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Abstract—Social decisions made by individuals are easily influenced by information from their social neighborhoods. A key predictor of

social contagion is the multiplicity of social contexts inside the individual’s contact neighborhood, which is termed structural diversity.

However, the existing models have limited decomposability for analyzing large-scale networks, and suffer from the inaccurate reflection

of social context diversity. In this paper, we propose a truss-based structural diversity model to overcome the weak decomposability.

Based on this model, we study a novel problem of truss-based structural diversity search in a graphG, that is, to find the r vertices with

the highest truss-based structural diversity and return their social contexts. To tackle this problem, we propose an online structural

diversity search algorithm in Oðrðmþ T ÞÞ time, where r,m, and T are respectively the arboricity, the number of edges, and the number

of triangles inG. To improve the efficiency, we design an elegant and compact index, called TSD-index, which keeps the structural

diversity information for all individual vertices. We further optimize the structure of TSD-index into a highly compressed

GCT-index. Our GCT-index-based structural diversity search utilizes the global triangle information for fast index construction and finds

answers in OðmÞ time. Extensive experiments demonstrate the effectiveness and efficiency of our proposed model and algorithms,

against state-of-the-art methods.

Index Terms—Structural diversity, top-k search, social contagion, truss mining
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1 INTRODUCTION

ONLINE social networks (Twitter, Facebook, Instagram,
etc.) have been important platforms for individuals to

exchange information with their friends. Social contagion
[5], [24], [28], [35] is a phenomenon that individuals are
influenced by the information received from their social
neighborhoods, e.g., acting the same as friends in sharing
posts or adopting political opinions. Social decisions made
by individuals often depend on the multiplicity of distinct
social contexts inside his/her contact neighborhood, which is
termed structural diversity [6], [19], [35]. Many studies on
Facebook [35] show that users are much more likely to join
Facebook and become engaged if they have a larger struc-
tural diversity, i.e., a larger number of distinct social con-
texts. Given the important role of structural diversity, a
fundamental problem of structural diversity search is to
find the r users with the highest structural diversity in
graphs [6], [19], which can be beneficial to political cam-
paigns [23], viral marketing [24], promotion of health practi-
ces [35], cooperation in social dilemmas [29], and so on.

The problem of structural diversity search has been
recently studied based on two structural diversity models
of k-sized component [6], [19] and k-core [18]. However,
one significant limitation of both models is their limited
decomposability for analyzing large-scale networks, which
may lead to inaccurate reflection of social context diversity.

The detailed quality analysis and case studies can be found
in Sections 7.2 and 7.3. To address this issue, in this paper,
we propose a new structural diversity model based on
k-truss. A k-truss requires that every edge is contained in at
least (k-2) triangles in the k-truss [9]. Intuitively, a k-truss
signifies strong social ties among the members in this social
group, while tending to break up weak-tied social groups
and discard tree-like components. Our model treats each
maximal connected k-truss as a distinct social context. As
we will demonstrate, our model has several major advan-
tages. First, thanks to k-truss, our model has a strong
decomposability for analyzing large-scale networks at dif-
ferent levels of granularity. Second, a compact and elegant
index can be designed for efficient truss-based structural
diversity search in a linear cost w.r.t. graph size. Third,
when compared with other models, our model shows supe-
riority in the evaluation of influence propagation on real-
world networks.

Motivating Example. Consider a social network G in
Fig. 1a. The ego-network of an individual v is a subgraph of
G formed by all v’s neighbors as shown in the light gray
region (excluding vertex v) in Fig. 1b. To analyze the social
contexts in Fig. 1b, different structural diversity models
have substantial differences:

� Component-based structural diversity model regards
each connected component of vertex size at least k as
a social context [6], [19]. The component H1 having 8
vertices is regarded as one social context. However,
in terms of graph structure, two subgraphs H3 and
H4 shown in Fig. 1b are loosely connected through
edges ðx2; y1Þ and ðx4; y1Þ, and vertices (x1 and x3)
span long distances to vertices (y2, y3 and y4). Thus,
H3 and H4 can be reasonably treated as two different
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social contexts. Unfortunately, the attempt of adjust-
ing parameter k using any value does not help the
decomposition ofH1.

� Core-based structural diversity model regards a maxi-
mal connected k-core as a social context [18], [35]. A
k-core requires that every vertex has degree at least k
within the k-core. For 1 � k � 3, H1 is regarded as
one maximal connected k-core, which cannot be
decomposed into disjoint components; for k � 4, H1

is no longer counted as a feasible social context.
� Our truss-based structural diversity model treats each

maximal connected k-truss as a distinct social con-
text. For k ¼ 4, H1 is decomposed into two maximal
connected 4-trusses H3 andH4 in Fig. 1b, where each
edge has at least two triangles. As a result, H2, H3

and H4 are regarded as three distinct social contexts
in the ego-network of v, and the structural diversity
of v is 3.

In light of the above example, truss-based structural
diversity search is a pressing need. However, to the best of
our knowledge, the problem of truss-based structural diver-
sity search over graphs, has not been studied yet. In this
paper, we investigate the problem to find the r vertices with
the highest truss-based structural diversity and return their
social contexts. We propose efficient algorithms for truss-
based structural diversity search.

