
133

Efficient Star-based Truss Maintenance on Dynamic Graphs
ZITAN SUN, Hong Kong Baptist University, China

XIN HUANG, Hong Kong Baptist University, China

QING LIU, Zhejiang University, China
JIANLIANG XU, Hong Kong Baptist University, China

K-truss is a useful notion of dense subgraphs, which can represent cohesive parts of a graph in a hierarchical way.

In practice, in order to enable various truss-based applications to answer queries faster, the edge trussnesses

are computed in advance. However, real-world graphs may not always be static and often have edges inserted

or removed, leading to costly truss maintenance of recomputing all edge trussnesses. In this paper, we focus

on dynamic graphs with star insertions/deletions, where a star insertion can represent a newly joined user

with friend connections in social networks or a recently published paper with cited references in citation

networks. To tackle such star-based truss maintenance, we propose a new structure of AffBall based on the

local structure of an inserted/deleted star motif. With AffBall, we make use of the correlation of inserted edges

to compute the trussnesses of the inner edges surrounding the star. Then, we analyze the onion layer of 𝑘-truss

and conduct truss maintenance for the edges beyond the star, which can be efficiently achieved with a time

complexity related to the number of the edges that change the onion layer. Moreover, we extend star-based truss

maintenance to handle general updates and single-edge insertions/deletions. Extensive experiments on real-

world dynamic graphs verify the effectiveness and efficiency of proposed algorithms against state-of-the-art

truss maintenance algorithms.

CCS Concepts: • Computing methodologies; • Theory of computation→ Data structures and algo-
rithms for data management; • Human-centered computing→ Collaborative and social computing; •

Networks→ Network algorithms;

Additional Key Words and Phrases: dynamic graphs, k-truss, incremental algorithms, social networks

ACM Reference Format:
Zitan Sun, Xin Huang, Qing liu, and Jianliang Xu. 2023. Efficient Star-based Truss Maintenance on Dynamic

Graphs. Proc. ACM Manag. Data 1, 2, Article 133 (June 2023), 26 pages. https://doi.org/10.1145/3589278

1 INTRODUCTION
Graph is a widely usedmodel to depict entities and their connections in various real-life applications,

such as social networks, biological networks, transportation networks, citation networks, and so

on [7]. In many graph analytics tasks, dense subgraph identification plays a central role. As a popular

notion of dense subgraphs, 𝑘-truss is the largest subgraph satisfying that every edge is contained in

at least 𝑘-2 triangles within this subgraph [7, 12, 37]. Different from those NP-hard computations

of dense subgraphs such as cliques [33], quasi-cliques [27], 𝑛-clans [26], and 𝑛-club [26], 𝑘-truss

discovery enjoys a polynomial time computation, as well as several nice structural properties, e.g.,

(𝑘 − 1)-connectivity, a bounded diameter, and a hierarchical structure [7, 12]. The 𝑘-truss has many

Authors’ addresses: Zitan Sun, zitansun@comp.hkbu.edu.hk, Hong Kong Baptist University, China; Xin Huang, xinhuang@

comp.hkbu.edu.hk, Hong Kong Baptist University, China; Qing liu, qingliucs@zju.edu.cn, Zhejiang University, China;

Jianliang Xu, xujl@comp.hkbu.edu.hk, Hong Kong Baptist University, China.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/6-ART133 $15.00

https://doi.org/10.1145/3589278

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0002-1615-6558
HTTPS://ORCID.ORG/0000-0002-3650-0301
HTTPS://ORCID.ORG/0009-0008-2775-4255
HTTPS://ORCID.ORG/0000-0001-9404-5848
https://doi.org/10.1145/3589278
https://orcid.org/0000-0002-1615-6558
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0009-0008-2775-4255
https://orcid.org/0000-0001-9404-5848
https://doi.org/10.1145/3589278


133:2 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

a b

c
d f

g h i

j k

l

p
4-truss

New Edge
3-truss
4-truss

(a) Graph𝐺

a
b

c

p

(b) Star motif 𝑆𝑐

a
b

c

d
f

g
h

i
j

k

l

p
Inside ball

BoundaryBbd

Bin

Bout

(c) AffBall B
Fig. 1. An example of dynamic graph𝐺 (a) with the insertion of a star motif 𝑆𝑐 = {(𝑐, 𝑎), (𝑐, 𝑏), (𝑐, 𝑝)} (b). The
AffBall structure B = B𝑖𝑛 ∪ B𝑏𝑑 is shown in Fig. 1(c).

applications, e.g., community search [12, 14, 16, 21, 40] , clique discovery [37], pivotal relationship

identification [4, 35, 46], and complex network visualization [43].

In real life, connections evolve. Many real graphs are not static but undergo frequent updates,

known as dynamic graphs, where nodes and edges may be inserted or deleted. Graph updates can

happen anywhere in the graph. However, from amicro node’s view point, we can treat all the updates

as a series of star-motif insertions/deletions (or star insertions/deletions for short), where a star motif

is represented by a set of edges incident to a common node. For example, Fig. 1(a) and 1(b) exemplify

the insertion of a star motif 𝑆𝑐 , which consists of three new edges: 𝑆𝑐 = {(𝑐, 𝑎), (𝑐, 𝑏), (𝑐, 𝑝)} and a

common center node 𝑐 . In fact, such star insertions/deletions exist naturally in dynamic graphs.

For instance, in a citation network, the nodes are research papers and the edges are the citation

relationships between two papers. A star insertion corresponds to the insertion of a newly published

paper, along with its citation relationships. Similarly, a star deletion means the retraction of a paper

and its citation records. As another example, in a social network, two user accounts have an edge

that indicates their friend relationship. A newly registered account may create a new friend circle

by adding a dozen friends, which can be regarded as a star insertion. Likewise, a star deletion

corresponds to the deregistration of a user account and also its friend connections.

Truss decomposition is to identify all non-empty 𝑘-trusses for different possible values of 𝑘 in a

graph [37]. However, it brings significant challenges to compute all 𝑘-trusses in dynamic graphs,

which needs to apply truss decomposition algorithms on every updated graph. This is inefficient

for dynamic graphs with frequent updates. To tackle it efficiently, existing studies [12, 41] compute

the trussnesses of all edges on the original graph into the index, and then develop a new truss
maintenance algorithm to partially update the trussnesses index w.r.t. the graph update. However,

most existing truss maintenance algorithms [12, 25, 41] neglect the local correlation of graph

updates and treat each update as a single-edge insertion/deletion independently, which limits the

update efficiency.

In this paper, we study the problem of truss maintenance over dynamic graphs with star inser-

tions/deletions. We first focus on the case of star insertions, and then extend it to star deletions

and general updates. Specifically, the star insertion problem needs to compute the trussnesses

of all edges in the new graph 𝐺 + 𝑆𝑐 , where 𝐺 is the original graph and 𝑆𝑐 is the graph update

of an inserted star motif. Consider the example of the dynamic graph 𝐺 with a star insertion

𝑆𝑐 = {(𝑐, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑)} in Fig. 1, the edges (𝑐, 𝑑), (𝑐, 𝑔), (𝑐, 𝑙), (𝑙, 𝑔), (𝑙, 𝑝), (𝑝,𝑔) change their truss-
nesses from 3 to 4. Moreover, the new edges (𝑐, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑) have the trussnesses of 4. All these
affected edges are connected in the graph. Thus, we may observe that the trussness update has a

local property for star insertions. To efficiently address the problem, our key idea is to partition the

new graph into two parts: a local subgraph surrounding the star motif 𝑆𝑐 and the remaining global

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:3

≺

e1

e6

e2

e7 e10

e11

e12

e13

e5

e3

e8e4 e9

u

w

v

p

1

Peeling order [41]:

Onion Layer: L1

2 3 4 5 6 7 8 9 10 11 12 13

≺e1 ≺e2 ≺e3 ≺e4 ≺e5 ≺e6 ≺e7 ≺e10 ≺e11 ≺e12 e13≺e8 ≺e9

={e1,e10 e13, }≺L2={e2 ,e9 e12, }≺
L3={e3,e8 e11, }≺ L4={e4,e7}≺L5={e5,e6}

(a) Original graph𝐺

≺

e1

e6

e2

e7 e10

e11

e12

e13

e5

e3

e8e4 e9

u

w

v

p

1

New peeling order [41]:

2 3 4 5 6 7 8 9 10

≺ e4≺ e5e6≺ e7 ≺e10 ≺e11 ≺e12 e13≺e8 ≺e9

e0

New 4-truss edges: e0 ,e1 e2, e3, }{

(b) Peeling order [41]

e1

e6

e2

e7 e10

e11

e12

e13

e5

e3

e8e4 e9

u

w

v

p

New Onion Layer: L1={e10 e13, }≺L2={e9 e12, }≺
L3={e8 e11, }≺ L4={e4,e7}≺L5={e5 ,e6}

e0

New 4-truss edges: e0 , e1 e2, e3, }{

≺

(c) Our method based onion layers

Fig. 2. A motivating example of truss maintenance using different data structures of edge orders: a peeling
order [41] in Fig. 2(b) and our onion layer based order in Fig. 2(c). The graph 𝐺 in Fig. 2(a) is inserted with a
new edge 𝑒0 = (𝑢, 𝑣). The regions in purple show that the number of edge orders needs to change by [41] and
our star-based method, which are 11 and 4, respectively.

graph. Then, we develop two novel techniques of AffBall and onion layers to estimate and refine

the trussnesses for the edges in these two parts, respectively.

More specifically, we first propose an AffBall-based technique for trussness estimation in the

local neighborhood of the star motif 𝑆𝑐 . We define a new subgraph concept of AffBall, whose
edges are in the 1-hop neighborhood of 𝑆𝑐 . The inside edges of AffBall contain all affected edges

whose trussnesses may increase by more than one. Thus, we develop a variant truss decomposition

algorithm on this local subgraph AffBall, which computes an estimated trussness for each edge as

a lower bound of exact trussness. The difference between the lower bound and the actual trussness

is no more than one.

Second, we propose an onion layer based method for trussness refinement in the affected region

of the whole graph. After the first phase of trussness estimation in AffBall, all edges’ trussnesses
are close to exact trussnesses, of which the difference is no more than one. To achieve fast trussness

refinement, we present two new concepts of onion layers and onion supports to keep the auxiliary

structure information. For a given edge 𝑒 , the corresponding onion layer and the onion support keep

the round number of edge removals and the number of triangles containing 𝑒 , respectively, when the

edge 𝑒 is deleted from the 𝑘-truss peeling process. The number of onion layers helps distinguish the

dependent order of edges, similar to the peeling order proposed in [41]. However, the maintenance

of our onion layers can be easier and faster than the maintenance of the peeling order [41]. Fig. 2

shows an example of graph 𝐺 inserted with a new edge 𝑒0 = (𝑢, 𝑣). Assume that the peeling

order [41] of all 13 edges in 3-truss are numbered from 1 to 13 in Fig. 2(a). A smaller edge number

indicates an earlier removal in truss decomposition, e.g., 𝑒10 ≺ 𝑒13 represents 𝑒10 should be removed

earlier than 𝑒13. In the auxiliary structure of onion layers, 𝐿1 = {𝑒1, 𝑒10, 𝑒13} ≺ 𝐿2 = {𝑒2, 𝑒9, 𝑒12}
indicates that the edges 𝑒1, 𝑒10, 𝑒13 can be removed in the same round and should be removed earlier

than 𝑒2 ∈ 𝐿2. After the insertion of 𝑒0, [41] needs to change the order for 11 candidate edges (𝑒0-𝑒3
in 4-truss and 𝑒4-𝑒10 in 3-truss) as shown in the purple region of Fig. 2(b). On the other hand, our

approach only needs to modify the onion layers for 4 candidate edges (𝑒0-𝑒3) in the purple region

of Fig. 2(c), which is much less than [41]. Leveraging the onion layer based updating rules, it saves

unnecessary computations to check the trussnesses of the edges that have unchanged onion layers.

Finally, we show that the time complexity of our truss maintenance algorithms is bounded by the

number of affected edges with changed onion layers.

In addition, to handle general updates in dynamic graphs, we extend star-based truss maintenance

techniques to handle multiple overlapping star insertions. The key idea is to divide the graph

update into pairwise disjoint star motifs and insert them in batches. A greedy method is proposed

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:4 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

to generate such disjoint star motifs. To summarize, we make the following contributions in this

paper.

• We develop a notion of star motif and formulate the problem of truss maintenance with

star insertions. We show the generalization of our problem to handle general updates and

single-edge insertions/deletions on dynamic graphs. (Section 3)

• We propose a local structure of AffBall based on an inserted star. We show that all edges

whose trussnesses may change by more than one fall into the region of AffBall. We develop

a star-based truss maintenance framework to first compute the lower bounds of trussnesses

within AffBall and then refine the lower bounds to exact trussnesses across the whole graph.

(Section 4)

• We propose two concepts of onion layers and onion supports. Based on them, we develop

several useful pruning strategies to reduce candidate edges for recomputing trussnesses.

Equipped with onion layer based techniques, our star-based framework can accomplish truss

maintenance with a time complexity bounded by the number of edges that change onion

layers. Moreover, we extend the star insertion techniques to handle star deletions. In addition,

we analyze and compare the complexities of all algorithms against state-of-the-art methods.

(Section 5)

• We extend the star-based techniques to handle general graph updates, which uses a greedy

method to partition the graph update into multiple batches of pairwise disjoint star motifs

and then insert them in batches. (Section 6)

• We conduct extension experiments on nine real-world graphs to demonstrate that our star-

based approach runs several orders of magnitude faster than the state-of-the-art approach [41].

Moreover, our star-based approaches are validated to efficiently handle both general graph

updates and single-edge insertions/deletions. (Section 7)

We discuss related work in Section 2 and conclude the paper in Section 8.

2 RELATEDWORK

Truss mining. Given an undirected graph 𝐺 , a 𝑘-truss is defined as the maximal subgraph 𝐻 ⊆ 𝐺
such that each edge of 𝐻 is contained in at least 𝑘 − 2 triangles. Due to its strong structural

cohesiveness and high computational efficiency, 𝑘-truss is widely used in real applications, such as

community search [12, 14, 16, 21, 40] and pivotal relationship identification [4, 35, 46]. In addition,

𝑘-truss has been extended to other types of graphs, such as geo-social graphs [5, 34], uncertain

graphs [9, 10, 15, 36, 47], bipartite graphs [20], attribute graphs [13, 24, 39], weighted graphs [45],

public-private graphs [8], directed graphs [22], multilayer graphs [11], signed graphs [38, 44], and

simplicial complexes [28]. For an edge 𝑒 , the trussness of 𝑒 is defined as the maximum value of 𝑘

such that 𝑒 is contained in 𝑘-truss. Given an undirected graph 𝐺 , the goal of truss decomposition

is to compute the trussness for every edge [3, 6, 17, 32, 37]. In this work, we focus on the truss

maintenance problem, i.e., to maintain trussnesses when edges are inserted/deleted into/from the

graph. A straightforward way for truss maintenance is to perform truss decomposition from scratch,

which is inefficient. Therefore, it is necessary to develop efficient algorithms for truss maintenance.

