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Abstract—Finding semantic communities using network topology and contents together is a hot topic in community detection. Existing

methods often use word attributes in an indiscriminate way to help finding communities. Through analysis we find that, words in

networked contents often embody a hierarchical semantic structure. Some words reflect a background topic of the whole network with

all communities, some imply the high-level general topic covering several topic-related communities, and some imply the high-

resolution specialized topic to describe each community. Ignoring such semantic structures often leads to defects in depicting

networked contents where deep semantics are not fully utilized. To solve this problem, we propose a new Bayesian probabilistic model.

By distinguishing words from either a background topic or some two-level topics (i.e., general and specialized topics), this model not

only better utilizes the networked contents to help finding communities, but also provides a clearer multiplex semantic community

interpretation. We then give an efficient variational algorithm for model inference. The superiority of this new approach is demonstrated

by comparing with ten state-of-the-art methods on nine real networks and an artificial benchmark. A case study is further provided to

show its strong ability in deep semantic interpretation of communities.

Index Terms—Community detection, Bayesian probabilistic model, multiplex semantics, variational inference

Ç

1 INTRODUCTION

ACOMPLEX system, typically composed of many compo-
nents interacting with each other, can be modeled as a

complex network. Community detection, one of the most
important tasks in network analysis, can be applied to many
areas such as the detection of terrorist groups, targeted
advertising, document clustering, and so on. In addition,
community detection can also be used to promot other net-
work analysis tasks, e.g., link prediction, influence maximi-
zation, etc.

The traditional methods that use network topology to
find communities typically suppose that the links within
communities are dense while those between communities
are sparse. These methods can be mainly divided into two
categories. The first is the heuristic-based methods, includ-
ing spectral algorithms [1], [2], dynamic methods [3], [4]
and modularity optimization methods [5], [6]. The second is

the model-based methods which mainly depends on the
probabilistic modelling and statistical inference [7], [8].
However, with the expansion of network sizes, the noise in
networks is often unavoidable. To further improve commu-
nity detection performance on real networks with noise,
some researchers have proposed several algorithms [9], [10]
that integrate both network topology and semantic (or tex-
tual) contents of networks, when such content is available.
By introducing the content information, these methods can
not only improve community detection performance but
also find the semantic interpretation of communities, which
typically refers to topics that represent the functions of
communities.

The existing methods that use network topology and
semantic content together typically consider that all the
word attributes are equally important in exploring and
explaining communities. That is, the words in the net-
worked content are often used identically and indiscrimi-
nately to help distinguish communities. However, the
difference of the words’ topic levels typically exists in real-
world networks. It is often the truth that some words reflect
the common topic information of the whole network with
all communities and do not help distinguish communities.
So we call them the background topic. While some other
words can mainly help distinguish communities, they may
also embody different levels. On the one hand, some words
reflect the commonness of several topic-related communi-
ties which form a high-level topic covering multi-communi-
ties. We call them the general topic. On the other hand, some
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words reflect the high-resolution semantics of each commu-
nity. We call them the specialized topic.

Take a paper citation network as an example (Fig. 1). In
the network, each node represents a paper and each link rep-
resents the citation relationships between two papers. The
background topic words of the whole network, e.g., abstract,
introduction and conclusion, reflect the common informa-
tion of all the scientific papers (the top level of Fig. 1). Fur-
thermore, we select a typical node in this citation network,
e.g., a classical network community detection article [11]
written by Girvan and Newman, and analyze its semantic
contents. Through a statistical analysis of the topic words of
this paper we find that, besides the background topic, there
also exists an obvious two-level topic structure. To clearly
reflect the differences between these two levels of topic
words, we divide them into two word clouds, denoting gen-
eral topics and specialized topics, respectively. The general
topic words refer to a large area of complex network analysis
(the middle level of Fig. 1). While, the core focus of the article
[11] is to present a novel perspective on the analysis of com-
plex networks, i.e., community detection, which is exhibited
by the specialized topic words (the bottom level of Fig. 1). In
this case, the general and specialized topics work together to
form the basic semantics of this article. Also of note, a general
topic can derive several specialized topics though they share
different levels of descriptive words. For example, the word
“network” belongs to a general topic only, while “comm-
unity” can only belong to a specialized topic under this gen-
eral topic, and they cannot switch. However, the existing
algorithms typically did not consider this natural multiplex
semantics hidden in the networked contents, leading to that
this rich language information is not fully utilized to help
detect and profile communities.

To solve this problem, we propose a novel probabilistic
generative model in the paper. By sampling the word attrib-
utes from either the background topic, or the general or
specialized topics, we model the networked contents with
multiplex semantics. We then model the network topology
with communities by assuming that the nodes within the
same community have the same (and degree preserving) link
pattern to connect with the rest of the network. And

meawhile, we introduce a two-step state transition mec-
hanism to describe the latent relationships between com-
munities and the multiplex semantics. Through this new
modelling strategy, our model can not only better utilize the
rich language information in networked contents to help find
communities, but also profile each community more clearly
using the natural hierarchical semantics. We give an efficient
variational inference algorithm to learn themodel. The contri-
butions of this work are as follows:

1) We observe that word attributes in networked con-
tents may come from different topic levels and play
different roles in helping find and profile communi-
ties. We propose a new model, by distinguishing a
background topic and the general and specialized
topics of words, to describe the semantic contents.
The hierarchical use of contents enables the new
model to not only find communities with similar
interests, but also provide background semantic
interpretation for the whole network contents and the
two-level semantic interpretation to each community.

2) We give a Bayesian treatment on the model to detect
communities with informative explanations. We
transform the model inference into a problem of
maximum a posteriori (MAP) learned by an efficient
optimization algorithm based on variational Bayes-
ian inference.

3) The superior performance of this new approach has
been tested on nine real networks and an artificial
benchmark, by comparing with ten baselines. We
further demonstrate its strong interpretation ability
through a case study analysis, by considering the
background topic of the network and the two-level
semantics of communities.

The rest of the paper is organized as follows. Section 2 dis-
cusses related work. Section 3 presents our Bayesian model
and generative process for semantic community detection.
Section 4 presents the efficient variational inference algo-
rithm. Section 5 reports experimental results. Finally, Section
6 concludes and highlights this paper.

2 RELATED WORK

A large variety of community detection algorithms have
been proposed in the past decades. Conventional commu-
nity detection algorithms focus on the network topologies,
including spectral partition [1], [2], Markov dynamics [3],
[4], modularity optimization [5], [6], statistical inference [7],
[8], hierarchical clustering [11], [12] and heuristic-based
approaches [13], [14]. Especially, statistical inference-based
community detection methods have been actively studied
due to their solid theoretical foundation and superior perfor-
mance. For example, stochastic block models (SBM) [15] are
among the most prominent statistical models for community
analysis in complex networks. A recent extension is the
degree corrected SBM (DCSBM) [7] which incorporates a
node degree correction tomodel degree heterogeneity. A fur-
ther extension is the infinite degree corrected SBM (IDCSBM)
[16] which formulates the degree corrected block model as a
non-parametric Bayesian model, incorporating a parameter
to control the amount of degree correction. In addition to

Fig. 1. A word cloud for the background words of the whole citation
network and the two-level topic words of article [11] written by Girvan
and Newman. From top to bottom is the word cloud of the words from
the background topic of the whole citation network, general topics
and specialized topics of article [11]. In word clouds of general and
specialized topics, the word size represents the frequency of this word in
the paper. Each general topic derives multiple specialized topics.
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using statistics to improve the SBM, there also exist exten-
sions such as the hierarchical SBM (HSBM) [17] which intro-
duces an affinity mechanism to jointly model SBMs at
different levels. However, the above methods only consider
the network topology and ignore the other rich information
such as semantic contents which are often available in real
networks.