However, efficient computation of truss-based structural
diversity search raises significant challenges. A straightfor-
ward online search algorithm is to compute the structural
diversity for all vertices and return the top-r vertices, which
is inefficient. Because it is costly to compute the structural
diversity for all vertices in large graphs, from scratchwithout
any pruning. The subgraph extraction of an ego-network
needs the costly operation of triangle listing [25], not even
talking about the truss decomposition [36] for finding all
maximal connected k-trusses. On the other hand, developing
a diversity bound for pruning search space is also difficult.
Unlike the symmetry structure of ego-networks in the
component-based model [6], [19], non-symmetry structural
properties restrict our truss-based model to derive an effi-
cient pruning bound. Therefore, existing structural diversity
algorithms for component-based and core-based models [6],
[18], [19] do not work for our truss-basedmodel.

Fortunately, truss-based structural diversity has many
desirable features for developing efficient indexes and algo-
rithms. To improve the efficiency of truss-based structural
diversity search, we propose several useful optimization
techniques. We develop an efficient top-r search framework

to prune vertices for avoiding structural diversity computa-
tion. The heart of our framework is to exploit two important
pruning techniques: (1) graph sparsification and (2) a diver-
sity bound. Specifically, we first make use of structural
properties of k-truss and propose graph sparsification to
remove from the graph unqualified edges and nodes that
will not be in any k-truss. Second, we develop an upper
bound of diversity for pruning unqualified answers, leading
to an early termination of our top-r search. Furthermore, we
develop a novel truss-based structural diversity index,
called TSD-index, which is a compact and elegant tree struc-
ture to keep the structural information for all ego-networks
in G. Based on the TSD-index, we propose an index-based
top-r search algorithm to quickly find answers. Further-
more, to explore the sharing computation across vertices,
we utilize the global triangle listing one-shot for fast ego-
network extraction and develop a fast bitmap technique for
ego-network decomposition. Leveraging a new data struc-
ture of GCT-index compressed from TSD-index, we propose
GCT for truss-based structural diversity search, which
achieves a smaller index size and a faster query time.

To summarize, we make the following contributions:

� We use a maximal connected k-truss to model a
neighborhood social context in the ego-network. We
define the truss-based structural diversity and then
formulate a new problem of truss-based structural
diversity search over graphs. (Section 2)

� We present a method of computing truss-based struc-
tural diversity using truss decomposition. Based on
this, we develop an online search algorithm to tackle
our problem, and give a comprehensive theoretical
analysis of algorithm complexity. (Section 3)

� We analyze the structural properties of truss-based
social contexts, and develop two useful pruning tech-
niques of graph sparsification and a diversity bound.
Equipped with them, we develop an efficient frame-
work for structural diversity search with an early ter-
minationmechanism. (Section 4)

� We design a space-efficient truss-based structural
diversity index (TSD-index) to keep the structural
diversity information for all ego-networks. We propose
a TSD-index-based search algorithm to quickly find
answers in a linear cost w.r.t. graph size. (Section 5)

� We propose GCT for truss-based structural diversity
search based on the efficient techniques of fast ego-
network truss decomposition and a compressed
GCT-index. (Section 6)

� We validate the efficiency and effectiveness of our
methods through extensive experiments. (Section 7)

We discuss related work in Section 8, and conclude the
paper with a summary in Section 9.

2 PROBLEM DEFINITION

We consider an undirected and unweighted simple graph
G ¼ ðV;EÞ with n ¼ jV j vertices and m ¼ jEj edges. We
define NðvÞ ¼ fu 2 V : ðv; uÞ 2 Eg as the set of neighbors of
a vertex v, and dðvÞ ¼ jNðvÞj as the degree of v in G. Let dmax

represent the maximum degree in G. For a set of vertices
S � V , the induced subgraph of G by S is denoted by GS ,

Fig. 1. A running example.
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where the vertex set is V ðGSÞ ¼ S and the edge set is
EðGSÞ ¼ fðv; uÞ 2 E : v; u 2 Sg. W.l.o.g. we assume that
the considered graph G is connected, indicating that m �
n� 1 and n 2 OðmÞ. The assumption is similarly made in
[18], [25].

2.1 Ego-Network

We define an ego-network [11], [27] in the following.

Definition 1 [Ego-Network]. Given a vertex v 2 V , the
ego-network of v, is a subgraph of G induced by the vertex set
NðvÞ, denoted by GNðvÞ, where the vertex set V ðGNðvÞÞ ¼ NðvÞ
and the edge set EðGNðvÞÞ ¼ fðu;wÞ 2 E : u;w 2 NðvÞg.

In the literature, the term “neighborhood induced sub-
graph of v” [18] has also been used to indicate the
ego-network of v, since the ego-network is formed by all
neighbors of v. For example, consider the graph G in Fig. 1a
and the vertex v 2 V , the ego-network of v is shown as
the gray region in Fig. 1b, which is formed by the induced
subgraph of G by vertices NðvÞ ¼ fx1; . . . ; x4; y1; . . . ; y4;
r1; . . . ; r6g , excluding the center vertex v with its incident
edges.

2.2 Truss-Based Structural Diversity

A triangle in G is a cycle of length 3. Given three vertices
u; v; w 2 V , the triangle formed by u; v; w is denoted by
~uvw. Given a subgraph H � G, the support of an edge e ¼
ðu; vÞ 2 EðHÞ is defined as the number of triangles contain-
ing edge e in H, i.e., supHðeÞ ¼ jf~uvw : ðu;wÞ; ðv; wÞ 2
EðHÞgj. Fig. 2a shows the support of each edge in graph H1.
There exists only one triangle ~x2x4y1 containing ðx2; y1Þ,
and supH1

ðx2; y1Þ ¼ 1. We drop the subscript and denote the
support as supðeÞ, when the context is obvious.

