trends are observed for the Wiki dataset, which

is omitted due to space limitations. Clearly, our D-trussmodel

significantly outperforms all other competitive models, in

terms of precision, F1-score, CSM
in
, and CSM

out
. The high

scores of precision and F1-score imply that the communities

found by ourmodel are closer to the ground truth. The reason

behind is two-fold. First, D-truss requires that every edge is

contained in at least kc cycle triangles and kf flow triangles,

ensuring that the vertices in a D-truss are densely connected.

Second, we impose the minimum-diameter constraint in our

problem definition, which effectively excludes the irrelevant

vertices from the result. In addition, as pointed out by [19], a

cohesive community usually contains highly similar vertices.

The highest scores of CSM
in
and CSM

out
also verify that the

communities returned byD-truss have the strongest cohesive

structure compared with the other models. However, the

recall of our model is not as good as the other models. This is

because the other models usually return communities with a

very large size, which are likely to cover most of the vertices

in the ground-truth communities. In terms of the running

time performance, D-truss performs better than CF-truss,

cycle-truss, and flow-truss, by using the proposed index.

Figure 6 shows the optimal (kc ,kf ) distribution of the D-

truss community using a heatmap. The optimal parameter

settings for different query vertices are quite different. We

find that no optimal parameters settings belong to the case

of kc > kf > 0, meaning that in the Email dataset, the

communities with mixed relationships tend to be dominated

by hierarchical relationships.

We also evaluate the effects of kc and kf on the quality

of retrieved communities. As shown in Figure 7(a), the F1-

score remains relatively stable when kc and kf are varied,

which is ensured by the minimum-diameter constraint in our

problem definition. As for the CMS
in
and CMS

out
measures,

they exhibit very similar trends. Only the CMS
in
results are

reported, in the interest of space. We can observe from Fig-

ure 7(b) that the medium values of kc and kf , in the range of

3–8, are more probable to yield higher CMS results. As for

the total running time (Figure 7(c)), it generally decreases

with the growth of kc and kf . This is because smaller values

of kc and kf lead to larger maximal D-trusses and, hence, it

takes the algorithm more time in diameter refining.

Exp-2: Case Studies onEAT. In the next set of experiments,

we conduct case studies on the EAT dataset. EAT is a word as-

sociation network, where the nodes represent English words.

A directed link from nodes i to j indicates the associative
relationship between the two: word j comes to mind when

word i is shown as a stimulus.

We perform the D-truss community search on EAT us-

ing three queries: Query1 = {Q = “Drink”,kc = 0,kf =
kmax
f = 7}, Query2 = {Q = “Drink”,kc = kmax

c = 3,kf =

0}, Query3 = {Q = “Drink”,kc = ⌈k
max
c /2⌉ = 2,kf =

⌈kmax
f /2⌉ = 4}. Here, Query1 and Query2 aim to find the

community that is more flow-triangle-biased and more cycle-

triangle-biased, respectively, while Query3 tries to retrieve

the community with a mixed structure. For comparison, we

also perform the D-core community search and CF-truss

community search using “Drink” as the query vertex. Fig-

ure 8 shows the results of four communities by different

models and queries. We make the following observations:

• First, the first three communities returned by ourmodel

are all related to “Drink”, including the containers for

drinking (e.g., “Glass”, “Bottle”), the beverages (e.g.,

“Beer”, “Wine”), etc. In addition, they do not contain

each other and have different semantics. Specifically,

the (0,7)-truss shown in Figure 8(a) contains more

liquor drinks that tend to have a hierarchical relation-

ship with “Drink”. The (3,0)-truss shown in Figure 8(b)

represents the words that can be recalled by each other,

indicating a more equal relationship. In contrast, the
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Figure 8: Case Studies on EAT

(2,4)-truss shown in Figure 8(c) contains the words

having both hierarchical and equal relationships.

• Second, our model can identify the special vertices,

e.g., those with high in-degree and low out-degree (i.e.,

the blue vertices) and those with low in-degree and

high out-degree (i.e., the green vertices). For example,

in Figure 8(a), the out-degree and in-degree of “Liquor”

are 1 and 13, respectively, while the out-degree and

in-degree of “Drunk” are 11 and 4, respectively. How-

ever, if we want to return the community containing

both “Liquor” and “Drunk” using the D-core model, we

should find the (1, 4)-core in the graph, whose result

contains 6,980 vertices and 221,685 edges, and that is

not quite meaningful.

• Third, both the CF-truss and D-core models cannot

find communities effectively. For CF-truss, we set the

same parameters asQuery3. Figure 8(d) shows the cor-
responding result, which contains 46 vertices and 324

edges. For D-core, its results are extremely large. Even

the minimum D-core community has 2,205 vertices

and 61,451 edges. Clearly, these two models are less

useful for real-world queries.

