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Community detection is an important topic in network analysis, and recently many community detection

methods have been developed on top of the Nonnegative Matrix Factorization (NMF) technique. Most NMF-

based community detection methods only utilize the first-order proximity information in the adjacency ma-

trix, which has some limitations. Besides, many NMF-based community detection methods involve sparse

regularizations to promote clearer community memberships. However, in most of these regularizations, dif-

ferent nodes are treated equally, which seems unreasonable. To dismiss the above limitations, this article

proposes a community detection method based on node centrality under the framework of NMF. Specifically,

we design a new similarity measure which considers the proximity of higher-order neighbors to form a more

informative graph regularization mechanism, so as to better refine the detected communities. Besides, we

introduce the node centrality and Gini impurity to measure the importance of nodes and sparseness of the

community memberships, respectively. Then, we propose a novel sparse regularization mechanism which

forces nodes with higher node centrality to have smaller Gini impurity. Extensive experimental results on a

variety of real-world networks show the superior performance of the proposed method over thirteen state-

of-the-art methods.
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1 INTRODUCTION

Recently, networks have been a prevalent tool to model many real-world entities and their relation-
ships, such as online social networks, collaboration networks, citation networks, protein-protein
interaction networks, and so on [14, 35]. One fundamental component of these real networks is
their underlying communities. Generally, a community is usually regarded as a group of nodes that
are closely connected internally, meanwhile the external links between different communities are
sparse. A network may contain several communities. The task of community detection [9, 14, 20]
aims to find all these communities, which is also called graph clustering [13, 27].

In the literature, there exist a dozens of models to detect communities, due to complex struc-
tures and various types of communities over different networks in reality. Traditional graph clus-
tering algorithms [4, 12, 28–30, 33, 36] mostly need to use network information (e.g., between-
ness [28]) to identify communities. However, as the scale of networks increases, these tradi-
tional algorithms will be too time-consuming to be suitable for efficiently detecting communities.
Recently, NMF-based community detection methods are widely used as an effective clustering
model [16, 18, 21–23, 25, 31, 32, 34, 38, 41, 43, 44, 46, 51]. The purpose of NMF is to decompose
the adjacency matrix of a network into two low-dimensional representations, and one of which
can be interpreted as a node-community membership matrix. Based on this matrix, one can infer
the underlying community structure in the network. The community detection method based on
NMF has the characteristics of high scalability and good interpretability. However, nearly all ex-
isting NMF-based community detection algorithms only utilize the adjacency matrix, ignoring the
higher-order proximity information of nodes. Besides, in most of these NMF-based community de-
tection algorithms, the weights of sparse regularization (if used) of different nodes are equal, which
seems unreasonable. Intuitively, nodes with higher degree shall be paid with more attention.

To tackle the aforementioned limitations, in this article, we first propose a novel node similarity
measure and a novel community membership regularization mechanism. Specifically, we design
a new node similarity measure to quantify the likeness of topological structures between two
nodes, and use it to regularize the detected communities. The proposed similarity measure can uti-
lize more useful information (i.e., higher-order neighbors) than many existing similarity measures.
Besides, we design a novel node centrality [8] and Gini impurity [2] –based regularization mech-
anism to promote sparsity of the community memberships of nodes with higher node centrality.
Specifically, we adopt the node centrality and Gini impurity to measure the importance levels of
nodes and confusion levels of community memberships, respectively, and use these two newly in-
troduced measures to regularize the community membership matrix. To reasonably apply the two
above-proposed techniques for community detection, we propose a novel community detection
algorithm, namely NMF based on Node Centrality (NCNMF for short), which fuses them into
an NMF framework. Distinct from previous methods, our algorithm combines matrix factorization
and graph properties, which can not only take advantage of the high scalability and good inter-
pretability of NMF, but also incorporate the basic characteristics of the graph, has the advantage
of being more effective than previous methods. To optimize our proposed NCNMF method, we de-
velop an efficient optimization algorithm. Furthermore, we also conduct theoretical analysis on the
convergence of the optimization algorithm and computational complexity of the whole community
detection process. Figure 1 shows an overview framework of our proposed NCNMF method.

The main contributions of this article are summarized as follows:

(1) We propose a new similarity measure, namely h-order weighted Jaccard, and use it as a vi-
tal ingredient to regularize the detected communities. The good side is that our proposed
h-order weighted Jaccard contains more information of higher-order neighbors than the
existing local similarity measures, which is good for community detection.
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Fig. 1. The framework of the proposed NCNMF method.

(2) We leverage the node centrality and Gini impurity to form a community regularization
mechanism, which makes the community memberships of nodes with higher node cen-
trality to be sparse. By reducing the importance of nodes with low node centrality and
increasing the importance of nodes with high node centrality, the process of non-negative
matrix factorization targeted for community detection can be made more effectively.

(3) We propose a novel NCNMF method for community detection, which utilizes the newly pro-
posed similarity measure and sparse regularization mechanism under the NMF framework.

(4) We derive an efficient optimization algorithm based on the gradient descent method with
theoretically guaranteed convergence to solve NCNMF. Moreover, the computational
complexity of the whole community detection process is analyzed. It scales cubically with
the number of nodes in the network, which is the same as many existing NMF-based
algorithms and thus guarantees its efficiency.

(5) We conduct extensive experiments on eight real-world benchmark networks to test NCNMF,
in comparison with thirteen state-of-the-art community detection methods. Experimental
results not only show the great superiority of NCNMF, but also demonstrate that NCNMF
strikes a good balance between effectiveness and efficiency. Moreover, we validate the
theoretical analysis and conduct the sensitivity analysis.

The rest of this article is organized as follows: In Section 2, we give a brief review of related
work. Next, we present the preliminaries of community detection in Section 3. The proposed
NCNMF model is then detailed in Section 4, followed by the optimization algorithm and theo-
retical analysis in Section 5. In Section 6, extensive experimental results are reported. This article
is finally concluded in Section 7.

2 RELATED WORK

In this section, we provide a brief review about related traditional graph clustering algorithms and
NMF-based community detection methods.