A k-truss of graph G is defined as the largest subgraph of
G such that every edge has support of at least k� 2 in this
subgraph [20], [36]. For a given k � 2, the k-truss of a graph
G is unique, which may be disconnected with multiple com-
ponents. In our truss-based structural diversity model, we
treat each connected component of the k-truss as a distinct
social context. The definition of social contexts in an
ego-network is given below.

Definition 2 (Social Contexts). Given a vertex v and an inte-
ger k � 2, each connected component of the k-truss in GNðvÞ is
called a social context. Thus, the social contexts of v are repre-
sented by all vertex sets of components, denoted by SCðvÞ ¼
fV ðHÞ : H is a connected component of the k-truss in GNðvÞg.

By Definition 2, each social context is a component of
k-truss, which is connected and also the maximal subgraph
of the k-truss. Therefore, as an alternative, we also call a
social context as a maximal connected k-truss throughout the
paper. For example, consider an ego-network GNðvÞ in

Fig. 1b and k ¼ 4. The 4-truss of GNðvÞ is presented by
the darker gray region. We regard a connected component
H3 as a neighborhood social context in GNðvÞ, which is re-
presented by V ðH3Þ ¼ fx1; x2; x3; x4g. Thus, the social con-
texts of v have SCðvÞ ¼ ffx1; x2; x3; x4g; fy1; y2; y3; y4g;
fr1; r2; r3; r4; r5; r6gg.

Based on the definition of social contexts, we can define
our key concept of truss-based structural diversity as follows.

Definition 3 (Truss-based Structural Diversity). Given a
vertex v and an integer k � 2, the truss-based structural diver-
sity of v is the multiplicity of social contexts SCðvÞ, denoted by
scoreðvÞ ¼ jSCðvÞj.

The truss-based structural diversity is exactly the num-
ber of connected components of the k-trusses in the
ego-network. Consider the ego-network GNðvÞ in Fig. 1b and
k ¼ 4, the 4-truss of GNðvÞ has three connected components
H2,H3, andH4, thus scoreðvÞ ¼ 3.

2.3 Problem Statement

The problem of truss-based structural diversity search stud-
ied in this paper is formulated as follows.

Problem Statement. Given a graph G and two integers r
and k where 1 � r � n and k � 2, the goal of top-r truss-
based structural diversity search is to find a set of r vertices
in G having the highest scores of truss-based structural
diversity w.r.t. the trussness threshold k, and return their
social contexts.

Consider the graph G in Fig. 1 with r ¼ 1 and k ¼ 4, the
answer of our problem is the vertex v, which has the highest
structural diversity scoreðvÞ ¼ 3 and its social contexts
SCðvÞ ¼ ffx1; x2; x3; x4g; fy1; y2; y3; y4g; fr1; r2; r3; r4; r5; r6gg.

3 ONLINE SEARCH ALGORITHM

In this section, we develop an online search algorithm for
top-r truss-based structural diversity search and analyze
the algorithm complexity.

3.1 Truss Decomposition

Trussness. We start with a useful definition of trussness below.

Definition 4 (Trussness). Given a subgraph H � G, the
trussness of H is defined as the minimum support of edges in
H plus 2, denoted by tðHÞ ¼ mine2EðHÞ fsupHðeÞ þ 2g. The
trussness of an edge e 2 H denoted by tHðeÞ is defined as the
largest number k such that there exists a connected k-truss
H 0 � H containing e, i.e.,

tHðeÞ ¼ max
H0�H;e2EðH0Þ

tðH 0Þ:

Similar to the notation of support, we drop the subscript
and denote the trussness tHðeÞ as tðeÞ when the context is
obvious. In addition, we define the trussness of a vertex v as
tHðvÞ ¼ maxH0�H;v2V ðH0ÞtðH 0Þ.

Example 1. Fig. 2b shows the trussness of each edge in
graph H1. First, according to the edge support in Fig. 2a,
the trussness of subgraph H1 is tðH1Þ ¼ mine2EðH1Þ
fsupH1

ðeÞ þ 2g ¼ 1þ 2 ¼ 3. Thus, we have tH1
ðx2; y1Þ ¼

maxH0�H1;e2EðH0Þ tðH 0Þ ¼ 3.

Fig. 2. The support and trussness of edges inH1.
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Algorithm of Truss Decomposition. Truss decomposition on
graph G is to find the k-trusses of G for all possible k’s and
compute the trussnesses of all edges in G. In this paper, we
adopt the truss decomposition algorithm proposed in [36].
The algorithm keeps peeling the edges with the smallest
support in the remaining graph to obtain the trussness of
each edge. We omit the detail of the algorithm for brevity.

3.2 Computing scoreðvÞ
Algorithm 1 presents a procedure of computing scoreðvÞ,
which calculates the number of maximal connected k-trusses
in the ego-network GNðvÞ. The algorithm first extracts GNðvÞ
from graphG (line 1), and then applies the truss decomposi-
tion in [36] on GNðvÞ (line 2). After obtaining the trussness of
all edges, it removes all the edges e with tGNðvÞ ðeÞ < k from
GNðvÞ (line 3). The remaining graph GNðvÞ is the union of all
maximal connected k-trusses. Applying the breadth-first-
search, all connected components are identified as the social
contexts SCðvÞ ¼ fV ðHÞ : H is a maximal connected k-truss
in GNðvÞg (line 4). Algorithm 1 finally returns the structural
diversity scoreðvÞ ¼ jSCðvÞj (lines 5-6).