In recent years, increasing interest revolves around node
contents in networks, particularly the network content (attrib-
utes of nodes). It is believed that nodeswith similar attributes
are more likely to be assigned to the same community. In this
paper, wemainly focus on the case where these attributes are
text-based. For content analysis, one type of popularmethods
is the topic model, e.g., Latent Dirichlet Allocation (LDA)
[18]. For the problem of detecting communities in networks,
researchers agree that the combination of network topologies
and contents is certainly important. The advantages of this
combination for community detection are twofold:

1) Semantic information derived from contents or text
attributes may capture deep knowledge of the nature
of communities and is beneficial to compensate for
noisy topological information, thus it improves the
performance of community detection. Several
approaches have been proposed to combine network
topologies and contents for community detection. For
example, Sun et al. [19] use a user-specified set of
attributes, as well as the links from different relations
in heterogeneous information networks. They assume
that different types of links may present different lev-
els of semantic importance, which are learned in
order to enable the effectiveness of community detec-
tion. Wu et al. [20] take community detection as a
problem of clustering similar nodes and propose a
new method, namely SAGL. SAGLmerges the global
importance of nodes into the local edge strength to
depict the topological structure, and further combines
the node attribute similarity with a self-adjusted
parameter to balance the effect of topology. As a
result, SAGL can have more balanced and reasonable
communities. Yang et al. [21] introduce a unified
framework that combines a popularity (and produc-
tivity) linkmodel and a discriminative contentmodel,
which is different from the generative models for
community detection. This model uses node popular-
ities to calculate the probability whether two nodes
are connected, and then incorporates content infor-
mation into the link model to estimate community
memberships. Zhan et al. [22] take the attributed
graph clustering as a dynamic cluster formation
game. By assuming that a balanced solution of attri-
bute graph clustering can be found by solving a set of
Nash equilibrium problems, they propose a self-learn-
ing algorithm which is to find the corresponding bal-
anced solution of attributed graph clustering. Li et al.
[23] treat attribute graph clustering as a multiobjective
optimization problem,which is to optimizemodularity
Q and the node similarity metric together. They then
propose a multiobjective evolutionary algorithm,
based on the above idea to find a set of Pareto optimal
solutions for community detection. Pei et al. [24]

propose a nonnegative matrix tri-factorization (NMTF)
based clustering framework with three types of graph
regularization in social networks. This method integra-
tes social relations and node contents, and three types
of regularizations can capture the user similarity,
message similarity, and user interaction, respectively.
Although the above methods can improve community
detection by incorporating node contents, they do not
consider the explanation of communities using this
semantic information, and also ignore the hierarchical
use of semantics.

2) Text contents on networks can also provide the
chance of finding semantics of communities, i.e., to
offer semantic explanation to each community.
Semantic interpretation typically refers to finding
topics which reveal functions or interests on comm-
unities. For example, Wang et al. [25] propose a
nonnegative matrix factorization model, namely
Semantic Community Identification (SCI), with two
matrices, one for community memberships and the
other for community attributes. This method uses the
node attributes to improve the effectiveness of com-
munity detection and provides semantic interpreta-
tions to the resulting network communities as well.
But SCI makes communities and topical clusters
share a same set of parameters, which may be too
strong an assumption. Liu et al. [26] treat the network
as a dynamic system. By introducing the principle of
content propagation, they integrate the aspects of
structure and content. Then, the nature of communi-
ties can be described by analyzing the stable state of
the dynamic system. But their propagation strategy
assumes that members in the same community own
a strong consistency, and ignores the multi-level
semantics in networked contents, and thus tends to
explain communities with common information. The
Bayesian Attributed Graph Clustering (BAGC)
method [27] is a Bayesian generative model devised
to leverage the structural and attribute information in
clustering an attributed graph, while avoiding the
artificial design of a distancemeasure. But BAGC also
assumes that communities are topics, which is a
strong assumption. It also uses a method similar to
LDA to model semantics, ignoring the difference
between different topic levels embodied in semantic
contents. Hu et al. [28] propose a new model, namely
TARA, which differs from BAGC mainly in the way
of modeling contents. TARA designs a three-layer
hierarchical structure (node-attribute-value) tomodel
the multivalued attributes (instead of the binary form
in BAGC), and thus can utilize more information to
find communities. Although the utilization of more
types of contents (i.e., multivalued attributes instead
of the binary form) makes TARA more powerful, the
nature of its semantic representation is still similar to
BAGC, and thus suffers from the same issues. To sum
up, all these methods consider the semantics of com-
munities but neglect the differences of topic levels of
words existing in real life, making their semantics a
mixture of different levels of topics and thus gives
blurred explanations to communites.
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Also of note, we have previously published a conference
paper to briefly present and provide preliminary validation
for the idea of community detection with hierarchical
semantics [29]. Those results are significantly extended in
this paper by supplementing multiplex semantic informa-
tion with background topic, the improved model generative
process, new mathematical derivation as well as more
experimental validations. To be specific, 1) the preliminary
conference paper only considers the two-level topics, i.e.,
the general and specialized topics. But by the observation
on many real-world networked contents we find that,
besides the simple two-level topics, there typically exists a
type of background topic which reflects the background
information of the whole network. In our previous work,
however, the background information was mixed among
the two-level topics, so that the boundary between these
two-level topics is not clear. In the present work, we take
the background topic into account in modelling the net-
worked contents. As a result, the corpus becomes almost
irrelevant to the background topic when describing the
two-level topics of communities, and thus these topic levels
become more clearly defined. This background topic can
also be visualized to further benefit our understanding of
the whole network. 2) Unlike the two-level topics, the back-
ground topic does not connect directly with any specific
community since it reflects the semantics of the whole net-
work with all communities. That is, one cannot use the
same way of describing the two-level topics to model the
new background topic. Instead, in the new model the inte-
gration of background should be independent from any
community while work together with the two-level topics
to generate the whole networked contents. 3) Training of
the model with multiplex semantics is also more challeng-
ing since it is more complicated and can overfit easier. The
framework of variational Bayesian inference itself does not
easily to overfit due to its regularization property of the
lower bound, while we still need to elaborately derive a
new variational inference method based on this new model
which incorporates this background topic.

3 THE BAYESIAN MODEL

We first introduce the notations and objectives in Section 3.1
and describe the overview of the proposed new model in

Section 3.2. We then present its generative process in
Section 3.3. Finally, we define this model in Section 3.4.

3.1 Notations and the Problem

We consider an undirected and unweighted attributed network
Gwith n nodes andm (word) attributes. We use an adjacency
matrix A ¼ ðaijÞn�n to represent the relations among the n

nodes. That is, if there is an edge between nodes vi and vj, we
have aij ¼ 1, and 0 otherwise. The attribute matrix is denoted
by W ¼ ðwikÞn�m. That is, if vi has the kth attribute, then
wik ¼ 1, and 0 otherwise.

Given the network G, our objectives are to 1) recognize
the words in the content text as generated by background
topic or two-level semantic topics; 2) partition G into c node
communities, E general topics and D specialized topics
based on network topology and contents, 3) explore the cor-
relation between network communities and the two-level
topical clusters, 4) describe communities using both special-
ized topics (to show the particular interests) and general
topics (to show the shared attributes of several similar com-
munities). Though each of these four problems is technically
challenging, our novel probabilistic generative model can
solve all four problems at the same time.

3.2 Overview of the Model

To achieve the above objectives, we develop a new probabi-
listic generative model, i.e., Background and Two-Level
Semantic Community (BTLSC). The graphical model repre-
sentation of BTLSC is shown in Fig. 2, with symbols defined
in Table 1. The model includes three main parts. The first
one is the topological component (in green box in Fig. 2),
which describes the network with community structures.
By modeling that all nodes in the same community share

Fig. 2. A schematic diagram of the generative model for multiplex
semantic community detection. Part 1 in the green box denotes the
topological component describing network communities. Part 2 in the
red box denotes the content component describing multiplex semantics.
Part 3 in the blue box denotes the probabilistic transition mechanism
connecting the two previous parts.

TABLE 1
Main Symbols Used

Types Signs Descriptions

X:
Observed
variables

A Adjacency matrix
W Node-attribute matrix
c No. of communities

E;D No. of general topics, No. of specialized topics

I: Latent
variables

zi Community assignment of node vi
dbik If dbik ¼ 1 : wik is generated from background topic,

and 0 otherwise
dik 1) dik ¼ 0 : wik is generated from a general topic;

2) dik ¼ 1 : wik is generated from a specialized topic
gik General topic for attribute word wik

sik Specialized topic for attribute word wik

P: Model
parameters
with prior

vb
i Parameter for generating dbik

vi Parameter for generating dik
pr Probability that node vi belongs to community r
hre Probability that vi is in eth general topic given it

belongs to rth community
fed Probability that vi is in dth specialized topic given it

belongs to eth general topic

�: Model
parameters
without
prior

url Probability that rth and lth communities are
connected

bb Probability that background topic generates wik

b
g
ek Probability that eth general topic generates wik

bsdk Probability that dth specialized topic generate wik

Hyper-
parameters

j, a, o,
g, gb

Acting as priors of the corresponding model
parameters with conjugate distributions
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the same (or similar) link probability when connecting to
other nodes in the network, the model allows that nodes in
each community own the same link pattern. The nodes’
degree preservation mechanism is also introduced into this
model, making it support that nodes with larger degrees are
more likely to be connected. The second one is the content
component (in red box in Fig. 2), which describes the multi-
plex semantics of networked contents and serves as the core
of this model. By allowing that each word is sampled from
either a background topic, or a general or specialized topic,
we generate the textual contents of networks with multiplex
semantics which is often observed in real life. The third
one is the transition component (in blue box in Fig. 2), which
connects the previous two parts. It describes the probab-
ilistic transitions from communities to general topics, and
further to specialized topics. Through these two state transi-
tions, the model can not only describe the latent relation-
ships between communities, general topics as well as
specialized topics, but also becomes robust even when their
relationships are complicated and do not match well. Each
of these three parts owns its particular advantage by itself
to describe the real-world networked data while we seam-
lessly incorporate them altogether. As a result, the new
model naturally describes network communities with mul-
tiplex semantics and embodies richer language and topolog-
ical information.

