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A Novel Graph Indexing Approach for Uncovering Potential

COVID-19 Transmission Clusters

XULIANG ZHU, XIN HUANG, LONGXU SUN, and JIMING LIU, Hong Kong Baptist University

The COVID-19 pandemic has caused the society lockdowns and a large number of deaths in many countries.
Potential transmission cluster discovery is to find all suspected users with infections, which is greatly needed
to fast discover virus transmission chains so as to prevent an outbreak of COVID-19 as early as possible. In
this article, we study the problem of potential transmission cluster discovery based on the spatio-temporal
logs. Given a query of patient user q and a timestamp of confirmed infection tq , the problem is to find all
potential infected users who have close social contacts to user q before time tq . We motivate and formulate
the potential transmission cluster model, equipped with a detailed analysis of transmission cluster property
and particular model usability. To identify potential clusters, one straightforward method is to compute all
close contacts on-the-fly, which is simple but inefficient caused by scanning spatio-temporal logs many times.
To accelerate the efficiency, we propose two indexing algorithms by constructing a multigraph index and an
advanced BCG-index. Leveraging two well-designed techniques of spatio-temporal compression and graph
partition on bipartite contact graphs, our BCG-index approach achieves a good balance of index construction
and online query processing to fast discover potential transmission cluster. We theoretically analyze and
compare the algorithm complexity of three proposed approaches. Extensive experiments on real-world check-
in datasets and COVID-19 confirmed cases in the United States validate the effectiveness and efficiency of
our potential transmission cluster model and algorithms.
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1 INTRODUCTION

Since late December 2019, an outbreak of a novel coronavirus disease COVID-19 has subsequently
led to millions of COVID-19 cases globallyover the world [40, 48]. Severe disease onset has resulted
in thousands of death in USA, Brazil, India, Italy, Spanish, China, and other countries/regions,
due to massive alveolar damage and progressive respiratory failure caused by COVID-19. Viruses
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Fig. 1. An example of potential COVID-19 transmission cluster discovery on spatial-temporal logs. The query
consists of a patient user q = “Amy” and a timestamp of confirmed COVID-19 infection tq = “May 17 00:00”.
The personal contact graph of user “Amy” is Gq,tq as depicted in dashed rectangle. The answer of potential

transmission cluster is Cq = {“Amy”, “Bob”, “Cora”, “Ella”}.

are transmitted by close contact, droplets, and fomites [42]. Recently, many studies have been
conducted on COVID-19 research [1, 5, 9, 16, 18, 24, 37], including quantifying the underlying
transmission patterns of COVID-19 outbreak [25], security-aware mobile tracking system [34],
forecasting [1, 37], and data privacy [30]. In terms of public health measures, it is importantly
necessary to call for quick and effective tracking of virus transmission chains and early detection
of outbreak, which can timely prevent the broad infections outbreaking to avoid the economic and
society lockdown [22, 30].

To achieve COVID-19 containment, one effective approach is to discover potential transmission
clusters effectively and cut off their further transmissions. It is well known that transmission lies
on the close contact of individual citizens within a small spatial-temporal proximity. Therefore,
it is critically important to obtain spatial-temporal logs of an individual citizen, i.e., a trajectory
record of users, locations, and timestamps, describing the movement when and where people stay.
Although privacy concerns are long-termed raised up, fortunately, these data are still available to
be obtained and shared in a reasonably controlled management, e.g., telecommunication records in
mobile services of AT&T and Hong Kong Telecom [31], the significant locations service in Apple
smartphones [29], and so on. In worst cases, each user has a personal software environment (either
on the smartphone or in the cloud) to store his/her raw data of spatial-temporal logs, which can
help to be offered to health authorities in case they are tested positive to COVID-19 [30]. Moreover,
in those countries with the highest COVID-19 virus cases, there are hundreds of thousands of
confirmed cases in a single day, which demands for a highly efficient search to identify potential
transmission clusters.

In this article, we motivate and investigate the problem of discovery potential transmission
clusters, that is, given a query of patient q and time tq , finding all potential infected users who
have directly/indirectly social contacts to q before tq , in terms of close spatial-temporal distance.
For example, consider a spatial-temporal database D shown in Figure 1. Assume that the user
“Amy” is diagnosed as the COVID-19 infectious patient at time tq = “May 17 00:00”. We take “Amy”
as the query patientq and the diagnosis time as the query time tq . It intends to find all close contact
users of q in the incubation period of past 14 days, who are suspected to have high probabilities
of getting infectious COVID-19. During the period [May 3, May 17], the virus transmission may
happen from “Amy” to “Bob” and “Cora”, due to their appearing in the same location of “Starbucks”
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Fig. 2. The frameworks of potential transmission cluster discovery in spatial-temporal databases.

and at the close time of 18:00, 18:05, and 18:10 on May 5. Moreover, as “Bob” became a potential
infected person on May 5 and had a close contact with “Ella” in the location of “Ikea” at “15:00
May 9”. Thus, “Ella” is also a potential infecting people. Thus, the potential cluster involves four
users {“Amy”, “Bob”, “Cora”, “Ella”}. To play safe, the potential cluster should identify all persons
that are close contact reachable from a query user.

However, an efficient extraction of query-dependent potential transmission clusters is challeng-
ing. The reason has two-fold. First, given millions of people in a city and multiple spatial-temporal
records visited by one person, it may incur combinatorial blow-ups for enumerating all possible
transmission clusters. Second, the infectious diseases usually have a time window of incubation
period, reflecting that the virus transmission already happen before the patient is identified. Thus,
the discovery of direct close contact is not enough for potential transmission clusters, which needs
the search of all users involved in the high-risk clusters by underlying transmission.

To tackle the problem efficiently, we consider two different approaches of classical online search

and our graph indexing based search. First, we consider the classical online search framework as
shown in Figure 2(a), which finds all potential infecting users for every suspected record in a
spatial-temporal database. Specifically, it first adds a query record (q, tq ) into the suspected records
Q (at the step 1© in Figure 2(a)). Then, it iteratively finds users and their records that have close
contact to any record inQ in databaseD (at the step 2© and 3© in Figure 2(a)) and adds the new close
contact records into Q (at the step 4© in Figure 2(a)), until no new close contact user is identified.
The final results of potential transmission cluster are returned (at the step 5© in Figure 2(a)). This
classical online search framework needs to scan the suspected spatial-temporal logs multiple times,
which is inefficient without any index. A useful spatial-temporal index of R-tree [13, 28, 33] can be
used to accelerate the querying of close contact w.r.t. one query record. However, it cannot reduce
the total number of query times and ask massive such close contact queries in spatial-temporal
database, leading to inefficiency in the discovery of large-scale transmission clusters. In this ar-
ticle, we propose a novel graph indexing based search framework as shown in Figure 2(b), which
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can significantly reduce the query time to only once. Intuitively, one straightforward graph index-
ing approach is to build an offline multigraph index, which keeps all close contact relationships
between any pair of spatial-temporal records. Multigraph indexing approach can extract potential
clusters directly using one breadth-first search from a given query, but incurs an expensive cost of
index construction in running time and consuming space. To improve the efficiency, we propose a
bipartite contact graph (BCG) to describe close contact relationships between users and spatio-
temporal records. Through compressing and partitioning a bipartite graph, we propose a compact
BCG-Index to optimize the index construction and potential cluster queries in a fast way. Different
from online search method, it only needs to search in the partitioned graph index once instead of
scanning the suspected spatial-temporal logs multiple times (at the step 1© and 2© in Figure 2(b)).
Overall, our proposed techniques have wide applications on disease expansion control and early
outbreak prevention. More importantly, our potential cluster discovery algorithms not only work
for COVID-19 but also benefit for other kinds of close-contact based infectious diseases.

In summary, this article makes the following contributions:
— We motivate and formulate the problem of potential cluster discovery to prevent virus trans-

mission chains. We formally define the close contact and contact reachability. Based on them,
we propose a potential transmission cluster model (Section 3).

— We analyze the properties of our potential transmission cluster model, satisfying the good
desiderata of close social distance, arbitrary structural shape, and incubation-aware transmis-

sion in real applications. Moreover, we discuss the particular usability in details to show our
model flexibility (Section 4).

— We first develop an online search approach to find potential transmission clusters in an on-
the-fly manner. To achieve the efficient search, we propose an offline indexing approach to
construct multigraph for keeping all the records of close contact in history (Section 5).

— We further optimize the multigraph index by constructing a compact BCG-Index in an ef-
ficient space cost. We develop the techniques of spatio-temporal entity compressions and
graph partitions, which shrink the index into multiple small bipartite graphs, which can sup-
port the fast potential cluster discovery. Moreover, we theoretically compare and analyze the
algorithm complexity of online search methods (based on binary search and R-tree) and graph
index methods (MG-Indexing and BCG-Indexing) (Section 6).