Algorithm 1. Computing scoreðvÞ
Input: G ¼ ðV;EÞ, a vertex v, the trussness threshold k
Output: scoreðvÞ
1: Extract an ego-network of v as GNðvÞ from G by Definition 1;
2: Apply the truss decomposition on GNðvÞ;
3: Remove all edges ewith tGNðvÞ ðeÞ < k from GNðvÞ;
4: Identify all connected components in GNðvÞ as the social con-

texts SCðvÞ ¼ fV ðHÞ : H is a maximal connected k-truss in
GNðvÞg;

5: scoreðvÞ  jSCðvÞj;
6: return scoreðvÞ;

3.3 Online Search Algorithm

Equipped with the procedure of computing scoreðvÞ, we
present an online search algorithm to address the problem
of top-r structural diversity search. The online search algo-
rithm computes the structural diversity for all vertices in
graph G from scratch with respect to a pair of parameters k
and r. It maintains an answer set for recording the top-r
results and returns the top-r results after the structural
diversity for all vertices are computed.

3.4 Complexity Analysis

Lemma 1. Algorithm 1 computes scoreðvÞ for v in Oð
P

u2NðvÞ
minfdðuÞ; dðvÞg þ

P
ðu;wÞ2EðGNðvÞÞminfdðuÞ; dðwÞgÞ time and

OðmÞ space.

Proof. Because of space limitation, the detailed proof is
reported in the arXiv article [17]. tu

Theorem 1. The online search algorithm runs on graph G taking

O
X
v2V

X
u2NðvÞ

minfdðuÞ; dðvÞg þ
X

ðu;wÞ2EðGNðvÞÞ
minfdðuÞ;

8<:
0@

dðwÞg
o�

;

time and OðmÞ space.

Proof. The online search algorithm uses Algorithm 1 to
compute scoreðvÞ for each vertex v 2 V , which totally
takes Oð

P
v2V f

P
u2NðvÞ minfdðuÞ; dðvÞg þ

P
ðu;wÞ2EðGNðvÞÞ

minfdðuÞ; dðwÞggÞ time by Lemma 1. Moreover the top-r
results can be maintained in OðnÞ time and OðnÞ space,
using bin sort. As a result, the online search algorithm
takes Oð

P
v2V f

P
u2NðvÞ minfdðuÞ; dðvÞg þ

P
ðu;wÞ2EðGNðvÞÞ

minfdðuÞ; dðwÞggÞ time and Oðmþ nÞ � OðmÞ space. tu

Complexity Simplification. Theorem 1 has a tight time com-
plexity, but in a very complex form. We relax the time com-
plexity to simplify form using graph arboricity [8].
Specifically, the arboricity r of a graph G is defined as the
minimum number of spanning trees that cover all edges of
graph G, and r � minfb ffiffiffiffiffi

m
p c; dmaxg [8]. For any subgraph

g � G, the arboricity rg of g has rg � r. We have the follow-
ing theorem.

Theorem 2. The online search algorithm runs on graph G taking
Oðrðmþ T ÞÞ time andOðmÞ space, where r is the arboricity of
G and T is the number of triangles in G.

Proof. According to [8], Oð
P
ðu;wÞ2EðGÞ min fdðuÞ; dðvÞgÞ �

OðrmÞ;where r is the arboricity of G. Thus, we have

O
X
v2V

X
u2NðvÞ

minfdðuÞ; dðvÞg

8<:
9=;

0@ 1A

� O
X
ðv;uÞ2E

minfdðvÞ; dðuÞg

0@ 1A � OðrmÞ:

Now, we consider the remaining part of time complex-
ity in Theorem 1 using the arboricity of ego-networks.
For a vertex v 2 V , the ego-network GNðvÞ has nv vertices
andmv edges, where nv ¼ jNðvÞj andmv ¼ jf~vuw : u;w 2
NðvÞ; ðu;wÞ 2 Egj. Let the number of triangles in graph

G be T , and obviously T ¼
P

v2V mv

3 . In addition, as

GNðvÞ � G, the arboricity rv of GNðvÞ has rv � r. As a

result, we have

O
X
v2V

X
ðu;wÞ2EðGNðvÞÞ

minfdðuÞ; dðwÞg

8<:
9=;

0@ 1A

� O
X
v2V

rvmv

 !
� O r �

X
v2V

mv

 !
� OðrT Þ:

Combining the above two equations, we have

O

 X
v2V

( X
u2NðvÞ

minfdðuÞ; dðvÞg þ
X

ðu;wÞ2EðGNðvÞÞ
minfdðuÞ;

dðwÞg
)!

� Oðrðmþ T ÞÞ:
tu
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4 AN EFFICIENT TOP-R SEARCH FRAMEWORK

The online search algorithm is inefficient for top-r search,
because it computes the structural diversity for all vertices
on the entire graph. To improve the efficiency, we develop
an efficient top-r search framework in this section. The heart
of our framework is to exploit two important pruning tech-
niques: (1) graph sparsification and (2) upper bounding
scoreðvÞ.

4.1 Graph Sparsification

The goal of graph sparsification is to remove from graph G
the unnecessary vertices and edges, which are not included
in the maximal connected k-truss for any ego-network. This
removal does not affect the answer, but shrinks the graph
size for efficiency improvement.

Structural Properties of k-Truss.We start from a structural
property of k-truss.

Property 1. Given an edge e� 2 E, if tGðe�Þ < ðkþ 1Þ, e� will
not be included in any maximal connected k-truss in the
ego-network GNðvÞ for any vertex v 2 V .