Dense subgraph maintenance. In the literature, many works explore the problem of dense

subgraph maintenance, including core maintenance and truss maintenance. Specifically, the core

maintenance is to maintain 𝑘-cores when the graphs are updated. Typical algorithms include

incremental algorithms [19, 30, 31], order-based algorithm [42], and H-index-based algorithm [23].

For the truss maintenance, [12] first studies the problem and proposes algorithms to address single-

edge insertions/deletions, which traverse the edges with the same trussness. [25] splits the inserted

subgraph into unrelated edges, which ensure that the change of trussness is no more than one.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:5

Moreover, [41] extends the order-based core maintenance algorithm to handle truss maintenance.

It is worth mentioning that all existing algorithms for dense subgraph maintenance do not consider

the relationship of inserted edges. In our work, we explore the relationship of inserted edges and

employ the star motif to design novel truss maintenance algorithms.

3 PRELIMINARIES
In this section, we present definitions and give our problem formulation. Given a graph𝐺 = (𝑉 , 𝐸),
a triangle △𝑢𝑣𝑤 is defined as a circle of three vertices: 𝑢, 𝑣 , 𝑤 . For a subgraph 𝐻 ⊆ 𝐺 and an

edge (𝑢, 𝑣) ∈ 𝐸 (𝐻 ), the support sup𝐻 ((𝑢, 𝑣)) is the number of triangles containing (𝑢, 𝑣) in 𝐻 , i.e.,

sup𝐻 ((𝑢, 𝑣)) = |𝑁𝐻 (𝑢) ∩𝑁𝐻 (𝑣) |, where the neighbor set 𝑁𝐻 (𝑢) = {𝑤 | (𝑢,𝑤) ∈ 𝐸 (𝐻 )}. Throughout
this paper, we use the notation

′
for dynamic graphs to represent various concepts in the new graph

after the update, e.g., the new graph 𝐺 ′, and the new support sup
′
𝐻
(𝑢, 𝑣), and so on.

Definition 1 (K-Truss [7]). Given a graph 𝐺 = (𝑉 , 𝐸), the subgraph 𝐻 ⊆ 𝐺 is the 𝑘-truss if and
only if 𝐻 is the largest subgraph such that every edge 𝑒 ∈ 𝐸 (𝐻 ) has the support sup𝐻 (𝑒) ≥ 𝑘 − 2. We
also use 𝑇𝑘 to represent the 𝑘-truss for a given integer 𝑘 ≥ 2.

Definition 2 (Trussness). Given an edge 𝑒 in graph 𝐺 , the trussness of 𝑒 is the largest integer
𝑘 such that a non-empty 𝑘-truss 𝐻 ⊆ 𝐺 contains 𝑒 , denoted as 𝜏 (𝑒) = max{𝑘 ∈ Z+ : ∃𝐻 ⊆ 𝐺, 𝑒 ∈
𝐸 (𝐻 ), 𝐻 is a 𝑘-truss}.

Based on the edge trussness, we also define the 𝑘-class edges.

Definition 3 (K-Class Edges). The 𝑘-class edges 𝐸𝑘 are defined as the set of edges that appear in
the 𝑘-truss but not in any (𝑘 + 1)-truss, i.e., 𝐸𝑘 = {𝑒 ∈ 𝐸 : 𝜏 (𝑒) = 𝑘}.

Consider the example graph𝐺 shown in Fig. 1(a) without three dashed edges (𝑎, 𝑐), (𝑏, 𝑐) and
(𝑐, 𝑝). The edge (𝑎, 𝑏) involves two triangles, △𝑎𝑏𝑑 and △𝑎𝑏𝑓 , thus the support is sup𝐺 ((𝑎, 𝑏)) = 2

in 𝐺 . The subgraph in the gray region is the 4-truss, where every edge has the support of no

less than 2. We have the trussness 𝜏 ((𝑎, 𝑏)) = 4. Moreover, for another edge (𝑐, 𝑑), the support is
sup𝐺 ((𝑐, 𝑑)) = 1 and the trussness is 𝜏 ((𝑐, 𝑑)) = 3, as the 3-class edge (𝑐, 𝑑) ∈ 𝐸3 cannot appear in
any 4-truss.

Definition 4 (star motif). Given an edge set 𝑆 , if there exists a node 𝑐 such that every edge 𝑒 ∈ 𝑆
contains 𝑐 , we call 𝑆 a star motif, denoted by 𝑆𝑐 , where 𝑐 is the center node.

Based on the definitions of trussness and star motif, we can formulate the problem of truss

maintenance with star insertions as follows.

Problem 1 (Truss Maintenance with Star Insertions). Given a dynamic graph𝐺 = (𝑉 , 𝐸),
the trussness 𝜏 (𝑒) for all edges 𝑒 ∈ 𝐸, and a star motif 𝑆 to be inserted into 𝐺 where 𝑆 ∩ 𝐸 = ∅, the
problem is to compute the new trussness 𝜏 ′(𝑒) for each 𝑒 ∈ 𝐸 ′ in the new graph 𝐺 ′ = (𝑉 , 𝐸 ′), where
𝐸 ′ = 𝐸 ∪ 𝑆 .

Example 1. Fig. 1(a) shows an example of our problem. The graph 𝐺 is inserted with a star motif
𝑆 = {(𝑎, 𝑐), (𝑏, 𝑐), (𝑐, 𝑝)}, which has three edges and a center node 𝑐 as shown in Fig. 1(b). The original
trussnesses 𝜏 ((𝑐, 𝑑)) = 3 and 𝜏 ((𝑎, 𝑏)) = 4. After the star insertion of 𝑆 , the new trussnesses are
𝜏 ′((𝑐, 𝑑)) = 4 and 𝜏 ′((𝑎, 𝑏)) = 4 in graph 𝐺 ′(𝑉 , 𝐸 ∪ 𝑆), as shown in Fig. 3(b).

Note that we have formulated the problem of truss maintenance with the case of star insertion
over dynamic graphs. Most techniques introduced in Sections 4 and 5 focus on this star insertion

case. Nevertheless, our techniques developed for star insertion can be easily extended to another

relevant case of star deletion, which will be discussed in Section 5.4. Single-edge insertion/deletion is

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:6 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

Algorithm 1 AffBall-based Framework for Star Insertions

Input: Graph 𝐺 = (𝑉 , 𝐸), the trussness 𝜏 (𝑒) for all edges 𝑒 ∈ 𝐸, an inserted star motif 𝑆𝑐 ;

Output: Updated trussness 𝜏 ′(𝑒) for all edges 𝑒 ∈ 𝐸 ′ = 𝐸 ∪ 𝑆𝑐 ;
1: Insert star 𝑆𝑐 into 𝐺 to form an updated graph 𝐺 ′ = (𝑉 , 𝐸 ′) where 𝐸 ′ = 𝐸 ∪ 𝑆𝑐 ;
2: Obtain an AffBall B = B𝑖𝑛 ∪ B𝑏𝑑 by Def. 5;

3: Compute lower bounds 𝑙𝑜𝑤𝐵(𝑒) for 𝑒 ∈ B𝑖𝑛 by applying local truss decomposition on B in

Algorithm 2;

4: Temporarily set the updated trussness as 𝜏 ′(𝑒) ← 𝑙𝑜𝑤𝐵(𝑒) for 𝑒 ∈ B𝑖𝑛 ; // 𝜏 ′(𝑒) may further

increase by no more than 1.

5: Find the seed candidates 𝑆𝑒𝑒𝑑 ⊆ B𝑏𝑑 for trussness refinement by Algorithm 3;

6: Start from 𝑆𝑒𝑒𝑑 to find more candidate edges to update all 𝜏 ′(𝑒) for 𝑒 ∈ 𝐸 ′, e.g., using an

existing truss maintenance [12] or Algorithm 5;

7: return Updated 𝜏 ′(𝑒) for all edges 𝑒 ∈ 𝐸 ′;

a special case of star-motif insertion/deletion. Thus, our proposed star-based techniques can also

handle the update of single-edge insertions/deletions. For single-node insertion/deletion, it can be

treated as a star-motif insertion/deletion preceded/followed by the insertion/deletion of an isolated

node. Moreover, based on the truss maintenance solutions for star-motif insertions and deletions,

we further study a general truss maintenance problem to handle arbitrary insertions, which will be

introduced in Section 6.

4 AFFBALL
In this section, we introduce a new subgraph structure of AffBall based on an inserted star. Then,

we analyze the structural properties of AffBall and propose the rules for updating trussnesses.

Finally, we develop an AffBall-based framework for truss maintenance with a star-motif insertion,

which first coarsely estimates lower bounds of trussnesses within AffBall region and then finely

computes the trussnesses of all edges.

4.1 AffBall Structure

Motivation. According to [12], when a new edge is inserted into a graph, all other edges have their

trussnesses changed no more than one. Thanks to this updating rule, it saves lots of computations

to avoid checking a large number of candidate edges whose trussnesses are larger than or less

than the trussness of the inserted edge. However, when it inserts two or more new edges into a

graph, the above rule may not hold any more. To achieve similar updating rules, we develop a new

structure AffBall surrounding an inserted star motif 𝑆𝑐 to include all edges whose trussnesses may

change by more than one. Thus, the outside of AffBall are the edges whose trussnesses may change

by no more than one. In the following, we give a formal definition of AffBall.

4.2 AffBall-based Framework for Star Insertions

Definition 5 (AffBall B). Given a graph 𝐺 = (𝑉 , 𝐸) inserted with a star motif 𝑆𝑐 where the new
edges 𝐸 ′ = 𝐸∪𝑆𝑐 , an AffBall structure consists of inside and boundary edges, denoted asB = B𝑖𝑛∪B𝑏𝑑 ,
where the inside edges B𝑖𝑛 = {(𝑐, 𝑣) ∈ 𝐸 ′ |𝑣 ∈ 𝑁 ′(𝑐)} and the boundary B𝑏𝑑 = {(𝑢, 𝑣) ∈ 𝐸 ′ |𝑢, 𝑣 ∈
𝑁 ′(𝑐)}. The remaining edges outside of B are denoted as B𝑜𝑢𝑡 = 𝐸 ′ \ B.
Consider a graph 𝐺 inserted with a star motif 𝑆𝑐 in Fig. 1. As it inserts 3 new edges 𝑆𝑐 = {(𝑎, 𝑐),
(𝑏, 𝑐), (𝑐, 𝑝)}, theAffBallB has the inside edges asB𝑖𝑛 = {(𝑐, 𝑎), (𝑐, 𝑏), (𝑐, 𝑑), (𝑐, ℎ), (𝑐, 𝑔), (𝑐, 𝑝), (𝑐, 𝑙)}
and the boundary B𝑏𝑑 = {(𝑎, 𝑏), (𝑎, 𝑑), (𝑏, 𝑑), (𝑑,ℎ), (ℎ,𝑔), (𝑔, 𝑙), (𝑔, 𝑝), (𝑙, 𝑝)}, where every edge

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:7

has two endpoints of the center node 𝑐’s neighbors. Thus, all other edges are outside of AffBall B.
Note that if the inserted star motif 𝑆 has only one edge 𝑆 = {(𝑢, 𝑣)}, the AffBall B is degenerated

into B𝑖𝑛 = {(𝑢, 𝑣)} and B𝑏𝑑 = {(𝑢,𝑤) |𝑤 ∈ 𝑁 ′(𝑢) ∩ 𝑁 ′(𝑣)} ∪ {(𝑣,𝑤) |𝑤 ∈ 𝑁 ′(𝑢) ∩ 𝑁 ′(𝑣)}.

4.3 AffBall Properties and Updating Rules
Next, we analyze AffBall properties and give the trussness updating rules. An AffBall contains all
new edges and also the old edges that are added with more than one new triangles, leading to

that they may change their trussnesses by more than one. The inside edge 𝑒 ∈ B𝑖𝑛 cannot form
any triangle with the outside edges 𝑒 ∈ B𝑜𝑢𝑡 , which means that edges in B𝑖𝑛 and edges outside

of AffBall are totally separated by the boundary edges B𝑏𝑑 . The boundary of AffBall is used as a

bridge between B𝑖𝑛 and B𝑜𝑢𝑡 to propagate the change information of supports and trussnesses.

The edges in B𝑏𝑑 can form at most one triangle with the edges in B𝑖𝑛 , meaning that edges on the

AffBall boundary can increase their trussnesses by no more than one.

Lemma 1. Given a graph 𝐺 inserted with a star motif 𝑆𝑐 , the AffBall boundary edge 𝑒 ∈ B𝑏𝑑
increases the trussness at most by one, i.e., ∀𝑒 ∈ B𝑏𝑑 , 𝜏 ′(𝑒) − 𝜏 (𝑒) ≤ 1.

Proof. Since we insert edges into the graph 𝐺 , all trussnesses can only increase or remain the

same, i.e., ∀𝑒 ∈ 𝐸, 𝜏 ′(𝑒) ≥ 𝜏 (𝑒). Next we suppose there exists an edge 𝑒 ∈ B𝑏𝑑 , 𝜏 ′(𝑒) − 𝜏 (𝑒) ≥ 2.

The new trussness 𝜏 ′(𝑒) ≥ 𝜏 (𝑒) + 2 means the 𝑠𝑢𝑝𝐻 ′ (𝑒) ≥ 𝜏 (𝑒), where 𝐻 ′ is the 𝜏 ′(𝑒)-truss after
insertion. Since 𝑒 can form at most one triangle with the edges in B𝑖𝑛 , which contains all edges

in 𝑆𝑐 , if we remove 𝑆𝑐 again, 𝑠𝑢𝑝𝐻 (𝑒) = 𝑠𝑢𝑝𝐻 ′ (𝑒) − 1 ≥ 𝜏 (𝑒) − 1, where 𝐻 is the 𝜏 (𝑒)-truss after
removal. This means 𝑒 ∈ (𝜏 (𝑒) + 1)-truss in 𝐺 , leading to a contradiction. □

Lemma 2. Given a graph𝐺 inserted with a star motif 𝑆𝑐 , the AffBall outside edge 𝑒 ∈ B𝑜𝑢𝑡 = 𝐸 ′ \B
can increase the trussness at most by 1, i.e., ∀𝑒 ∈ B𝑜𝑢𝑡 , 𝜏 ′(𝑒) − 𝜏 (𝑒) ≤ 1.