— We conduct extensive experiments on four real-world datasets of check-in records in geo-
social networks. We generate the ground-truth of virus transmissions and infected users via
the propagation simulation using a classical independent cascade model. We also conduct
a case study of COVID-19 transmission following real-world dataset. The results validate
the effectiveness and efficiency of our potential transmission cluster model and proposed
algorithms (Section 7).

We discuss related work in Section 2 and conclude this article in Section 8.

2 RELATED WORK

Our work is related to COVID-19 transmission analytics and spatio-temporal mining.

COVID-19 transmission analytics. Under the COVID-19 pandemic, numerous studies have
tried to discover suspected clusters in order to track the COVID-19 transmissions [1, 9, 11, 14,
16, 18, 26, 35–37, 41]. Recently, various COVID-19 relevant models are proposed for COVID-19
forecasting [1, 37] and spread prediction [16]. Luo et al. [26] developed a explorer system to moni-
tor spatio-temporal data of COVID-19. A graph embedding approach is proposed to help identify
COVID-19 cases [41]. A warning system is designed to predict the hazard area, by collecting data
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from websites and using machine learning approaches to analyze the relevant features [9]. Kim
et al. proposed a deep learning approach and a hierarchical model for estimating the number of im-
ported COVID-19 cases from abroad [18]. On the other hand, some researchers aim at exploring the
impact of certain containment measures on the transmission of COVID-19. The system dynamic
simulation model is used to discover how physical distance measures influence the infectious [36].
Reference [14] compares the impact of different control policies on the spread of COVID-19 and
investigates the influence of heterogeneity of urban mobility during the propagation. Reference
[11] focuses to lift mitigation measures using deep learning approaches. Previous tracking sys-
tems can be also found in [3, 46, 52]. This work of transmission cluster discovery is also related
to clustering algorithms in graphs [20, 21]. Different from the above studies, our work leverages
the spatio-temporal activities to efficiently find query-dependent suspected clusters using a graph
indexing approach.

Spatio-temporal mining. There exist several studies on the spatio-temporal data mining [2, 4, 7,
8, 13, 23, 32, 33, 43]. A comprehensive survey of spatio-temporal data mining can be found in [4].
Wu et al. study the problem to mine the reachable area from a given location and temporal period
and propose a data-driven method to tackle the problem based on historical trajectory dataset [43].
Francalanci et al. [8] propose to analyze the evolving information for spatio-temporal queries.
Ahmed et al. [2] develop a tracking device to find the most frequent terms in spatio-temporal
region for each query. The above spatio-temporal data mining studies work on the reachable re-
gion, evolving information analysis, and frequent terms discovery tasks. There exist also many
works on developing the learning based models for spatio-temporal prediction [7, 23, 32]. In ad-
dition, there exists a line of work [45, 53] studying the reachability problem in temporal graphs.
Wu et al. [45] proposed an indexing based technique to answer reachability and time-based path
queries in a temporal graph. Zhang et al. [53] developed a labeling scheme of temporal vertex
labeling over distributed temporal graphs. Both these two works use index based method to an-
swer the reachability queries in the temporal graphs. R-tree [13, 28, 33] is a classical tree index
to store spatial objects in database, which accelerates the nearest neighbor search or the objects
within a given spatial interval. However, for detecting a transmission cluster in this article, the
R-tree-based online search approaches cannot avoid a large number of query times interacting
with spatial-temporal database, leading to the inefficiency. A detailed comparison to R-tree-based
approaches can be found in Sections 1, 6.3, and 7, in terms of motivations, algorithm complexi-
ties, and also experimental evaluations, respectively. Different from these studies, we focus on the
close contact modeling and develop fast querying algorithms for potential COVID-19 transmission
cluster discovery, which uses spatio-temporal logs to build graph indexes.

3 PRELIMINARIES

We are given a database D of spatial-temporal logs in the form of a relation
STlog(User, Location, Time), where each tuple (u, lu , tu ) ∈ D represents that a user u vis-
ited location lu at time tu . It contains such a tuple for each location visited by every user of the
system. Assume that the projection of STlog on the first column forms a set of users V , and the
incubation period of our interested disease is Δt ∈ R+. In the following, we first define close
contact.

Definition 1 (Close Contact). Given two parameters of location threshold δl and time threshold
δt , we say that two users v and u have a close contact at time t , denoted by u �t v , if and only
if: there exists two tuples (u, lu , tu ), (v, lv , tv ) ∈ D having a small spatial-temporal distance such
that (i) |tu − tv | ≤ δt ; (ii) |lu − lv | ≤ δl ; and t = max{tu , tv }
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Let δt = 0 and δl = 0. Under this strict parameter constraint, two users v,u have close contact,
which needs to satisfy tu = tv and lu = lv . Due to the uncertainty in data collection process from
sensors and humans, Definition 1 gives a flexible mechanism to quantify the close contact. Note
that, in epidemiology, the close contact usually refers to the person who has been near enough to a
person with COVID-19. However, we generalize the concept of close contact to any two person for
potential COVID-19 transmission cluster identification. For example, consider the spatial-temporal
databaseD in Figure 1. For δl = 0 and δt = 20 minutes, two users Amy and Bob have a close contact
at time t = “May 5 18:05” as they appear at times “May 5 18:00” and “May 5 18:05”, respectively, in
the same location of “Starbucks”. Note that we require an unique value to be the latest timestamp
of close contact, i.e., t = max{tu , tv }. The close contact in Definition 1 can be extended to allow
multiple feasible values of t given two users’ records. Moreover, Definition 1 can be extended to
a given length of exposure, where two users v and u have a close contact for a continuous time
window. To model the virus transmission chain within an incubation period Δt , we give a definition
of contact reachability based on the close contact.

Definition 2 (Contact Reachability). Given two usersv,u ∈ V and a time t∗, we say thatu reaches
v via a series of close contact within the incubation period of [t∗ − Δt , t

∗], denoted as u →t ∗ v , if
and only if there exist a contact path 〈v0, . . . ,vl 〉 such that

(1) v0 = u and vl = v ;
(2) the close contact vi−1 �ti

vi holds for 1 ≤ i ≤ l and t∗ − Δt ≤ t1 ≤ ... ≤ tl ≤ t∗.

Consider the example in Figure 1, for δt = 20 minutes and Δt = 14 days, Amy and Bob have
a close contact at t1 = “May 5 18:05”, i.e., Amy �t1 Bob. Moreover, Bob and Ella have a close
contact at t2 = “May 9 15:00”, i.e., Bob �t2 Ella. There exists a contact path 〈Amy,Bob,Ella〉 such
that Amy reaches Ella, i.e., Amy →t ∗ Ella, during the incubation period t∗ ∈ [May 9 15:00, May
19 18:05]. Therefore, the potential cluster is all the users that lie along the contact paths starting
from the first query patient u. Based on the contact reachability, the potential transmission cluster
is defined as follows.

Definition 3 (Potential Transmission Cluster). Given a query of (potential) patient user q (of pa-
tient) and time tq , the potential cluster is defined as a group of users Cq ⊆ V such that each user
u ∈ Cq is contact reachable from q, i.e., Cq = {u ∈ V : q →tq

u}.

In the following, we formulate the problem of potential cluster discovery on spatial-temporal
database D studied in this article.

Problem statement: Given a spatial-temporal database D of |V | users, a virus incubation time
Δt , and a query of (potential) patient q ∈ V and time tq , the problem of potential cluster discovery
is to find the potential cluster Cq , in which all users are potential to get virus from the direct and
indirect close contacts to q within time [tq − Δt , tq].

Example 1. Consider a spatial-temporal databaseD shown in Figure 1, Δt = 14 days, and a query
of patient user q = Amy and time tq = “May 17 00:00”, our problem is to find all potential users
contact-reachable from Amy within [May 3 00:00, May 17 00:00]. It is clear that Bob and Cora are
potential to get virus directly from Amy at “May 5 18:05” and “May 5 18:10”, respectively. Moreover,
there is a contact path 〈Amy,Bob,Ella〉, which means Amy and Ella are contact reachable. As a
result, the potential cluster is Cq = {Amy, Bob, Cora, Ella}.

Remark. In our problem definition, three parameters δt , δl , and Δt need to be set. It suggests to
set three parameters based on the infectivity and incubation time of different diseases. The close
contact parameters δt and δl are based on infectivity. Δt is based on the incubation time of specific
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Fig. 3. Arbitrary structural shapes of transmission clusters

diseases. For example, to simulate COVID-19 transmission, we set δt = 15 minutes, δl = 5 meters,
and Δt = 14 days in the default setting of our experiments in Section 7.

4 PROBLEM ANALYSIS

In this section, we first analyze the property and particular usability of our transmission cluster
model. Then, we introduce an overview of solutions proposed in this article.

4.1 Properties of Potential Transmission Clusters

We begin with the commonly accepted desiderata of good potential groups in the infectious disease
transmissions in the following.