Proof. We obmit the proof for brevity. The detailed proof
can be found in the arXiv article [17]. tu

Based on Property 1, we can safely remove any edge e
with tGðeÞ < ðkþ 1Þ and the isolated vertices from graph G
after applying the truss decomposition [36] on G. Graph
sparsification is a useful preprocessing step, which benefits
efficiency improvement by reducing the graph size and
avoiding the structural diversity computation of the isolated
nodes.

4.2 An Upper Bound of scoreðvÞ
In this section, we analyze the structural properties of
ego-networks and develop a tight upper bound of scoreðvÞ.
Symmetry structure of ego-networks lends themselves to
derive an efficient upper bound of structural diversity [6],
[19]. However, the same symmetry properties fails in our
truss-based structural diversity model. The following obser-
vation formalizes the property of non-symmetry.

Non-Symmetry. Consider three vertices u, v, w form a tri-
angle ~uvw in G. The non-symmetry of truss-based struc-
tural diversity shows that the edges ðv; wÞ, ðu;wÞ, ðu; vÞ may
have different trussnesses in the ego-networks GNðuÞ, GNðvÞ,
GNðwÞ respectively. In other words, tGNðuÞ ðv;wÞ, tGNðvÞ ðu;wÞ,
and tGNðwÞ ðu; vÞ may not be the same. For example, we con-
sider three vertices v, r1, and r2 in graph G shown in Fig. 1a.
For ego-network GNðvÞ, we have tGNðvÞ ðr1; r2Þ ¼ 4; For
ego-network GNðr1Þ, we have tGNðr1Þ

ðv; r2Þ ¼ 3. As a result,

tGNðvÞ ðr1; r2Þ 6¼ tGNðr1Þ
ðv; r2Þ. The following observation for-

malizes this property of non-symmetry.

Observation 1 (Non-Symmetry). Consider an edge e ¼
ðv; uÞ 2 E and a common neighbor w 2 NðvÞ \NðuÞ. The
ego-networks GNðvÞ and GNðuÞ have non-symmetry structure
for vertex w as follows. Even if edge ðu;wÞ in the ego-network
GNðvÞ has tGNðvÞ ðu;wÞ � k, edge ðv; wÞ in the ego-network
GNðuÞ may have tGNðuÞ ðv; wÞ < k .

In view of this result, we infer that given an edge ðv; uÞ 2
E, the prospects for exploiting the process of computing

scoreðvÞ to derive an upper bound for scoreðuÞ are not
promising. It shows significant challenges for deriving an
upper bound. The truss-based structural diversity cannot
enjoy the nice symmetry properties of component-based
structural diversity [6], [19], which also brings challenges
for score computation. We next investigate the structural
properties of maximal connected k-truss, in search of pros-
pects for an upper bound of scoreðvÞ.

An Upper Bound scoreðvÞ. Consider that the smallest max-
imal connected k-truss is a completed graph of k vertices as

k-clique. A k-clique has k vertices and kðk�1Þ
2 edges. Based on

the analysis of ego-network size, we can infer the following
useful lemma.

Lemma 2. For a vertex v 2 V , scoreðvÞ has an upper bound of
scoreðvÞ ¼ minfbdðvÞk c; b

2mv
kðk�1Þcg, where mv is the number of

edges in ego-network GNðvÞ. Thus, scoreðvÞ � scoreðvÞ holds.

Proof. First, GNðvÞ has dðvÞ vertices. Since the minimum ver-
tex size of a maximal connected k-truss is k, GNðvÞ has at
most bdðvÞk c maximal connected k-trusses in GNðvÞ. Thus,
scoreðvÞ � bdðvÞk c holds. Second, GNðvÞ has mv edges. Since
the minimum edge size of a maximal connected k-truss is
kðk�1Þ

2 edges, GNðvÞ has at most b 2mv
kðk�1Þc maximal connected

k-trusses in GNðvÞ. As a result, scoreðvÞ � minfbdðvÞk c;
b 2mv
kðk�1Þcg ¼ scoreðvÞ holds. tu

Algorithm 2. Efficient Truss-BasedTop-r SearchFramework

Input: G ¼ ðV;EÞ, an integer r, the trussness threshold k
Output: Top-r truss-based structural diversity results
1: Apply the graph sparsification on G by removing all edges

ewith tGðeÞ � k and isolated nodes;
2: for v 2 V do
3: scoreðvÞ  minfbdðvÞk c; b

2mv
kðk�1Þcg;

4: L  sort all vertices V in descending order of scoreðvÞ;
5: S  ;;
6: while L 6¼ ;
7: v�  argmaxv2LscoreðvÞ; Delete v� from L;
8: if jSj ¼ r and scoreðv�Þ � minv2SscoreðvÞ then
9: break;
10: Computing scoreðv�Þ using Algorithm 1;
11: if jSj < r then S  S [ fv�g;
12: else if scoreðv�Þ > minv2SscoreðvÞ then
13: u argminv2SscoreðvÞ;
14: S  ðS � fugÞ [ fv�g;
15: return S and their social contexts SCðvÞ for v 2 S;

4.3 An Efficient Top-r Search Framework

Equipped with graph sparsification and an upper bound
scoreðvÞ , we propose our efficient truss-based top-r search
framework as follows.