2.1 Traditional Graph Clustering Algorithms

Traditional graph clustering algorithms utilize graph characteristics to obtain tight clustering of
nodes. Among them, the pioneers, Newman et al. [28], first proposed the most widely adopted
method for community detection. Specifically, Newman et al. discovered the community structure
through one of a number of possible “betweenness” measures, and proposed a measure called mod-

ularity for measuring the strength of the detected community structure. Although modularity is a
well-designed metric, it still has room for efficiency. In order to speed up modularity-based commu-
nity detection, Blondel et al. [4] proposed the Louvain method to extract the community structure
of large networks, with the help of a heuristic method to speed up modularity optimization. In order
to exploit the overlapping nature of communities, Palla et al. [29] proposed the first algorithm that
can find overlapping communities in networks, meaning that nodes can belong to multiple commu-
nities at the same time. Subsequently, many heuristic community detection methods are developed.
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For example, Raghavan et al. [33] investigated a simple label propagation algorithm (LPA) that
only uses the network structure; Perozzi et al. [30] proposed a novel approach for learning latent
representations of vertices called DeepWalk, which uses random walks to approximate the point-
wise mutual information matrix obtained by pooling normalized adjacency matrix powers; Shao
et al. [36] proposed a new community detection algorithm called Attractor, which automatically
spots communities in a network by examining the changes of “distances” among nodes; Epasto et al.
[12] proposed the Ego-Splitting framework to detect communities in complex networks. Berah-
mand et al. [3] proposed a local approach based on the detection and expansion of core nodes,
which has the ability to detect all communities in a network using local information as well as iden-
tify various roles of nodes. Besides, evolutionary algorithm-based community detection methods
have also attracted much attention recently. For example, Lyu et al. [24] proposed an evolutionary-
based local community detection algorithm, which uses the entire acquired information to detect
local communities in complex networks; Teng et al. [39] proposed a multi-objective evolutionary
algorithm based on similar attributes for the detection of overlapping communities in at-
tributed networks. Furthermore, aiming to exploit the higher-order connections of nodes,
Huang et al. [15] proposed a method of higher-order connection enhanced multi-view modularity,
which is to enhance the intra-community connection of each view by using the higher-order
connectivity structure.

2.2 Learning Model based Community Detection

Learning model based community detection algorithms try to learn compact node representations
to determine the underlying community structure. NMF-based community detection methods at-
tempt to learn community structures by factorizing the adjacency matrix and have good inter-
pretability [19] and many applications. As pioneers, Psorakis et al. [32] presented a probabilistic ap-
proach for community detection, which utilizes a Bayesian nonnegative matrix factorization model
to extract community information from a network for overlapping community detection. Cai et
al. [6] developed a graph based approach (GNMF) for parts-based data representation, which
constructs an affinity graph to encode the geometrical information and seeks a matrix factorization
to preserve the graph structure. Subsequently, many matrix tri-factorization-based community de-
tection methods have been proposed. For example, Zhang et al. [51] proposed a method called
bounded nonnegative matrix tri-factorization, which can explicitly model and learn the community
memberships of nodes as well as the interactions among communities; Jin et al. [16] proposed the
graph regularized nonnegative matrix tri-factorization model, which utilizes the spectral proper-
ties of the network to detect communities. To fully preserve the symmetric nature of the adjacency
matrix, Kuang et al. [18] developed the symmetric NMF (SymmNMF) model, which decomposes
the second power of the normalized adjacency matrix based on symmetric nonnegative matrix
factorization. Besides, Filippo et al. [31] argued that strict orthogonality of the community mem-
bership matrix is important and proposed the orthogonal nonnegative matrix factorization

(ONMF) model, which imposes both nonnegativity and orthogonality constraints on the commu-
nity membership matrix. Wang et al. [41] argued that the structure and inherent properties of the
network should be preserved in the network embedding, and proposed a modularized nonnega-

tive matrix factorization (MNMF) model to incorporate the community structure into network
embedding. By recognizing that NMF is just a decoder, Sun et al. [38] proposed a nonnegative

symmetric encoder-decoder approach (NNSED) for community detection, and explicitly inte-
grated a decoder and an encoder into a unified loss function. Ye et al. [45] proposed a novel deep

autoencoder-like NMF model (DANMF) for community detection, which had extended Sun’s
NNSED to a deep autoencoder-like architecture, this architecture empowers DANMF to learn the
hierarchical mappings between the original network and the final community assignment with im-
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plicit low- to high-level hidden attributes of the original network learnt in the intermediate layers.
To encode inherent community structures into node embeddings, Li et al. [22] proposed the CDE
model based on the observation of densely connected structures in communities. For detecting
communities in a dynamic setting, Ma et al. [25] proposed two evolutionary nonnegative matrix
factorization frameworks to detect dynamic communities. For detecting communities in a hyper-
graph, Li et al. [21] proposed an edge enhancement approach for motif-aware community

detection (EdMot), which creates a graph composed of higher-order motifs, and clusters the cre-
ated graph by the Louvain method. For detecting communities through node homophily (i.e., node
similarity), Ye et al. [44] proposed the homophily preserving NMF (HPNMF) model, which can
reflect the inherent properties of communities. Besides, Ye et al. [47] intended to adaptively learn
an affinity matrix, which can capture the intrinsic similarity between nodes accurately, so as to
benefit the community detection results. Moreover, to better capture the overlapping nature of
communities, Ye et al. [46] proposed the discrete nonnegative matrix factorization model to seek
for a discrete (binary) community membership matrix directly. Recently, Rozemberczki et al. [34]
proposed a graph-embedding algorithm called GEMSEC, which learns community structures and
node embeddings simultaneously. As another line of research, semi-supervised community de-
tection methods have also attracted remarkable attention recently. For example, Liu et al. [23]
presented a semi-supervised nonnegative matrix factorization model for community detection,
which combines the idea of graph regularization with the pairwise constraints; Wu et al. [43] pro-
posed a novel SymmNMF-based semi-supervised clustering method, namely pairwise constraint

propagation-induced SymmNMF, which can learn the similarity and assignment matrices adap-
tively and simultaneously. However, most of the above NMF-based community detection methods
only work on the original network topology (i.e., the adjacency matrix), and regularize different
nodes equally if sparse regularization is involved, leading to poor results due to neglecting the
higher-order proximity of the graph and individual discrepancy of nodes. Unlike these methods,
our method utilizes the newly proposed similarity measure and sparse regularization mechanism,
which can further improve the quality of community detection.

Recently, with the rise of deep learning technology, many community detection models based
on neural network have been proposed. Zhang et al. [50] proposed an adaptive graph convolu-

tion method (AGC) for attributed graph clustering that exploits node relations and the diversity
of graphs to capture global cluster structure. Zhao et al. [52] proposed an inductive embedding
model, which utilized a multi-core convolutional neural network and a semi-supervised learning
mechanism to learn the robust representations for an attributed network. De et al. [10] proposed
an innovative approach for semi-supervised community detection, which exploited convolutional
neural networks and different properties of a network to build the network connections over par-
ticular sparse matrices. Since most of these models are designed for attribute networks, and the
emphasis of our research is on community detection in attribute-free networks, we only briefly
review them and refer interested readers to a recent article [37] including deep learning models
based on deep neural networks, deep nonnegative matrix factorization and deep sparse filtering.