(1) (Participation). The query user q ∈ Cq .
(2) (Close social distance). Each potential member has the close contact to at least one another

member via a small social distance, with regard to two spatial and temporal parameters δl

and δt .
(3) (Arbitrary structural shape). Any shaped graph structure in underlying potential cluster

may occur in real applications, e.g., a long chain, a star with multiple nodes and sparse
connections, and a quasi-clique in dense structure as shown in Figure 3.

(4) (Incubation-aware transmission). Potential infecting members involve those people are
affected by users during the incubation period Δt .

In view of the above properties, our potential transmission cluster model is validated to admit
these four useful properties. Furthermore, the potential cluster model and our proposed techniques
can be substantially modified to detect more rigorous potential groups using variant constraints,
such as adding the minimum time window constraint for a close contact. We can also support
efficient spatial proximity calculation in terms of latitude and longitude representations using R-
tree [13, 33] and other spatial-temporal indexing techniques [27, 38, 38, 47].

In the following, we analyze the complexity of close contact relationship in the worst case.

Lemma 1. Given a set of n users with the same temporal-spatial records D = {(vi , l , t ) : 1 ≤ i ≤ n},
it forms a n-clique of potential transmission cluster G where each pair of vertices vi and vj has an

edge of close contact in G.

Proof. Consider each pair of vertices vi and vj , there exist two records (vi , l , t ) and (vj , l , t ),
which satisfies |t − t | ≤ δt and |l − l | ≤ δl . Thus,vi and vj has an edge of close contact. This forms

a n-clique of potential transmission cluster that consists of n potential infected users and n (n−1)
2

close contact edges. �

4.2 Particular Model Usability

We discuss the particular usability of our transmission cluster model. Here, we clarified several
critical concern issues of our model in real-world applications for contact tracing and infectious
disease transmission.
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— First, a large number of potential clusters and frequently asked queries. The contact tracers
may not initially reach out to a huge number of indirect contacts—they would call the direct
contacts, ask about exposures, symptoms, and COVID testing results, and then only reach out
to the direct contacts of direct contacts who tested positive, showed symptoms, and/or were
at high risk for infection. However, when a large number of infectious diseases happened, it is
costly and very inefficiently to ask only direct contacts by a few hand-on rounds of question
answering, which needs a development of automated COVID-19 contact tracing system with
efficient query processing techniques. Even worse, given the natural limitation of human-
being’s memory, it is easy to forget some close contact cases happened a few days ago. When
such missing cases have high infectious probability, it may lead to critically bad situations
with wide disease spread out.

— Second, the contagious effect w.r.t. the incubation period Δt . The infected persons maybe not
contagious to others instantaneously, but only become contagious a couple of days before
symptoms emerge. In our model, the incubation period Δt can accordingly adjust based on
different contagious effect of diseases, where Δt can be extended to set up as the earliest conta-
gious timestamp. Therefore, our potential cluster model can be adjusted to depict not only the
low/middle contagious infectious disease, e.g., COVID-19, but also other highly contagious
infectious diseases, e.g., Measles.

— Third, the contact risk w.r.t. the length of exposure. The contact risk is based on the length
of exposure, i.e., the amount of overlapping time intervals of two persons at the same loca-
tions. Our Definition 1 of close contact determines the boolean value of such an overlapping
exposure, which can be easily extended to a quantified length measure of close contact. This
heavily depended on a large amount of spatial-temporal records. Our model can discover even
low-risk potential clusters.

Overall, our potential transmission cluster model is applicable to detect potential groups caused
by a given query patient via close contacts, even discovering many low-risk individuals for critical
infectious disease, leveraging on the partially/fully recorded spatial-temporal logs.

4.3 Solution Overview

We consider three different algorithms to find the potential transmission cluster for a given query
(q, tq ). An overview of our solutions is presented as follows.

First, we consider a basic solution of online search. This method is straightforward to find the
personal direct close contact graph to a patient q during the timestamps of [tq − Δt , tq], which
find all records satisfying the location and time constraints. This method does not make use of any
indexes, which may cost an expensive time for query processing as shown in Section 5.1.

Next, we consider an indexing approach to construct a multigraph [10, 12, 15], where two users
may have multiple edges of close contacts in D. The multiple-edge keeps all close contact relation-
ships. A potential cluster Cq is a connected subgraph of G reached from q during the time period
of [tq − Δt , tq]. This method pays an expensive cost on multigraph construction and enjoys fast
extraction of potential cluster answers as shown in Section 5.2.

Finally, to make a balanced tradeoff between index construction and online potential cluster
discovery, we propose BCG-Index in Section 6 to construct a compact index based on BCGs, which
keeps only a partial of contact information using a small index space.

5 ONLINE SEARCH AND MULTIGRAPH INDEXING-BASED APPROACHES

In this section, we first present an online search algorithm for potential transmission cluster discov-
ery. We then give an indexing approach to construct a multigraph index for keeping close contact
records and searching potential transmission cluster.
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ALGORITHM 1: Online Potential Transmission Cluster Discovering

Input: Spatial-temporal database D, query user q, query time tq , incubation period Δt , location threshold
δl , time threshold δt .

Output: All potential clusters Cq .
1: Initialization: a priority queue Q ← {(q, tq − Δt )}, where Q maintains the records in ascending order of

timestamps; Cq ← ∅;
2: while Q � ∅ do

3: Pop out a record (v, tv ) from Q ;
4: Generate a contact graph Gv,tv using Contact-Graph (v, [tv , tq ]);
5: for each user u ∈ V (Gv,tv ) do

6: Find the earliest contact between u and v in E (Gv,tv ), i.e., t∗ ← arg mine (v,u,t )∈E (Gv,tv ) t (e );
7: if u � Cq then

8: Cq ← Cq ∪ {u};
9: Q ← Q ∪ {(u, t∗)};

10: return Cq ;

procedure Contact-Graph (v, [tv , tq ])
11: Find all v’s spatial-temporal records in D during the incubation time of v as [tv , tq ], i.e., Dv = {(v, t , l ) ∈

D : tv ≤ t ≤ tq }.
12: for each tuple (v, tx , lx ) ∈ Dv do

13: for each user u ∈ V do

14: if there exists (u, tu , lu ) ∈ D such that |tu − tx | ≤ δt and |lu − lx | ≤ δl then

15: Add a vertex u in Gv,tv if u � Gv,tv ;
16: Add an edge (u,v, t̄ ) between u and v in Gv,tv , i.e., u �t̄ v , where t̄ = max{tu , tx };
17: return Gv,tv ;

5.1 An Online Transmission Discovery

In this section, we propose an online search approach of discovering potential cluster for a given
query (q, tq ). We begin with a definition of personal contact graph.

Definition 4 (Personal Contact Graph). Given a user u and a time tu , the personal contact graph
Gu,tu

(Vu ,Eu ) is defined as follows:
(i)Vu is a subset of all usersV , i.e.,Vu ⊆ V . For each vertexv ∈ Vu , there is a time t ∈ [tu −Δt , tu ]

such that u �t v holds; and (ii) Eu = {e (u,v, t ) : u �t v,v ∈ Vu , t ∈ [tu − Δt , tu ]}.

The personal contact graph Gu is defined on the pair-wise close contact in Definition 1, which
keeps all potential infecting users tou. Note that the personal contact graph is a temporal graph, in
which two vertices may have multiple edge with different timestamps [44]. For example, consider
a query user q = “Amy” and time tq = “May 17, 00:00” in Figure 1. The personal contact graph Gq

is shown as Gq,tq
in dashed rectangle in Figure 1. The graph has two multiple edges between two

users “Amy” and “Bob”, due to that they have two close contact in Starbucks in two timestamps of
“May 5 18:10” and “May 16 10:10” w.r.t. δt = 20 minutes.

Algorithm. The online transmission cluster discovering algorithm is presented in Algorithm 1.
Given a spatial-temporal database D, the algorithm iteratively extracts a potential user q from a
priority queue Q , which is updated with new potential users (lines 1–9). For each user v , it first
generates a personal contact graph Gv,tv

based on the close contact relationships between v and
other users u ∈ V (line 4), which invokes a procedure of finding personal graph for v and time tv
(lines 11–17). Specifically, it identifies the earliest infectious timestamp as tv . Moreover, it collects
all spatial-temporal records w.r.t. v during [tv , tq] (line 11). It treats every person in contact to
v within [tv , tq] as a potential person and generates all close contact relationships to v in Gv,tv
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Fig. 4. An example of graph indexing framework.

(lines 12–16). For each record (v, tx , lx ) ∈ Dv , it enumerates each user u ∈ V and checks their
contact distance whether are close or not by Definition 1, i.e., |tu − tx | ≤ δt and |lu − lx | ≤ δl .
Note that we can sort the records by time and use binary search to identify the time interval
[tx − δt , tx + δt ]. Then, we only enumerate the records in [tx − δt , tx + δt ]. Nevertheless, we also
can apply R-tree [13, 28, 33] to find all close contact records. After the above traversal, it constructs
a complete personal graph Gv,tv

(line 17).