3.3 The Generative Process

We then give the specific generative process of the BTLSC
model below. Step 1 to 4(b) tell how we generate model
parameters using the fixed hyper-parameters, which will be
described in details in Section 3.3.1. Steps 4(c) to 4(e3.3)
serve as the core of this model, which tells how we generate
the observed and latent quantities using model parameters
derived, with detailed explanations in Section 3.3.2.

1. Sample p � Dirichlet ðjÞ
2. For each community r 2 f1; 2; :::; cg:

(a) Sample hr � Dirichlet ðaÞ
3. For each general topic e 2 f1; 2; :::; Eg:

(a) Sample fe � Dirichlet ðoÞ
4. For each node vi with i 2 f1; 2; :::; ng:

(a) Sample vb
i � Beta ðgb

0; g
b
1Þ

(b) Sample vi � Beta ðg0; g1Þ
(c) Sample community assignment zi� Multinomial

(p)
(d) For each node vj with j 2 fiþ 1; iþ 2; :::; ng:

(d.1) Sample edge aij � Bernoulli ðdidjuzizjÞ
(e) For each word wik with k 2 f1; 2; :::;mg:

Sample dbik � Bernoulli ðvb
iÞ

- if dbik ¼ 1

(e.1) Sample wik �Multinomial ðbbÞ
- else if dbik ¼ 0

(e.2) Sample gik �Multinomial ðhzi
Þ

(e.3) Sample dik � Bernoulli ðviÞ
- if dik ¼ 0

(e.3.1) Samplewik � Multinomial ðbg
gik
Þ

- else if dik ¼ 1

(e.3.2) Sample sik �Multinomial ðfgikÞ
(e.3.3) Samplewik �Multinomial ðbs

sik
Þ

3.3.1 Generate Parameters with Conjugate Prior

We take a Bayesian treatment on the model generation pro-
cess. Instead of assuming a fixed value of each parameter in
set P, we treat vb, v, p, H and F as random variables and
place conjugate prior distributions on them. We then intro-
duce how to generate these model parameters using hyper-
parameters j, a, o, gb and g. In the generative process, all
the hyper-parameters are set a predefined value, such as
that suggested in LDA.

1. We first use a Dirichlet distribution to generate
model parameter p ¼ ðp1; p2; :::;prÞ (step 1), where
pr represents the probability that node vi belongs to
community r, subject to pr 2 ½0; 1� and Pc

r¼1 pr ¼ 1.
Then, this Dirichlet distribution can be defined as:

pðpjjÞ ¼ GðPc
r¼1 �rÞQc

r¼1 Gð�rÞ
Yc

r¼1
pr

�r�1; (1)

in which Gð�Þ is the Gamma function. This distribu-
tion is parameterized by the hyper-parameter, a pos-
itive real c-dimensional vector j ¼ ð�1; �2; ::::; �rÞ. The
choice of Dirichlet distribution on p (and also the dis-
tribution on vb, v, H and F below) is not arbitrary.
We will give the reason at the end of subsection 3.3.

2. We also use Dirichlet distribution to generate the
matrix of parameters H ¼ ðhreÞc�E (step 2(a)), where
each row hr represents the distribution of general
topics over community r. H can be also taken as a
probabilistic transition matrix from communities to
general topics, subject to hre 2 ½0; 1� andPE

e¼1 hre ¼ 1.
The distribution is then defined as:

pðhrjaÞ ¼
GðPE

e¼1 aeÞQE
e¼1 GðaeÞ

YE

e¼1
hre

ae�1: (2)

Hyper-parameter a ¼ ða1; a2; :::; aEÞ is an E-
dimensional vector. All communities share the samea.

3. Similar to H, we also use the Dirichlet distribution to
generate F ¼ ðfedÞE�d (step 3(a)). F is a matrix of
probabilistic transition from general topics to spe-
cialized topics, where each row fe is the specialized
topic distribution over general topic e, subject to
fed 2 ½0; 1� and PD

d¼1 fed ¼ 1. Then the density func-
tion is given by:

pðfejoÞ ¼ GðPD
d¼1 odÞQD

d¼1 GðodÞ
YD

d¼1
fed

od�1; (3)

where the hyper-parameter o ¼ ðo1; o2; :::; odÞ is a D-
dimensional vector, shared by all the general topics.

4. We use a Beta distribution to generate model parame-
ters vb ¼ ðvb

1;v
b
2; :::;v

b
nÞ (step 4 (a)), where vb

i is the
parameter of Bernoulli distribution. By using the Ber-
noulli distribution, we can get the value of dbik, 0 or 1. If
dbik ¼ 1, wik will be generated from the background
topic, and 0 otherwise. The Beta distribution, with two
hyper-parameters (gb

0 and gb
1 shared by all nodes), is

defined as:
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pðvb
i jgb

0; g
b
1Þ ¼

Gðgb0 þ gb
1Þ

Gðgb
0ÞGðgb

1Þ
ðvb

iÞg
b
0
�1ð1� vb

iÞg
b
1
�1: (4)

5. We also use a Beta distribution to generate model
parameters v ¼ ðv1;v2; :::;vnÞ (step 4 (b)), where vi

is the parameter of Bernoulli distribution. Through
this distribution, we can get the value of dik, 0 or 1. If
dik ¼ 0, wik will be generated from a general topic. If
dik ¼ 1, wik will be generated from a specialized
topic. This Beta distribution with hyper-parameters
(g0 and g1) is defined as:

pðvijg0;g1Þ ¼
Gðg0 þ g1Þ
Gðg0ÞGðg1Þ

ðviÞg0�1ð1� viÞg1�1: (5)

3.3.2 Generate Observed and Latent Quantities

After the model parameters (with conjugate prior) have
been generated, we then use all the parameters to generate
the observed and latent quantities, which is the key to the
generative process of this model.

1. First, we sample the community label zi of each node
vi independently from a multinomial distribution
(step 4(c)), which is defined as:

pðzi ¼ rjpÞ ¼ pr; r ¼ 1; 2; :::; c: (6)

We have shown how to sample p (and also
H;F;vb;vÞ from a conjugate prior distribution in the
previous subsection. So here, without loss of general-
ity, we assume that those parameters are given in
advance.

2. Assume that zi and zj are community labels of nodes
vi and vj, which have been sampled in the above step.
We then sample each edge aij between vi and vj from
a Bernoulli distribution (step 4(d.1)), defined as:

pðaijjdidjuzizjÞ ¼ ðdidjuzizjÞaijð1� didjuzizjÞ1�aij ; (7)

where aij is a binary variable value, 0 or 1. It
describes the fitting of the model to the network
topology from a degree-corrected stochastic block
model [7], in which Q ¼ ðurlÞc�c serves as the block
matrix and di is the degree of node vi. This model
typically performs well in fitting network topology
with community structures.

3. To determine whether each attribute wik of node vi is
generated from the background topic, we bring in a
binary variable dbik from a Bernoulli distribution,

parameterized by vb
i (step 4(e)). It is then defined as:

pðdbikjvb
iÞ ¼ ðvb

iÞd
b
ikð1� vb

iÞ1�db
ik : (8)

The value of dbik indicates the generative process of
words in the next step. If dbik ¼ 1, wik is a background
topic word. In this case, we can generate this word
directly (step 4(e.1)) with the following distribution:

pðwikjbbÞ ¼ ðbb
kÞwikd

b
ik ; (9)

wherebb ¼ ðbbkÞ1�m, inwhich bb
k denotes the probabil-

ity that the kth word attribute is generated from the
background topic, which is irrelevant to any node vi,
subject to

Pm
k¼1 b

b
k ¼ 1 and bb

k 2 ½0; 1�. In this situation,
the whole generative processwill end here.