Proof. Since edges in B𝑖𝑛 cannot form any triangle with the edges not in AffBall, the trussness
change of edges in B𝑖𝑛 will not affect the edges not in AffBall. According to Lemma 1, edges in

B𝑏𝑑 can increase their trussnesses at most by one. Affected by these boundary edges, edges not in

AffBall also can increase their trussnesses at most by one. □

For an inside edge 𝑒 ∈ B𝑖𝑛 , we estimate an approximate trussness 𝑙𝑜𝑤𝐵(𝑒), which is a lower

bound close to the real trussness 𝜏 ′(𝑒).

Lemma 3. For an AffBall B ⊆ 𝐺 ′ and each edge 𝑒 ∈ B𝑖𝑛 , we derive a lower bound of updated
trussness 𝜏 ′(𝑒) as 𝑙𝑜𝑤𝐵(𝑒) = max{𝑘 ∈ Z+ |∃𝐻 ⊆ B such that ∀𝑒𝑖𝑛 ∈ 𝐸 (𝐻 ) ∩B𝑖𝑛 , sup𝐻 (𝑒𝑖𝑛) ≥ 𝑘 − 2
and ∀𝑒𝑏𝑑 ∈ 𝐸 (𝐻 ) ∩ B𝑏𝑑 , 𝜏 (𝑒𝑏𝑑 ) ≥ 𝑘}. Thus, we have the gap between lower bound 𝑙𝑜𝑤𝐵(𝑒) and
updated trussness 𝜏 ′(𝑒) no more than 1, i.e., 𝜏 ′(𝑒) − 𝑙𝑜𝑤𝐵(𝑒) ≤ 1 holds for 𝑒 ∈ B𝑖𝑛 .

Proof. First, after a local truss decomposition on B, each edge can get a determined trussness

𝑙𝑜𝑤𝐵(𝑒). Then, consider swapping the inside and outside of the AffBall, since the edges in B𝑏𝑑
increase their trussnesses at most by 1, according to Lemma 2, edges outside the AffBall can increase
their trussnesses at most by 1. Therefore, 𝜏 ′(𝑒) − 𝑙𝑜𝑤𝐵(𝑒) ≤ 1, ∀𝑒 ∈ B𝑖𝑛 . □

Leveraging Lemma 3, we can apply the local truss decomposition on subgraph B that keeps

trussnesses unchanged for edges in B𝑏𝑑 and recomputes trussnesses for edges 𝑒 in B𝑖𝑛 as the low
bound of 𝑙𝑜𝑤𝐵(𝑒). Note that all these temporary trussness are close to the exact trussnesses and

will be further refined to exact ones. Consider the example of graph 𝐺 inserted with 𝑆𝑐 in Fig. 1.

Using a local truss decomposition on B, we can get the lower bounds 𝑙𝑜𝑤𝐵((𝑎, 𝑐)) = 𝑙𝑜𝑤𝐵((𝑏, 𝑐)) =
𝑙𝑜𝑤𝐵((𝑐, 𝑑)) = 4 and 𝑙𝑜𝑤𝐵((𝑐, 𝑝)) = 3, which are very close to the real trussnesses of 4. Leveraging

AffBall in Def. 5, we can replace the graph update source from an inserted star motif 𝑆𝑐 to the

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:8 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

Algorithm 2 Compute Lower Bounds in AffBall

Input: AffBall B for an inserted star motif 𝑆𝑐 ;

Output: Estimated trussness 𝑙𝑜𝑤𝐵(𝑒) for 𝑒 ∈ B𝑖𝑛 ;
1: Calculate the support supB (𝑒) in AffBall B for edge 𝑒 ∈ B𝑖𝑛 ;
2: Initialize 𝑘 = 2, an empty queue 𝑄 = ∅;
3: while B𝑖𝑛 ≠ ∅ or 𝑄 ≠ ∅ do
4: for all (𝑐, 𝑣) ∈ B𝑖𝑛 with supB ((𝑐, 𝑣)) ≤ 𝑘 − 2 do
5: B𝑖𝑛 ← B𝑖𝑛 \ {(𝑐, 𝑣)}, 𝑄 ← 𝑄 ∪ {𝑣};
6: if 𝑄 = ∅ then
7: for all (𝑣,𝑤) ∈ B𝑏𝑑 , 𝜏 ((𝑣,𝑤)) ≤ 𝑘 − 2 do
8: Remove edge (𝑣,𝑤) from B;
9: Decrease supB ((𝑐, 𝑣)) and supB ((𝑐,𝑤)) by one;

10: if supB ((𝑐, 𝑣)) ≤ 𝑘 − 2 then 𝑄 ← 𝑄 ∪ {𝑣}, B𝑖𝑛 ← B𝑖𝑛 \ {(𝑐, 𝑣)};
11: if supB ((𝑐,𝑤)) ≤ 𝑘 − 2 then 𝑄 ← 𝑄 ∪ {𝑤}, B𝑖𝑛 ← B𝑖𝑛 \ {(𝑐,𝑤)};
12: if 𝑄 = ∅ then 𝑘 ← 𝑘 + 1;
13: while 𝑄 ≠ ∅ do
14: 𝑄 ← 𝑄 \ {𝑣};
15: Assign a lower bound 𝑙𝑜𝑤𝐵((𝑐, 𝑣)) = max{𝜏 ((𝑐, 𝑣)), 𝑘};
16: for all (𝑣,𝑤) ∈ B𝑏𝑑 do
17: Remove (𝑣,𝑤) and update supB , 𝑄 , B𝑖𝑛 as lines 9-11;
18: return 𝑙𝑜𝑤𝐵(𝑒) for 𝑒 ∈ B𝑖𝑛 ;

edges B𝑏𝑑 . Thus, the former 𝑆𝑐 may increase trussnesses by more than one, but the latter B𝑏𝑑 can

increase trussnesses by up to one w.r.t. 𝑙𝑜𝑤𝐵(𝑒) for 𝑒 ∈ B𝑖𝑛 and 𝜏 (𝑒) for 𝑒 ∈ B𝑏𝑑 ∪B𝑜𝑢𝑡 , which can

be easily handled even by existing truss maintenance techniques [12].

We present the AffBall-based framework for truss maintenance with a star insertion in Algo-

rithm 1. Here is an overview of the AffBall-based framework, which mainly has two phases. The

first phase is to compute the lower bounds for AffBall-inside edges B𝑖𝑛 , which coarsely estimate

the trussnesses (lines 1-4), denoted as Phase I. The second phase is truss maintenance, which finely

computes the exact trussnesses for all edges (lines 5-6), denoted as Phase II.

Next, we introduce the details of Algorithm 1. Specifically, the algorithm updates the graph𝐺

to 𝐺 ′ by inserting 𝑆𝑐 (line 1) and identifies an AffBall B by Definition 5 (line 2). Then, it applies a

local decomposition to compute a lower bound 𝑙𝑜𝑤𝐵(𝑒) for 𝑒 ∈ B𝑖𝑛 and assigns as the temporary

trussness (lines 3-4). The procedure details are outlined in Algorithm 2. Given the original trussness

𝜏 (𝑒) and the temporary trussness 𝜏 ′(𝑒), the edges 𝑒 ∈ B𝑖𝑛 and 𝑒 ∈ B𝑜𝑢𝑡 all meet the requirement of

𝑘-truss, and only the edges 𝑒 ∈ B𝑏𝑑 may violate the 𝑘-truss requirement. The edges in B𝑏𝑑 serve as

the seed candidate to find all edges that may increase trussnesses by 1 (line 2). The procedure is

shown in Algorithm 3. Finally, it starts from 𝑆𝑒𝑒𝑑 to find more candidate edges and refine their

trussnesses to exact ones, which can use the existing truss maintenance algorithms [12] (line 6).

Procedure of computing lower bounds in B𝑖𝑛 . Algorithm 2 shows the details of local truss

decomposition. We first calculate the support supB (𝑒) in the subgraph B for edge 𝑒 ∈ B𝑖𝑛 (line 1).
Then, we start from 𝑘 = 2 and peel edges in B𝑖𝑛 (lines 4-5) or edges in B𝑏𝑑 (lines 6-11). The edge
removal may further cause other edges removed for violating 𝑘-truss requirements (lines 13-17). We

set the estimated trussness 𝑙𝑜𝑤𝐵 to the maximum value between the old trussness and the current

𝑘 value (line 15). This is because all trussnesses increase or remain the same after a star-motif

insertion. A higher feasible lower bound can save lots of calculations. When there is no edge to

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:9

Algorithm 3 Find Seed Candidates for Trussness Refinement

Input: AffBall B for an inserted star motif 𝑆𝑐 , lower bounds 𝜏
′(𝑒) for 𝑒 ∈ B𝑖𝑛 ;

Output: Seed candidates 𝑆𝑒𝑒𝑑 ⊆ B𝑏𝑑 ;
1: 𝑆𝑒𝑒𝑑 ← ∅;
2: for all (𝑢, 𝑣) ∈ B𝑏𝑑 do
3: if min{𝜏 ((𝑐,𝑢)), 𝜏 ((𝑐, 𝑣))} < 𝜏 (𝑢, 𝑣) and min{𝜏 ′((𝑐,𝑢)), 𝜏 ′((𝑐, 𝑣))} ≥ 𝜏 ((𝑢, 𝑣)) then
4: 𝑆𝑒𝑒𝑑 ← 𝑆𝑒𝑒𝑑 ∪{(𝑢, 𝑣)};
5: return 𝑆𝑒𝑒𝑑 ;

remove anymore, we increase 𝑘 by one (line 12) and repeat the above process, until all edges are

removed from B. Note that for an inserted star motif 𝑆𝑐 with single edge, we can directly get the

estimated trussness 𝑙𝑜𝑤𝐵 by the definition of 𝑘-truss, i.e., 𝑙𝑜𝑤𝐵(𝑒) = max{𝑘 | sup𝐻 (𝑒) ≥ 𝑘 − 2}
where 𝐻 is the 𝑘-truss.

Procedure of finding seed candidates in B𝑏𝑑 . Algorithm 3 shows that, if a triangle △𝑐𝑢𝑣 does
not exist in the 𝜏 ((𝑢, 𝑣))-truss in original graph𝐺 but exists in new 𝜏 ((𝑢, 𝑣))-truss in new graph𝐺 ′,
the edge (𝑢, 𝑣) may increase its trussness and should be pushed into 𝑆𝑒𝑒𝑑 for trussness refinement.

Although Algorithm 1 works well to invoke an existing truss maintenance algorithms [12], it is

not efficient due to a large number of candidate edges to consider in this unbounded algorithm.

To further improve the efficiency, we develop a new onion layer based Algorithm 5 in the next

section.

5 ONION LAYER BASED TRUSS REFINEMENT
In this section, we introduce two new concepts of onion layers and supports for trussness refinement.

Then, we propose an integrated algorithm by combining AffBall and onion layer based techniques

for truss maintenance with star insertions. Moreover, we extend insertion techniques to handle

star motif deletions and analyze the algorithm complexity.

5.1 Onion Layers
We first define an onion layer as follows.

Definition 6 (Onion Layer). Given the 𝑘-class edges 𝐸𝑘 and an integer 𝑙 ∈ Z+, the 𝑗-th onion
layer 𝐿 𝑗 is the set of edges satisfying 𝐿 𝑗 = {𝑒 ∈ 𝐸𝑘 | sup𝐻 𝑗

(𝑒) ≤ 𝑘 − 2} where 𝐻 𝑗 = 𝑇𝑘 \
⋃𝑗−1
𝑖=1

𝐿𝑖 , 𝑇𝑘 is
the 𝑘-truss, and the initial onion layer is 𝐿1 = {𝑒 ∈ 𝐸𝑘 : sup𝑇𝑘

(𝑒) = 𝑘 − 2}.
To mention a specific 𝑘 ∈ Z+ for 𝑘-class edges, we denote the 𝑗-th onion layer of 𝑘-class edges

as 𝐿𝑘,𝑗 . When the context is obvious, we call the 𝑗-th onion layer as 𝐿 𝑗 for simplicity throughout

this paper. Based on onion layers, we can define the layer number and layer order.

Definition 7 (Layer Number L and Layer Order ≺). Given a 𝑘-class edge 𝑒 ∈ 𝐸𝑘 , the layer
number of 𝑒 is defined as L(𝑒) = {𝑙 ∈ Z+ : 𝑒 ∈ 𝐿𝑙 }. The onion layer number L(𝑒) indicates the
number of rounds in which 𝑒 is removed from 𝑘-truss in peeling process. Given two edges 𝑒1 and 𝑒2,
the layer order ≺ is defined as 𝑒1 ≺ 𝑒2, if either 𝜏 (𝑒1) < 𝜏 (𝑒2) or 𝜏 (𝑒1) = 𝜏 (𝑒2), L(𝑒1) < L(𝑒2) holds.
We use 𝑒1 = 𝑒2 to indicate 𝜏 (𝑒1) = 𝜏 (𝑒2) and L(𝑒1) = L(𝑒2). Moreover, 𝑒1 ⪯ 𝑒2 holds for either

𝑒1 = 𝑒2 or 𝑒1 ≺ 𝑒2. Note that L can represent the removal order of edges in the same 𝑘-class. The

larger the L(𝑒) is, the later the edge 𝑒 is removed. For two 𝑘-class edges 𝑒1 and 𝑒2, L(𝑒1) = L(𝑒2)
represents that the edges 𝑒1, 𝑒2 are removed at the same round, and the peeling order of these edges

does not affect the 𝑘-truss results. When comparing the removal order of two edges, it needs to

consider both the trussness 𝜏 and onion layer number L. Next, we define an onion support below.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:10 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

a b

c
d f

g h i

j k

l

p
L2 L1

(a) The old graph𝐺

a b

c
d f

g h i

j k

l

p

L4 L3 L2 L1
3-truss

4-truss

(b) The new graph𝐺′

Fig. 3. An example of onion layers in 3-class edges.

Definition 8 (Onion Support SeSup𝑘,𝑙 ). Given two integers 𝑘 ≥ 2 and 𝑙 ≥ 1, the onion support
of an edge 𝑒 is defined as the number of triangles lies in at least 𝑙-th onion layer of 𝑘-truss subgraph,
i.e., SeSup𝑘,𝑙 (𝑒) = sup𝐻𝑙

(𝑒), where 𝐻𝑙 = 𝑇𝑘 \
⋃𝑙−1
𝑖=1 𝐿𝑖 .

When 𝑘 = 𝜏 (𝑒) and 𝑙 = L(𝑒), we omit the subscripts and use SeSup(𝑒) to represent the number

of triangles containing 𝑒 , when the edge 𝑒 is deleted in the 𝑘-truss decomposition.