3 PRELIMINARIES

In this section, we first introduce the main notations and terminologies used in this article. Then,
we present several existing similarity measures, the symmetric NMF model, and the homophily-
preserving NMF model.

3.1 Notations

We use boldface uppercase letters to represent matrices, boldface lowercase letters to represent
vectors, and italic lowercase letters to represent scalar values. An element of a vector x is repre-
sented by xi , and an element of a matrix X is represented interchangeably by xi j and (X)i j . We use
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Table 1. Summary of Notations

Symbol Description

X ∈ Rm×n a matrix
x a vector
diag(x) a diagonal matrix whose diagonal entries are composed of x

‖x‖2 Euclidean norm of the vector x

G an undirected and unweighted network
V the nodes in G
E the edges in G
n the number of the nodes in G
m the number of the edges in G
A ∈ {0, 1}n×n Boolean adjacency matrix
ai j the (i, j )th entry of matrix A

Γ(vi ) the neighbor set of node vi and itself
C the detected disjoint communities
ci the ith community, where 1 ≤ i ≤ k
ξ (vi ) the index of the community containing vi

xi j and (X)i j an element of a matrix X

xi an element of a vector x

1d the d-dimensional all-one vector

Id ∈ Rd×d the identity matrix
Em×n ∈ Rm×n the all-one matrix
xi : the ith row vector of X

x:j the jth column vector of X

Tr(X) the trace of X if it is square
X

T transpose of X

‖X‖F the Frobenius norm of X

S the logical statement
1(S ) the indicator function of the logical statement S

1d to denote a d-dimensional all-one vector, Id to denote an identity matrix in Rd×d , and Em×n to
denote an all-one matrix in Rm×n . We use diag(x) to represent a diagonal matrix whose diagonal
entries are composed of x. For a vector x ∈ Rn , we use ‖x‖2 to represent its Euclidean norm. For a
matrix X ∈ Rm×n , we use xi : and x:j to represent its ith row vector and jth column vector, respec-

tively. Besides, we adopt Tr(X) to denote the trace of X if it is square (i.e.,m = n), X
T to denote the

transpose of X, and ‖X‖F to denote the Frobenius norm of X. We use 1(S ) to denote the indicator
function of the logical statement S , i.e., 1(S ) = 1 if S is true, or 1(S ) = 0 otherwise.

Next, we introduce some notations used in networks. We consider an undirected and un-
weighted network G = (V,E), where the node set V = {v1,v2, . . . ,vn } represents all the nodes
in G and the edge set E = {e1, e2, . . . , em } ⊆ V × V represents all the edges in G, respectively.
We denote by n = |V | and m = |E |. The network G can be represented by a Boolean adjacency
matrix A ∈ {0, 1}n×n , whose (i, j )th entry ai j = 1((vi ,vj ) ∈ E). The symbol Γ(vi ) is defined as the
neighbor set of node vi and itself, i.e., Γ(vi ) = {vj : (vi ,vj ) ∈ E} ∪ {vi }. Besides, assume that we
know a priori that there are k communities to be detected in G, then our community detection al-

gorithm can return k detected disjoint communities as C = {ci | ci � ∅,
⋃k

i=1 ci = V, and ci ∩c j =

∅,∀ i � j}, where ci denotes the ith community for 1 ≤ i ≤ k . We use ξ (vi ) to denote the index
of the community containing vi , i.e., vi ∈ cξ (vi ) . For the convenience of reading, the notations of
this article are summarized in Table 1.
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3.2 Similarity Measures

We review different structural similarity metrics to measure the similarity of nodes. The similarity
of a pair of nodes (e.g., vi and vj ) is a measure about whether the two nodes should be allocated
into the same community or not. The existing similarity measures are categorized into two types
of local similarity measures and global similarity measures. The details are discussed below.

Local Similarity Measures. Local similarity measures include the naive similarity measure [44], the
Common Neighbor measure [27], the Cosine measure [49], and the Jaccard measure [49], and
so on. The Common Neighbor measure is defined as the number of common neighbors between
two nodes. The Cosine measure is a measure of similarity between two sequences of numbers (in
our case, the adjacency lists), which is defined as the dot product of the vectors divided by the
product of their lengths. It follows that the Cosine measure does not depend on the magnitudes of
the vectors, but only on their angle. Besides, the Cosine measure is basically used in calculating
document similarity. Since the Jaccard measure is an enhanced version of the Common Neighbor
measure, researchers now basically use the Jaccard measure instead of the Common Neighbor
measure to calculate nodes similarity. Next, we only focus on the naive similarity measure and the
Jaccard similarity measure.

(1) The naive similarity measure is defined as

Simnaive (vi ,vj ) = 1((vi ,vj ) ∈ E).

(2) The Jaccard similarity measure is defined as

SimJaccard (vi ,vj ) =
|Γ(vi ) ∩ Γ(vj ) |
|Γ(vi ) ∪ Γ(vj ) |

. (1)

The naive similarity Simnaive (vi ,vj ) is the simplest similarity measure based on the edge con-
nections. The naive similarity matrix is in fact equivalent to the adjacency matrix, which provides
great convenience in subsequent calculations. The Jaccard similarity SimJaccard (vi ,vj ) utilizes the
neighbor sets of nodes to calculate the similarity. It is defined as the size of the intersection divided
by the size of the union of two nodes’ neighbor sets Γ(vi ) and Γ(vj ).

Local similarity measures have two main advantages. One is that they provide an intuitive way
to characterize the node similarity. The other one is that they are convenient to calculate and
consume less time. However, the shortcomings of local similarity measures are also obvious. They
only consider the impact of directly connected neighbors on the similarity computations, ignoring
a lot of useful information, such as the higher-order neighbors of nodes [42].

Global Similarity Measures. Global similarity measures include the famous Katz index [17], LHN-II
index [1], and the like. The Katz index is computed by searching the graph for paths and adding
the counts of each path length weighted by user specified weights, which is a graph-based compu-
tational method and computes similarities between nodes in a global network. The LHN-II index
is proposed based on the regular equivalence [1], which indicates nodes x and y are similar when
the neighbors of node x are similar to node y, that is, the similarity of the nodes is transitive. In
addition, the similarity matrix constructed in the subspace clustering model [40] also belongs to
the global similarity measure. The most common method for building similarity matrices in these
models is the fully connected method, where all points have a weight value greater than 0. Differ-
ent kernel functions can be selected to define the edge weights, the most commonly used one is
the Gaussian kernel function. They can overcome the shortcomings of local similarity measures
by taking the whole network topology into consideration, but their time complexities are higher
than those of local similarity measures, which are not scalable on large networks [42].
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As the scale of the networks becomes larger, researchers prefer to choose local similarity mea-
sures to detect communities, since they consume less time.