5.2 Multigraph Indexing Approach

In this section, we propose an offline indexing approach to construct a complete multigraph based
on spatial-temporal database D and support any online tracking query (q, tq ).

Multigraph index G. Based on the existing users’ data logs D, we build up a multigraph G (V ,E),
where V denotes the set of users and E represents the set of multiple-edges. Specifically, the edge
set E = {(u,v, t ) : u,v has a close contact at time t } is determined by Definition 1 w.r.t. δl , δt , and
Δt . Figure 4(c) shows an example of multigraph index G for the records D in Figure 4(a). Moreover,
the subgraph of G in red is the answer for q = “Amy” and time tq = “May 17 00:00”.

Multigraph index construction. Algorithm 2 outlines the details of multigraph index con-
struction. Specifically, it first sorts all data records of D in the decreasing order of timestamps
(line 11). Then, for each record (v, tv , lv ) ∈ D, it generates all close contact edges (u,v, t ) and adds
the multiple edges into multigraph G (lines 12–16).

Multigraph index based cluster discovery algorithms. Algorithm 2 presents the details of
multigraph index-based query processing approach. Specifically, the algorithm starts from a query
vertex q and checks the adjacent edges of close contact by involving all reachable vertices in a BFS
manner (lines 1–9). Finally, it returns the potential cluster Cq (line 10).

For instance, we construct a multigraph index for the spatial-temporal database D in Figure 4(a).
The multigraph index G is shown in Figure 4(c), which consists of 7 vertices and 11 contact edges.
Based on the multigraph G, Algorithm 2 finds the potential cluster for a query (“Amy”, “May 17
00:00”) as follows. The algorithm first adds a pair (“Amy”, “May 3 00:00”) into the priority queue
Q . According to the BFS rule, Algorithm 2, in turn, finds the close contacts (“Bob”, “May 5 18:05”),
(“Cora”, “May 5 18:05”), and (“Ella”, “May 9 15:00”), and adds them into Q . After the traverse of
queueQ , the potential transmission cluster is identified as Cq = {Amy, Bob, Cora, Ella}. The detailed
complexity analysis of Algorithm 1 and Algorithm 2 can be founded in Section 6.3.
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ALGORITHM 2: Multigraph Indexing Approach for Potential Cluster Identification

Input: A multigraph G (V ,E), a query user q, a query time tq .
Output: All potential clusters Cq .
1: A priority queue Q ← {(q, tq − Δt )}, where Q maintains the records in ascending order of timestamps;
2: while Q � ∅ do

3: Pop out a record (v, tv ) from Q ;
4: if v ∈ Cq then

5: continue;
6: Cq ← Cq ∪ {v};
7: for each edge (v,u, t∗) ∈ E with increasing t∗ do

8: if t∗ ∈ [tv , tq ] and u � Cq then

9: Q ← Q ∪ {(u, t∗)};
10: return Cq ;

procedure Multigraph Index Construction
11: Sort all records (u, tu , lu ) of D in decreasing order of timestamps tu ;
12: Let G (V ,E), where E = ∅;
13: for each record (v, tv , lv ) ∈ D do

14: Find all records (u, tu , lu ) ∈ D such that tu ∈ [tv − δt , tv + δt ], and u �t̄ v where t̄ = max{tu , tv };
15: E ← E ∪ {(u,v, t̄ )};
16: return G (V ,E);

6 FAST BCG-INDEXING APPROACH

In this section, we propose an efficient indexing approach for potential transmission cluster discov-
ery. We first offline construct a BCG-Index based on spatio-temporal database D. We then develop
the index compression and partition techniques to optimize potential cluster discovery for query
(q, tq ).

6.1 BCG-Index Construction

We build a new data structure of BCG-index, which is more space-efficient than multi-graph index.
Due to a large number of contact edges across between users and users existed in multi-graphs, it
needs to make sparsification on the contact information by keeping contact edges between users
and spatio-temporal records instead.

Bipartite Contact Graph. We present a new definition of BCG. Let be the bipartite graph
B (L,R,E) where L ⊆ V denotes the left vertex set of users, R = {(t , l ) : t is a time and l is a lo-
cation} denotes the right vertex set of spatio-temporal records, and E ⊆ L×R represents the set of
bipartite contact edges between users and spatio-temporal records. Specifically, a bipartite contact
edge e ∈ E is defined as follows.

Definition 5 (Bipartite Contact Edge). Given a record (u, tu , lu ) ∈ D and a time-location pair
r ∗ = (t∗, l∗), if |tu − t∗ | ≤ δt and |lu − l∗ | ≤ δl , there exists a bipartite contact edge e = (u, r ∗) ∈ E
in graph B, associated with an extra information (tu , lu ).

A contact edge (u, (t∗, l∗)) ∈ E keeps that user u has close contact with other users at (t∗, l∗)by
Definition 1 and also its exact visiting information of (u, tu , lu ). Note that (tu , lu ) = (t∗, l∗) may
hold. For example, in Figure 4, the contact edge (Amy, “Starbucks, May 5 18:05”) associated with
an extra information of (“Starbucks, May 5 18:00”) represents that Amy visited “Starbucks, May 5
18:00” and she had close contact to other users around May 5 18:05 at Starbucks. However, there
may exist a large number of contact edges in bipartite graph B. As shown in Figure 4(b), Amy has
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ALGORITHM 3: BCG-Index Construction
Input: Spatio-temporal database D, an incubation time Δt

Output: BCG-Index B
1: Sort all records (u, tu , lu ) of D in decreasing order of timestamps tu ;
2: Partition all records of D by a time interval Δt into multiple record components D1, . . . ,Dm and time-

location pair components TL1, . . . ,TLm ;
3: for i = 1 to m do

4: Li ← V (Di ), Ri ← ∅, Ei ← ∅;
5: for each record (tv , lv ) ∈ TLi do

6: S ← {(tv , lv )};
7: for each record (tu , lu ) ∈ TLi with tu ∈ [tv − δt /2, tv + δt /2] do

8: if |lv − lu | ≤ δl /2 then

9: S ← S ∪ {(tu , lu )};
10: TLi ← TLi \ S ;

11: Compute an average spatio-temporal record: (t̄u , l̄u ) where t̄u =
∑

(tu ,lu )∈S tu

|S | and l̄u =
∑

(tu ,lu )∈S lu

|S |
12: Ri ← Ri ∪ {(t̄u , l̄u )};
13: for each record (v, tv , lv ) ∈ Di do

14: Find all records (tu , lu ) ∈ Ri such that |tv − tu | ≤ δt and |lv − lu | ≤ δl ;
15: Let be the bipartite contact edge e = (v, (tu , lu )) associated with record (v, tv , lv );
16: Ei ← Ei ∪ {e};
17: Bi ← (Li ,Ri ,Ei ) for 1 ≤ i ≤ m;
18: return B = {B1, . . . ,Bm };

three contact edges with the right nodes with IDs “1”, “2”, and “3”, which is actually generated
from one record “Amy, Starbucks, May 5 18:00” in D.

BCG-Index construction using spatio-temporal entity compressions and graph partitions.

To generate a compact index, we propose two useful techniques of spatio-temporal entity compres-

sion and graph partition to reduce the size of bipartite contact graph B (L,R,E) and improve the
query efficiency. First, similar spatio-temporal records can be merged into one vertex in R, which
can compress R and E with low-redundant close contact edges. Second, the entire records of D
spans a long period that far exceeds the incubation time Δ. It suggests to partition D into several
disjoint components Di ⊆ D where all records falls in one timeslot of Δt length. Assume that we
have a total of m components and

⋃m
i=1 Di = D. For each record component Di , we construct a

corresponding graph Bi . Overall, the whole bipartite graph index is composed of multiple bipartite
graphs as B = {B1, . . . ,Bm }.

Algorithm 3 shows the details of our BCG-Index index construction. Specifically, it first par-
titions the timestamps of all records by interval Δt (lines 1–2). Next, for each spatio-temporal
record (tv , lv ), the algorithm will merge all the spatio-temporal records into a set S (lines 6–10).
The average spatio-temporal of the elements in set S will be inserted into Ri (lines 11–13). Then,
for each record (v, tv , lv ) ∈ D, it finds the partition Di and constructs the bipartite contact edge
e = (v, (tu , lu )) associated with (tv , lv ) and enlarge bipartite graph Bi (lines 14–18). Finally, it
returns the set of all partitioned bipartite graphs B = {B1, . . . ,Bm } (line 20).

Based on the BCG-Index construction, we can check whether two users have close contact in
the bipartite graph B in the following property.