4. However, if dbik ¼ 0, which means that wik is not gen-
erated from the background topic, the generation
process will continue. Let we have got the commu-
nity assignment zi of each node vi, then we should
sample the general topic assignment gik of word
attribute wik of this node vi via a multinomial distri-
bution (step 4(e.2)), which is defined as:

pðgik ¼ ejhzi
Þ ¼ ðhzi;eÞwikð1�db

ik
Þ; (10)

where hzi;e denotes the probability that community zi
selects the eth general topic, which meets

PE
e¼1 hzi;e ¼

1 and hzi;e 2 ½0; 1�, for zi ¼ 1:::c. The meaning of H has

been explained in step 2 in the previous subsection.
5. Thereafter, to determine whether the word attribute

wik of node vi is generated from a general or a spe-
cialized topic, we use a binary variable dik, sampled
from a Bernoulli distribution parameterized by vi, as
a indicator (step 4(e.3)). It is defined as:

pðdikjviÞ ¼ ½vi
dikð1� viÞ1�dik �ð1�db

ik
Þ: (11)

Then, the successive generative process will be deter-
mined by the value of dik. That is,

1) If dik ¼ 0, wik will be generated from a general topic.
Recall that in step 3, we have identified this general
topic. So here we just need to generate the word
attribute wik of node vi. We sample each word
from a multinomial distribution (step 4 (e.3.1)),
defined as:

pðwik jbg
gik
Þ ¼ ðbg

gik;k
Þwikð1�db

ik
Þð1�dikÞ; (12)

where Bg ¼ ðbg
ekÞE�m, in which b

g
ek ¼ pðwik ¼ 1jgik ¼

eÞ denotes the probability that the kth word attribute

is generated from the eth general topic, which is irrele-

vant to any node vi and meets
Pm

k¼1 b
g
gik;k

¼ 1 and

b
g
gik;k

2 ½0; 1�, for gik ¼ 1:::E.

2) In contrast, if dik ¼ 1, wik will be generated from a
specialized topic, given the general topic label gik of
wik. Then, first, we need to sample the specialized
topic from a multinomial distribution (step 4(e.3.2)):

pðsik ¼ djfgikÞ ¼ ðfgik;dÞwikð1�db
ik
Þdik ; (13)

where fgik;d denotes the probability that the general
topic gik selects the d

th specialized topic, which meets

fgik;d 2 ½0; 1� and PD
d¼1 fgik;d ¼ 1, for gik ¼ 1:::E. The

specific meaning of F has been explained in step 3 in
the previous subsection. We then need to generate

the attribute wik of node vi from a multinomial distri-

bution (step 4(e.3.3)), defined as:
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pðwikjbs
sik
Þ ¼ ðbs

sik;k
Þwikð1�db

ik
Þdik ; (14)

where Bs ¼ ðbs
dkÞD�m, in which bs

dk ¼ pðwik ¼ 1jsik ¼
dÞ denotes the probability of the kth attribute of node vi
being negated by the dth specialized topic, subject toPm

k¼1 b
s
sik;k

¼ 1 and bs
sik;k

2 ½0; 1�, for sik ¼ 1:::D.

Also of note, the choice of Dirichlet and Beta distributions
as priors to p, H, F, vb and v here are not arbitrary. They are
conjugate priors to multinomial and Bernoulli distributions,
respectively. This will give a closed-form expression for the
posterior and provide mathematical convenience when we
derive inference on the Bayesianmodel.

3.4 The Model Definition

Based on the above generative process, we then give the for-
mulation of this Bayesian model (which represents the
underlying joint probability distribution) as follows:

P ðA;W; z;Db;D;G; S;p;H;F;vb;vjQ;Bb;Bg;Bs; j;a; o; gb; gÞ

¼
pðpjjÞpðHjaÞpðFjoÞpðvbjgbÞpðvjgÞ
pðzjpÞpðAjQ; zÞpðDbjvbÞpðDjvÞ
pðGjH; zÞpðSjF;GÞpðWjBg;G;Bs; S;Db;DÞ

0
B@

1
CA;;

(15)

where

pðHjaÞ ¼
Yc

r¼1
pðhrjaÞ;

pðFjoÞ ¼
YE

e¼1
pðfejoÞ;

pðvbjgbÞ ¼
Yn

i¼1
pðvb

i jgb0; gb
1Þ;

pðvjgÞ ¼
Yn

i¼1
pðvijg0; g1Þ;

pðAjQ; zÞ ¼
Y

i<j
pðaijjdidjuzizjÞ;

pðDbjvbÞ ¼
Yn

i¼1

Ym

k¼1
pðdbikjvb

iÞ;
pðDjvÞ ¼

Yn

i¼1

Ym

k¼1
pðdikjviÞð1�db

ik
Þ;

pðWjBbÞ ¼
Yn

i¼1

Ym

k¼1
pðwikjbbÞwikd

b
ik ;

pðGjH; zÞ ¼
Yn

i¼1

Ym

k¼1
pðgikjhzi

Þwikð1�db
ik
Þ;

pðWjBg;GÞ¼
Yn

i¼1

Ym

k¼1
pðwikjbg

gik
Þwikð1�db

ik
Þð1�dikÞ;

pðSjF;GÞ ¼
Yn

i¼1

Ym

k¼1
pðsikjfgikÞwikð1�db

ik
Þdik ;

pðWjBs; SÞ ¼
Yn

i¼1

Ym

k¼1
pðwikjbs

sik
Þwikð1�db

ik
Þdik

;

where the sub functions have all been defined in (1) to (14).
For brevity, we will short this joint probability distribution
as P ðA;W; z;Db;D;G; S;p;H;F;vb;vÞ in the rest of this
paper.

4 THE MODEL INFERENCE

In this section, we give an efficient variational Bayesian
inference algorithm to learn the model. We first introduce
the basic idea, and then show the detailed inference process.
At last, we give an algorithmic procedure and the computa-
tional complexity of this algorithm.

4.1 The Basic Idea

Based on the abovemodel, the task of clustering the observed
quantities X ¼ ðA;WÞ can be transformed as a standard
probabilistic inference problem, i.e., to find a set of parame-
ters that can maximize the posterior probability distribution
of thismodel, which is to find:

z�;G�; S�;Db�D� ¼ arg max
z;G;S;Db;D

P ðz;G; S;Db;DjA;WÞ;

where Pðz;G; S;Db;DjA;WÞ is the posterior distribution of

z, G, S, Db and D given A andW (as well asQ, Bg, Bs, a, o, gb,

g, j). Intuitively, the optimal z�,G�, S�,Db� andD� correspond
to values which can best explain the adjacency matrix A and

the attribute matrix W of this given network. Despite its con-

ceptual simplicity, this probabilistic inference problem is in
fact notoriously hard to solve. The posterior distribution of

thismodel is defined as:

P ðz;G;S;Db;DjA;W;Q;bb;Bg;Bs;a; o; gb; g; jÞ

¼ R R R R R P ðz;G;S;Db;D;p;H;F;vb;vj
A;W;Q;bb;Bg;Bs;a; o;gb; g; jÞ

 !
dp dH dF dvbdv;;

where

P ðz;G; S;Db;D;p;H;F;vb;vjA;W;Q;bb;Bg;Bs;a; o; gb; g; jÞ

¼

P ðz;G; S;Db;D;p;H;F;vb;v;

A;WjQ;bb;Bg;Bs;a; o;gb; g; jÞ

 !

P
z;G;S;

Db;D

R R R R R P ðz;G;S;Db;D;p;H;F;vb;v;

A;WjQ;bb;Bg;Bs;a; o; gb;g; jÞ

 !
dpdHdFdvbdv

;;

which is shorten as P ðz;G; S;Db;D;p;H;F;vb;vjA;WÞ for
brevity. But due to the integrals over model parameters p,

H, F, vb and v, it does not have a closed-form expression.
Since the calculation of the true posterior distribution is

intractable, we develop an efficient variational algorithm to
solve this probabilistic inference problem. The basic idea is
to approximate our objective of the true posterior distribu-
tion P ðz;G; S;Db;D;p;H;F;vb;vjA;WÞ by a new variational
distribution q. Here we restrict the variational distribution q
to a family of distributions that factorize as:

qðz;D;Db;G; S;p;H;F;vb;vj~F;~T; ~T
b
; ~P; ~S;~j; ~A;~O; ~R

b
; ~RÞ

¼ qðzj~FÞqðDj~TÞqðDbj~TbÞqðGj~PÞqðSj~SÞ
qðpj~jÞqðHj~AÞqðFj~OÞqðvbj~RbÞqðvj~RÞ

 !
;;

(16)

where ~F, ~T, ~T
b
, ~P, ~S, ~j, ~A, ~O, ~R

b
and ~R are the variational

parameters. This definition of the family of variational distri-
butions is not arbitrary. In fact, the sub distributions in (16)
take exactly the same parametric forms as the sub functions
in (1) to (14). (Detailed definitions of these sub distributions
are given in AppendixA.) In addition, the variational param-
eters are free to vary, while the hyper-parameters are fixed
throughout the generative process. For simplicity, we will
abbreviate this variational distribution as qðz;D;Db;G; S;
p;H;F;vb;vÞ in the following.

Supposing that we find the variational distribution q
which is most similar to the true posterior distribution, we
can then find the communities by:
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z� ¼ argmax
z

P ðzjA;WÞ

¼ argmax
z

X
G;S

Db;D

Z
:::

Z
P ðz;G; S;Db;D;

p;H;F;vb;vjA;WÞ

 !
dpdHdFdvbdv

’ argmax
z

X
G;S

Db;D

qðz;Db;D;G; S;p;H;F;vb;vÞdpdHdFdvbdv

¼
Yn
i¼1

argmax
z

qðzij~wiÞ

¼
Yn
i¼1

argmax
r

~’ir:

Similar to the way of deriving the MAP of the latent
quantity z�, we can also get the background topic as well as
the general and specialized topics easily.