3.3 Symmetric NMF

We introduce the symmetric NMF model (SymmNMF) [18]. SymmNMF tries to reconstruct the
adjacency matrix A by two identical factor matrices, representing node-community memberships,
and it serves as a building block of our proposed NCNMF method. Specifically, we denote the
community membership matrix as H ∈ Rn×k , where each element hil reflects the tendency that

vi ∈ cl , SymmNMF models the expected number of edges betweenvi andvj as âi j =
∑k

l=1 hilhjl =

hi :h
T
j : . It is obvious that, for any (vi ,vj ) ∈ E, âi j should be consistent with ai j (so that the edge

modeling is precise), which gives rise to the following optimization problem of SymmNMF:

min
H≥0

‖A − HH
T ‖2F .

3.4 Homophily Preserving NMF

We introduce the homophily preserving NMF model (HPNMF) [44]. The basic idea of HPNMF
is to take node similarity into consideration. The more similar two nodes are, the more similar
their community memberships should be. According to [44], given a well-defined similarity matrix
S ∈ Rn×n , a good way to implement the above idea is to optimize the following optimization
problem:

min
H≥0,HT

H=Ik

‖A − HH
T ‖2F + λ Tr(HT

LH) + γ ‖H1k ‖22 ,

where λ is a positive parameter controlling the importance of the node similarity information, γ
is also a positive parameter controlling the sparse regularization on H, the regularizer ‖H1k ‖22 =∑n

i=1 (hi :1k )2 =
∑n

i=1 ‖hi :‖21 is actually imposing �1-norm regularization on rows of H to make them
sparser, and L is the graph Laplacian matrix defined as

L = S
′ − S, (2)

where S is the above-mentioned similarity matrix, S
′ is a diagonal matrix with s ′ii =

∑n
j=1 si j .

4 NONNEGATIVE MATRIX FACTORIZATION BASED ON NODE CENTRALITY

In this section, we first propose a new similarity measure, namelyh-order weighted Jaccard, which
utilizes the structural information ofh-order neighborhood in a network. Then, we develop a novel
sparse regularization mechanism based on the node centrality and Gini impurity. Combining these
two techniques, we propose our NCNMF model for the community detection problem.

4.1 The Formula of h-order Weighted Jaccard Similarity

Let h be a nonnegative constant representing the number of hops and p be an integer number in
the range of [1,h]. For a given nodevi , we denote its directly-connected neighbors as Γ(vi ), and its
higher-order neighbors as Γp (vi ) = {vj ∈ V : vj locates in the p-hop neighborhood of vi and 2 ≤
p ≤ h}. Based on these two neighbor sets, we propose a new measure for calculating node similarity,
namely h-order weighted Jaccard (denoted as w-Jaccard) similarity. Its specific calculation is as
follows

Simw-Jaccard (vi ,vj |h) =
h∑

p=1

h∑

q=1

Ωp,q

|Γp (vi ) ∩ Γq (vj ) |
|Γp (vi ) ∪ Γq (vj ) |

, (3)

where Ωp,q is the weight of the sub-similarity |Γp (vi ) ∩ Γq (vj ) |/|Γp (vi ) ∪ Γq (vj ) |. In our scheme,
Ωp,q decreases as either p or q increases. The parameter h here is suggested to be set as a constant
in {1, 2, 3} [42], indicating that node vi can take h-order neighbors at most.
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Fig. 2. An example of h-order weighted Jaccard similarity and Gini impurity.

As mentioned in Section 3.2, the normal Jaccard similarity in Equation (1) only utilizes the in-
formation of directly connected neighbors. This neglects some useful information, such as the
higher-order neighbors of nodes, resulting in a limited accuracy of node similarity. We use the
following example to concretely illustrate the improvement of the w-Jaccard similarity over the
Jaccard similarity.

Example 1. Consider Figure 2(a) and Figure 2(b), the supergraph Ĝ adds two new nodes {v8,v9}
and three new edges {(v3,v8), (v4,v9), (v8,v9)} on top of G. Let us focus on the community c3 in

both networks. Intuitively, the relationship between nodes v3 and v4 in Ĝ in Figure 2(b) should be
closer than that in G in Figure 2(a). When we apply the w-Jaccard similarity (i.e., Equation (3)) with
h = 2 and Ωp,q = (5/8)pq [42] on the two nodes, we get Simw-Jaccard (v3,v4) = 73/128 in Figure 2(a)
and Simw-Jaccard (v3,v4) = 361/605 in Figure 2(b), which is in line with reality. However, if we
apply the normal Jaccard similarity (i.e., Equation (1)) on them, we find SimJaccard (v3,v4) = 3/5 in
Figure 2(a) and SimJaccard (v3,v4) = 3/7 in Figure 2(b), which contradicts the reality.

ALGORITHM 1: Calculation of the w-Jaccard Similarity

Input: Network G (V,E) and parameter h.
Output: The w-Jaccard similarity matrix S.

1 Initialize S← {0}n×n , Γp (vi ) ← ∅ for all p ∈ {1, . . . ,h} and vi ∈ V ;

2 for all (vi ,vj ) ∈ E do

3 Γ1 (vi ) ← Γ1 (vi ) ∪ {vj };
4 for all vi ∈ V do

5 for p ∈ {2, . . . ,h} do

6 for all (vk ,vj ) ∈ V × Γp−1 (vi ) do

7 Γp (vi ) ← Γp (vi ) ∪ {vk } if (vk ,vj ) ∈ E;

8 for all (vi ,vj ) ∈ V ×V do

9 for (p,q) ∈ {1, . . . ,h} × {1, . . . ,h} do

10 si j ← si j + Ωp,q
|Γp (vi )∩Γq (vj ) |
|Γp (vi )∪Γq (vj ) | ;

11 return S.

Algorithm 1 summarizes the whole procedure of constructing the similarity matrix based on
w-Jaccard. Given a network G (V,E) and parameter h, Algorithm 1 first initializes the similarity
matrix S and the higher-order neighbors Γp (vi ) for all vi ∈ V (line 1), and then gets Γ1 (vi ) for all
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ALGORITHM 2: Calculation of the Degree Matrix

Input: Network G (V,E).
Output: The degree matrix D.

1 Initialize D← {0}n×n , d (vi ) ← 0 for all vi ∈ V ;

2 for all (vi ,vj ) ∈ E do

3 d (vi ) ← d (vi ) + 1;

4 d (vj ) ← d (vj ) + 1;

5 for all vi ∈ V do

6 dii ← d (vi );

7 return D.

vi ∈ V (lines 2-3). Afterwards, it calculates Γp (vi ) for all vi ∈ V when p = 2, . . . ,h (lines 4-7).
Eventually, it extracts the w-Jaccard similarity matrix S via Equation (3) (lines 8-10) and returns
the matrix S (line 11).