Property 1. Given a bipartite graph B (L,R,E) and two users v,u ∈ L, if the edges (u, (tx , lx )) ∈
E associated with (tu , lu ) and (v, (tx , lx )) ∈ E associated with (tv , lv ) satisfy |tu − tv | ≤ δt and

|lu − lv | ≤ δl , v has contacted with u at time tx .
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ALGORITHM 4: BCG-Index Based Potential Transmission Cluster Tracking

Input: BCG-Index B, a query user q, a query time tq
Output: Potential transmission cluster Cq

1: Find all the corresponding BCG-Index within the time interval [tq − Δt , tq ] as {Bi ,Bi+1, . . . ,Bj } and
combine them as B (L,R,E);

2: A priority queue Q ← {(q, tq − Δt )}, where Q maintains the records in ascending order of timestamps;
3: while Q � ∅ do

4: Pop (x , tx ) from Q ; //x may be a user or a time-location pair.
5: if visit (x ) = true then

6: continue;
7: visit (x ) ← true;
8: if x ∈ L then

9: Cq ← Cq ∪ {x };
10: for edge (x ,y) ∈ E accessed in the order of increasing t∗ of associated edge information (t∗, l∗) do

11: if t∗ � [tx , tq ] or visit (y) = true then

12: continue;
13: if (x ∈ R and |t∗ − tx | ≤ δt and |l∗ − lx | ≤ δl ) or (x ∈ L) then

14: Q ← Q ∪ {(y, t∗)};
15: return Cq ;

6.2 BCG-Index Based Tracking Algorithm

Based on the constructed BCG-Index, the potential transmission cluster tracking algorithm is de-
scribed in Algorithm 4. Specifically, the algorithm starts from the query user q and searches the
potential patients by involving all reachable users in a BFS manner. First, it finds the partition
by binary search and merges them as the bipartite indexing graph (line 1). Then, it implements
the BFS by ascending order of time (lines 2–14). Note that it should check whether two users are
contacted following Lemma 1 (line 13). Finally, it returns the potential cluster Cq (line 15).

Example 2. Figure 4 shows an example of MG-Indexing and BCG-Indexing method. Figure 4(a)
shows all the 11 records in databse D. Figure 4(b) depicts the user-record relationships without
spatio-temporal compressions and graph partitions. In Figure 4(d), all the 11 records are com-
pressed into 4 time-location and partitioned into two parts by the interval 14 days. It reduces
the size of bipartite graph in Figure 4(b) and avoids a large size of clique graph.

6.3 Complexity Analysis and Comparison

We first analyze the time and space complexity of Algorithms 1 and 2. We denote the number of
users as n = |V | and the number of records asm = |D | in spatial-temporal database D, respectively.
Assume that we use d to represent the maximum number of records in [t −δt , t +δt ] for any t , i.e.,
d = maxt |{(v, l , t ) ∈ D : t ∈ [t − δt , t + δt ]}|. Moreover, we denoted c by the number of infectious
records involving users in the answer cluster Cq within [tq − Δt , tq], i.e., c = |{(v, l , t ) ∈ D : v ∈
Cq , t ∈ [tq − Δt , tq]}|.

Theorem 1. The online cluster search in Algorithm 1 takes O ( |Cq |c (logm + d )) in O (m) space.

Proof. We analyze the query time of Algorithm 1. For each user v ∈ Cq , it generates a contact
graph Gv,tv

by enumerating its infectious records within [tq − Δt , tq]. The graph size of Gv,tv

is bounded by O (c ). For an infectious record, the step of identifying all its close contacts takes
O (logm+d ) time using the binary search (lines 13–16 of Algorithm 1). Overall, Algorithm 1 takes
O (
∑

v ∈Cq
c (logm+d )) ⊆ O ( |Cq |c (logm+d )) to find all possible contact records inO (m) space. �
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Table 1. A Comparison of Three Different Potential Cluster Discovery Algorithms Proposed
in This Article, in Terms of Time Compelxity, Space Complexity, and Index Size

Method Query Time Query Space Indexing Time Index Size
Online using binary search (Algorithm 1) O ( |Cq |c (logm + d )) O (m) – –

Online using R-tree (Algorithm 1) O ( |Cq |c (logm + d ′)) O (m logm) O (m logm) O (m logm)

MG-Indexing (Algorithm 2) O (c log c ) O (mn) O (m(logm + n)) O (mn)

BCG-Indexing (Algorithms 3 & 4) O (b logb) O (md ) O (m(logm + d )) O (md )

For the online potential transmission cluster search in Algorithm 1, if we implement the close
contact using the R-tree index instead of the binary search, the close contact of a new query takes
O (logm + d ′) time in worst. Here, the parameter d ′ represents the maximum number of records
satisfying |t ′ − t | ≤ δt and |l ′ − l | ≤ δl for any t and l , i.e., d ′ = maxt,l |{(v, l ′, t ′) ∈ D : |t ′ − t | ≤
δt , |l ′ − l | ≤ δl }|. Therefore, Algorithm 1 using the R-tree index takes the query time in
O ( |Cq |c (logm + d ′)), the query space in O (m logm), the index construction time in O (m logm),
and the index size in O (m logm).

Theorem 2. The multigraph index construction in Algorithm 2 takes O (m(logm + n)) in O (mn)
space. The disk size of multigraph index G takes O (mn) space.

Proof. Algorithm 2 first sorts all records in the increasing order of timestamps usingO (m logm)
time. Then, for each record inD, it finds its close contact with at mostn (lines 13–15 of Algorithm 2)
and takesO (mn) time totally. Overall, Algorithm 2 takesO (m(logm+n)) time inO (mn) space. �

Theorem 3. The multigraph index-based cluster discovery in Algorithm 2 takes O (c log c ) in

O (mn) space.

Proof. Algorithm 2 applies the BFS manner to identify the potential cluster. For each record
in the answer cluster Cq , it will be inserted to the priority queue at most once in O (log c ). So,
Algorithm 2 takes O (c log c ) in O (mn) space. �

In this section, we analyze the complexity of BCG-Indexing index construction in Algorithm 3
and BCG-Indexing-based cluster discovery in Algorithm 4. We denote the maximum edge size of
bipartite graph in B = {B1, . . . ,Bm } as b = max1≤i≤m |E (Bi ) |.

Theorem 4. The BCG-index construction in Algorithm 3 takes O (m(logm + d )) in O (md ) space.

The disk size of multigraph index G takes O (md ) space.

Proof. Algorithm 3 first sorts all records in the increasing order of timestamps usingO (m logm)
time. Then, for each record in D, the algorithm connects its user to the spatio-temporal records in
O (logm + d ). So, Algorithm 3 takes O (m(logm + d )) time in O (md ) space. �

Theorem 5. The BCG-Indexing based cluster discovery in Algorithm 4 takesO (b logb) inO (md )
space.

Proof. It contains at most two partitions in bipartite indexing graph, so the size of it is O (b).
Algorithm 4 also applies the BFS manner on bipartite indexing graph. Each insertion takes log(b)
and the algorithm totally takes O (b logb) time in O (md ) space. �

Table 1 summarizes the algorithm complexity of three transmission cluster discovery algorithms,
in terms of query time, index construction, and index size. Overall, our BCG-Indexing method
achieves faster query time in O (b logb) than MG-Indexing method in O (c log c ) time, as b ≤ c
usually holds. This observation can be validated in our experimental results as shown in Table 3,
due to our efficient spatio-temporal compression and graph partitions. Moreover, BCG-Indexing
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Table 2. The Statistics of Check-In Datasets

Name |V | |D | Period (days)
Brightkite 51,406 4,747,284 923

Brightkite-Syn 51,406 52,220,124 923
Gowalla 107,092 6,442,890 626

Gowalla-Syn 107,092 51,543,120 626
Foursquare 266,909 33,278,683 533

Foursquare-Syn 266,909 118,453,113 533
LBSN 2,733,324 90,048,627 666

method significantly takes much less index construction time and cheaper index space, in contrast
to the MG-Indexing approach in Algorithm 2.

7 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of our proposed
solutions. All algorithms are implemented in C++. All the experiments are conducted on a Linux
Server with Intel Xeon E5-2630 v4 (2.2 GHz) and 256 GB main memory.

Datasets. We use four real-world check-in datasets Brightkite (BK for short), Gowalla (GW for
short) [19], Foursquare (FQ for short) [50, 51], and LBSN [49]. All these datasets are the location-
based datasets where users shared their locations by check-ins. Each check-in record contains the
user ID, time, and location. The location is presented by latitude and longitude. Brightkite [6] col-
lects 4,747,284 check-ins of 51,406 users over the period of April 2008–October 2010. Gowalla [6]
collects a total of 6,442,890 check-ins of 107,092 users over the period of February 2009–October
2010. Foursquare [51] collects 33,278,683 check-ins of 266,909 users over the period of April 2012–
September 2013. Moreover, a large dataset LBSN [49] collects 90,048,627 check-ins of 2,733,324
users over the period of April 2012–January 2014, which are raw check-ins of Foursquare. To
evaluate efficiency, we randomly add more records into Brightkite, Gowalla, and Foursquare, de-
noted as Brightkite-Syn, Gowalla-Syn, and Foursquare-Syn, respectively. All the newly generated
records are composed of a random user ID and a random pair of time and location, both of which
are selected from the original datasets. The details of seven datasets are reported in Table 2.