4.2 Optimizing Variational Parameters

Recall that our goal is to find the variational distribution q in
the family that is closest to the true posterior distribution
P ðz;G; S;Db;D;p;H;F; vb;vjA;WÞ. This is now equivalent

to optimizing variational parameters ~F, ~T, ~T
b
, ~P, ~S, ~j, ~A, ~O,

~R
b
and ~R with respect to some suitable distance measure.

To measure the distance between the variational distribu-
tion qðz;D;Db;G; S;p;H;F;vb;vÞ and the true posterior dis-
tribution P ðz;G; S;Db;D;p;H;F;vb;vjA;WÞ, we can adopt
the Kullback-Leibler ðKLÞ divergence [30] which is com-
monly used in information theory, defined as:

KLðqjjP Þ ¼
X
z;G;S;

Db;D

ZZZZZ qðz;Db;D;G; S;p;H;F;vb;vÞ�
log qðz;Db;D;G;S;p;H;F;vb;vÞ

P ðz;G;S;Db;D;p;H;F;vb;vÞ

0
@

1
AdpdHdFdvbdv;;

(17)

which is a function of variational parameters (~F, ~T, ~T
b
, ~P, ~S,

~j, ~A, ~O, ~R
b
and ~R) and model parameters (Q, Bg and Bs).

Our objective now becomes finding the optimal variational

parameters that can minimize its KL divergence. However,

this problem is also infeasible since true posterior distribu-

tion P ðz;G; S;Db;D;p;H;F;vb;vjA;WÞ is exactly what we

strive to approximate in the first place. So, instead of

directly minimizing this KL divergence, we solve an equiv-
alent maximization problem, defined as:

~LðqÞ ¼
X
z;G;S;

Db;D

Z Z Z Z Z qðz;Db;D;G; S;p;H;F;vb;vÞ�
log P ðz;G;S;Db;D;p;H;F;vb;v;A;WÞ

qðz;Db;D;G;S;p;H;F;vb;vÞ

0
@

1
AdpdHdFdvbdv:

(18)

The equivalence between these two optimization prob-
lems can be easily derived by noticing that they sum up to a
constant for a given network:

KLðqjjP Þ þ ~LðqÞ ¼ logP ðA;WÞ:

Then, to maximize the objective function ~LðqÞ, we need to

take the derivatives of ~LðqÞ with respect to variational

parameters (~F, ~T, ~T
b
, ~P, ~S, ~j, ~A, ~O, ~R

b
and ~R) and model

parameters without priors (Q, Bg and Bs), and set these deri-
vatives to zeroes, since it has a closed-form expression. Then,
we get the expressions of the parameters which need to be
updated. But here for clarity, we show the detailed proce-
dure of derivations and the expression of parameters to be
updated in Appendix B.

4.3 Algorithm Summary and Complexity Analysis

At last, we give the algorithmic procedure of BTLSC below.
When it converges, we will get the variational parameters ~F,
~P and ~S, and can use them to calculate model parameters H
and F. We can then derive the community assignments of
nodes using ~F, the relationship between communities and
general topics using H, the relationship between general
and specialized topics using F, as well as the relationship
between communities and specialized topics using H � F
(i.e., the matrix product of H and F). We can also find the
background topic, general topics as well as the specialized
topics using bb,Bg andBs, respectively.

Considering the sparsity of the networked data, the
computational complexity of this new algorithm BTLSC is
OðT ðn2c2 þ fcE þ nmEDþ ec2 þ fÞÞ, where n; e; m; f; c; E;
D, and T are the numbers of nodes, links, word attributes,
non-zero node-attribute pairs (in attributed matrix), com-
munities, general topics, specialized topics, and iterations
for convergence. Given a large sparse network, we often
have OðnÞ ¼ OðeÞ ¼ OðfÞ. In general, T; c; E and D can
also be taken as constants compared with the network
sizes. In this case, the computational complexity of our
algorithm can be simplified as Oðn2 þ nmÞ. This can be
further reduced to near linear via some speedup techni-
ques such as stochastic optimization as proposed and
used in [31].

Algorithm 1. Iterative Optimization Procedure

Input: A;W; c; E;D, the convergence threshold k, and the maxi-
mum number of iterations countmax

Output: ~F, H, F, bb, Bg, Bs

1. Randomly initialize the variational parameters in P and the
model parameters in �

2. Set count ¼ 1
3. repeat:
(a) update ~j, ~F, ~P, ~S, ~A, ~O, ~T

b
, ~T, ~R

b
, ~R, Q, bb, Bg and Bs via

(B.6) to (B.21) in Appendix B
(b) compute ~LðqðcountÞÞ
(c) count ¼ countþ 1
Until ~LðqðcountÞÞ � ~Lðqðcount�1ÞÞ < k or count > countmax

4. Calculate H and F using ~F, ~P and ~S derived above

5 EXPERIMENTS

We first introduce the experiment setup which includes the
datasets and performance metrics, and then evaluate the
effectiveness of our algorithm in comparison with ten state-
of-the-art community detection methods on nine real-world
networks. Thereafter, we test the scalability of this algorithm
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on real and artificial datasets. Finally, we use an online music
system to assess its interpretability.

5.1 Experiment Setup

Datasets. We use nine real-world networks with known com-
munities for the comparison of BTLSC with other methods
in terms of both effectiveness and efficiency. We also use the
LASTFM dataset [32] from Last:fm, a famous British online
music service, in which each user is described by 11,946
attributes including a list of most listened music artists
and tag assignments. Because LASTFM does not have
ground-truth communities, we did not use it in Section 5.2
for quantitative evaluation. Instead, we use it as a case study
to show the ability of our new method for the multiplex
semantic interpretation of communities. The statistical prop-
erties of these networks are shown in Table 2.

Performance Metrics. The methods compared may provide
disjoint or overlapping community structures, so we choose
different evaluation metrics in these two cases.

For disjoint community structures, since all the nine net-
works have ground-truth communities, we adopt accuracy
(AC) [35], normalized mutual information (NMI) [35] and
adjusted Rand index (ARI) [36] to compare the detected and
ground-truth communities. To be specific, if the set of the
detected communities is C and that of the ground-truth
communities is C�, the accuracy AC is defined as:

ACðC;C�Þ ¼ 1

n

Xn
i¼1

dðC�
i ;mapðCiÞÞ;

where dðr; sÞ is the delta function which equals to 1 if r ¼ s
and 0 otherwise, and mapðCiÞ is the mapping function that
maps each community Ci to the index of the ith community
in C�. The best mapping can be found by using the Kuhn-
Munkres algorithm [37]. Besides, the normalized mutual
information (NMI) is defined as:

NMIðC;C�Þ ¼ MUðC;C�Þ
maxðHðCÞ; HðC�ÞÞ ;

where HðCÞ ¼PCi
P ðCiÞlog ðP ðCiÞÞ, is the entropy of the

set of communities C, P ðCiÞ ¼ jCij=jCj and

MUðC;C�Þ ¼
X

Ci;C
�
j

pðCi; C
�
j Þlog

pðCi; C
�
j Þ

pðCiÞpðCjÞ;

is the mutual information between C and C�, where

pðCi; C
�
j Þ ¼ Ci \ Cj

�� ��� Cij j:

In addition, the adjusted Rand index (ARI) is defined as:

ARIðC;C�Þ ¼ RIðC;C�Þ �EðRIÞ
maxðRIÞ � EðRIÞ ;

where

RIðC;C�Þ ¼ aþ b

C
nsample

2

;

with a ¼Pn
i¼1 dðCi;C

�
i Þ and b ¼Pn

i¼1 ð1� dðCi;C
�
i ÞÞ. If Ci ¼

C�
i , dðCi;C

�
i Þ ¼ 1, and 0 otherwise.C

nsample
2 denotes all the pos-

sible combinations of the samples. EðRIÞ denotes the expec-
tation of Rand index. The range of ARI is [-1,1].