Example 2. Consider a graph 𝐺 in Fig. 3(a) and 𝑘 = 3. The 3-class edges 𝐸3 have two onion
layers 𝐿1 and 𝐿2, which are colored in purple and green, respectively. For the edge (𝑐, 𝑑), it has
the trussness of 3 and is contained in only one triangle △𝑐𝑑ℎ . Thus, (𝑐, 𝑑) is removed in the first
round of truss decomposition, leading to (𝑐, 𝑑) ∈ 𝐿1 and L((𝑐, 𝑑)) = 1. As a result, the onion layer
𝐿1 = {(𝑐, 𝑑), (𝑐, 𝑙), (𝑙, 𝑝), (𝑔, 𝑝), (𝑓 , 𝑖)}. After removing all edges of 𝐿1 in the first round, the onion
support SeSup𝑘,𝑙 ((𝑓 , ℎ)) = 1 ≤ 𝑘 − 2 for 𝑘 = 3 and 𝑙 = 2, indicating that (𝑓 , ℎ) will be removed in
the second round and (𝑓 , ℎ) ∈ 𝐿2. Thus, we get 𝐿2 = {(𝑓 , ℎ), (𝑑, ℎ), (𝑐, ℎ), (𝑐, 𝑔), (𝑔, 𝑙)}. For two layer
numbers L((𝑐, 𝑑)) = 1 and L((𝑐, ℎ)) = 2, we infer that the layer order (𝑐, 𝑑) ≺ (𝑐, ℎ) holds. When it
inserts three edges (𝑎, 𝑐), (𝑏, 𝑐), (𝑐, 𝑝) into 𝐺 as a new graph 𝐺 ′, the four new onion layers of 3-class
edges are shown in Fig. 3(b), where 𝐿1 = {(𝑖, 𝑓 )}, 𝐿2 = {(ℎ, 𝑓 )}, 𝐿3 = {(𝑑, ℎ)}, and 𝐿4 = {(𝑐, ℎ)}.

Computing onion layers and supports. Algorithm 4 shows the procedure of obtaining L and

SeSup in the process of truss decomposition. First of all, the support numbers of all edges are

calculated (line 1). The queue 𝑄 contains all the edges to be removed (line 2). The edges that are

contained in no more than 𝑘 − 2 triangles are pushed into𝑄 (lines 4-13) and will be removed one by

one (lines 8-15). Once an edge 𝑒 is pushed into 𝑄 , 𝜏 (𝑒) and L(𝑒) are determined and not changed

(lines 5, 13), but 𝑆𝑒𝑆𝑢𝑝 (𝑒) may further decrease due to the removed triangles (line 15). After an edge

𝑒 is removed from graph, all its neighbor edges should update the support numbers accordingly

(lines 10-15). It also checks the edges not in 𝑄 and push them into 𝑄 if their support have no more

than 𝑘 − 2 (line 13). Meanwhile, it also update the onion support 𝑆𝑒𝑆𝑢𝑝 for edges already in 𝑄

(line 15). When the graph becomes empty by removing all edges 𝐸, the algorithm terminates.

5.2 Onion Layer Incremental Maintenance

Truss updating rules. Next, we introduce the truss updating rules based on onion layers L(𝑒)
and onion support SeSup(𝑒).

Lemma 4. Consider an edge 𝑒 in graph𝐺 , and two integers 𝑘 = 𝜏 (𝑒), 𝑙 = L(𝑒). If 𝑙 = 1, SeSup(𝑒) =
𝑘 − 2 holds; If 𝑙 > 1, SeSup(𝑒) ∈ [0, 𝑘 − 2] and SeSup𝑘,𝑙−1 (𝑒) > 𝑘 − 2 hold.

Proof. When 𝑙 = 1, no edge in the 𝑘-truss has been removed, so SeSup(𝑒) = sup𝑇𝑘
(𝑒) ≥ 𝑘 − 2.

And 𝑒 is removed in the first round, so SeSup(𝑒) ≤ 𝑘 − 2. Therefore, SeSup(𝑒) = 𝑘 − 2 when

L(𝑒) = 1. Next, when 𝑙 ≠ 1, SeSup(𝑒) cannot be negative and SeSup(𝑒) ≤ 𝑘 − 2, otherwise 𝑒 will

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:11

Algorithm 4 Compute Onion Layers and Supports

Input: Graph 𝐺 = (𝑉 , 𝐸);
Output: Trussness 𝜏 (𝑒), onion layer number L(𝑒), onion support 𝑆𝑒𝑆𝑢𝑝 (𝑒) for all edges 𝑒 ∈ 𝐸;
1: Calculate the support sup(𝑒) for 𝑒 ∈ 𝐸;
2: Initialization: 𝑘 ← 2, 𝑙 ← 1, a queue 𝑄 ← ∅;
3: while 𝐸 ≠ ∅ do
4: for all 𝑒 ∈ 𝐸, sup(𝑒) ≤ 𝑘 − 2 do
5: 𝑄 ← 𝑄 ∪ {𝑒}, 𝜏 (𝑒) ← 𝑘 , L(𝑒) ← 𝑙 , 𝑆𝑒𝑆𝑢𝑝 (𝑒) ← sup(𝑒); // Batch assignment of edges in

the same layer

6: if 𝑄 = ∅ then 𝑘 ← 𝑘 + 1, 𝑙 ← 1;

7: while 𝑄 ≠ ∅ do
8: Pop an edge (𝑢, 𝑣) from 𝑄 ; Remove (𝑢, 𝑣) from 𝐸;

9: Assign the current layer number: 𝑙 ← L((𝑢, 𝑣));
10: for all 𝑒 ∈ {(𝑢,𝑤), (𝑣,𝑤) ∈ 𝐸 |𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣)} do
11: if 𝑒 ∉ 𝑄 then
12: Decrease the support sup(𝑒) by one;

13: if sup(𝑒) ≤ 𝑘 − 2 then 𝜏 (𝑒) ← 𝑘 , L(𝑒) ← 𝑙 + 1, 𝑆𝑒𝑆𝑢𝑝 (𝑒) ← sup(𝑒),𝑄 ← 𝑄 ∪ {𝑒};
14: else if 𝑙 < L(𝑒) then
15: Decrease 𝑆𝑒𝑆𝑢𝑝 (𝑒) by one;

16: return 𝜏 (𝑒), L(𝑒) and 𝑆𝑒𝑆𝑢𝑝 (𝑒) for 𝑒 ∈ 𝐸;

be in 𝑙 + 1 layer. So 𝑆𝑒𝑆𝑢𝑝 (𝑒) ∈ [0, 𝑘 − 2]. Since 𝑒 is in 𝑙 layer, so in 𝑙 − 1 layer, sup𝐻𝑙−1
(𝑒) > 𝑘 − 2,

otherwise, 𝑒 would be in 𝑙 − 1 layer. □

The key rule of our updating approach is to ensure the exact update of all edges’ SeSup following

Lemma 4, as a star insertion brings the change of triangles in support calculations. Once the onion

support of all edges satisfies Lemma 4, L and 𝜏 are also updated, the truss maintenance process

ends. In the following, we study how to efficiently maintain SeSup by pruning candidate edges.

Lemma 5. Given an edge (𝑢, 𝑣), if 𝑘 = 𝜏 ((𝑢, 𝑣)) and 𝑙 = L((𝑢, 𝑣)) > 1, there exists a neighbor edge
in 𝑙 − 1 layer, i.e., ∃𝑒 ′ ∈ {(𝑢,𝑤), (𝑣,𝑤) |𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣)}, 𝜏 (𝑒 ′) = 𝑘 and L(𝑒 ′) = 𝑙 − 1.

Proof. According to Lemma 4, if L((𝑢, 𝑣)) = 𝑙 , sup𝐻𝑙−1
((𝑢, 𝑣)) > 𝑘 − 2. If 𝑒 ′ does not exist,

sup𝐻𝑙
((𝑢, 𝑣)) = sup𝐻𝑙−1

((𝑢, 𝑣)) > 𝑘−2. Then,L((𝑢, 𝑣)) should be 𝑙+1, which leads to a contradiction.
□

The above lemma shows the local property of onion layer, i.e., L(𝑒) can be affected by the change

of onion layer of its neighbors. The following lemma shows the condition when an edge increases

its onion layer number.

Lemma 6. Given an edge 𝑒 , 𝑘 = 𝜏 (𝑒) and 𝑙 = L(𝑒), if SeSup′
𝑘,𝑙
(𝑒) > 𝑘 − 2, then the new onion layer

number L ′(𝑒) > L(𝑒) holds.

Proof. According to Lemma 4, SeSup𝑘,𝑙 (𝑒) ≤ 𝑘−2 and SeSup𝑘,𝑙−1 (𝑒) > 𝑘−2. If new SeSup′
𝑘,𝑙
(𝑒) >

𝑘 − 2, the edge 𝑒 will not be peeled in 𝑙 layer, so new L ′(𝑒) > L(𝑒). □

Lemma 6 offers a very useful rule of maintaining the onion layers in BFS manner. Unlike trussness

that increases the support number cannot guarantees the trussness increment, an edge 𝑒 must

increase its onion layer when SeSup(𝑒) > 𝑘 − 2. Once the onion layers of the graph is maintained,

the trussness of the graph is also updated. Therefore, we can design a truss maintenance algorithm

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:12 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

Algorithm 5 Onion Layer based Truss Refinement (Insertion)

Input: Graph 𝐺 = (𝑉 , 𝐸), a star motif 𝑆𝑐 , trussness 𝜏 (𝑒), onion layer L(𝑒) and support 𝑆𝑒𝑆𝑢𝑝 (𝑒)
for all edges 𝑒;

Output: New 𝜏 ′(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for all edges 𝑒;
1: Find seed edges: 𝑆𝑒𝑒𝑑 ← {𝑒 ∈ B𝑏𝑑 : 𝑒 violdates Lemma 4};

2: Initialize empty queues 𝑄𝑠𝑒𝑒𝑑 , 𝑄𝑘+1, 𝑄𝑘 ← ∅;
3: while 𝑆𝑒𝑒𝑑 ≠ ∅ do
4: Assign 𝑘 ← max{𝜏 (𝑒) |𝑒 ∈ 𝑆𝑒𝑒𝑑};
5: for all 𝑒 ∈ 𝑆𝑒𝑒𝑑 , 𝜏 (𝑒) = 𝑘 do
6: 𝑄𝑠𝑒𝑒𝑑 ← 𝑄𝑠𝑒𝑒𝑑 ∪ {𝑒}, 𝑆𝑒𝑒𝑑 ← 𝑆𝑒𝑒𝑑 \ {𝑒};
7: while 𝑄𝑠𝑒𝑒𝑑 ≠ ∅ do
8: Find (𝑢, 𝑣) ∈ 𝑄𝑠𝑒𝑒𝑑 with the smallest 𝑙 = L((𝑢, 𝑣));
9: if ∃𝑒 ∈ 𝑄𝑘 with L(𝑒) < 𝑙 then
10: 𝑄𝑘 ← 𝑄𝑘 \ {𝑒};
11: for all 𝑒 ′ ∈ 𝑄𝑠𝑒𝑒𝑑 ∪𝑄𝑘+1 forming a triangle with 𝑒 do
12: Update 𝑆𝑒𝑆𝑢𝑝 (𝑒 ′);
13: if SeSup(𝑒 ′) ≤ 𝑘 − 2 then
14: Assign L ′((𝑢,𝑤)) ← 𝑙 ;

15: Delete 𝑒 ′ from 𝑄𝑠𝑒𝑒𝑑 or 𝑄𝑘+1;
16: continue;
17: Assign L ′((𝑢, 𝑣)) ← +∞, 𝑄𝑠𝑒𝑒𝑑 ← 𝑄𝑠𝑒𝑒𝑑 \ {(𝑢, 𝑣)};
18: for all𝑤 ∈ 𝑁 (𝑢) ∩𝑁 (𝑣),min(𝜏 ((𝑢,𝑤)), 𝜏 ((𝑣,𝑤))) = 𝑘, (𝑢, 𝑣) ⪯ (𝑢,𝑤), (𝑢, 𝑣) ⪯ (𝑣,𝑤) do
19: if (𝑢, 𝑣) ≺ (𝑢,𝑤) and (𝑢, 𝑣) ≺ (𝑣,𝑤) then
20: if (𝑢,𝑤) ≺′ (𝑢, 𝑣) and (𝑢,𝑤) ≺′ (𝑣,𝑤) then
21: Increase the support 𝑆𝑒𝑆𝑢𝑝 ′((𝑢,𝑤)) by one;

22: if SeSup′((𝑢,𝑤)) > 𝑘 − 2 then
23: 𝑄𝑠𝑒𝑒𝑑 ← 𝑄𝑠𝑒𝑒𝑑 ∪ {(𝑢,𝑤)};
24: else if 𝜏 (𝑢,𝑤) = 𝑘 and L(𝑢,𝑤) = 𝑙 then
25: 𝑄𝑘 ← 𝑄𝑘 ∪ {(𝑢,𝑤)};
26: Operate edge (𝑣,𝑤) similar for as line 19-25;

27: 𝑄𝑘+1 ← 𝑄𝑘+1 ∪ {(𝑢, 𝑣)};
28: if 𝑄𝑘 ≠ ∅ then
29: Remove edges in 𝑄𝑘 and update neighbor edges’ 𝑆𝑒𝑆𝑢𝑝 and L values in 𝑄𝑠𝑒𝑒𝑑 , 𝑄𝑘+1 as

lines 11-15;

30: for all 𝑒 ∈ 𝑄𝑘+1 do
31: Assign 𝜏 ′(𝑒) ← 𝑘 + 1, L ′(𝑒) ← 1;

32: Update L ′ and 𝑆𝑒𝑆𝑢𝑝 ′ of 𝑄𝑘+1 in (𝑘 + 1)-truss as lines 5-29;
33: return 𝜏 ′(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for all edges 𝑒;

bounded by the size of edges that change onion layers. Moreover, according to Lemma 6, we infer

that for two edges 𝑒 , 𝑒 and 𝑒 ≺ 𝑒 , then 𝑒 may be affected when 𝑒 has an increased layer number

L(𝑒). However, for other edges if 𝑒 ′ ⪯ 𝑒 , the increased layer number L(𝑒) has no effect on 𝑒 ′.

The algorithm. We first define the change of edges in terms of trusssness and onion layer number

as follows.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:13

Definition 9 (T_CHG and L_CHG). Given a graph 𝐺 = (𝑉 , 𝐸) inserted with a star motif 𝑆𝑐 , the
set of edges with trussness changed is defined as T_CHG = {𝑒 |𝜏 (𝑒) ≠ 𝜏 ′(𝑒), 𝑒 ∈ 𝐸} ∪ 𝑆𝑐 , and the set of
edge with layer changed is defined as L_CHG = {𝑒 |𝜏 (𝑒) = 𝜏 ′(𝑒),L(𝑒) ≠ L ′(𝑒), 𝑒 ∈ 𝐸} ∪ T_CHG.