4.2 Sparse Regularization Based on Node Centrality

In social networks, core nodes of a community usually have higher degrees and larger node cen-
trality. Node centrality measures the central property of a node, which reflects the importance of
a node in the network. Usually, the larger the centrality of a node vi , the more likely it will form a
community with its neighbor nodes. Inspired by the phenomenon, we in this part propose a new
sparse regularization scheme based on node centrality, i.e., enforcing the community memberships
of nodes with higher node centrality to be sparser.

In an undirected graph G (V,E), we utilize the degree of a node to represent its centrality [8],
which is defined as

NC (vi ) = d (vi ),

where d (vi ) is the degree of node vi . The degree matrix D = diag([d (v1),d (v2), . . . ,d (vn )]) is
used to represent the centrality of each node. Algorithm 2 summarizes the whole procedure of
constructing the degree matrix. Given a network G (V,E), Algorithm 2 first initializes the degree
matrix D and the nodes’ degree counters d (vi ) for allvi ∈ V (line 1), and then loops over (vi ,vj ) ∈
E to update d (vi )’s until they are exactly node degrees (lines 2-4). Eventually, it assigns d (vi )’s to
the degree matrix D (lines 5-6) and returns the matrix D (line 7).

Besides, the Gini impurity [2] is defined as

Gini (vi ) =
k∑

l=1

pil (1 − pil ),

where pil is the probability that node vi belongs to the lth community and k is the number of
communities. It is introduced to judge whether the community membership of a node is sparse,
i.e., a lower value of the Gini impurity implies a sparser community membership. In the contexts
of NMF-based community detection, we propose the following formula to evaluate whether the
community membership of vi is chaotic.

Gini (vi ) =
k∑

j=1

hi j (1 − hi j ) = [H(Ek×n − H
T )]ii ,

where H = (hi j ) ∈ Rn×k
+ is the community membership matrix with H1k = 1n .
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Fig. 3. The flowchart of the proposed NCNMF method.

Example 2. Consider again the network G in Figure 2(a) and the corresponding community
memberships in Figure 2(c). In accordance with the above formula, the community membership of
nodev1 is [0.4, 0.3, 0.3], thereforeGini (v1) = 0.4× (1− 0.4)+ 0.3× (1− 0.3)+ 0.3× (1− 0.3) = 0.66.
Similarly, the community membership of node v2 is [0.2, 0.8, 0], therefore Gini (v2) = 0.2 × (1 −
0.2) + 0.8 × (1 − 0.8) + 0 × (1 − 0) = 0.32. The results show that the community membership of
node v2 is purer than that of node v1. It is in accord with the reality: it is difficult to distinguish
which community that node v1 belongs to, but node v2 can be easily identified as belonging to c2.

The focus of our sparse regularization scheme is to reduce the value of Gini (vi ) for those vi

with larger node centrality, thereby making their community memberships sparser and increasing
their separability. Specifically, the sparse regularization term involved in our model is formulated
as

Tr[H(Ek×n − H
T )D].

4.3 Nonnegative Matrix Factorization Based on Node Centrality

Based on the above discussions, a variant NMF model based on node centrality, i.e., NCNMF, is
proposed to detect disjoint communities. Figure 3 shows a flowchart of our proposed NCNMF
method on how to detect communities. Initially, an adjacency matrix is constructed according to
the input data, and then the similarity matrix and degree matrix are obtained from the adjacency
matrix. Subsequently, we utilize the NCNMF model to obtain the community membership matrix
and thus divide the community. The corresponding optimization model is formulated as

min
H≥0,

H1k=1n

J =‖A − HH
T ‖2F + λ Tr(HT

LH) + α Tr[H(Ek×n − H
T )D].

(4)

The explanations of each term and constraint are as follows:

(1) ‖A −HH
T ‖2F : ‖A −HH

T ‖2F is the objective function of the SymmNMF, which serves as the
backbone of our proposed community detection method NCNMF.

(2) λ Tr(HT
LH) : Tr(HT

LH) aims to make two similar nodes be assigned to the same community.
Here, λ is a positive parameter controlling the importance of the node similarity information,
L is the graph Laplacian matrix defined by Equation (2) (in which S is replaced by our w-
Jaccard similarity matrix).

(3) α Tr[H(Ek×n − H
T )D] : Recall that [H(Ek×n − H

T )]ii represents the Gini impurity of the
community membership of node vi , thus the term Tr[H(Ek×n − H

T )D] aims to decrease
Gini (vi ) for allvi with higher node centrality. In this way, nodes with higher node centrality
will be forced to possess purer (i.e., sparser) community memberships. This term plays the
role of sparse regularization. Here, α is a positive parameter controlling the importance of
this regularization.
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ALGORITHM 3: Community Detection Based on NCNMF

Input: Network G (V, E), parameters λ, α , δ , β , h, the maximum number of iterations T , the
number of communities to be detected k .

Output: The k detected communities in G.
1 Extract adjacency matrix A from G and compute degree matrix D via Algorithm 2;
2 Get similarity matrix S via Algorithm 1 with input adjacency matrix A and parameter h;
3 Set t ← 0, randomly initialize Ht ≥ 0, and compute the initial value of the objective function Jt ;
4 while t < T do
5 Update Ht according to the updating rule (7);
6 t ← t + 1;
7 Update the value of the objective function Jt ;
8 if stopping criterion is satisfied then
9 break;

10 for all vi ∈ V do
11 Set ξ (vi ) ← arg maxj (ht )i j ;
12 Update cξ (vi ) ← cξ (vi ) ∪ {vi };
13 return the k detected communities C = {c1, c2, . . . , ck }.

(4) H1k = 1n : This constraint restricts the sum of each row of the community membership
matrix H to be 1, which is the premise of the Gini impurity.

However, as the objective function of Problem (4) is a quartic function of H, and there are two
constraints simultaneously imposed on H, it is actually hard to get the analytical solution of this
optimization problem.

5 OPTIMIZATION AND THEORETICAL ANALYSIS

In this section, we derive an optimization algorithm based on the gradient descent method to solve
Problem (4). Then, we analyze the convergence of this algorithm and computational complexity
of the whole NCNMF-based community detection process.

5.1 Solution Method

Instead of optimizing Problem (4) directly, we equivalently reformulate it as

min
H≥0

J = ‖A − HH
T ‖2F + λ Tr(HT

LH) + α Tr[H(Ek×n − H
T )D] + δ ‖H1k − 1n ‖22 , (5)

where δ is a large positive constant to ensure that the sum of each row of the community mem-
bership matrix H equals to 1. To optimize Problem (5), we first rewrite it in the trace form as

min
H≥0

J = Tr(AA
T − 2AHH

T + HH
T

HH
T ) + λ Tr(HT

LH)

+ α Tr[H(Ek×n − H
T )D] + δ Tr(HEk×k H

T − 2HEk×n + En×n ).