Some of the baseline methods in the evaluations provide
overlapping communitieswhich cannot be compared through
AC, NMI and ARI in general. Thus, we use three other met-
rics, i.e., F-score [9], Jaccard similarity [9] and Omega Index
[38], to evaluate the overlapping structures. F-score metric
F ðC;C�Þ betweenC andC� is defined as:

F ðC;C�Þ ¼ 1

2 C�j j
X

C�
i
2C�

max
Cj2C

F ðC�
i ; CjÞ þ 1

2 Cj j
X
Cj2C

max
C�
i
2C� F ðC�

i ; CjÞ;

where F ðC�
i ; CjÞ evaluates the F1 score between C�

i and Cj.
Jaccard metric JACðC;C�Þ measures the Jaccard similarity
between C and C�, which is defined as:

JACðC;C�Þ ¼
X

C�
i
2C�

maxCj2C JACðC�
i ; CjÞ

2 C�j j

þ
X
Cj2C

maxC�
i
2C� JACðC�

i ; CjÞ
2 Cj j ;

in which JACðC�
i ; CjÞ evaluates the Jaccard similarity

between C�
i and Cj. Besides, Omega index is the overlapping

version of the adjusted Rand index (ARI), which is defined as:

OðC;C�Þ ¼ OuðC;C�Þ �OeðC;C�Þ
1�OeðC;C�Þ ;

OuðC;C�Þ denotes the percentage of node pairs (with one
node in community C and the other in C�), defined as:

OuðC;C�Þ ¼ 1

N

X
j

jtjðCÞ \ tjðC�Þj;

where tjðCÞ denotes a set of node pairs in the jth community,
andN the number of all node pairs in the network.OeðC;C�Þ
denotes the expectation ofOu, which can be defined as:

OeðC;C�Þ ¼ 1

N2

X
j

jtjðCÞjjtjðC�Þj:

TABLE 2
The Statistics of Real-World Networks

Datasets n e m c Descriptions [32], [33], [34]

Texas 187 328 1,703 5 The WebKB dataset consists of four
subnetworks from four US
universities in Texas, Cornell,
Washington and Wisconsin,
respectively.

Cornell 195 304 1,703 5
Washington 230 446 1,703 5
Wisconsin 187 328 1,703 5

Facebook 1045 26749 576 9 A subnetwork (id 107) of Facebook
Twitter 171 796 578 7 A subnetwork (id 629863) of Twitter
Citeseer 3,312 4,732 3,703 6 A Citeseer citation network
Cora 2,708 5,429 4,972 7 A Cora citation network
PubMed 19,729 44,338 500 3 Publications on PubMed

LASTFM 1,892 12717 11,946 - The “friendship” network from Last.
fm

The Real-world networks used in this paper. n, e, m and c are the numbers
of nodes, edges, attributes, and communities of the network, and “-“ means the
absence of ground-truth communities.
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5.2 Quality Evaluation of Community Detection

We evaluate the performance of our method BTLSC for
detecting communities on nine real-world networks with
ground truth communities. The networks used are described
in Table 2.

We use three types of baseline methods in the comparison.
The first type includes the methods using network topology
alone for community detection, i.e., DCSBM [7], IDCSBM [16]
and BigCLAM [8]. The second uses node attributes only,
which includes SMR [39]. The third uses network topology
and node attributes together to find communities, including:
SCI [25], MOEA-SA [23], ASCD [40], RSECD [41], CESNA [9]
andDCM [42]. The source codes of all themethods compared
are obtained from their authors, and we use their default
parameters. All methods require the number of communities
c to be pre-specified (except for MOEA-SA), so that we make
it the same as that in ground truth. To our approach, we set
the number of background topic, specialized topics and gen-
eral topics respectively to 1 and respectively 1 and 1/2 times
the number of communities, i.e., we setD ¼ c andE ¼ c=2 in
Algorithm 1.

The experiment results for disjoint community detection
are shown in Table 3. As shown, our algorithm BTLSC per-
forms best on 5, 3 and 5 out of 9 networks in terms of AC,
NMI and ARI, respectively. On the remaining networks
where our BTLSC does not perform best, it is still competitive
with that of the best baselines in most cases. To be specific,
our method BTLSC is on average 0.1517, 0.1566, 0.1846,
0.0938, 0.0643, 0.0606 and 0.0413 more accurate than DCSBM,
IDCSBM, SMR, SCI, ASCD-NMI, ASCD-ARC and RSECD in
terms of AC; and 0.1606, 0.1796, 0.2433, 0.1870, 0.1652, 0.1208,
0.1159 and 0.0273 better than these methods in terms of ARI.
Besides, in terms of NMI, our method BTLSC is competitive
with RSECD (i.e., BTLSC is only 0.0159 less accurate than
RSECD), and performs better than all the othermethods. This
validates the effectiveness of our newmethod in general.

As a supplement, the comparison with baseline methods
for finding overlapping communities is shown in Table 4. In
this case, our method outperforms 8, 8 and 7 of 9 networks in
terms of F-score, Jaccard and Omega index, respectively. On
the remaining networks (e.g., Facebook) where our method
does not perform best, it is still competitive with the best

TABLE 3
Comparison in Terms of AC, NMI, and ARI

Metrics Datasets

Methods

Topo Topo Cont Both Both Both Both Both Both

DCSBM IDCSBM SMR SCI MOEA-SA ASCD-NMI ASCD-ARC RSECD BTLSC

AC [0,1]

Texas 0.4809 0.3128 0.4754 0.6230 N/A 0.6266 0.6066 0.6043 0.6831
Cornell 0.3795 0.5683 0.3179 0.4564 N/A 0.4821 0.4921 0.5179 0.5179(2)

Washington 0.3180 0.4608 0.4977 0.5115 N/A 0.5269 0.5269 0.5739 0.6267
Wisconsin 0.3282 0.3702 0.4084 0.5038 N/A 0.5305 0.5267 0.6792 0.5458(2)
Facebook 0.4519 0.3134 0.3615 0.5104 N/A 0.4782 0.4382 0.3912 0.6548
Twitter 0.6049 0.3176 0.3827 0.5062 N/A 0.5527 0.5789 0.5375 0.6288
Cora 0.3848 0.5379 0.3087 0.4062 N/A 0.5096 0.4963 0.3684 0.4878(4)
Cite 0.2657 - 0.3028 0.2798 N/A 0.3263 0.3810 0.4867 0.3787(3)

PubMed 0.5364 - 0.3995 0.4739 N/A 0.5038 0.5037 0.5845 0.5921

AVG 0.4167 0.4118 0.3838 0.4746 N/A 0.5041 0.5078 0.5271 0.5684

NMI [0,1]

Texas 0.1665 0.0608 0.0355 0.1784 0.0942 0.2205 0.2088 0.3034 0.3121
Cornell 0.0969 0.1334 0.0845 0.1144 0.1559 0.1618 0.1733 0.3030 0.1767(2)

Washington 0.0987 0.0391 0.0730 0.1237 0.1574 0.1830 0.1768 0.3389 0.2734(2)
Wisconsin 0.0314 0.1159 0.0721 0.1703 0.1252 0.2056 0.1953 0.4489 0.1375(5)
Facebook 0.2940 0.2702 0.0940 0.2080 0.3291 0.5838 0.5785 0.3759 0.5642(3)
Twitter 0.5748 0.1018 0.0326 0.4300 0.4504 0.6465 0.6557 0.6326 0.6652
Cora 0.1707 0.3789 0.1328 0.1926 0.1120 0.3247 0.3305 0.1540 0.3204(4)
Cite 0.0413 - 0.0118 0.0487 0.3226 0.0966 0.1361 0.2230 0.1570(3)

PubMed 0.1228 - 0.0004 0.0559 0.1530 0.1485 0.1434 0.1760 0.1769

AVG 0.1775 0.1572 0.0596 0.1691 0.2111 0.2857 0.2887 0.3251 0.3092(2)

ARI [-1,1]

Texas 0.1156 0.1940 -0.0693 0.1077 0.1671 0.1905 0.1897 0.3134 0.4076
Cornell 0.1011 0.0137 -0.0084 0.0367 0.0898 0.0716 0.0725 0.2551 0.1969(2)

Washington 0.0447 0.0361 0.1037 0.0662 0.0331 0.1015 0.1146 0.3682 0.3431(2)
Wisconsin 0.1082 0.0581 0.0832 0.0435 0.1134 0.1449 0.1346 0.4318 0.1592(2)
Facebook 0.1089 0.0979 0.0239 0.1457 0.1936 0.2082 0.1984 0.1342 0.4896
Twitter 0.2780 0.0570 0.0583 0.1459 0.3141 0.2573 0.2655 0.2699 0.3249
Cora 0.1168 0.2035 0.0237 0.1486 0.0021 0.2253 0.2345 0.1170 0.2497
Cite 0.0185 - 0.0570 0.0216 0.0379 0.0849 0.1170 0.2188 0.1052(3)

PubMed 0.1422 - 0.0035 0.0659 0.0269 0.0939 0.0923 0.1114 0.1888

AVG 0.1133 0.0943 0.0306 0.0869 0.1087 0.1531 0.1580 0.2466 0.2739

Comparison of algorithms with disjoint community structures in terms of AC, NMI, and ARI. “Topo”, “Cont”, and “Both” depict the types of algorithms which
use network topology alone, node content alone, or both topology and content. “AVG” denotes the average performance of each algorithm in terms of each metric.
Best results are in bold. The number after BTLSC indicates its rank among all the methods when it is not the best. “-” means runtime >100 hours or out-of-
memory. As the number of communities got by MOEA-SA may be not the same as that of ground-truth, we cannot calculate its AC values and mark it as “N/
A”. ASCD-ARC and ASCD-NMI are two versions of ASCD.
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baseline method (i.e., CESNA). On average, the performance
of our BTLSC is always the best in terms of each of the three
metrics. In more details, BTLSC is on average 0.2584, 0.1451
and 0.3377 more accurate than BigCLAM, CESNA and DCM
in F-score; 0.2307,0.1494 and 0.2298 more accurate than these
methods in Jaccard; and 0.0595, 0.0685 and 0.1059 better in
Omega index. These results further validate the effectiveness
of the proposed new approach on community detection.