We first consider one simple method to update onion layers. According to Lemma 6, given a

seed candidate edge 𝑒 in B𝑏𝑑 , we put all neighbor edges 𝑒 ′ that 𝑒 ≺ 𝑒 ′, 𝜏 (𝑒 ′) = 𝜏 (𝑒) into 𝑆𝑒𝑒𝑑 and

so on. Then, we conduct a truss decomposition for edges in 𝑆𝑒𝑒𝑑 to calculate new onion layers and

trussnesses, whcih finishes the update to admit Lemma 4. However, this method are not efficient,

as the size of 𝑆𝑒𝑒𝑑 may be very large and not bounded by |L_CHG|, i.e., there may be useless edges

in 𝑆𝑒𝑒𝑑 with no changed onion layer numbers.

To tackle the above limitation, we propose our onion layer based maintenance algorithm, which

is bounded by a polynomial time complexity w.r.t. |L_CHG| to handle each edge just once. The key

idea is to remove edges that cannot change their onion layer numbers in time. Generally speaking,

we need three edge sets: 𝑄𝑠𝑒𝑒𝑑 , 𝑄𝑘+1, 𝑄𝑘 , where 𝑄𝑠𝑒𝑒𝑑 keeps the seed edges not meeting Lemma 4

that increase the support of their neighbors,𝑄𝑘+1 keeps the edges from𝑄𝑠𝑒𝑒𝑑 that may changes the

turssness from 𝑘 to 𝑘 + 1, and𝑄𝑘 keeps the visited 𝑘-truss edges that cannot become a (𝑘 + 1)-truss
edge. Specifically, we consider to update the 𝑘-class edges for a particular 𝑘 . We first identify all

seed edges in B𝑏𝑑 violating Lemma 4 as 𝑄𝑠𝑒𝑒𝑑 . We handle the edges in 𝑄𝑠𝑒𝑒𝑑 in increasing order of

old layer numbers L(𝑒). Assume that the minimum L(𝑒) in 𝑄𝑠𝑒𝑒𝑑 is 𝑙 . The process of handling an

edge 𝑒 ∈ 𝑄𝑠𝑒𝑒𝑑 with 𝑙 = L(𝑒) is as follows. We first set L ′(𝑒) = +∞ and update its neighbor edges’

SeSup; Next, we will put its neighbor edges 𝑒𝑏 having L(𝑒𝑏) > 𝑙 and SeSup(𝑒𝑏) > 𝑘 − 2 into 𝑄𝑠𝑒𝑒𝑑
and also the edges 𝑒 whose L(𝑒) = 𝑙 into 𝑄𝑘 ; Then, the handled edge 𝑒 is pushed into 𝑄𝑘+1. Before
we handle edges in 𝑄𝑠𝑒𝑒𝑑 , we first remove edges 𝑒 whose L(𝑒) < 𝑙 in 𝑄𝑘 , which will affect SeSup
for edges in 𝑄𝑠𝑒𝑒𝑑 and 𝑄𝑘+1. For those affected edges 𝑒 , if they meet Lemma 4 again, we update

their L ′(𝑒) = 𝑙 and they finish updating and are removed from 𝑄𝑠𝑒𝑒𝑑 or 𝑄𝑘+1. If we remove all

edges in 𝑄𝑠𝑒𝑒𝑑 and there is no edge in 𝑄𝑘 , all edges 𝑒 ∈ 𝑄𝑘+1 should increase their trussness 𝜏 (𝑒)
by one. After adjusting onion layer numbers L in the new (𝑘 + 1)-class, the algorithm terminates.

Algorithm 5 outlines the details of onion layer based trussness refinement. First, it creates three

empty edge sets 𝑄𝑠𝑒𝑒𝑑 , 𝑄𝑘+1, 𝑄𝑘 in line 2. The edges not meeting Lemma 4 are pushed into 𝑄𝑠𝑒𝑒𝑑
(line 6, 23). Edges handled (checking all neighbors, lines 17-27) are pushed into 𝑄𝑘+1 (line 27).

Adjacent edges that are in current layer 𝑙 are pushed into 𝑄𝑘 (line 25). Before handling edges in

𝑄𝑠𝑒𝑒𝑑 , the edges 𝑒 with L(𝑒) < 𝑙 are removed from𝑄𝑘 (line 9), which further affect 𝑆𝑒𝑆𝑢𝑝 for edges

in𝑄𝑠𝑒𝑒𝑑 and𝑄𝑘+1. Finally, after removing all edges in𝑄𝑠𝑒𝑒𝑑 and𝑄𝑘 , edges remained in𝑄𝑘+1 should
increase their 𝜏 (line 31). We also need to adjust onion layers in (𝑘 + 1)-truss accordingly, which
only runs once as the trussness only increase by at most by one for a star insertion (line 32).

Example 3. The onion layer of the 3-class is shown in Fig. 2(a)(c). After inserting 𝑒0 = (𝑢, 𝑣), we
get a degenerate B that B𝑖𝑛 = {𝑒0}, B𝑏𝑑 = {(𝑢, 𝑝), 𝑒3, 𝑒1, (𝑤, 𝑣)}. Since it is a degenerate B and we
can directly get 𝜏 (𝑒0) = 3, L(𝑒0) = 2, SeSup(𝑒0) = 1 by counting its neighbors. Next, we update
SeSup for edges in B𝑏𝑑 and we get SeSup′(𝑒1) = 2. Since SeSup′(𝑒1) = 2 > 𝑘 − 2 = 3 − 2 = 1, we
get 𝑆𝑒𝑒𝑑 = {𝑒1}. In the maintenance process (Algorithm 5), we first put 𝑒1 into 𝑄𝑠𝑒𝑒𝑑 (line 6). Then
𝑒1 is popped out from 𝑄𝑠𝑒𝑒𝑑 (line 17) and we set L ′(𝑒1) = +∞. The increase of L ′(𝑒1) will increase
SeSup(𝑒0) and SeSup(𝑒2) (line 21). Again, SeSup′(𝑒0) = 2 = SeSup′(𝑒2) > 𝑘 − 2, these two edges are
put into𝑄𝑠𝑒𝑒𝑑 (line 23). After visiting all neighbors of 𝑒1, it is put into𝑄𝑘+1 (line 27). In the next round,
𝑒0 is popped out from 𝑄𝑠𝑒𝑒𝑑 and after visiting all its neighbors, the states change to the following:
𝑄𝑠𝑒𝑒𝑑 = {𝑒2, 𝑒3},𝑄𝑘+1 = {𝑒1, 𝑒0}, SeSup′(𝑒3) = 2. Since L(𝑒2) = 2 < L(𝑒3) = 3, 𝑒2 is popped out from
𝑄𝑠𝑒𝑒𝑑 , and the states change to the following: 𝑄𝑠𝑒𝑒𝑑 = {𝑒3}, 𝑄𝑘+1 = {𝑒1, 𝑒0, 𝑒2}, SeSup′(𝑒3) = 3. After
handling 𝑒3, the states change to the following: 𝑄𝑠𝑒𝑒𝑑 = {}, 𝑄𝑘+1 = {𝑒1, 𝑒0, 𝑒2, 𝑒3}, 𝑄𝑘 = {𝑒11}. Then
𝑄𝑠𝑒𝑒𝑑 becomes empty, so we end the BFS process. After removing 𝑒11 in 𝑄𝑘 , SeSup′(𝑒3) changes from

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:14 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

Algorithm 6 Compute Lower Bounds and Onion Layers/Supports

Input: AffBall B for an inserted star motif 𝑆𝑐 , trussness 𝜏 (𝑒), L(𝑒) and 𝑆𝑒𝑆𝑢𝑝 (𝑒) for 𝑒 ∈ B;
Output: Estimated 𝑙𝑜𝑤𝐵(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for 𝑒 ∈ B𝑖𝑛 ;
1: Calculate the support supB (𝑒) in AffBall B for edge 𝑒 ∈ B𝑖𝑛 ;
2: Initialize 𝑙 ← 1, 𝑘 ← 2, an empty queue 𝑄 ← ∅;
3: while B𝑖𝑛 ≠ ∅ or 𝑄 ≠ ∅ do
4: for all (𝑐, 𝑣) ∈ B𝑖𝑛 with supB ((𝑐, 𝑣)) ≤ 𝑘 − 2 do
5: Assign 𝑙𝑜𝑤𝐵((𝑐, 𝑣)) ← 𝑘 , L ′((𝑐, 𝑣)) ← 𝑙 , 𝑆𝑒𝑆𝑢𝑝 ′((𝑐, 𝑣)) ← supB ((𝑐, 𝑣)); 𝑄 ← 𝑄 ∪ {𝑣};
6: if 𝑄 = ∅ then
7: for all (𝑣,𝑤) ∈ B𝑏𝑑 , 𝜏 ((𝑣,𝑤)) ≤ 𝑘 − 2, L((𝑣,𝑤)) ≤ 𝑙 do
8: Remove edge (𝑣,𝑤) from B;
9: Decrease supB ((𝑐, 𝑣)) and supB ((𝑐,𝑤)) by one;

10: if supB ((𝑐, 𝑣)) ≤ 𝑘 − 2 then 𝑄 ← 𝑄 ∪ {𝑣}, update 𝑙𝑜𝑤𝐵, L ′, 𝑆𝑒𝑆𝑢𝑝 ′ as line 5;
11: if supB ((𝑐,𝑤)) ≤ 𝑘 − 2 then 𝑄 ← 𝑄 ∪ {𝑤}, update 𝑙𝑜𝑤𝐵, L ′, 𝑆𝑒𝑆𝑢𝑝 ′ as line 5;
12: Increase 𝑙 by one;

13: if 𝑄 = ∅ and ∀(𝑣,𝑤) ∈ B𝑏𝑑 , 𝜏 ((𝑣,𝑤)) > 𝑘 − 2 then
14: Assign 𝑘 ← 𝑘 + 1, 𝑙 ← 1;

15: while 𝑄 ≠ ∅ do
16: if ∃𝑣 ∈ 𝑄 , L ′((𝑐, 𝑣)) ≤ 𝑙 then
17: 𝑄 ← 𝑄 \ {𝑣}, B𝑖𝑛 ← B𝑖𝑛 \ {(𝑐, 𝑣)};
18: for all (𝑣,𝑤) ∈ B𝑏𝑑 do
19: Remove (𝑣,𝑤) and update supB , 𝑄 , B𝑖𝑛 as lines 9-11;
20: else if ∃(𝑣,𝑤) ∈ B𝑏𝑑 , 𝜏 ((𝑣,𝑤)) ≤ 𝑘 − 2, L((𝑣,𝑤)) ≤ 𝑙 then Break;

21: else then Increase 𝑙 by one;

22: return 𝑙𝑜𝑤𝐵(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for 𝑒 ∈ B𝑖𝑛 ;

3 to 2, which is still larger than 𝑘 − 2, so we keep 𝑒3 in 𝑄𝑘+1. Finally, we add these 4 edges into the
4-truss and after updating their L and SeSup in the 4-truss, the algorithm ends.

5.3 Our Complete Star Insertion Approach
We present a complete approach for star insertion using all the above techniques. Recall that our

AffBall based framework in Algorithm 1 has two phases of truss estimation and truss refinement.

For the truss estimation in Algorithm 2, it only computes the lower bounds of 𝑒 ∈ B𝑖𝑛 , but the onion
layers and supports are not computed in B𝑖𝑛 . To dismiss it, we revise Algorithm 2 to Algorithm 6.

Computing lower bounds, onion layers, and onion supports. Algorithm 6 shows how to

compute L and 𝑆𝑒𝑆𝑢𝑝 in AffBall, which combines the technique of Algorithm 2 and Algorithm 4

in one process of local truss decomposition. We have two global variables 𝑘 and 𝑙 and a queue 𝑄

(line 2), where 𝑘 is the current trussness and 𝑙 is the current onion layer and 𝑄 will hold nodes that

are not in (𝑘 + 1)-truss; Similar to truss decomposition, we will peel edges in B𝑖𝑛 as 𝑘 increases

(lines 3-21). For a specific 𝑘 , we will peel edges as 𝑙 increases (lines 15-21). After all edges in B𝑖𝑛
are removed, we get lower bounds of 𝜏 ′, L ′ and 𝑆𝑒𝑆𝑢𝑝 ′ for edges in B𝑖𝑛 (line 5, 17).
Finally, our complete method for star insertion is presented in Algorithm 1, which uses Algo-

rithm 6 (line 1 of Algo. 1) for truss estimation in AffBall and Algorithm 5 (lines 5-6 of Algo. 1) for

truss refinement. Note that Algorithm 5 uses a smaller set of seed candidates instead of the 𝑆𝑒𝑒𝑑 in

Algorithm 3.

Complexity analysis. We analyze the algorithm complexity.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:15

Table 1. A comparison of time complexity and boundedness of different truss maintenance algorithms.

XH [12] NodePP [8] Order [41] Ours

Insertion

Time complexity 𝑂 (∑𝑒+∈𝑆𝑐 𝑓 ( | |𝐻𝑒+ | |1)) 𝑂 (𝑓 ( | |𝐻∗ | |1)) 𝑂 (𝑓 ( | |𝐴𝐹𝐹 ⪯ | |1)) 𝑂 (𝑓 ( | |L_CHG| |1))
Boundedness × × ✓ ✓

Deletion

Time complexity 𝑂 (𝑓 ( | |T_CHG| |1)) - 𝑂 (𝑓 ( | |𝐴𝐹𝐹 ⪯ | |1)) 𝑂 (𝑓 ( | |L_CHG| |1))
Boundedness ✓ - ✓ ✓

Theorem 1. Our star insertion method for truss maintenance in Algorithm 1, equipped with
Algorithm 6 for truss estimation and Algorithm 5 for truss refinement, takes𝑂 ( |N𝐿 | log |N𝐿 | +𝑇△ (N𝐿))
time in𝑂 ( |𝐸 |) space, whereN𝐿 denotes the edge set of the 1-hop neighborhood of L_CHG and𝑇△ (N𝐿))
is the time taken to list triangles containing 𝑒 for all edges 𝑒 ∈ N𝐿 .