Then, we introduce a Lagrange multiplier matrix Φ ∈ Rn×k
+ for the nonnegative constraints on

H, which leads to the following Lagrangian function

JΦ = Tr(AA
T − 2AHH

T + HH
T

HH
T ) + λ Tr(HT

LH)

+ α Tr[H(Ek×n − H
T )D] + δ Tr(HEk×k H

T − 2HEk×n + En×n ) − Tr(ΦH
T ).
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The partial derivative of JΦ with respect to H is

∂JΦ
∂H
= − 4AH + 4HH

T
H + 2λLH + αDE

T
k×n − 2αDH + 2δHEk×k − 2δE

T
k×n − Φ.

By setting ∂JΦ/∂H = 0, we obtain

Φ = − 4AH + 4HH
T

H + 2λLH + αDE
T
k×n − 2αDH + 2δHEk×k − 2δE

T
k×n .

Following the Karush-Kuhn-Tucker (KKT) conditions [5] that Φ � H = 0, we have

(−4AH + 4HH
T

H + 2λLH + αDE
T
k×n − 2αDH + 2δHEk×k − 2δE

T
k×n )i jhi j = 0. (6)

This is the fixed-point equation that the optimal solution must satisfy.
There are many ways to iteratively update hi j . We here use the gradient descent method, i.e.,

hi j ← hi j − ϵi j
∂ J
∂hi j

, and set ϵi j = βhi j/(4HH
T

H + 2λS
′
H + αDE

T
k×n
+ 2δHEk×k )i j , where β is a

positive parameter in (0, 1), leading to the following updating rule:

hi j ← hi j (1 − β + βωi j ), (7)

where

ωi j = �
�

4AH + 2λSH + 2αDH + 2δE
T
k×n

4HH
T

H + 2λS′H + αDE
T
k×n
+ 2δHEk×k

�
�i j

.

Due to the updating rule (7), H will eventually satisfy the fixed point equation of Equation (6)
when converging. Clearly, 1− β > 0 and βωi j > 0, therefore the updating rule (7) guarantees H to
remain nonnegative in each iteration.

To conclude, Algorithm 3 summarizes the whole community detection algorithm based on NC-
NMF. Given a network G, Algorithm 3 first extracts its adjacency matrix A and degree matrix D

(line 1), and then gets the similarity matrix S via Algorithm 1 (line 2). Afterwards, Algorithm 3 op-
timizes NCNMF to get the community membership matrix H (lines 3-9). After NCNMF has been
well optimized, Algorithm 3 loops over all nodes to divide G into disjoint communities according
to the learned H (lines 10–12). Eventually, Algorithm 3 returns the detected communities (line 13).

5.2 Convergence Analysis

Before we proceed, we first state the following lemma:

Lemma 3. Given parameters α > 0 and δ > 0, the function f (H) = α Tr[H(Ek×n − H
T )D] +

δ ‖H1k − 1n ‖22 is lower-bounded by

nδ − 4nkδ 2

4 (δk − (1 + k (k − 1)) αn)
,

under the conditions that

δ >
(1 + k (k − 1)) αn

k
≥ 0 and H ≥ 0.

Proof. To begin with, we denote H = [h1, h2, . . . , hn]T , where hi ∈ Rk×1
+ is the transpose of the

ith row vector of H. We first row-wisely decompose f (H) =
∑n

i=1 f (hi ), where

f (hi ) = α
k∑

j=1

diihi j (1 − hi j ) + δ
(
h

T
i 1k − 1

)2
= αdii (hT

i 1k − h
T
i hi ) + δ

(
h

T
i 1k − 1

)2
.

Clearly, f (hi ) is a quadratic function in hi . It is computed that

f (hi ) = δ + (αdii 1k − 2δ1k )T
hi +

1

2
h

T
i (2δEk×k − 2αdii Ik ) hi .
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The matrix (2δEk×k − 2αdii Ik ) in the quadratic form is never positive semi-definite. Indeed, it
has eigenvalues 2δk − 2αdii ,−2αdii , . . . ,−2αdii . No matter how big δ is, there are always k − 1
strictly negative eigenvalues of the same value −2αdii . However, it is noted that, the normalized

eigenvector associated with the largest eigenvalue is ξ1 = [1, 1, . . . , 1]/
√
k ∈ Rk

++.
Next, we can utilize the simultaneous nonnegativity of hi and ξ1 to exploit deeper-level

properties of the problem. We first expand hi in terms of the bases of {ξ1, ξ2, . . . , ξk }, where
{ξ2, ξ3, . . . , ξk } are a system of orthonormal bases of span({ξ1})⊥ (s.t. span({ξ1, ξ2, . . . , ξk }) = Rk

and all of them are orthonormal), as

hi = β1ξ1 + β2ξ2 + . . . + βkξk ,

for which β1 = h
T
i ξ1 ≥ 0 since hi and ξ1 are both nonnegative. Equipped with this expansion, we

can obtain

1

2
h

T
i (2δEk×k − 2αdii Ik ) hi =

1

2
��
�

k∑

j=1

βjξ j
��
�

T

(2δEk×k − 2αdii Ik ) ��
�

k∑

j=1

βjξ j
��
�

=
1

2

k∑

j=1

β2
j

(
ξT

j (2δEk×k − 2αdii Ik )ξ j

)
. (8)

We here claim that |βj | ≤
√
kβ1, ∀ j � 1. This is because dim(Rk ) < ∞ and thus

|βj | = |hT
i ξ j | ≤ ‖hi ‖1 ‖ξ j ‖∞ ≤ ‖hi ‖1 ‖ξ j ‖2 = ‖hi ‖1 = h

T
i 1k =

√
kh

T
i ξ1 =

√
kβ1.

Therefore, by substituting the bounds for βj ’s into Equation (8), we can obtain

1

2
h

T
i (2δEk×k − 2αdii Ik ) hi ≥ β2

1 (δk − (1 + k (k − 1)) αdii ).

Besides, it is noted that

(αdii 1k − 2δ1k )T
hi =

√
k (αdiiξ1 − 2δξ1)T

hi = β1

√
k (αdii − 2δ ).

Putting the above two formulas together, we obtain

f (hi ) ≥ β2
1 (δk − (1 + k (k − 1)) αdii ) + β1

√
k (αdii − 2δ ) + δ .