In summary, our method outperforms almost all of the
methods compared in terms of the six metrics (see both
Tables 3 and 4). The reason may be mainly that:

1) Our algorithm outperforms both the topology-based
methods (e.g., DCSBM, IDCSBM, BigCLAM) and
content-based methods (e.g., SMR). In particular, our
algorithm is better than DCSBM, even though
DCSBM and our method share similar mechanism to
deal with network topologies. This demonstrates that
making use of content information by appropriate
ways indeed helps improve the quality of the discov-
ered network communities.

2) Compared to the algorithms that use both network
topology and contents, our algorithm BTLSC still has
obvious advantages. This is also not surprising. For

example, in SCI and CESNA, the network communi-
ties and topical clusters (which describe only a single
level of topics of words) share the same set of latent
qualities. This is too strong an assumption to describe
semantics as well as their relationship with communi-
ties. In contrast, our BTLSC models the multiplex
semantics of words, and also describes the intrinsic
relationship between communities and these seman-
tics, which is a more natural way. RSECD and ASCD
both aremethods based onNMF, and also do not con-
sider the hierarchical use of word semantics; while
our BTLSC is based on probabilistic inference, and
describes well the multiplex semantics of words.
MOEA-SA is a multi-objective algorithm and DCM is
based on heuristic optimization, and they also do not
consider the hierarchical semantic structure of net-
worked contents. To sum up, thesemethods all ignore
the existing hierarchical structure of semantics which
leads to inaccurate fitting to the textual contents. We
adopt a reasonable generative mechanism, which
robustly solves the interaction between communities,
background topic and two-level topics. Through the
more natural fitting to the semantic information, the
quality of community detection is finally improved.
In addition, it is often observed that users tend to com-
municate frequently over certain topical interests (i.e.,
the specialized topics) and then form a community;
the common interest tendency (i.e., the general topics)
among communities is not unrelated; and some
semantic information (i.e., the background topic) can
reflect the background of all communities in the net-
work. Our method shows well this phenomenon that
typically exists in real networks and thus leads to bet-
ter performance.

5.3 Efficiency Comparison

We also report the runtimes of all the methods compared on
all the datasets used, as shown in Table 5. Themethods using
network topology alone (e.g., BigCLAM) and that using node
attributes alone (e.g., SMR) typically run faster than themeth-
ods using network topology and node attributes together.
Among themethods using both these two sources of informa-
tion, the efficiency of our method BTLSC is only lower to
DCM which, however, has a much lower accuracy than
BTLSC. BTLSC runs faster than CESNA and SCI on large net-
works while slower on small networks. (To be specific, com-
pared with SCI, BTLSC runs 61.11, 3.85 and 34.78 percent
slower only on small networks Texas, Washington and Wis-
consin; but runs 8.42, 60.83, 82.76 and 84.04 percent faster on
the largest 4 networks Facebook, Cora, Citeseer and Pubmed,
as well as 8.70 and 5.15 percent faster on small networks Cor-
nell and Twitter. Similarly, BTLSC runs 52.63, 5.00, 17.39, 6.90
and 31.43 percent slower than CESNA on small networks
Texas, Cornell, Washington,Wisconsin and Twitter; but runs
79.29, 82.59, 85.29, 98.92 percent faster on the largest 4 net-
works Facebook, Cora, Citeseer and Pubmed.) BTLSC runs
faster than the remaining four algorithms on all the networks.
This result, to some extent, validate the scalability of our new
algorithmBTLSC on some large-scale networks.

We further use some artificial networks to compare the effi-
ciency between our BTLSC and the best baseline in accuracy,

TABLE 4
Comparison in F-Score, JACCARD, and OMEGA Index

Metrics Datasets

Methods

Topo Both Both Both

BigCLAM CESNA DCM BTLSC

F-score
[0,1]

Texas 0.2064 0.2354 0.1115 0.4192
Cornell 0.1323 0.2348 0.1438 0.4433

Washington 0.1335 0.2191 0.1245 0.4757
Wisconsin 0.1284 0.2317 0.1045 0.3649
Twitter 0.3979 0.4382 0.1057 0.5691
Facebook 0.4006 0.4905 0.3921 0.4354(2)

Cora 0.1889 0.3105 0.0343 0.4661
Cite 0.0930 0.3380 0.0250 0.3412

PubMed 0.0772 0.2797 0.0038 0.5691

AVG 0.1954 0.3087 0.1161 0.4538

Jaccard
[0,1]

Texas 0.1218 0.1357 0.0603 0.3022
Cornell 0.0718 0.1347 0.0795 0.2989

Washington 0.0725 0.1240 0.0672 0.3415
Wisconsin 0.0701 0.1314 0.0554 0.2430
Twitter 0.2613 0.2963 0.0575 0.4514
Facebook 0.2894 0.3818 0.2846 0.3289(2)

Cora 0.1089 0.1910 0.0176 0.3259
Cite 0.0501 0.0173 0.0127 0.2204

PubMed 0.0404 0.1626 0.0019 0.4077

AVG 0.1207 0.1750 0.0946 0.3244

Omega
Index
[-1,1]

Texas -0.0177 -0.0013 -0.0017 0.2272
Cornell -0.0027 0.0071 -0.0040 0.0760

Washington 0.0208 0.0166 -0.0009 0.1665
Wisconsin -0.0148 -0.0070 0.0006 0.0529
Twitter 0.1037 0.0997 0.0084 0.0108(3)
Facebook 0.1739 0.1754 0.0086 -0.0158(4)

Cora 0.1430 0.0532 0.0006 0.2493
Cite 0.0000 0.0000 0.0002 0.0089

PubMed 0.0235 0.0045 0.0000 0.1888

AVG 0.0477 0.0387 0.0013 0.1072

Comparison of algorithms with overlapping community structures in terms of
F-score, Jaccard, and Omega Index.
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i.e., RSECD, which is also most similar to BTLSC. We use the
method introduced in [10] to generate networks with node
contents. To be specific, we first generate the network topol-
ogy based on Girven-Newman model [11]. For each network
with n nodes, the nodes were divided into 4 communities.
Each node has on average zin edges connecting to the nodes of
the same community and zout edges connecting to the nodes
of other communities, and zin þ zout ¼ 16. Thereafter, we gen-
erate a 4h-dimensional binary attributes for each node vi to
form4 attribute clusters, correctly corresponding to the 4 com-
munities generated above. In more details, for each node in
the sth cluster, we use a binomial distribution with mean
rin ¼ hin=h to generate a h-dimensional binary vector as its
ððs� 1Þ � hþ 1Þth to ðs� hÞth attributes and generated the
rest attributes by a binomial distribution with mean
rout ¼ hout=3h, (with 4h ¼ 200 and hin þ hout ¼ 16).

Tomake the above benchmark servewell in this efficiency
comparison, we vary the network size n from 100 to 12,000
(with n ¼ 100; 500; 1; 000; 2; 000; 4; 000; 6; 000; 8; 000; 10; 000;
11; 000 and 12,000), and keep zin ¼ 14 and hin ¼ 14 fixed
(making the network have a relative clear community and
cluster structure). The functions of BTLSC and RSECD with
the increase of network size are shown in Fig. 3. As shown,

BTLSC is indeedmore scalable than RSECD in general, espe-
cially when the network size increases. After investigation,
we find the possible reason. That is, the variational inference
mechanism used in BTLSCmakes it typically converge faster
than RSECD (which is based on NMF and adopts multiplica-
tive update rules), especially on large-scale networks.

5.4 The Case Study Analysis on LASTFM

The dataset we used in the case study analysis is LASTFM
which has been introduced in section 5.1. Except for the one
background topic which represents the background infor-
mation of the whole network, we set the number of commu-
nities and the number of specialized topics identically to
38 ðc ¼ D ¼ 38Þ, as suggested by [25]. As for the number of
general topics E, we performed experiments by changing
this number. We observed that, when E is biger than 4, there
will apprear some highly overlapped general topics. So we
set this number to 4 ðE ¼ 4Þ in this test.

Under the above setting, we obtained 4 groups of topic-
related communities under 4 general topics, in which each
community corresponds to a clear specialized topic. The
background topic words of the whole network are shown in
Fig. 4. Also of note, here we only show some of the commu-
nities in each group to display the two-level semantics in
these groups with Figs. 5, 6, 7 and 8, due to space limit.