Benchmarks and queries generation. Besides the check-in datasets, we also generate a bench-
mark of infectious transmissions. We use a classical influential model of independent cascade [17]
to generate influential individuals and simulate virus propagation. First, we randomly select a
few users as the transmission source with a random infected time. We adopt the sampling rate
of transmission sources by using real-world data of average infection rate as 10.1%, which comes
from The New York Times, based on reports from state and local health agencies in US.1 Thus,
we select 5,136, 10,704, and 26,678 users as the transmission sources in Brightkite, Gowalla, and
Foursquare, respectively. Then, we apply independent cascade model with an uniform probability
20% to simulate the influential individuals within 14 days after their infected time. Note that each
individual only could be influenced once at the first infected time. For the queries, we randomly
select 100 users from influential individuals at onset time (14 days after infected time) as queries.

Methods compared. We evaluate and compare different models and algorithms, which address
a novel problem of potential COVID-19 transmission cluster discovery. To evaluate the efficiency,
we compare Rtree [13, 33] and our proposed algorithms as follows.

1https://github.com/nytimes/covid-19-data.
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Fig. 5. The average query time of all methods on seven datasets varied by the incubation period Δt .

— Online: is an online search approach in Algorithm 1, which uses the binary search to find
close contacts directly on spatio-temporal logs.

— Rtree: is an online search approach using a well-known Rtree indexing [13, 33] to find all
close contacts.

— MG-Indexing: is a multigraph index-based method to construct a contact multigraph and
search potential clusters in Algorithm 2.

— BCG-Indexing: is our efficient cluster discovery method, which constructs BCG-Index in
Algorithm 3 and finds potential transmission cluster in Algorithm 4.

Moreover, to evaluate the quality of our potential transmission cluster model, we additionally
implement and compare another 1-hop potential cluster model that finds all close contact users to
a given query user.

Evaluation metrics and parameter settings. For efficiency evaluation, we report the average
running time over 100 queries. For the indexing evaluation, we report the running time and index
size on disk. To evaluate the quality and robustness of potential transmission cluster models, we
report the number of potential infected users and also the percentage of missing users in compar-
ison with ground-truth clusters. By default, we set two close contact parameters of time δt = 15
minutes and distance δl = 5 meters and the incubation period Δt = 14 days. We treat the running
time as infinite (INF for short) if the algorithm runs exceeding 30 hours.

Exp-1: Query time evaluation of all methods. We first evaluate the query time of all methods
varied on incubation period Δt on all datasets. Figure 5 shows the average query time of four
competitive methods Online, Rtree, MG-Indexing, and BCG-Indexing. Note that in the datasets
Brightkite-Syn, Gowalla-Syn, Foursquare, Foursquare-Syn, and LBSN, the MG-Indexing approach
fails to finish the multigraph index construction within a limited time of 30 hours. Furthermore,
Online and Rtree are low-efficient because of massive close contact queries for online search. So
we only run 10 queries of potential cluster tracking on Brightkite-Syn, Gowalla-Syn, Foursquare,
Foursquare-Syn, and LBSN. All methods take more time with the increased incubation period
Δt . Our efficient method BCG-Indexing clearly outperforms other competitors Online, Rtree, and
MG-Indexing on all datasets. In the Foursquare-Syn, only our method BCG-Indexing identifies the
transmission clusters successfully.
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Fig. 6. The average number of potential infecting users in 1-hop close contacts and potential transmission
clusters on four real datasets varied by the incubation period Δt .

Exp-2: Quality evaluation on the number of potential users. In this experiment, we compare
our potential transmission cluster model and another 1-hop close contact model. Our model iden-
tifies all the transmission chains and potential infected users in potential clusters. Different from
our model, the 1-hop close contact model only identifies the potential users who have contacted
with the query user individually. Figure 6 shows the average number of potential users on all real-
world datasets. Both methods identify more potential users with the increased incubation period
Δt . Significantly, our model identifies much more potential users than the 1-hop close contact
model. Although identifying more potential users may lead to more false positives in the result,
the benefit is missing fewer cases of “important” suspected users in larger potential clusters for
those critically dangerous disease pandemics. With 30 days incubation period, our model identifies
at least 45 times of the potential users of 1-hop close contact model. Figure 7 shows the average
rate of missing infected users on all real-world datasets. Our model miss no infected users in all
datasets and 1-hop close contact model miss nearly 20% in the largest two datasets Foursquare and
LBSN.

Exp-3: Parameter sensitivity evaluation on δt and δl . In this experiment, we conduct sensi-
tivity evaluation of our potential cluster model by varying two parameters of time threshold δt

and distance threshold δl . We test on all real-world datasets. Figures 8(a)–(d) show the number
of suspected users and the average query time varied by the time threshold δt . The time param-
eter δt from 1 minute to 60 minutes. Both the number of suspected users and the average query
time increase with the increased δt . In addition, we vary the distance parameter δl from 1 meter
to 1,000 meters. Figures 8(e)–(h) show the results varied by the distance threshold δl on all real-
world datasets. The number of suspected users and the average query time keep stable with the
increased δl . The reason is that most check-ins are sparse in spatial locations in our used datasets.
These check-in records cannot distinguish different tracking positions in the same building, e.g.,
one restaurant uses one consistent spatial location of check-in data. Figures 8(g)–(h) have a slightly
increased number of suspected users when δl increases from 100 to 1,000 meters. If we set the dis-
tance threshold δl = 5000 meters, the number of suspected users Cq increases to 94,725, which is
3.3 times of |Cq | = 28,506 when δl = 1000. Here, we only test δl ∈ [1,1000], because the COVID-19
is difficult to transmit for a long distance in real world. As a result, the size of potential transmis-
sion cluster and the average query time have a slightly stable performance with the increased δl

in Figures 8(e)–(h).

Exp-4: Indexing evaluation of different index construction methods. In this experiment,
we evaluate the efficiency of two indexing methods MG-Indexing and BCG-Indexing. Figure 9
reports the index construction time on seven datasets. As we can see, our proposed method
BCG-Indexing clearly wins MG-Indexing on all datasets. In the Brightkite-Syn, Gowalla-Syn,
Foursquare, Foursquare-Syn, and LBSN, MG-Indexing fails to construct the index timely within 30
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Fig. 7. The average rate of missing infected users in 1-hop close contacts and potential transmission clusters
on four real datasets varied by the incubation period Δt .

Fig. 8. Parameter sensitivity evaluation varied by δt and δl on all datasets.

Table 3. The Index Size (in Megabytes) of Different Indexing Methods and
Various Parameters on all Datasets

Space Cost Parameters
Dataset Online R-tree MG-Index BCG-Index m n |Cq | c b d

BK 18MB 379MB 601MB 45MB 4M 51K 165 42K 3K 549
BK-Syn 208MB 4GB / 495MB 52M 51K 3K 40M 638K 6K

GW 25MB 515MB 90MB 29MB 6M 107K 77 36K 2K 2K

GW-Syn 206MB 4GB / 236MB 51M 107K 7K 63M 847K 12K

FQ 132MB 3GB / 151MB 33M 266K 275 41K 4K 9K

FQ-Syn 473MB 9GB / 806MB 118M 266K 14K 78M 1M 26K

LBSN 360MB 7GB / 410MB 90M 3M 1K 122K 5K 15K

Here, K = 103 and M = 106. n = |V | and m = |D | are the number of users and records in database D , respectively. The
parameters |Cq | and c are the average number of users and close contact edges in ground-truth cluster Cq ,
respectively. b is the average size of bipartite graphs in BCG-Index. d is the maximum number of records within a
close contact time window.

hours, while BCG-Indexing only takes nearly 1,000 seconds on Brightkite-Syn and Gowalla-Syn,
and 5,000 seconds on Foursquare. In addition, Table 3 reports the index size on disk and various
parameters in complexity analysis for R-tree, MG-Indexing, and BCG-Indexing. For the index size,
BCG-Indexing takes about three times as the size of original dataset in the worst cases, which is
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Fig. 9. The index construction time of different indexing methods on all datasets.

Fig. 10. Quality evaluation of our potential transmission cluster model with missing records.

much smaller than R-tree and MG-Indexing. Moreover, the parameters c ≤ m and b ≤ c holds.
This validates the complexity analysis and comparison in Section 6.3.

Exp-5: Quality evaluation of potential transmission cluster model on datasets with miss-

ing records. We also evaluate the quality of our potential cluster model when the missing data
records happened in spatio-temporal D. We randomly remove 2% to 10% records from each dataset
and compare the percent of missing infectious users in the ground-truth transmission clusters.
Figure 10(a) shows the percentage of missing infectious users on Brightkite, Gowalla, and
Foursquare. Our model successfully identifies the potential cluster members with missing at most
3% on Brightkite, 4% on Gowalla, and 6% on Foursquare with a proportionality of 10% data records
missed from D, reflecting a robust modeling of our potential transmission cluster definition in real-
life noisy environment. Figure 10(b) shows the size of potential transmission cluster with missing
records of all datasets. Our model identifies most of infecting users even with 10% data records
missed.