Proof. The two main steps of the algorithm are Algorithm 6 and Algorithm 5. First of all, we

prove that Algorithm 5 is bounded by L_CHG. Following [29], the maintenance algorithm on a

graph is bounded if the algorithm will only visit the h-hop neighborhood of edges whose state

variables will be modified after maintenance. Obviously, only state of edges in L_CHG changed

after applying our onion layer maintenance Algorithm 5. So next, we will show that Algorithm 5

will only visit the 1-hop neighborhood of L_CHG. Before handling edge 𝑒 with 𝑙 = L(𝑒) in 𝑄𝑠𝑒𝑒𝑑
in Algorithm 5, edges 𝑒 ′ in 𝑄𝑘 with L(𝑒 ′) < 𝑙 are removed. If 𝑒 is still in 𝑄𝑠𝑒𝑒𝑑 , 𝑒 must increase its

L. Therefore, edges in 𝑄𝑘+1 are in L_CHG, and edges used to be in 𝑄𝑠𝑒𝑒𝑑 and 𝑄𝑘 are in the 1-hop

neighborhood of L_CHG. The maximun size of𝑄𝑠𝑒𝑒𝑑 and𝑄𝑘 isN𝐿 , and for each edge 𝑒 in𝑄𝑠𝑒𝑒𝑑 and

𝑄𝑘 , it takes𝑂 (log |N𝐿 |) to find the minimum L and𝑂 (𝑇△ ({𝑒})) to list triangles containing 𝑒 , so the
time complexity of Algorithm 5 is𝑂 ( |N𝐿 | log |N𝐿 | +𝑇△ (N𝐿)). Secondly, we prove that Algorithm 6

is also bounded by L_CHG. This is because Algorithm 6 will only visit the 1-hop neighborhood of

the center node 𝑐 . Algorithm 6 needs to list triangles containing edges in B𝑖𝑛 and order edges in

B𝑏𝑑 , so it takes𝑂 ( |B𝑏𝑑 | log |B𝑏𝑑 | +𝑇△ (B𝑖𝑛)) = ( |N𝐿 | log |N𝐿 | +𝑇△ (N𝐿)) time. Finally, our algorithm

keeps state variables for all edges in the graph, thus the space complexity is 𝑂 ( |𝐸 |). In conclusion,

the star insertion algorithm is bounded by L_CHG and takes 𝑂 ( |N𝐿 | log |N𝐿 | +𝑇△ (N𝐿)) time in

𝑂 ( |𝐸 |) space. □

5.4 Handle Star Deletions
In this section, we discuss how to extend our star-based insertion techniques to handle star deletions.

For a graph𝐺 (𝑉 , 𝐸) with a star motif 𝑆𝑐 deleted, we maintain the trussnesses of all edges 𝑒 in new

graph𝐺 ′(𝑉 , 𝐸 \ 𝑆𝑐 ) using the following solution. We adopt an AffBall-based insertion framework

in Algorithm 1 to handle a star deletion similarly, which also has two steps of Phase I and Phase
II. Specifically, in Phase I, we first remove 𝑆𝑐 from graph 𝐺 to generate new graph 𝐺 ′. We then

invoke a local truss decomposition similar as Algorithm 6 on AffBall to get the corresponding

lower bounds, onion layers, and onion supports for edges in B𝑖𝑛 . For now, all edges in B𝑖𝑛 ∪ B𝑜𝑢𝑡
satisfy the maintenance rule of Lemma 4. We find the seed candidates of edges in B𝑏𝑑 that violates

Lemma 4, which may have decreased trussnesses in 𝐺 ′. Next, in Phase II, we recalculate the edge

trussnesses in Algorithm 7, which is similar as the insertion one in Algorithm 5. We show the

details of Phase I and Phase II to handle star deletions as follows.

Phase I: AffBall deletion based truss estimation. We still use Algorithm 6 to compute the lower

bounds 𝑙𝑜𝑤𝐵(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for 𝑒 ∈ B𝑖𝑛 . The reason that Algorithm 6 can be applied

to both star insertion and deletion is that we simply use the local truss decomposition to obtain

feasible values of 𝜏 ′(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) such that edges in B𝑖𝑛 satisfy Lemma 4 again.

Phase II: onion layer based truss refinement. Similar with the star insertion case in Lemma 6,

we have the following updating rules for star deletions.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:16 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

Algorithm 7 Onion Layer based Truss Refinement (Deletion)

Input: Graph𝐺 = (𝑉 , 𝐸), a deleted star 𝑆𝑐 , trussness 𝜏 (𝑒), onion layer L(𝑒) and support 𝑆𝑒𝑆𝑢𝑝 (𝑒)
for all edges 𝑒 ∈ 𝐸;

Output: New 𝜏 ′(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for all edges 𝑒 ∈ 𝐸;
1: Find seed edges: 𝑆𝑒𝑒𝑑 ← {𝑒 ∈ B𝑏𝑑 : 𝑒 violates Lemma 4};

2: Initialize empty queues 𝑄𝑠𝑒𝑒𝑑 ← ∅;
3: while 𝑆𝑒𝑒𝑑 ≠ ∅ do
4: Assign 𝑘 ← min{𝜏 (𝑒) |𝑒 ∈ 𝑆𝑒𝑒𝑑};
5: for all 𝑒 ∈ 𝑆𝑒𝑒𝑑 , 𝜏 (𝑒) = 𝑘 do
6: 𝑄𝑠𝑒𝑒𝑑 ← 𝑄𝑠𝑒𝑒𝑑 ∪ {𝑒}, 𝑆𝑒𝑒𝑑 ← 𝑆𝑒𝑒𝑑 \ {𝑒};
7: while 𝑄𝑠𝑒𝑒𝑑 ≠ ∅ do
8: Find (𝑢, 𝑣) in 𝑄𝑠𝑒𝑒𝑑 with the largest 𝑙 = L((𝑢, 𝑣)), 𝑄𝑠𝑒𝑒𝑑 ← 𝑄𝑠𝑒𝑒𝑑 ∪ {(𝑢, 𝑣)};
9: Recalculate 𝜏 ′((𝑢, 𝑣)), L ′((𝑢, 𝑣)) and 𝑆𝑒𝑆𝑢𝑝 ′((𝑢, 𝑣)) according to neighbors;

10: for all𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣) do
11: if (𝑢,𝑤) not satisfying Lemma 4 then
12: 𝑄𝑠𝑒𝑒𝑑 ← 𝑄𝑠𝑒𝑒𝑑 ∪ {(𝑢,𝑤)};
13: Operate edge (𝑣,𝑤) similarly in lines 11-12;

14: return 𝜏 , L and 𝑆𝑒𝑆𝑢𝑝;

Lemma 7. Given an edge 𝑒 , 𝑘 = 𝜏 (𝑒) and 𝑙 = L(𝑒), if new SeSup′
𝑘,𝑙−1 (𝑒) ≤ 𝑘 − 2, new onion layer

numbers L ′(𝑒) < L(𝑒).

Proof. According to Lemma 4, SeSup𝑘,𝑙 (𝑒) ≤ 𝑘−2 and SeSup𝑘,𝑙−1 (𝑒) > 𝑘−2. If new SeSup′
𝑘,𝑙−1 (𝑒) ≤

𝑘 − 2, the edge 𝑒 will be peeled in 𝑙 − 1 layer, so new L ′(𝑒) < L(𝑒). □

Based on Lemma 7, we propose Algorithm 7 for truss refinement. It maintains the onion layers

of all edges in decreasing order of their original onion layers in graph𝐺 ′. Similar to star insertions

in Algorithm 5, we put all edges in 𝑆𝑒𝑒𝑑 into 𝑄𝑠𝑒𝑒𝑑 (line 6), update 𝜏
′
, L ′ and 𝑆𝑒𝑆𝑢𝑝 ′ for edges in

𝑄𝑠𝑒𝑒𝑑 (line 9) and put their neighbors that not satisfy Lemma 4 into 𝑄𝑠𝑒𝑒𝑑 (line 12). The algorithm

stops when all edges in 𝑄𝑠𝑒𝑒𝑑 are removed.

Complexity analysis. We analyze the complexity of star deletions.

Theorem 2. Under our star-based truss maintenance framework in Algorithm 1, the star deletion
method using Algorithm 7 for truss refinement totally takes𝑂 ( |N𝐿 | log |N𝐿 | +𝑇△ (N𝐿)) time in𝑂 ( |𝐸 |)
space.

Proof. Edges in 𝑄𝑠𝑒𝑒𝑑 are all not satisfying Lemma 4, so they will change L and are in L_CHG.
For each edge in 𝑄𝑠𝑒𝑒𝑑 , we will check all its neighbors, which are in the 1-hop neighborhood of

L_CHG. And we need to order edges in 𝑄𝑠𝑒𝑒𝑑 according to their L and list triangles containing

edges in 𝑄𝑠𝑒𝑒𝑑 . So the total time complexity is 𝑂 ( |N𝐿 | log |N𝐿 | + 𝑇△ (N𝐿)). Again, we keep state

variables for all edges in the graph, so the space complexity is 𝑂 ( |𝐸 |). Therefore, Algorithm 7 is

also bounded by L_CHG. □

5.5 Complexity Analysis and Comparison
In this section, we analyze different truss maintenance algorithms XH [12], NodePP [8], Order [41],
and also our approach for star insertions/deletions, in terms of time complexity and boundedness,

as shown in Table 1. We adopt a comparison approach of complexity and boundedness for graph

incremental algorithms following [29, 41]. We use the notation 𝑓 to represent some polynomial

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:17

a
b c d

h if g

B

B

1

2

Fig. 4. An example of inserting two disjoint star motifs 𝑆𝑓 and 𝑆𝑑 with 6 new edges.

functions and | |𝐻 | |1 to represent the size of 1-hop neighborhood of a given edge set 𝐻 , i.e., | |𝐻 | |1 =
|{(𝑢,𝑤) ∈ 𝐸 |∀(𝑢, 𝑣) ∈ 𝐻,𝑤 ∈ 𝑁 (𝑢)}|.
We first consider the case of star insertion 𝑆𝑐 . We analyze all algorithms as follows.

• We analyze XH [12]. Following [41], for a single-edge insertion 𝑒+ = (𝑢, 𝑣), we infer the

insertion time complexity of XH [12] is 𝑂 (𝑓 ( | |𝐻𝑒+ | |1)), where 𝐻𝑒+ = {𝑒+} ∪ ⋃𝐾𝑋𝐻

𝑘=2
𝑇𝑘 , 𝑇𝑘

is the set of 𝑘-class edges connected with 𝑒+, and the local maximum trussness 𝐾𝑋𝐻 =

max{min{𝜏 ((𝑢,𝑤)), 𝜏 ((𝑣,𝑤))}|𝑤 ∈ 𝑁 (𝑢) ∩ 𝑁 (𝑣)}. To perform a star insertion, it needs to

apply XH [12] multiple times to insert new edges 𝑒+ ∈ 𝑆𝑐 one by one, leading to a total time

complexity of 𝑂 (∑𝑒+∈𝑆𝑐 𝑓 ( | |𝐻𝑒+ | |1)).
• Next, we analyze NodePP [8]. It has two steps, first removing all incident edges to node 𝑐 and

then inserting these edges and 𝑆𝑐 back to the new graph 𝐺 ′(𝑉 ′, 𝐸 ′), which invokes similar

maintenance techniques with [12]. Thus, the edge set 𝐻𝑝𝑝 = {(𝑢, 𝑣) ∈ 𝐸 ′ |𝑢, 𝑣 ∈ 𝑁 ′(𝑐) ∪ {𝑐}}
and the local maximum trussness 𝐾𝑃𝑃 = max{𝜏 (𝑒) |𝑒 ∈ 𝐻𝑝𝑝 }. The candidate edges are 𝐻 ∗ =
𝐻𝑝𝑝 ∪

⋃𝐾𝑃𝑃

𝑘=2
𝑇𝑘 , where 𝑇𝑘 is the set of 𝑘-class edges connected with edges in 𝐻𝑝𝑝 . As a result,

the time complexity of NodePP [8] is 𝑂 (𝑓 ( | |𝐻 ∗ | |1)).
• Then, we analyze Order [41]. It utilizes the truss decomposition order ⪯ to maintain trussness.

After maintenance, it returns new trussnesses, as well as a new order ⪯′ of edges. Consequently,
the number of affected edges is |𝐴𝐹𝐹 ⪯ | [41], where 𝐴𝐹𝐹 ⪯ = T_CHG ∪ {𝑒 ∈ 𝐸 |∃𝑒 ′ ∈ 𝐸 \
𝐴𝐹𝐹 ⪯, 𝑒 ⪯ 𝑒 ′, 𝑒 ′ ⪯′ 𝑒}. The star insertion time complexity of Order is 𝑂 (𝑓 ( | |𝐴𝐹𝐹 ⪯ | |1)) [41].
• According to Theorem 1, our insertion time complexity is𝑂 (𝑓 ( | |L_CHG| |1)), where L_CHG =

T_CHG ∪ {𝑒 ∈ 𝐸 |L(𝑒) ≠ L ′(𝑒)}.
In summary, both our method and Order [41] are bounded, with regard to 𝑓 ( | |L_CHG| |1) and

𝑓 ( | |𝐴𝐹𝐹 ⪯ | |1), respectively. However, XH [12] andNodePP [8] are unbounded [41], where 𝑓 ( | |𝐻𝑒+ | |1)
and 𝑓 ( | |𝐻 ∗ | |1) can be extremely large. Moreover, 𝑓 ( | |L_CHG| |1) is much less than

∑
𝑒+∈𝑆𝑐 𝑓 ( | |𝐻𝑒+ | |1)

and 𝑓 ( | |𝐻 ∗ | |1), and also smaller than 𝑓 ( | |𝐴𝐹𝐹 ⪯ | |1) in practice as validated by our efficiency experi-

ments. Thus, our algorithm for star insertions are more efficient than other competitors.

Next, we consider the case of star deletion 𝑆𝑐 . All three algorithms XH [12], Order [41], and our

method are bounded with regard to 𝑓 ( | |T_CHG| |1), 𝑓 ( | |𝐴𝐹𝐹 ⪯ | |1) and 𝑓 ( | |L_CHG| |1), respectively.
They are all competitively efficient, but Order [41] and our method take additional efforts to

maintain peeling order and onion layers, respectively.