Algorithm. Algorithm 2 outlines the details of truss-based
top-r search framework. It first performs graph sparsifica-
tion by applying truss decomposition on graph G and
removing all the edges e with tGðeÞ � k and isolated nodes
from G (line 1). Then, it computes the upper bound of
scoreðvÞ for each vertex v 2 V and sorts them in the decreas-
ing order in L (lines 2-4). Next, the algorithm iteratively
pops out a vertex v� with the largest scoreðvÞ from L (line 7).
After that, the algorithm checks an early stop condition. If
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the answer set S has r vertices and scoreðv�Þ � minv2S
scoreðvÞ holds, we can safely prune the remaining vertices in
L and early terminate (lines 8-9); otherwise, it needs to
invoke Algorithm 1 to compute structural diversity scoreðv�Þ
(line 10) and checks whether v� should be added into the
answer set S (lines 11-14). Finally, it outputs the top-r results
S and their social contextsSCðvÞ for v 2 S (line 15).

Example 2. We apply Algorithm 2 on graph G in Fig. 1.
Assume that k ¼ 4 and r ¼ 1. L ranks all vertices in the
decreasing order of their upper bounds. At the first itera-
tion, the vertex v in G has the highest upper bound
scoreðvÞ ¼ 3 of L. It then computes scoreðvÞ ¼ 3 and
adds v into the answer set S. At the next iteration, the
highest upper bound of vertices in L is 1 (e.g., score
ðx1Þ ¼ 1), which triggers the early termination (lines 8-9
of Algorithm 2). That is, jSj ¼ 1 and scoreðv�Þ ¼ 1 �
minv2SscoreðvÞ ¼ 3. The algorithm terminates with an
answer S ¼ fvg. During the whole computing process, it
invokes Algorithm 1 only once for structural diversity cal-
culation, which is much less than 17 times by the online
search algorithm in Section 3. It demonstrates the pruning
power of top-r search framework.

4.4 Complexity Analysis

We analyze the complexity of Algorithm 2. Let the reduced
graph be G0 � G. Let r0, m0, and T 0 be respectively the
arboricity, the number of edges, and the number of triangles
in G0. Obviously, r0 � r, m0 � m, and T 0 � T . First, graph
sparsification takes OðrmÞ time by truss decomposition for
graph G. Second, computing the upper bounds for all verti-
ces takes Oðr0m0Þ time on the reduced graph G0. In addition,
L performs vertex sorting in the order of scoreðv�Þ and
maintains the list, which can be done in OðnÞ time. In the
worst case, Algorithm 2 needs to compute scoreðvÞ for every
vertex v, which takes Oðr0ðm0 þ T 0ÞÞ by Theorem 2. Overall,
Algorithm 2 takes Oðr0ðm0 þ T 0Þ þ rmþ nÞ � Oðrmþ r0T 0Þ
time and OðmÞ space.

5 A NOVEL INDEX-BASED APPROACH

Algorithm 2 is still not efficient for large networks, because
the operation of computing scoreðvÞ in Algorithm 1 applies
truss decomposition on each ego-network GNðvÞ from
scratch in an online manner, which is highly expensive. It
wastes lots of computations on the unnecessary access of
disqualified edges whose trussnesses are less than k in the
ego-network. To further speed up the calculation of
scoreðvÞ, in this section, we develop a novel truss-based
structural diversity index (TSD-index). TSD-index is a com-
pact and elegant tree structure to keep the structural diver-
sity information for all ego-networks in G. Based on
TSD-index, we design a fast solution of computing scoreðvÞ
and propose an index-based top-r search approach to
quickly find r vertices with the highest scores, which is par-
ticularly efficient to handle multiple queries with different r
and k on the same graph G.

5.1 TSD-Index Construction

An intuitive indexing approach is to keep all maximal con-
nected k-trusses in GNðvÞ by storing the trussness for all

edges. However, it requires OðT Þ space to store all
ego-networks GNðvÞ for each vertex v 2 V , which is ineffi-
cient for large networks. To develop efficient indexing
scheme, we first start with the following observations.

Observation 2. Fig. 3a depicts a maximal connected 4-truss H3

in the ego-network GNðvÞ in Fig. 1b. The definition of truss-
based structural diversity only focuses on the number of maxi-
mal connected k-trusses, but ignores the connections between
vertices in a maximal connected k-truss. It indicates that we do
not need to store its whole structure. Fig. 3b shows a tree-
shaped structure with edge weights, which can clearly represent
that x1; x2; x3; x4 are in the same maximal connected 4-truss.

Observation 3. Fig. 4a depicts a maximal connected 3-truss H1

in the ego-networkGNðvÞ in Fig. 1b. A tree structure is enough
to represent the connectivity of vertices. However, if we keep an
arbitrary tree structure of H1 to connect all vertices, informa-
tion loss of maximal connected k-trusses may happen. Consider
the tree in Fig. 4b, for vertex x4, it has no edges connecting
with x1, x2 and x3, but one incident edge with a weight of 3.
From this tree structure in Fig. 4b, we cannot infer that x4 is
involved in a maximal connected 4-trussH3 shown in Fig. 3a.

In summary, Observation 2 shows that the tree-shaped
structure is enough to represent the identity of a maximal
connected k-truss. Observation 3 further shows that the
tree-shaped structure should have the maximum edge
trussnesses to ensure no loss information of structural
diversity, indicating a maximum spanning forest of GNðvÞ
with the largest total weights of edge trussness.

TSD-Index Structure. Based on the above observations, we
are able to design our index structure of TSD-index. We first
define a weighted graph WGv for a vertex v 2 V . WGv has
the same vertex set and edge set with GNðvÞ and 8e 2
EðWGvÞ has a weight wðeÞ ¼ tGNðvÞ ðeÞ. In other words, we
assign a weight on each edge with its trussness on
ego-network GNðvÞ to form WGv. As a result, the TSD-index
of GNðvÞ is defined as the maximum spanning forest of WGv,
denoted by TSDv.