First, we show the words that are related to the back-
ground topic of the whole context in Fig. 4. Since the network
comes from an online music system, last:fm, it is not strange
that all the words in the background topic are related to music
and do not reflect any specific information of music. For
instance, “pop” and “dance” are two top words in the word
cloud and are typical background words for music. The

TABLE 5
Runtimes of Different Algorithms

Datasets/Runtime(s)
Methods

DCSBM IDCSBM BigCLAM SMR SCI MOEA-SA CESNA DCM ASCD-NMI RSECD BTLSC

Texas 6.4 4.6e1 2.3e-1 5.6e-1 1.8 3.2e3 1.9 3e-1 4.8 7.4 2.9
Cornell 9.6 4.8e1 1.6e-1 7.7e-1 2.3 2.8e3 2.0 1.3 1.9 7.1 2.1
Washington 4.1 5.4e1 1.7e-1 3.1e-1 2.6 4.9e3 2.3 1.1 9.2 8.8 2.7
Wisconsin 6.1 6.9e1 1.9e-1 4.7e-1 2.3 6.4e3 2.9 1.5 8.6 9.8 3.1
Twitter 5.1 4.5e1 1.0e-2 9.1e-1 9.7e-1 1.7e3 7e-1 2e-1 8.6e-1 5.1 9.2e-1
Facebook 3.9e2 9.1e2 4.2 2.2 9.5 1.8e5 4.2e1 2.6 3.2e1 7.7e1 8.7
Cora 1.3e3 4.5e3 4.5e-1 1.4e1 1.2e2 1.1e6 2.7e2 8.2 1.3e2 1.1e3 4.7e1
Cite 1.0e3 - 3.0e-2 3.0e1 2.9e2 1.1e6 3.4e2 2.2e1 1.4e2 4.0e3 5.0e1
PubMed 1.2e4 - 4.5 1.9e3 5.7e3 2.7e6 8.4e4 9.7e2 1.1e3 3.7e5 9.1e2

Running times of different algorithms in terms of seconds. ASCD-ARC and ASCD-NMI have similar running times, so we only show the results of ASCD-NMI.
All methods run on a Dell workstation (Intel� Xeon� CPU E5-2680 V3@2.5GHz processor with 128 Gbytes of main memory).

Fig. 3. Scalability test. Runtimes of BTLSC and RSECD on 10 groups of
artificial networks. Each point represents the average runtime of
20 randomly sampled networks on the same size. Both x- and y-axes
are log-scaled so that the trends can be easily distinguished.

Fig. 4. Word cloud of the background topic of the whole LASTFM
network. The word size is proportional to the probability that this word
belongs to the background topic.
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reason for the appearance of “British” is that last:fm is born in
UK. “Instrumental” is also a word which can reflect any type
of musics, since any type of music needs instruments. So, by
modelling them separately as the background topic, these
words will not mix with the general and specialized topic
words, making the semantic representation more distinctive.

Then, we introduce the four music groups which respec-
tively share the four general topics. The first we found in the
LASTFM network is a group of topic-related communities of
electronic music lovers, as shown in Fig. 5. For example, the
words such as “electronic” and “electropop” in the general
topic #1 are suitable for the description of almost all types of
electronic music. On the other hand, these communities shar-
ing the same general topic are also formed by fans from differ-
ent branches of electronic music. To be specific, community
#16 is composed of “high techno”music lovers. Thewordwith
the highest probability in this community is “techno”, which is
a classic electronic music that can be compared with another
electronic music “house”. Community #33 is a group of fans
who loves the “dubstep” music, and the origin of dubstep is
affiliated with “post-punk”. Dubstep was located in London,
and thus it is reasonable that our algorithm finds the word
“London” in the specialized topic of community #33. “New
wave” is also a branch of electronic music, as shown in com-
munity #29. It has retainedmany characteristics of punkmusic.
So, the word “punk” also shows up in the specialized topic of
community #29. Community #27 gathers the “lounge” music
fans. This is a form of music which is also called “chill-out”. In

addition, the lounge is considered to belong to “oldies” due to
its relaxed and gentle tune. “Trance” fans gather in community
#19. “Trance” music originated from hardcore music. “Vocal
trance” is also an important style of trancemusic.

The second group of communities is related to rockmusic,
which is shown in Fig. 6.Words in general topic #2 reflect the
detailed information of rock music. To be specific, commu-
nity #1 gathers “heavy-mental” music lovers. There seems
to be another form of rock in general topic #1, which is
“nu-metal”, and also known as “grunge”. “Punk” fans were
gathered in community #30 by our algorithm since we found
“punk” and “punk-rock” in the specialized topic of commu-
nity #30 with high probabilities. The fans of “Progressive-
rock” are centered in community #6. Community #12 is
formed by the fans of “alternative-rock” which is often used
to be comparedwith “indie-rock”.

The third group of communities corresponds to general
topic #3, which is shown in Fig. 7. Communities #36 and #38
both belong to jazzmusic. In this general topic, our algorithm
found the words “Jazz”, “blues” and “Ragtime”, which all
tell that jazz comes from Blues and Ragtime. “Smooth-jazz”
and “acid-jazz”, as shown in the specialized topic word cloud
of community #36, are both fusion jazz. Community #38 gath-
ers lovers of “funk”, which is a kind of black jazz and typi-
callymixedwith rap.

The last group corresponds to the general topic #4, which
is shown in Fig. 8. The words of general topic #4 say that this
may be a group of pop music enthusiasts. The specialized
topic of community #28 is related to Japanese pop, which
is also called “J-pop”. Community #8 is dominated by the
fans of “R&B” and “hip-pop”. “Soundtrack” and “Folk”
lovers also formed their communities separately, i.e., com-
munities #14 and #26, respectively.

This case study shows that the new algorithm indeed has
the ability of finding the background topic of the whole net-
work, describing each community by specialized topics,

Fig. 5. The first group of topic-related communities which shares general
topic #1. The top center word cloud shows the keywords of general topic
#1. The five word clouds around the general topic show the specialized
topic words of communities #16, #33, #19, #27, and #29, respectively.
The word size is proportionate to the probability of this word belonging to
a general or specialized topic.

Fig. 6. The second group of communities which shares general topic
#2. The central word cloud shows the keywords of general topic #2
and the surrounding four word clouds show the specialized topics of
communities #1, #30, #6, and #12, respectively.

Fig. 7. The third group of communities shares general topic #3. The
central word cloud shows keywords of the general topic #3. The two
word clouds on both side are the specialized topic words corresponding
to communities #36 and #38, respectively.

Fig. 8. The fourth group of communities shares general topic #4.
The central word cloud shows key words of general topic #4. The
surrounding four word clouds denote the specialized topic words of
communities #28, #8, #14, and #26, respectively.
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and providing the common semantic content of communi-
ties with similar interests.

6 CONCLUSIONS AND DISCUSSION

In this paper, a probabilistic generative model, namely
BTLSC, has been proposed to find and profile communities.
The new model can not only detect communities more accu-
rately, but also offers a rich explanation of communities
through the structured utilization of semantic contents. To be
specific, BTLSC recognizes whether the words can belong to a
background topic or a two-level topic. It uses the background
topic to reflect the commonality of the whole network, and
the general and specialized topics to explain the communities
in clearer and different semantic granularities. The model is
trained under a variational inference framework. We perform
a series of experiments to test BTLSC by comparing with ten
state-of-the-art methods. These results show the surpreiority
of BTLSC in finding communities, both in term of accuracy
and efficiency. We also provide a case study to show the
power of BTLSC in explaining communities.

In this work, we mainly focus on the two-level semantics
(i.e., the general and specialized topics) of communities except
for the background topic for the whole network. Of course,
there may be higher semantic levels in more complicated
cases, while we simplify them all to a specialized topic-level
here since two-level is typically a most important extension
from the one- to multi-level cases and is often satisfactory to
find and profile network communities. In addition, taking too
many topic levels into account will often case poor matching
between network topology and semantic contents in real life.
This mismatching often occurs in community detection when
integrating network topology and semantic contents [10], [22].
Two-level topics are most often sufficient to express the rich
semantics of each community [43], and provide a goodmatch-
ing between topology and contents at the same time. Also, the
overfitting issue will become more serious if the semantic-
level is too deep, making the model too complicated to fit. On
the other hand, the higher level of semantics is of course also
significant since it essentially can be taken as a refinement of
the specialized topics. An ideal way may be that one deter-
mines the best number of levels of semantics from the net-
worked data. For example, one can utilize the idea of Bayesian
model selection, i.e., to add some appropriate shrinkage prior
on the multi-level of topics, so that the unrelated topic levels
can be automatically filtered out in training of the model.
However, model selection itself is a bigger problem than net-
work community detection, and is also not the main focus of
this work.Wewill leave it as ourmain futurework.
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