Exp-6: A case study of COVID-19 transmission using Foursquare dataset and US con-

firmed cases. We conduct a COVID-19 transmission case study to evaluate our potential trans-
mission cluster model. We use two real-world datasets of users’ check-ins in Foursquare [51] and
COVID-19 confirmed cases in United States [39]. Specifically, we first randomly select 26,678 users
in Foursquare dataset as the transmission sources, where the sampling rate of transmission sources
in different states are different by following the infection rate of states in US [39]. Each transmis-
sion source is assigned with an infected time, which uses the timestamp of a random check-in
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Fig. 11. A case study of COVID-19 transmission using Foursquare dataset in United States.

record in US. Figure 11(a) depicts the distribution of transmission sources over all states in US,
using a map visualization tool Geopandas.2 We treat all these given transmission sources as our
query. Next, we apply our potential transmission model to discover potential COVID-19 transmis-
sion clusters within 14 days, for all query infected users. The volume distribution results of our
potential infected users over different US states are shown in Figure 11(b). To achieve a detailed

2https://geopandas.org/.
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visualization, we plot a zoom-in view of potential transmission clusters in California state, where
most users locate in three regions of Los Angeles, San Diego, and San Francisco Bay Area. Finally,
to validate the effectiveness of our model, we also report the real-world COVID-19 confirmed cases
in Figure 11(c). Compare the results in Figures 11(b) and 11(c), we observe that our model detect
no potential transmission clusters in some states, i.e., Idaho and Montana. Because the Foursquare
dataset has no check-in records located in these states. Nevertheless, our distribution results in
Figure 11(b) are very similar with the real US confirmed cases in Figure 11(c). The four states Cal-
ifornia, Texas, New York, and Florida have the maximum potential infected users, which are the
same as the real-world confirmed cases for all time in US [39]. This confirms the effectiveness of
our proposed potential transmission cluster model in the case of COVID-19 transmissions.

8 CONCLUSION AND FUTURE WORK

In this article, we motivate and investigate the problem of discovering query-dependent COVID-19
transmission clusters on spatio-temporal logs, which finds all potential infected users to a given
query of patient user and infection time. We propose three different methods including the online
search approach and two indexing based solutions. Our novel BCG-indexing approach achieves
a good balance of index construction and online query processing for fast suspected cluster dis-
covery. Extensive experiments on real-world datasets validate the effectiveness of our suspected
cluster model and query-dependent suspected cluster tracking algorithms.

Although the proposed BCG-indexing methods can efficiently uncover potential COVID-19
transmission clusters, the current algorithms leave three open issues for further improvements.
First, the querying algorithms are designed only for one single query. In real applications, several
patients may be confirmed simultaneously. Thus, it needs an efficient transmission cluster search
for multiple queries. We could further explore the fast detection of potential transmission clusters
for multiple queries in a batch. Second, the current algorithm of BCG-index construction is static,
which lies on the predefined parameters δt , δl , and Δt . It is unclear how can efficiently update
BCG-index over different dynamic settings for various disease transmissions. Third, the current
result of transmission clusters does not involve any infected risk analytics. In reality, different
persons may have quite different probabilities of infected risks even they are in the same trans-
mission cluster. Last but not least, this work also opens up several other interesting problems, e.g.,
finding potential outbreaks hotspots, transmission source detection, BCG-index maintenance over
evolving spatial-temporal data, and infected risk assessments.

REFERENCES

[1] Aniruddha Adiga, Lijing Wang, Benjamin Hurt, Akhil Sai Peddireddy, Przemyslaw Porebski, Srinivasan Venkatra-
manan, Bryan Lewis, and Madhav Marathe. 2021. All models are useful: Bayesian ensembling for robust high resolu-
tion covid-19 forecasting. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining. 2505–2513.
[2] Pritom Ahmed, Mahbub Hasan, Abhijith Kashyap, Vagelis Hristidis, and Vassilis J. Tsotras. 2017. Efficient computation

of top-k frequent terms over spatio-temporal ranges. In Proceedings of the ACM SIGMOD International Conference on

Management of Data. 1227–1241.
[3] Md Musfique Anwar, Chengfei Liu, and Jianxin Li. 2019. Discovering and tracking query oriented active online social

groups in dynamic information network. World Wide Web 22, 4 (2019), 1819–1854.
[4] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. 2018. Spatio-temporal data mining: A survey of problems and

methods. Computing Surveys 51, 4 (2018), 1–41.
[5] Chloë Brown, Jagmohan Chauhan, Andreas Grammenos, Jing Han, Apinan Hasthanasombat, Dimitris Spathis, Tong

Xia, Pietro Cicuta, and Cecilia Mascolo. 2020. Exploring automatic diagnosis of COVID-19 from crowdsourced res-
piratory sound data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining. 3474–3484.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 24. Publication date: February 2023.



24:22 X. Zhu et al.

[6] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility: User movement in location-based
social networks. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
1082–1090.

[7] Rui Dai, Shenkun Xu, Qian Gu, Chenguang Ji, and Kaikui Liu. 2020. Hybrid spatio-temporal graph convolutional net-
work: Improving traffic prediction with navigation data. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. 3074–3082.
[8] Chiara Francalanci, Barbara Pernici, and Gabriele Scalia. 2017. Exploratory spatio-temporal queries in evolving in-

formation. In Proceedings of the International Workshop on Mobility Analytics for Spatio-Temporal and Social Data.
138–156.

[9] Zhenxin Fu, Yu Wu, Hailei Zhang, Yichuan Hu, Dongyan Zhao, and Rui Yan. 2020. Be aware of the hot zone: A
warning system of hazard area prediction to intervene novel coronavirus COVID-19 outbreak. In Proceedings of the

43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2241–2250.
[10] Fred Galvin. 1995. The list chromatic index of a bipartite multigraph. Journal of Combinatorial Theory, Series B 63, 1

(1995), 153–158.
[11] Salah Ghamizi, Renaud Rwemalika, Maxime Cordy, Lisa Veiber, Tegawendé F. Bissyandé, Mike Papadakis, Jacques

Klein, and Yves Le Traon. 2020. Data-driven simulation and optimization for Covid-19 exit strategies. In Proceedings

of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 3434–3442.
[12] Jonathan L. Gross and Jay Yellen. 2005. Graph Theory and Its Applications. CRC Press.
[13] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching. In Proceedings of the ACM SIGMOD

International Conference on Management of Data. 47–57.
[14] Qianyue Hao, Lin Chen, Fengli Xu, and Yong Li. 2020. Understanding the urban pandemic spreading of COVID-19

with real world mobility data. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining. 3485–3492.
[15] Frank Harary. 1991. Graph Theory. Addison-Wesley.
[16] Xiaoyong Jin, Yu-Xiang Wang, and Xifeng Yan. 2021. Inter-series attention model for COVID-19 forecasting. In Pro-

ceedings of the 2021 SIAM International Conference on Data Mining. 495–503.
[17] David Kempe, Jon Kleinberg, and Éva Tardos. 2003. Maximizing the spread of influence through a social network. In

Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 137–146.
[18] Minseok Kim, Junhyeok Kang, Doyoung Kim, Hwanjun Song, Hyangsuk Min, Youngeun Nam, Dongmin Park, and

Jae-Gil Lee. 2020. Hi-COVIDNet: Deep learning approach to predict inbound COVID-19 patients and case study in
south korea. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
3466–3473.

[19] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network Dataset Collection. Retrieved June
2022 from http://snap.stanford.edu/data.

[20] Hui-Jia Li, Zhan Bu, Zhen Wang, and Jie Cao. 2019. Dynamical clustering in electronic commerce systems via opti-
mization and leadership expansion. IEEE Transactions on Industrial Informatics 16, 8 (2019), 5327–5334.

[21] Hui-Jia Li, Lin Wang, Yan Zhang, and Matjaž Perc. 2020. Optimization of identifiability for efficient community detec-
tion. New Journal of Physics 22, 6 (2020), 063035.

[22] Hui-Jia Li, Wenzhe Xu, Shenpeng Song, Wen-Xuan Wang, and Matjaž Perc. 2021. The dynamics of epidemic spreading
on signed networks. Chaos, Solitons & Fractals 151 (2021), 111294.

[23] Ting Li, Junbo Zhang, Kainan Bao, Yuxuan Liang, Yexin Li, and Yu Zheng. 2020. Autost: Efficient neural architec-
ture search for spatio-temporal prediction. In Proceedings of the ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining. 794–802.
[24] Yang Liu, Zhonglei Gu, and Jiming Liu. 2021. Uncovering transmission patterns of COVID-19 outbreaks: A region-

wide comprehensive retrospective study in Hong Kong. EClinicalMedicine 36 (2021), 100929.
[25] Yang Liu, Zhonglei Gu, Shang Xia, Benyun Shi, X.-N. Zhou, Yong Shi, and Jiming Liu. 2020. What are the underly-

ing transmission patterns of covid-19 outbreak?–an age-specific social contact characterization. EClinicalMedicine 22
(2020), 100354.