6 HANDEL GENERAL UPDATES
In this section, we discuss how to handle general graph updates where inserted/deleted edges

may randomly appear anywhere in the graph. We focus on the insertion case here, and the deletion

case can be similarly handled. For general graph insertions, we can convert inserted edges into

multiple star motifs. A straightforward way to handle multiple star insertions is to insert them one

by one using our developed algorithms. But this method may repeatedly check some edges, which

results in redundancy. Thus, in this section, we propose a more efficient method to handle multiple

star motifs S = {𝑆𝑐1 , · · · , 𝑆𝑐ℎ } for an integer ℎ ≥ 1.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:18 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

Algorithm 8 Handle Multiple Star Insertions

Input: Graph 𝐺 = (𝑉 , 𝐸), trussness 𝜏 (𝑒), onion layer L(𝑒) and 𝑆𝑒𝑆𝑢𝑝 (𝑒) for 𝑒 ∈ 𝐸, multiple

inserted stars S = {𝑆𝑐1 , · · · , 𝑆𝑐ℎ } for ℎ ≥ 1;

Output: New 𝜏 ′(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for all edges 𝑒;
1: while S ≠ ∅ do
2: B = GreedySplitStars(𝐺, S);
3: Initialize empty set 𝑆𝑒𝑒𝑑 ← ∅;
4: for all B ∈ B do
5: Local trussness decomposition of B by Algorithm 6;

6: Temporarily set 𝜏 ′(𝑒) ← 𝑙𝑜𝑤𝐵(𝑒) for 𝑒 ∈ B𝑖𝑛 ;
7: Add edges not satisfying Lemma 4 in B𝑏𝑑 to 𝑆𝑒𝑒𝑑 ;

8: Update trussness 𝜏 ′(𝑒) by Algorithm 5 starting from 𝑆𝑒𝑒𝑑 ;

9: return 𝜏 ′(𝑒), L ′(𝑒) and 𝑆𝑒𝑆𝑢𝑝 ′(𝑒) for all edges 𝑒;
Procedure GreedySplitStars (G = (V, E), S)

10: Initialize empty set B← ∅, 𝐸 ← 𝐸;

11: for all 𝑆𝑐𝑖 ∈ S, in descending order of size |𝑆𝑐𝑖 | do
12: Get B according to 𝑆𝑐𝑖 ;

13: if B ∩ B𝑗 = ∅, ∀B𝑗 ∈ B then
14: B← B ∪{B}; S← S \ {𝑆𝑐𝑖 }; 𝐸 ← 𝐸 ∪𝑆𝑐𝑖 ;
15: return B;

Recall that in Phase II of our proposed algorithm, we only need to maintain trussnesses and

onion layers by checking the edges in B𝑏𝑑 since the other edges satisfy the 𝑘-truss constraint. As

there are ℎ AffBalls B1, · · · ,Bℎ for ℎ inserted stars in S, we can treat them as one AffBall B, where
B𝑖𝑛 = ∪(B𝑖 )𝑖𝑛 and B𝑏𝑑 = ∪(B𝑖 )𝑏𝑑 . In the other words, we can conduct local truss decomposition

for each AffBall B𝑖 where 1 ≤ 𝑖 ≤ ℎ, and then maintain trussnesses and onion layers for the whole

graph only once. According to the property of B𝑏𝑑 , the edges in B𝑏𝑑 satisfy that the change of

its trussness is no more than one. However, if we insert several star motifs at the same time, the

change of trussnesses of the edges in B𝑏𝑑 may be more than one. It is because edges in the B𝑏𝑑 may

be included in more than one new triangle. Therefore, to ensure that the trussnesses of the edges

in B𝑏𝑑 do not change by more than one, the star motifs should be divided into different batches,

where star motifs are pairwise disjoint in each batch, i.e., ∩B𝑖 = ∅. In other words, two stars 𝑆𝑐𝑖 and

𝑆𝑐 𝑗 are pairwise disjoint if and only if they have no common edge in the AffBall regions of 𝑆𝑐𝑖 and
𝑆𝑐 𝑗 . Each time, we insert one batch of star motifs into the graph and then maintain trussnesses and

onion layers.

Handle multiple star insertions. Algorithm 8 shows how to maintain trussness 𝜏 and onion

layer L when multiple star motifs S are inserted into the graph 𝐺 . As different star motifs may

overlap, we first employ a greedy algorithm 𝐺𝑟𝑒𝑒𝑑𝑦𝑆𝑝𝑙𝑖𝑡𝑆𝑡𝑎𝑟𝑠 to find pairwise disjoint star motifs

B (line 2). Specifically, we always choose an unvisited star motif 𝑆𝑖 of the largest size (line 11) and

find the corresponding B. If B does not overlap with other B𝑗 ∈ B, we add it to B. We repeat this

process until all star motifs have been visited. Then, for each B ∈ B (line 4), we use Algorithm 6

to adjust trussness 𝜏 and onion layer L of edges in B𝑖𝑛 . Then, we get the precise trussness 𝜏 and
onion layer L of the whole graph by employing Algorithm 5 (line 8). Algorithm 8 terminates until

all star motifs are inserted.

Example 4. Figure 4 shows an example of inserting two disjoint star motifs into the graph. (B1)𝑖𝑛
contains three new edges (𝑎, 𝑓 ), (𝑏, 𝑓 ) and (𝑓 , 𝑔). (B1)𝑏𝑑 = {(𝑎, 𝑏), (𝑏,𝑔)}. (B2)𝑖𝑛 contains three new

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:19

Table 2. Network statistics
Network |𝑽 | |𝑬 | 𝒅𝒎𝒂𝒙 𝒌𝒎𝒂𝒙

Deezer 41,773 125,826 112 7

Amazon 334,863 925,872 549 7

DBLP 684,911 2,284,991 611 115

Skitter 1,696,414 11,095,298 35,455 68

Patents 6,009,554 16,518,947 793 36

Pokec 1,632,803 22,301,964 14,854 29

LJ 4,847,571 42,851,237 20,333 352

Orkut 3,072,441 117,185,083 33,313 73

Wise 58,655,849 261,321,033 278,489 80

edges (𝑐, 𝑑), (𝑑,ℎ) and (𝑑, 𝑖). (B2)𝑏𝑑 = {(𝑐, ℎ), (ℎ, 𝑖)}. Since B1 and B2 are disjoint, we conduct the
local truss decomposition on B1 and B2, respectively, and then maintain the trussnesses of edges outside
B.

7 EXPERIMENTS
In this section, we conduct experiments to evaluate our proposed algorithms. The experiments

are conducted on a Linux Server with Xeon E5-2630 v4 (2.2 GHz) and 256GB main memory. All

algorithms are implemented in C++.
1

Datasets. We employ nine real-world networks in experiments. Specifically, Deezer is friendship
networks of streaming music service users from 3 European countries. DBLP is a collaboration

network [1]. Amazon is an Amazon product network. Skitter is an internet topology network.

Patents is a U.S. citation network, which includes all citations of patents granted between 1975 and

1999. Pokec, LJ (LiveJournal) and Orkut are online social networks. Wise is a large micro-blogging

graph [2]. Except DBLP and Wise, all other networks are downloaded from SNAP [18]. Table 2

summarizes the statistics of all networks.

Competitors. We evaluate four algorithms in experiments.

• Star: is our truss maintenance algorithm for star insertions and deletions.

Star incorporates two phases of techniques: Phase I is to preprocess AffBall for trussness
estimation in Section 4; and Phase II is to use onion layer based method to refine all edges’

trussnesses in Section 5. Star handles general updates in Section 6.

• XH [12]: is the trussness maintenance algorithm for single-edge insertion/deletion. For multiple

edge insertions/deletions, we insert/delete edges one by one.

• NodePP [8]: is a 𝑘-truss discovery algorithm for public-private graphs. Note that NodePP is

extened to only support edge insertions in experiments.

• Order [41]: is an order-based truss maintenance algorithm, which is the state-of-the-art truss

maintenance algorithm to handle edge insertions/deletions in batch.

It is worth mentioning that [25] splits the inserted subgraph into unrelated edges and inserts them

in several batches, which degenerates into single-edge insertion like XH [12]. Thus, we omit the

method of [25] in our experiments. By default, we generate 100 star motifs for insertions/deletions

on each network. For each star motif, we randomly choose a center node 𝑐 ∈ 𝑉 and select its

neighbors with a probability of 0.5 to form the star motif. We delete a star motif from the network

to test the truss maintenance time for edge deletions, and then insert the star motif back to test the

truss maintenance time for edge insertions. We repeat each experiment 100 times and report the

average results.

1
https://github.com/jinrdfh/TrussMaintenance

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.

https://github.com/jinrdfh/TrussMaintenance


133:20 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

Table 3. Efficiency and indexing evaluation of all truss maintenance algorithms. The best results are in bold.

Star Insertions (ms) Star Deletions (ms)
Networks XH NodePP Order Star XH Order Star

Deezer 0.814 4.88 1.17 0.026 0.278 0.006 0.026

Amazon 6.00 38.2 8.49 0.038 1.70 0.013 0.049

DBLP 10.9 271 25.2 0.048 10.0 0.05 0.05
Skitter 3490 31900 110 1.13 34.7 0.84 0.096
Patents 84.9 430 130 0.13 15.2 0.26 0.076
Pokec 1.27 × 104 3.17 × 105 180 0.43 25.9 0.96 0.21

LJ 2.65 × 104 2.07 × 105 310 0.51 34.8 0.43 0.51

Orkut 4850 9.97 × 105 200 6.35 72.8 1.00 3.56

Wise 1.34 × 106 1.43 × 107 2050 0.49 330 0.10 0.027

Index Size (MB) Indexing Time (seconds)
Networks XH NodePP Order Star XH NodePP Order Star

Deezer 1.7 1.7 2.5 2.5 0.07 0.07 0.07 0.07
Amazon 14 14 18 18 0.97 0.97 0.69 1.05

DBLP 34 34 44 44 2.64 2.64 1.93 2.50

Skitter 165 165 212 212 58 58 56 53
Patents 284 284 316 316 20 20 16 21

Pokec 338 338 426 426 45 45 42 46

LJ 551 551 662 662 81 81 74 76

Orkut 1165 1165 1387 1387 314 314 323 311
Wise 4931 4931 4985 4985 2820 2820 2369 2460

Exp-I: Efficiency evaluation. We first evaluate the efficiency of our proposed algorithm and

competitors through inserting/deleting star motifs. Table 3 reports the empirical results, including

truss maintenance time for edge insertions/deletions, index size, and indexing time. We have the

following observations.

For star insertions, Star achieves the best performance over all networks; Order is worse than
Star;NodePP has the worst performance. It is because (1) for Star, the technique ofAffBall efficiently

handles edgeswhose trussnesses changemore than one and the technique of onion layer successfully

reduces the number of candidate edges; (2) Order needs to maintain the peeling order in truss

decomposition ; (3) NodePP first deletes the center node and then inserts it back, which incurs a

huge amount of calculations. Overall, Star is orders of magnitude faster than the state-of-the-art

algorithmOrder on all networks. In particular, Star can achieve about 4, 000x speedup on the largest

dataset Wise. For the star deletion, Star performs best on some datasets, e.g., Skitter, Patents, and
Wise, and Order performs best on other datasets. It is because, for Order and Star, the trussness
maintenance problem for edge deletions is bounded by 𝐴𝐹𝐹 ⪯ and L_CHG, respectively. L_CHG
could be bigger or smaller than𝐴𝐹𝐹 ⪯ . Thus, Star and Order perform best on different networks. On

the whole, comparing the star insertion with the star deletion in Table 3, we can observe that edge

insertions run far more slower than edge deletions for Order. However, Star not only improves

edge insertions significantly, but also has comparable performance for edge deletions compared

with Order, demonstrating the efficiency of Star.
For the index of all algorithms, XH and NodePP have the same index size and indexing time

since they both store the trussnesses of all edges, which can be computed by truss decomposition.

Moreover, Star andOrder have the similar index sizes, which are larger than that of XH andNodePP.
The reason behind is that, except the trussnesses of all edges, Star stores onion layers and SeSup

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:21

10-3

10-2

10-1

100

101

102

Deezer

Am
azon

DBLP

Skitter

Patents

Pokec

LJ Orkut

W
ise

T
i
m
e
 
(
m
s
)

Phase I
Phase II

Fig. 5. Evaluation of two phases of Star

Table 4. The evaluation of the number of examined edges for Star

Deezer Amazon DBLP Skitter Patents Pokec LJ Orkut Wise
|𝐸 | 1.3 × 105 9.3 × 105 2.3 × 106 1.1 × 107 1.7 × 107 2.2 × 107 4.2 × 107 1.2 × 108 2.6 × 108
|B𝑖𝑛 | 32.01 33.44 25.39 481.71 19.14 139.65 110.88 138.87 1562.08

|L_CHG| 34.42 56.0 81.99 2997.35 13.42 309.85 888.8 848.54 3093.87

|T_CHG| 19.74 37.14 71.01 903.54 5.64 92.72 296.53 298.82 1015.83

10-1

1

101

102

101 102 103

T
i
m
e
 
(
m
s
)

Size of star motif

(a) Deezer

10-1

1

101

102

101 102 103

T
i
m
e
 
(
m
s
)

Size of star motif

(b) Amazon

10-1

101

103

105

101 102 103 104 105

T
i
m
e
 
(
m
s
)

Size of star motif

(c) Orkut

10-1

101

103

105

101 102 103 104 105

T
i
m
e
 
(
m
s
)

Size of star motif

XH
NodePP
Order
Star

(d) Wise

Fig. 6. The effect of star motif size (Insertion)

for all edges, and Order stores supports for all edges. Therefore, Star and Order have larger indexes.
As all these auxiliary structure information can be obtained from truss decomposition, the four

algorithms have similar indexing times.

Exp-II: Evaluation of two phases of Star. This experiment tests the efficiency of two phases of

Star. Fig. 5 shows the empirical results over all networks. We can observe that Phase I takes more

time than Phase II over all datasets except LJ. Specifically, Phase I employs local truss decomposition

to get the lower bound trussnesses of edges in AffBall, which recalculates trussnesses in AffBall.
Phase II uses onion layers to maintain trussnesses of edges. In most networks, the number of edges

with changed onion layers is small. Thus, Phase II takes less time than Phase I. For LJ, onion layers

change a lot, leading to more maintenance time of Phase II.

Exp-III: Evaluation of the number of examined edges in Star. We explore the number of

examined edges during the truss maintenance by Star. Table 4 shows the results. Note that the
four parameters |𝐸 |, |B𝑖𝑛 |, |L_CHG|, and |T_CHG| denote the number of edges in graph 𝐺 , |B𝑖𝑛 |,
changed onion layers, and changed trussnesses, respectively. B𝑖𝑛 and L_CHG are related to the

Phase I and Phase II of Star, respectively. We can observe that both |B𝑖𝑛 | and |L_CHG| are much

smaller than |𝐸 |, ensuring the efficiency of Star.

Exp-IV: The effect of star motif size. In this experiment, we study the effect of star motif size

on algorithms. To this end, we vary the star motif size from 10 to 1000 for two small datasets Deezer

and Amazon. For two large datasets Orkut and Wise, the star motif size varies from 10 to 100, 000,

which is larger than the maximum degree in Orkut. The maintenance time of star insertions is

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:22 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

10-3

10-1

101

103

Deezer

Am
azon

DBLP

Skitter

Patents

Pokec

LJ Orkut

W
ise

T
i
m
e
 
(
m
s
)

XH
Order
Star

(a) Single-edge insertion

10-3

10-2

10-1

100

Deezer

Am
azon

DBLP

Skitter

Patents

Pokec

LJ Orkut

W
ise

T
i
m
e
 
(
m
s
)

XH
Order
Star

(b) Single-edge deletion

Fig. 7. Evaluation of single-edge insertion/deletion

shown in Fig. 6. We can observe that except NodePP in Fig. 6, the running times of all algorithms

increase with the growth of the inserted star motif size. It is because the larger the inserted star

motif, the more edges are affected, resulting in more maintenance time. In addition, when the

size of the inserted star motif increases, the performance of Star deteriorates faster than other

algorithms. It is because the Phase I of Star conducts local truss decomposition on AffBall, whose
running time is relevant to the size of inserted stars. When the size of inserted stars increases, more

edges outside AffBall change their trussnesses, which increases the running time of Phase II of

Star. Nevertheless, Star still has the best performance over all datasets.