TSD-Index Construction. Algorithm 3 describes a method
of TSD-index construction on graph G. The algorithm con-
structs the TSD-index for each vertex v 2 G (lines 1-10). It
first performs truss decomposition on GNðvÞ to obtain all
edge trussnesses (line 2). The algorithm then constructs a
weighted graph WGv for GNðvÞ where each edge e has a
weight wðeÞ ¼ tGNðvÞ ðeÞ (line 3). Let TSDv be initially as all
isolated vertices NðvÞ (line 4). Then, we construct the maxi-
mum spanning forest of WGv by adding edges in the
decreasing order of edge weights one by one into TSDv

(lines 5-10). Let L be the edge set of WGv EðWGvÞ. We
visit each edge e ¼ ðu;wÞ in the decreasing order of weight
wðeÞ in L, and check whether u;w are in the same compo-
nent in TSDv. If u;w are disconnected, we add an edge

Fig. 3. An example of Observation 2.
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connecting u and w in TSDv. The process of construc-
ting TSDv breaks when all edges have been visited in L
(lines 6-10). Algorithm 3 returns the TSD-index of G as
fTSDvjv 2 V g.

Example 3. Fig. 5 illustrates the TSD-Index construction of
TSDv for a vertex v in graph G in Fig. 1. Fig. 5a shows that
TSDv is initialized to be a set of isolated nodes NðvÞ.
Then, it checks all 4-truss edges and add qualified edges
one by one into TSDv. According to Observation 2, when
Algorithm 3 processes the edge ðx3; x1Þ, it finds that x3
and x1 are in the same component in Fig. 5a, thus ðx3; x1Þ
is not added to TSDv in Fig. 5b. Afterwards, it adds the
edge e ¼ ðx2; y1Þ with weight wðeÞ ¼ 3 into TSDv in
Fig. 5c. The complete structure of TSDv is finally depicted
in Fig. 5c.

Algorithm 3. TSD-Index Construction

Input: G ¼ ðV;EÞ
Output: TSD-index of G
1: for v 2 V do
2: Apply the truss decomposition on GNðvÞ;
3: Construct a weighted graph WGv for GNðvÞ, where each

edge e inWGv has a weight wðeÞ ¼ tGNðvÞ ðeÞ;
4: Let a forest TSDv formed by all isolated vertices NðvÞ;
5: Let an edge set L  EðWGvÞ;
6: while (L 6¼ ;)
7: Let e ¼ ðu;wÞ 2 L has the largest weight wðeÞ in L;
8: if vertices u and w are disconnected in TSDv then
9: Add a new edge ewith its weight wðeÞ into TSDv;
10: Delete e from L;
11: return fTSDvjv 2 V g;

Remarks. Note that our TSD-index can answer queries of
any k and r. It is independent to parameters k and r once
the TSD-index is constructed. TSD-index can not only be
used for calculating the structural diversity scores, but also
support the retrieval of all social contexts in ego-networks.
Early pruning (Property 1 and Lemma 2) works for the
online search algorithms, but not for TSD-index construc-
tion in Algorithm 3.

5.2 TSD-Index-Based Top-r Search

In the following, we first propose an efficient algorithm for
computing structural diversity scores using the TSD-index.
Based on it, we develop our TSD-index-based top-r search
algorithm.

Computing scoreðvÞ Based on TSD-Index. Algorithm 4
presents a method of computing scoreðvÞ based on the
TSD-index. The algorithm first retrieves a subgraph H of
TSDv formed by all edges e with the edge weight wðeÞ � k
(line 1). Next, it finds all maximal connected k-trusses of H
that are the social contexts SCðvÞ (lines 2-6). Applying the
breadth-first-search strategy, it uses one hashtable to ensure
each vertex to be visited once, and one queue to visit the
vertices of a neighborhood social context S one by one (lines
3-6). After traversing each component in H, it keeps the
social context SCðvÞ by the union of S (line 6). Finally, it
returns scoreðvÞ as the multiplicity of social contexts SCðvÞ
(lines 7-8).

Algorithm 4. Computing scoreðvÞ Based on TSD-index

Input: G ¼ ðV;EÞ, a vertex v, the trussness threshold k
Output: scoreðvÞ
1: Let H be a subgraph of TSDv formed by all edges e with

wðeÞ � k;
2: SCðvÞ  ;;
3: for each unvisited vertex u 2 V ðHÞ do
4: Traverse the componentX containing u inH;
5: Let a social context S  the set of vertices inX;
6: SCðvÞ  SCðvÞ [ fSg;
7: scoreðvÞ  jSCðvÞj;
8: return scoreðvÞ;

TSD-index-Based Top-r Search Algorithm. Based on the
TSDv, we design a new upper bound of scoreðvÞ for prun-
ing. The upper bound of scoreðvÞ is defined as gscoreðvÞ ¼
jfe2TSDv:wðeÞ�kgj

k�1 . The essence of gscoreðvÞ holds because a max-
imal connected k-truss should have a tree-shaped represen-
tation of at least ðk� 1Þ edges with weights of no less than k
in TSDv. We can make a fast calculation of gscoreðvÞ by sort-
ing all edges of TSDv in the decreasing order of edge
weights, during the index construction. Equipped with
Algorithm 4 of computing scoreðvÞ and a new upper boundgscoreðvÞ, our TSD-index-based top-r structural diversity
search algorithm invokes an efficient framework similarly
as Algorithm 2, which finds the top-r answers by pruning
those vertices v that has the upper bound gscoreðvÞ no greater
than the top-r answer S.