[26] Yuyu Luo, Wenbo Li, Tianyu Zhao, Xiang Yu, Lixi Zhang, Guoliang Li, and Nan Tang. 2020. Deeptrack: Monitoring
and exploring spatio-temporal data: A case of tracking COVID-19. Proceedings of the VLDB Endowment 13, 12 (2020),
2841–2844.

[27] Nikos Mamoulis, Huiping Cao, George Kollios, Marios Hadjieleftheriou, Yufei Tao, and David W. Cheung. 2004. Min-
ing, indexing, and querying historical spatiotemporal data. In Proceedings of the ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining. 236–245.
[28] Yannis Manolopoulos, Apostolos N. Papadopoulos, Apostolos N. Papadopoulos, and Yannis Theodoridis. 2006. R-Trees:

Theory and Applications: Theory and Applications. Springer Science & Business Media.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 24. Publication date: February 2023.

http://snap.stanford.edu/data


A Novel Graph Indexing Approach 24:23

[29] Lukas M. Marti, Michael P. Dal Santo, and Ronald Keryuan Huang. 2016. Modeling significant locations. US Patent
9,267,805.

[30] Mirco Nanni, Gennady Andrienko, Albert-László Barabási, Chiara Boldrini, Francesco Bonchi, Ciro Cattuto, Francesca
Chiaromonte, Giovanni Comandé, Marco Conti, Mark Coté, Frank Dignum, Virginia Dignum, Josep Domingo-Ferrer,
Paolo Ferragina, Fosca Giannotti, Riccardo Guidotti, Dirk Helbing, Kimmo Kaski, Janos Kertesz, Sune Lehmann, Bruno
Lepri, Paul Lukowicz, Stan Matwin, David Megias Jimenez, Anna Monreale, Katharina Morik, Nuria Oliver, Andrea
Passarella, Andrea Passerini, Dino Pedreschi, Alex Pentland, Fabio Pianesi, Francesca Pratesi, Salvatore Rinzivillo,
Salvatore Ruggieri, Arno Siebes, Vicenc Torra, Roberto Trasarti, Jeroen van den Hoven, and Alessandro Vespignani.
2021. Give more data, awareness and control to individual citizens, and they will help COVID-19 containment. Ethics

and Information Technology 23, 1 (2021), 1–6.
[31] Bing Ni, Qiaomu Shen, Jiayi Xu, and Huamin Qu. 2017. Spatio-temporal flow maps for visualizing movement and

contact patterns. Visual Informatics 1, 1 (2017), 57–64.
[32] Maya Okawa, Tomoharu Iwata, Takeshi Kurashima, Yusuke Tanaka, Hiroyuki Toda, and Naonori Ueda. 2019. Deep

mixture point processes: Spatio-temporal event prediction with rich contextual information. In Proceedings of the

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 373–383.
[33] Dimitris Papadias, Yufei Tao, P. Kanis, and Jun Zhang. 2002. Indexing spatio-temporal data warehouses. In Proceedings

of the IEEE International Conference on Data Engineering. 166–175.
[34] Zhe Peng, Jinbin Huang, Haixin Wang, Shihao Wang, Xiaowen Chu, Xinzhi Zhang, Li Chen, Xin Huang, Xiaoyi

Fu, Yike Guo, , and Jianliang Xu. 2021. BU-Trace: A permissionless mobile system for privacy-preserving intelligent
contact tracing. In Proceedings of the DASFAA 2021 International Workshops: BDQM, GDMA, MLDLDSA, MobiSocial,

and MUST. 381–397.
[35] Zhe Peng, Cheng Xu, Haixin Wang, Jinbin Huang, Jianliang Xu, and Xiaowen Chu. 2021. P2B-trace: Privacy-preserving

blockchain-based contact tracing to combat pandemics. In Proceedings of the 2021 International Conference on Man-

agement of Data. 2389–2393.
[36] Putsadee Pornphol and Suphamit Chittayasothorn. 2020. System dynamics model of COVID-19 pandemic situation:

The case of phuket Thailand. In Proceedings of the International Conference on Computer Modeling and Simulation.
77–81.

[37] Amray Schwabe, Joel Persson, and Stefan Feuerriegel. 2021. Predicting COVID-19 spread from large-scale mobility
data. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 3531–
3539.

[38] Yufei Tao and Dimitris Papadias. 2001. The mv3r-tree: A spatio-temporal access method for timestamp and interval
queries. In Proceedings of the International Conference on Very Large Data Bases. 431–440.

[39] The New York Times. 2021. Coronavirus (Covid-19) Data in the United States. Retrieved June 2022 from https://github.
com/nytimes/covid-19-data.

[40] Vincent S. Tseng, Josh Jia-Ching Ying, Stephen T. C. Wong, Diane J. Cook, and Jiming Liu. 2020. Computational
intelligence techniques for combating COVID-19: A survey. IEEE Computational Intelligence Magazine 15, 4 (2020),
10–22.

[41] Bowen Wang, Yanjing Sun, Trung Q. Duong, Long D. Nguyen, and Lajos Hanzo. 2020. Risk-aware identification of
highly suspected COVID-19 cases in social IoT: A joint graph theory and reinforcement learning approach. IEEE

Access 8 (2020), 115655–115661.
[42] WHO. 2020. Retrieved June 2022 from https://www.who.int/docs/default-source/coronaviruse/situation-reports/

20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_4.
[43] Guojun Wu, Yichen Ding, Yanhua Li, Jie Bao, Yu Zheng, and Jun Luo. 2017. Mining spatio-temporal reachable regions

over massive trajectory data. In Proceedings of the IEEE International Conference on Data Engineering. 1283–1294.
[44] Huanhuan Wu, James Cheng, Yi Lu, Yiping Ke, Yuzhen Huang, Da Yan, and Hejun Wu. 2015. Core decomposition in

large temporal graphs. In Proceedings of the IEEE International Conference on Big Data. 649–658.
[45] Huanhuan Wu, Yuzhen Huang, James Cheng, Jinfeng Li, and Yiping Ke. 2016. Reachability and time-based path queries

in temporal graphs. In Proceedings of the IEEE International Conference on Data Engineering. 145–156.
[46] Marcin Wylot, Philippe Cudré-Mauroux, Manfred Hauswirth, and Paul Groth. 2017. Storing, tracking, and querying

provenance in linked data. IEEE Transactions on Knowledge and Data Engineering 29, 8 (2017), 1751–1764.
[47] Xiaopeng Xiong, Mohamed F. Mokbel, and Walid G. Aref. 2005. Sea-cnn: Scalable processing of continuous k-nearest

neighbor queries in spatio-temporal databases. In Proceedings of the IEEE International Conference on Data Engineering.
643–654.

[48] Zhe Xu, Lei Shi, Yijin Wang, Jiyuan Zhang, Lei Huang, Chao Zhang, Shuhong Liu, Peng Zhao, Hongxia Liu, Li Zhu,
and Y. Tai. 2020. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. The Lancet

Respiratory Medicine 8, 4 (2020), 420–422.

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 24. Publication date: February 2023.

https://github.com/nytimes/covid-19-data
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_4


24:24 X. Zhu et al.

[49] Dingqi Yang, Bingqing Qu, Jie Yang, and Philippe Cudre-Mauroux. 2019. Revisiting user mobility and social relation-
ships in LBSNs: A hypergraph embedding approach. In Proceedings of the World Wide Web Conference. 2147–2157.

[50] Dingqi Yang, Daqing Zhang, Longbiao Chen, and Bingqing Qu. 2015. Nationtelescope: Monitoring and visualizing
large-scale collective behavior in LBSNs. Journal of Network and Computer Applications 55 (2015), 170–180.

[51] Dingqi Yang, Daqing Zhang, and Bingqing Qu. 2016. Participatory cultural mapping based on collective behavior data
in location-based social networks. ACM Transactions on Intelligent Systems and Technology 7, 3 (2016), 1–23.

[52] Zhao Yang and Nathalie Japkowicz. 2017. Meta-morisita index: Anomaly behaviour detection for large scale tracking
data with spatio-temporal marks. In Proceedings of the IEEE International Conference on Data Mining Workshops. 675–
682.

[53] Tianming Zhang, Yunjun Gao, Lu Chen, Wei Guo, Shiliang Pu, Baihua Zheng, and Christian S. Jensen. 2019. Efficient
distributed reachability querying of massive temporal graphs. The VLDB Journal 28, 6 (2019), 871–896.

Received 23 June 2021; revised 24 December 2021; accepted 8 May 2022

ACM Transactions on Knowledge Discovery from Data, Vol. 17, No. 2, Article 24. Publication date: February 2023.