Exp-V: Evaluation of single-edge insertion/deletion. This experiment evaluates the efficiency

of Star by inserting/deleting a single edge into/from the network. In the experiment, we randomly

choose an edge to delete from the graph and then insert it back. We totally choose 100 different

edges and report the average time, which is shown in Fig. 7. For the single-edge insertion, as shown

in Fig. 7(a), Star outperforms Order on the networks of Skitter, Patents, Pokec, LJ, andWise. On
the other four networks, Order has better performance. This is because, for a single edge, Star does
not need to conduct local truss decomposition (i.e., Phase I), and only employs the onion layer

technique of Phase II for truss maintenance. Thus, for some networks such as Amazon and DBLP,
the efficiency of Star is not as good as the case of star insertions, which is the goal of this paper.

Nevertheless, the performance of Star is still similar to that of Order for the single-edge insertion.
In Fig. 7(b) of the single-edge deletion, three algorithms have similar performance of maintenance

time, as all these three algorithms are bounded.

Exp-VI: The efficiency evaluation of handling multiple star insertions. In this experiment,

we test the efficiency of our Star algorithm to handle general updates for multiple overlapping star

insertions. We vary the number of star motifs from 10 to 100 and keep an overlapping rate of star

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



Efficient Star-based Truss Maintenance on Dynamic Graphs 133:23

0

10

20

30

40

10 20 30 40 50 60 70 80 90 100

T
i
m
e
 
(
m
s
)

The number of inserted star motifs

Star
Order

Fig. 8. The efficiency of handling multiple overlapping star motifs on DBLP

10-2

10-1

100

101

20� 40� 60� 80� 100�

T
i
m
e
 
(
m
s
)

Varying |E|

Insertion
Deletion

(a) Orkut

10-2

10-1

100

101

20� 40� 60� 80� 100�

T
i
m
e
 
(
m
s
)

Varying |E|

Insertion
Deletion

(b) Wise

Fig. 9. Scalability evaluation

insertions as 30%. Fig. 8 shows the maintenance time of Star and Order on the network DBLP. It is
obvious that when the number of inserted star motifs increases, the performance of both Star and
Order deteriorates. The reason behind is that the more star motifs are inserted, the more edges are

affected, leading to more maintenance time. Although our algorithm Star needs to insert pairwise

disjoint star motifs in multiple batches, it runs substantially faster than the existing method Order.

Exp-VII: Scalability evaluation.We vary the graph size by randomly selecting 20%, 40%, 60%, 80%,

and 100% edges from the graph and evaluate the scalability of Star. Fig. 9 reports the maintenance

time for the networks Orkut and Wise. As expected, when the graph size increases, both star

insertions and deletions take more time. It is because the larger the graph, the more edges are

examined by Star, resulting in longer maintenance time.

Exp-VIII: Case study on a patent citation network. We conduct a case study for truss mainte-

nance algorithms on graph Patents. Specifically, Patents is the U.S. patents citation graph, which

are granted from 1975 to 1999. Each patent has a timestamp representing the publication time.

Patents contains about 1900 different timestamps. In experiments, we use graph induced by the

patent of first 1800 timestamps (i.e., from 1975 to 1997) as original graph𝐺 and insert the patents

of the next 100 timestamps (i.e., from 1997 to 1999) into 𝐺 . Thus, we perform 100 rounds of edge

insertions in total. In each round, we have 2, 524 star insertions with 27, 211 edges on average,

which has an overlapping rate of 11%. Fig. 10 shows the maintenance time of Star, Order, and XH.
We can observe that Star consistently outperforms Order and XH for all timestamps, demonstrating

the efficiency of our star-based trussness maintenance algorithms to handle real general updates.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.



133:24 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

101

102

103

104

0 10 20 30 40 50 60 70 80 90 100

T
i
m
e
 
(
m
s
)

Timestamp

Star
Order
XH

Fig. 10. Case study on Patents citation network

8 CONCLUSION
This paper studies the problem of truss maintenance on dynamic graphs where edges with a

common node are inserted into or removed from the graph. We propose an AffBall-based truss

maintenance framework for star insertions/deletions. It makes use of two techniques: AffBall-based
local truss estimation and onion layers based truss refinement, which are efficient and bounded by

the number of affected edges with onion layer changed. Our proposed techniques can be applied to

handle general graph updates. Experiments demonstrate our star-based solutions run orders of

magnitude faster than state-of-the-art algorithms in handling star insertions on large datasets. This

work opens up several interesting questions, e.g., how to maintain trusses on timestamped edges

in temporal graphs where the edges are updated with different timestamps.

ACKNOWLEDGMENTS
The work is supported by Hong Kong RGC Grant Nos. 22200320, 12200021, C2004-21GF, 12201520,

and GDNSF 2019B1515130001. Dr Simon Wang has helped improve the linguistic presentation of

this manuscript. Xin Huang is the corresponding author.

REFERENCES
[1] http://dblp.uni-trier.de.

[2] http://www.wise2012.cs.ucy.ac.cy/challenge.html.

[3] Y. Che, Z. Lai, S. Sun, Y. Wang, and Q. Luo. 2020. Accelerating Truss Decomposition on Heterogeneous Processors.

PVLDB 13, 10 (2020), 1751–1764.

[4] Chen Chen, Mengqi Zhang, Renjie Sun, XiaoyangWang,Weijie Zhu, and XunWang. 2022. Locating pivotal connections:

the K-Truss minimization and maximization problems. WWW (2022), 899–926.

[5] Lu Chen, Chengfei Liu, Rui Zhou, Jianxin Li, Xiaochun Yang, and Bin Wang. 2018. Maximum Co-located Community

Search in Large Scale Social Networks. Proc. VLDB Endow. 11, 10 (2018), 1233–1246.
[6] Pei-Ling Chen, C.K. Chou, andMing-Syan Chen. 2014. Distributed algorithms for k-truss decomposition. In International

Conference on Big Data. 471–480.
[7] J. Cohen. 2008. Trusses: Cohesive Subgraphs for Social Network Analysis. Technical Report. National Security Agency.

[8] Soroush Ebadian and Xin Huang. 2019. Fast algorithm for K-truss discovery on public-private graphs. In IJCAI.
2258–2264.

[9] Fatemeh Esfahani, Mahsa Daneshmand, Venkatesh Srinivasan, Alex Thomo, and Kui Wu. 2021. Truss Decomposition

on Large Probabilistic Networks using H-Index. In SSDBM. 145–156.

[10] Fatemeh Esfahani, Jian Wu, V. Srinivasan, A. Thomo, and K. Wu. 2019. Fast Truss Decomposition in Large-scale

Probabilistic Graphs. In EDBT. 722–725.
[11] Hongxuan Huang, Qingyuan Linghu, Fan Zhang, Dian Ouyang, and Shiyu Yang. 2021. Truss Decomposition on

Multilayer Graphs. In Big Data. 5912–5915.
[12] Xin Huang, Hong Cheng, Lu Qin, Wentao Tian, and Jeffrey Xu Yu. 2014. Querying k-truss community in large and

dynamic graphs. In SIGMOD. 1311–1322.
[13] Xin Huang and Laks VS Lakshmanan. 2017. Attribute-driven community search. PVLDB 10, 9 (2017), 949–960.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.

http://dblp.uni-trier.de
http://www.wise2012.cs.ucy.ac.cy/challenge.html


Efficient Star-based Truss Maintenance on Dynamic Graphs 133:25

[14] Xin Huang, Laks V. S. Lakshmanan, Jeffrey Xu Yu, and Hong Cheng. 2015. Approximate Closest Community Search in

Networks. Proc. VLDB Endow. 9, 4 (2015), 276–287.
[15] Xin Huang, Wei Lu, and Laks V. S. Lakshmanan. 2016. Truss Decomposition of Probabilistic Graphs: Semantics and

Algorithms. In SIGMOD. 77–90.
[16] Yuli Jiang, Xin Huang, and Hong Cheng. 2021. I/O efficient k-truss community search in massive graphs. VLDB J. 30, 5

(2021), 713–738.

[17] H. Kabir and K. Madduri. 2017. Shared-Memory Graph Truss Decomposition. In HiPC. 13–22.
[18] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. http://snap.stanford.

edu/data.

[19] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2014. Efficient Core Maintenance in Large Dynamic Graphs. IEEE Trans.
Knowl. Data Eng. 26, 10 (2014), 2453–2465.

[20] Yanting Li, Tetsuji Kuboyama, and Hiroshi Sakamoto. 2013. Truss Decomposition for Extracting Communities in

Bipartite Graph. In IMMM. 76–80.

[21] Boge Liu, Fan Zhang, Wenjie Zhang, Xuemin Lin, and Ying Zhang. 2021. Efficient Community Search with Size

Constraint. In ICDE. 97–108.
[22] Qing Liu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. Truss-based Community Search over Large

Directed Graphs. In SIGMOD. 2183–2197.
[23] Qing Liu, Xuliang Zhu, Xin Huang, and Jianliang Xu. 2021. Local Algorithms for Distance-generalized Core Decompo-

sition over Large Dynamic Graphs. VLDB (2021), 1531–1543.

[24] Qing Liu, Yifan Zhu, Minjun Zhao, Xin Huang, Jianliang Xu, and Yunjun Gao. 2020. VAC: Vertex-Centric Attributed

Community Search. In ICDE. 937–948.
[25] Qi Luo, Dongxiao Yu, Xiuzhen Cheng, Zhipeng Cai, Jiguo Yu, and Weifeng Lv. 2020. Batch Processing for Truss

Maintenance in Large Dynamic Graphs. IEEE Trans. Comput. (2020), 1435–1446.
[26] Robert J Mokken. 1979. Cliques, clubs and clans. Quality & Quantity 13, 2 (1979), 161–173.

[27] Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. Mining Cross-Graph Quasi-Cliques in Gene Expression and Protein

Interaction Data. In ICDE. 353–354.
[28] Giulia Preti, Gianmarco De Francisci Morales, and Francesco Bonchi. 2021. STruD: Truss Decomposition of Simplicial

Complexes. InWWW, Jure Leskovec, Marko Grobelnik, Marc Najork, Jie Tang, and Leila Zia (Eds.). 3408–3418.

[29] G. Ramalingam and Thomas W. Reps. 1996. On the Computational Complexity of Dynamic Graph Problems. Theor.
Comput. Sci. (1996), 233–277.

[30] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and Ümit V. Çatalyürek. 2013. Streaming

Algorithms for k-core Decomposition. VLDB (2013), 433–444.

[31] Ahmet Erdem Sariyüce, Bugra Gedik, Gabriela Jacques-Silva, Kun-LungWu, and Ümit V. Çatalyürek. 2016. Incremental

k-core decomposition: algorithms and evaluation. VLDB J. (2016), 425–447.
[32] Ahmet Erdem Sariyüce, C. Seshadhri, and Ali Pinar. 2018. Local Algorithms for Hierarchical Dense Subgraph Discovery.

Proc. VLDB Endow. 12, 1 (2018), 43–56.
[33] Stephen B Seidman and Brian L Foster. 1978. A graph-theoretic generalization of the clique concept*. Journal of

Mathematical sociology 6, 1 (1978), 139–154.

[34] Renjie Sun, Yanping Wu, and Xiaoyang Wang. 2022. Diversified Top-r Community Search in Geo-Social Network: A

K-Truss Based Model. In EDBT. 2:445–2:448.
[35] Xin Sun, Xin Huang, Zitan Sun, and Di Jin. 2021. Budget-constrained Truss Maximization over Large Graphs: A

Component-based Approach. In CIKM ’21. 1754–1763.
[36] Zitan Sun, Xin Huang, Jianliang Xu, and Francesco Bonchi. 2021. Efficient Probabilistic Truss Indexing on Uncertain

Graphs. In WWW ’21. 354–366.
[37] Jia Wang and James Cheng. 2012. Truss Decomposition in Massive Networks. PVLDB 5, 9 (2012), 812–823.

[38] YanpingWu, Renjie Sun, Chen Chen, XiaoyangWang, and Qiuyu Zhu. 2020. Maximum Signed (k, r)-Truss Identification

in Signed Networks. In CIKM. 3337–3340.

[39] Xiaoqin Xie, Mingjie Song, Chiming Liu, Jiaming Zhang, and Jiahui Li. 2021. Effective influential community search

on attributed graph. Neurocomputing (2021), 111–125.

[40] ZhiBang Yang, Xiaoxue Li, Xu Zhang, Wensheng Luo, and Kenli Li. 2022. K-truss community most favorites query

based on top-t. World Wide Web (2022), 949–969.
[41] Yikai Zhang and Jeffrey Xu Yu. 2019. Unboundedness and Efficiency of Truss Maintenance in Evolving Graphs. In

SIGMOD. 1024–1041.
[42] Yikai Zhang, Jeffrey Xu Yu, Ying Zhang, and Lu Qin. 2017. A Fast Order-Based Approach for Core Maintenance. In

ICDE 2017. 337–348.
[43] Feng Zhao and Anthony KH Tung. 2012. Large scale cohesive subgraphs discovery for social network visual analysis.

PVLDB 6, 2 (2012), 85–96.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.

http://snap.stanford.edu/data
http://snap.stanford.edu/data


133:26 Zitan Sun, Xin Huang, Qing Liu, & Jianliang Xu

[44] Jun Zhao, Renjie Sun, Qiuyu Zhu, Xiaoyang Wang, and Chen Chen. 2020. Community Identification in Signed

Networks: A K-Truss Based Model. In CIKM. 2321–2324.

[45] Zibin Zheng, Fanghua Ye, Rong-Hua Li, Guohui Ling, and Tan Jin. 2017. Finding weighted k-truss communities in

large networks. Inf. Sci. 417 (2017), 344–360.
[46] Weijie Zhu, Mengqi Zhang, Chen Chen, Xiaoyang Wang, Fan Zhang, and Xuemin Lin. 2019. Pivotal Relationship

Identification: The K-Truss Minimization Problem. In IJCAI. 4874–4880.
[47] Zhaonian Zou and Rong Zhu. 2017. Truss decomposition of uncertain graphs. Knowledge and Information Systems 50,

1 (2017), 197–230.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 133. Publication date: June 2023.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 AffBall
	4.1 AffBall Structure
	4.2 AffBall-based Framework for Star Insertions
	4.3 AffBall Properties and Updating Rules

	5 Onion Layer based Truss Refinement
	5.1 Onion Layers
	5.2 Onion Layer Incremental Maintenance
	5.3 Our Complete Star Insertion Approach
	5.4 Handle Star Deletions
	5.5 Complexity Analysis and Comparison

	6 Handel General Updates
	7 Experiments
	8 Conclusion
	Acknowledgments
	References