Therefore, f (hi ) is lower-bounded if

δ >
(1 + k (k − 1)) αn

k
≥ (1 + k (k − 1)) αdii

k
≥ 0, (9)

with the lower bound as

δ − k (αdii − 2δ )2

4 (δk − (1 + k (k − 1)) αdii )
≥ δ − 4kδ 2

4 (δk − (1 + k (k − 1)) αn)
.

Hence, whenever δ satisfies Equation (9),

f (H) =
n∑

i=1

f (hi ) ≥ nδ − 4nkδ 2

4 (δk − (1 + k (k − 1)) αn)
,

as desired. �

The convergence of Algorithm 3 is theoretically guaranteed in the following theorem:

Theorem 4. Given a small enough value of β and δ > (1 + k (k − 1)) αn/k ≥ 0, Algorithm 3 will

monotonically decrease the objective function of Problem (5) in each iteration, and converge eventually.
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Proof. By the completeness of real numbers, any bounded monotonic sequence must converge.
As we use the gradient descent method to optimize Problem (5), whenever the learning rate is small
(which is achieved by a small β), the objective function of Problem (5) will decrease monotonically.
Besides, the objective function of Problem (5) has a lower bound, which is due to the fact that
the first term is obviously nonnegative, the second term as the sum of several quadratic forms of
the positive semi-definite matrix L is also nonnegative, while the last two terms are warranted to
be lower-bounded by Lemma 3. Hence, Algorithm 3 converges. �

5.3 Complexity Analysis

Recall that n is the number of nodes, h is a constant which means that a node can only take at
most h-order neighbors, k is the number of communities to be detected and t is the total number
of iterations when Algorithm 3 converges. The computational complexity of Algorithm 3 consists
of four parts:

(1) Computing Γp (vi )’s: By our computing scheme, the computational complexity of comput-

ing Γp (vi )’s for all vi ∈ V and p = 1, 2, . . . ,h is O (n2 + (h − 1)n3);
(2) Constructing the similarity matrix: There are a total of n nodes in the network, and

computing the w-Jaccard similarity for each pair of nodes requires a time complexity of
O (h2n), thus the computational complexity of constructing the similarity matrix is O (h2n3);

(3) Updating H: The update of H consists of a lot of matrix multiplications and divisions, which
takes O (n2k + nk2) time in each iteration. Since k ≤ n, the total computational complexity
of updating H is O (tn2k );

(4) Dividing G: For dividing G into communities, we only need to check the community mem-
bership vectors of all nodes. Therefore, the computational complexity of dividing G is O (nk ).

In summary, the overall computational complexity of Algorithm 3 is O (n2 + (h − 1)n3 + h2n3 +

tn2k +nk ), which can be considered as O (h2n3 + tn2k ), where h is a small constant in practice and
usually less than or equal to 3.

6 EXPERIMENTS

In this section, we conduct extensive experiments to evaluate the performance of our proposed
method in comparison with several state-of-the-art community detection methods. Our algorithms
are implemented in Python 3.7 and publicly available.1 All experiments are conducted on a Ubuntu
server with 3.70-GHz i9-10900K CPU and 128-GB main memory.

6.1 Experimental Settings

6.1.1 Networks. We use eight datasets of real-world networks with ground-truth communities
as shown in Table 2. In each network dataset, communities are formed by the nodes within the
same institution affiliation. As a preprocessing step, we remove all isolated nodes from the net-
works. The Texas, Cornell, Washington, and Wisconsin networks are downloaded from LINQS.2

The Gene, Citeseer, Reality-call, and BZR networks are downloaded from Network Repository.3

6.1.2 Comparative Methods. We compare our algorithm NCNMF with thirteen state-of-the-art
community detection methods, including PNMF [48], LPA [33], GNMF [6], SymmNMF [18], Deep-
Walk [30], ONMF [31], MNMF [41], Ego-Splitting [12], NNSED [38], DANMF [45], HPNMF [44],
EdMot [21], and AGC [50]. For detailed descriptions of these methods, we refer the readers to

1See https://github.com/wowoHead/NCNMF.
2See https://linqs.soe.ucsc.edu/data.
3See https://networkrepository.com/index.php.
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Table 2. Network Statistics of Eight Datasets

Statistic Texas Cornell Washington Wisconsin Gene Citeseer Reality-call BZR

# Nodes 185 195 217 262 1,103 3,264 6,809 14,479
# Edges 296 286 404 476 1,672 4,612 7,697 15,535
# Communities 5 5 5 5 2 6 2 10

Section 2. All these methods have already been shown to achieve good performance in community
detection.

6.1.3 Parameter Settings. By default, we set the maximum number of iterations as 500 for
all NMF-based methods. For each method, we run it 20 times and report the mean value with
standard deviation. For our method NCNMF, we tune both λ and α in the range of {10−3, 10−2,
10−1, 1, 10, 102, 103}, set the stopping criterion as (Jt−1 − Jt )/Jt−1 ≤ 10−4, where Jt represents
the objective function value in the t th iteration, and set the parameters δ = 105, h = 3, Ωp,q =

( |V |/|E |)pq [42], and β = 0.5 [11]. The PNMF, LPA, SymmNMF, DeepWalk, ONMF, MNMF, Ego-
Splitting, NNSED, EdMot, and AGC are parameter-free methods, in which no parameter setting
is needed. For GNMF, we set λ = 100 [6]. For HPNMF, we set λ = 1 and γ = 10−2 [44], and for
DANMF, we set the layer size as n → 256 → 128 → k and the maximum number of pre-training
iterations as 100 [45]. This experiment aims at evaluating the accuracy of the discovered commu-
nities w.r.t. the ground-truth communities. Thus, for all competitive methods, we set the number
of detected communities as the number of ground-truth communities, as listed in Table 2.

6.1.4 Evaluation Metrics. We adopt F -score [7] andAccuracy [26] to measure the quality of the
detected communities of all algorithms, as all networks have ground-truth communities.

The F -score is defined as

F -score =
2tp

2tp + f p + f n
,

where tp, f p, f n are the number of true positive, false positive and false negative hits obtained by
the pair confusion matrix, respectively. The metric is bounded between 0 and 1. The larger the
F -score , the better the community detection performance.

The Accuracy is defined as:

Accuracy =
tp + tn

tp + tn + f p + f n
,

where tp, tn, f p, f n are the number of true positive, true negative, false positive and false negative
hits obtained by the pair confusion matrix, respectively. The metric is bounded between 0 and 1.
The larger the Accuracy, the better the community detection performance.