Discussion. Based on the results of quality evaluation, we

offer two guidelines for the setting of kc and kf . First, the
user can freely set the values of kc and kf for finding desired
communities. In general, a large kc (kf ) value will find a com-

munity that tends to have equal (hierarchical) relationships

among its members. Second, if the user does not know how

to set kc and kf but want to find a high-quality community,

the setting of these two parameters can be left to the database

server. More specifically, we suggest two methods:

• Max(CMS): Observing that the F1-scores and the CMS

similarities follow a similar performance trend, the

first method selects the setting that yields the highest

CMS similarity (the average of CMS
in
and CMS

out
);

• Max(kc+kf ): The second method selects the setting

that maximizes the sum of kc and kf so that the density
of the returned community will be as high as possible.

We use the CMS measure to break ties.

Both methods can work without knowing the ground-truth

communities. Note that the possible values that kc and kf
can be set are bounded by the skyline trussness of the query

vertices’ incident edges. While Max(CMS) needs to enumer-

ate all the possible values,Max(kc+kf ) can start testing from

Table 3: Comparison of parameter setting methods
(Email, |Q | = 1).
Method F1-Score CMSin CMSout Latency (sec)
Ideal 0.3417 0.3132 0.3002 −

Max(CMS) 0.3241 0.3178 0.3046 6.06

Max(kc+kf ) 0.2111 0.1753 0.1617 1.53

the largest possible sum until a feasible community is found.

Table 3 shows thatMax(CMS) can achieve a quality perfor-

mance close to the ideal strategy that knows the ground

truth and optimizes the F1-score. In contrast,Max(kc+kf )’s
F1-score is about 30% lower than Max(CMS), but it is 4X

faster.

7.2 Efficiency Evaluation
In this section, we evaluate the efficiency of our proposed

algorithms, including Global, Local, index-based Global (de-

noted as iGlobal), and index-based Local (denoted as iLocal),

using the Twitter and Pokec datasets.

Exp-3: Varying the degree rank of query vertices. We

sort the vertices in descending order of their degrees, and

randomly select the query vertices from top 20%, 40%, 60%,

80%, 100% vertices in the testing graphs. As shown in Fig-

ures 9(a) and 9(b), all the algorithms are generally stable

w.r.t. the varied degree of query vertices, indicating that the

degree rank hardly affects the query time. This is because

D-truss is mainly determined by the skyline trussness of the

query vertices’ incident edges, but not their degrees. iLo-

cal outperforms the other three algorithms; iGlobal is the

second best. In addition, Local performs better than Global

on the Twitter dataset. On the other hand, Local and Global

achieve a similar performance on the Pokec dataset, due to

the expensive operation of finding the maximal D-truss in a

larger graph.

Exp-4: Varying the query size |Q |. Figures 9(c) and 9(d)

show the results when we vary |Q | from 1 to 8. When |Q | is
increased, most of the algorithms incur slightly longer query

time. Again, the index-based algorithms of iLocal and iGlobal

consistently perform well.

Exp-5: Varying the parameters kc and kf . Figures 9(e)
and 9(f) report the results by varying kc from 2 to 12 on the

Twitter and Pokec datasets, respectively. Figure 9(g) and 9(h)

show the results by varying kf from 2 to 12. When kc or kf is
increased, the query time of all the four algorithms is reduced.
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Figure 9: Efficiency Evaluation of D-truss Community Search Algorithms
This is because when kc or kf grows, the maximal D-truss

gets denser and closer, from which less time is needed to

compute the final answer.

Exp-6: Scalability testing. We evaluate the scalability of

our algorithms using a series of graphs with different frac-

tions of vertices extracted from each dataset. Figures 9(i) and

9(j) show the results. As expected, all our algorithms scale

very well to the graph size. For the (larger) Pokec dataset, the

query time of the index-based algorithms, iLocal and iGlobal,

increases more slowly than the non-index-based algorithms.

This is because our D-truss index helps save time in finding

the maximal D-truss in a large graph.

Exp-7: Index construction costs. We show the index con-

struction time and index size in Figure 9(k), respectively. For

all the datasets, the D-truss index can be built within 7 hours,

and the index size is within 1 GB. We believe such indexing

overheads are acceptable for community search applications.

Exp-8: Efficiency of optimizations. Finally, we evaluate
the efficiency improvements of the two optimizations pro-

posed in Section 5.1.2, i.e., smart deletion and binary search.

Figure 9(l) reports the results. Note that Global denotes the

basic algorithm without any optimizations; SGlobal inte-

grates the smart deletion; SBGlobal is the algorithm with

the two optimizations. The two optimizations work very

well. For example, for the BerkStan dataset, the performance

improvements are 23.9% and 46.3%, respectively, and they

together improve the performance of the basic algorithm by

about 60%.

8 CONCLUSIONS
This paper studies truss-based community search over large

directed graphs. First, we devise a new community model

called D-truss for community search over directed graphs.

With the D-truss model, we formally define the problem of

D-truss community search over directed graphs. Given a

directed graph G and a query vertex set Q , the problem is to

find theD-truss containingQ with theminimumdiameter. As

this problem is NP-hard, we propose two efficient polynomial

algorithms with 2-approximation guarantee. An indexing

method based on the D-truss decomposition results is further

developed to expedite the algorithms. Extensive experimen-

tal results on large real-world networks with ground-truth

communities confirm the effectiveness and efficiency of our

proposed model and algorithms.
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