6.2 Quality Evaluation of Community Detection Methods

This experiment evaluates the effectiveness of all community detection methods. Table 3 and
Table 4 present the F -score and Accuracy performance of NCNMF and other state-of-the-art
comparative methods on all the eight network datasets (parameters of NCNMF are tuned within
the range introduced in Section 6.1, and the results under the optimal parameters are reported). We
observe that NCNMF performs the best in 3/8 cases and 6/8 cases in terms of F -score andAccuracy,
respectively, with comparison to thirteen state-of-the-art community detection methods. Although
NCNMF is not the best in terms of F -score on the Texas, Cornell, Washington, and Citeseer net-
works, it achieves the second-best performance, and performs almost as well as the best methods.
Besides, NCNMF both ranks at top-2 in 7/8 cases in terms of F -score and Accuracy performance.
This outstanding performance strongly demonstrates the effectiveness of NCNMF. xvv
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Table 3. The F -score Results of Different Community Methods on the Eight Networks

Table 4. The Accuracy Results of Different Community Methods on the Eight Networks

Fig. 4. Quality comparison of three similarity measures on the eight networks.

6.3 Similarity Measurement Comparison

In this experiment, we test the effectiveness of three similarity measures, including the Naive
similarity, Jaccard similarity and our w-Jaccard similarity (when h = 2 and h = 3, respectively).
Specifically, we run different versions of NCNMF equipped with different similarity measurements
on all the networks, with λ = 102 and α = 1. The F -score results are reported in Figure 4. We find
that, on all the datasets, no matter the value of h is 2 or 3, the effects obtained by w-Jaccard are
always better than those of the naive similarity and the Jaccard similarity. Especially, the F -score
value corresponding to the w-Jaccard similarity (h = 3) on the Reality-call network is 0.9809,
which is far larger than that of the naive and Jaccard similarity measures, which are 0.6209 and
0.6235, respectively. From this experiment, we can conclude that our new similarity measure has
absolutely great advantages on all the datasets. Besides, we find that on small datasets (i.e., the
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Fig. 5. Ablation study of NCNMF using different values of λ and α on the four networks.

Table 5. The Comparison Results of Running Time of Different Methods (in Seconds)

Network PNMF GNMF LPA SymmNMF DeepWalk ONMF MNMF NNSED DANMF Ego-Splitting HPNMF EdMot AGC NCNMF

Texas 0.086 0.423 0.152 0.082 0.524 0.731 0.902 0.167 3.154 0.045 0.250 0.016 0.572 0.245
Washington 0.108 0.491 0.097 0.056 0.617 0.424 3.714 0.974 6.741 0.060 0.187 0.028 0.641 0.287
Gene 12.293 3.601 1.019 0.151 6.410 3.065 2.613 3.015 15.751 0.364 1.638 0.210 7.194 4.479
Citeseer 113.600 13.816 1.295 0.990 12.020 479.100 12.320 17.091 517.380 1.491 3.446 0.525 17.195 16.816

Texas, Cornell, Washington, and Wisconsin networks), the w-Jaccard similarity obtains analogous
performance no matter h = 2 or h = 3. This is because on small datasets, there may not be enough
higher-order neighbors. But on larger datasets (i.e., the Citeseer and Reality-call networks), the
w-Jaccard similarity with h = 3 shows better performance than that of h = 2, which verifies that
the w-Jaccard similarity with h = 3 can obtain more useful information on large-scale networks.

6.4 Ablation Study

In this part, we present an ablation study to show the effectiveness of each component of NCNMF.
Specifically, we run several ablated versions of NCNMF under different parameter settings, as
introduced below:

(1) Setting λ = 0 and α = 0, which shows the performance of the building block ‖A − HH
T ‖2F .

(2) Setting λ = 10 and α = 0, which shows the performance of the new similarity measure
proposed in Section 4.1.

(3) Setting λ = 0 and α = 10, which shows the performance of the sparse regularization pro-
posed in Section 4.2.

(4) Setting λ = 10 and α = 10, which shows the performance of fusing the new similarity
measure and sparse regularization.

We report the F -score results of all variant NCNMF methods on the Texas, Cornell, Washington,
and Wisconsin networks. Figure 5 shows that the combination of the new similarity measure and
sparse regularization can yield better effects.

6.5 Efficiency Evaluation

In this experiment, we evaluate the efficiency of our proposed NCNMF method against other
competitor methods. For NCNMF, we set parameters λ = 102 and α = 1. Table 5 shows the
comparison results of the running time of different community detection methods. As observed,
NCNMF enjoys a relatively fast running time. Specifically, NCNMF runs faster than GNMF, Deep-
Walk, ONMF, MNMF, DANMF, HPNMF, and AGC on the Texas network, runs faster than GNMF,
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Fig. 6. Convergence and sensitivity evaluations of NCNMF on the Citeseer network.

DeepWalk, ONMF, MNMF, NNSED, DANMF, and AGC on the Washington network, runs faster
than PNMF, DeepWalk, DANMF, and AGC on the Gene network, and runs faster than PNMF,
ONMF, NNSED, DANMF, and AGC on the Citeseer network. These evidences show the efficiency
of NCNMF to some extent. Besides, due to a high cost of calculating our similarity matrix, NCNMF
takes consistently more running time than four methods of LPA, SymmNMF, Ego-Splitting, and
EdMot on these four datasets. Fortunately, this costly computation by NCNMF brings remarkable
quality improvement compared to them. We conclude that NCNMF strikes a good balance between
effectiveness and efficiency.

6.6 Convergence and Sensitivity Evaluations

In this part, we evaluate the convergence performance and parameter sensitivity for NCNMF. First,
we run NCNMF on the Gene network with parameters λ = 102 and α = 1 for convergence evalua-
tion. From Figure 6(a), we observe that the objective function value decreases monotonically. That
is, it drops rapidly at the very beginning, and then tends to achieve a convergence after 90 itera-
tions, reflecting that Algorithm 3 converges in a very fast speed. It not only verifies the correctness
of 4, but also fully demonstrates the efficiency of Algorithm 3 in community detection. Next, we run
NCNMF on the same network with λ and α varying in the range of {10−3, 10−2, 10−1, 1, 10, 102, 103}
for sensitivity analysis. From Figure 6(b), we can observe that NCNMF is relatively nonsensitive
to λ and α . NCNMF has a good quality performance when α = 103 or 102 ≤ λ ≤ 103.

7 CONCLUSION

In this article, we have proposed a novel community detection method, NCNMF. Distinct from
existing NMF-based community detection methods, NCNMF not only leverages h-order weighted
Jaccard similarity to extract richer structural information, but also introduces the node central-
ity and Gini impurity to regularize the node-community memberships. To optimize NCNMF, we
have derived an efficient algorithm, which can be theoretically guaranteed to converge. We have
conducted extensive experiments to evaluate our NCNMF method on eight real-world benchmark
networks, and experimental results have shown that NCNMF outperforms the state-of-the-arts
markedly. For future work, we plan to study how to extend NCNMF to directed networks and
detect overlapping communities.
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