5.3 Complexity Analysis

Theorem 3. Algorithm 3 constructs TSD-index for a graphG in
Oðrðmþ T ÞÞ time and OðmÞ space. The index size is OðmÞ.
Moreover, TSD-index-based search approach tackles the prob-
lem of truss-based structural diversity search in OðmÞ time
and OðmÞ space.

Proof. First, we analyze the time complexity of TSD con-
struction. For each vertex v 2 V , Algorithm 3 extracts
GNðvÞ and applies truss decomposition on GNðvÞ. This
totally takes Oðrðmþ T ÞÞ by Theorem 2. In addition, for
v 2 V , a weighted graph WGv has nv vertices and mv

Fig. 4. An example of Observation 3.

Fig. 5. Illustration of TSD-Index construction of TSDv.
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edges. The sorting of weighted edges can be done in
OðmvÞ time using a bin sort. Thus, applying Kruskal’s
algorithm [10] to find the maximum spanning forest from
WGv takes OðmvÞ time. As a result, constructing the
TSD-index for all vertices takes Oð

P
v2V mvÞ � OðT Þ.

Therefore, the time complexity of Algorithm 3 is Oðrðmþ
T ÞÞ in total.

Second, we analyze the space complexity of TSD con-
struction. The edge set L takes OðmvÞ � OðmÞ space. The
index TSDv takes OðnvÞ � OðnÞ space. The space com-
plexity of Algorithm 3 is Oðmþ nÞ � OðmÞ.

Third, we analyze the index size of TSD-index of G.
For a vertex v, TSDv is the maximum spanning forest of
WGv, which has no greater than nv � 1 edges. Thus, the
size of TSDv is OðnvÞ. Overall, the index size of
TSD-index of G is Oð

P
v2V nvÞ � OðmÞ.

Finally, we analyze the time and space complexity of
TSD-index-based search approach. First, Algorithm 4
takes OðjNðvÞjÞ time to compute scoreðvÞ for a vertex v 2
V . In the worst case, the TSD-index-based search
approach needs to invoke Algorithm 4 to compute
scoreðvÞ for all vertices. It takes Oð

P
v2V jNðvÞjÞ � OðmÞ

time complexity. In addition, the upper bound gscoreðvÞ
takes Oð1Þ space for each vertex v 2 V . Thus, the space
complexity is OðmÞ. tu

Remarks. In summary, the TSD-index-based search appro-
ach is clearly faster than the online search algorithms and
Algorithm 2, in terms of their time complexities. In addition,
TSD-index can support efficient updates in dynamic graphs
where the graph structure undergo frequently updates with
nodes/edges insertions/deletions. Although an edge inser-
tion may cause the structure change of many ego-networks,
the updating techniques are still promising to be further
developed with some carefully designed ideas, given by the
existing theory and algorithms of k-truss updating on
dynamic graphs [20], [38].

6 A GLOBAL GCT-INDEX-BASED APPROACH

In this section, we propose a new approach GCT for truss-
based structural diversity search, which utilizes the global
triangle information for efficient ego-network truss decom-
position and develops a compressed truss-based diversity
GCT-index to improve TSD-index.

6.1 Solution Overview

We briefly introduce a solution overview of GCT algorithm,
which leverages one-shot global triangle listing and a com-
pressed GCT-index for fast structural diversity search com-
putation. The method of GCT-index construction is outlined
in Algorithm 5. GCT-index equips with three new techni-
ques and implementations: 1) fast ego-network extraction
(lines 1-4 of Algorithm 5); 2) bitmap-based truss decomposi-
tion (lines 5-14 of Algorithm 5); and 3) GCT-index construc-
tion for an ego-network (line 15 of Algorithm 5), which is
detailed presented in Algorithm 6.

Note that it is very useful but non-trivial challenging to
explore the sharing computation across vertices using
global truss decomposition. We observe that the one-shot
triangle listing of global truss decomposition can help to

efficiently extract ego-networks for all vertices. Moreover,
we realize that the bitwise operations can further improve
the efficiency of truss decomposition in such local ego-
networks. In addition, we propose a compact index struc-
ture of GCT-index, which maintains only supernodes and
superedges to discard the edges within the same k-level of
social contexts. GCT-index based query processing can be
done more efficient than the TSD-index-based approach.

Algorithm 5. GCT-index Construction

Input: Graph G
Output: GCT-index of all vertices
1: Let GNðvÞ be an empty graph for each v 2 V ;
2: for each edge e ¼ ðu; vÞ 2 E do
3: for each vertex w 2 NðuÞ \NðvÞ do
4: Add the new edge e into GNðwÞ;
5: for each vertex v in G do
6: Retrieve an ego-network GNðvÞ directly based on Steps

2-4, which avoids the duplicate triangle listing;
7: Give IDs to all vertices inGNðvÞ sequentially from 1 to L,

where L ¼ jNðvÞj.
8: for each vertex u 2 NðvÞ do
9: Create a bitmap Bitsu of all 0 bits with jBitsuj ¼ L.
10: for each vertex w 2 NGNðvÞ ðuÞ do
11: Bitsu½w	  1;
12: for each edge e ¼ ðu;wÞ 2 EðGNðvÞÞ do
13: supGNðvÞ ðeÞ  Bitsx AND Bitsy;
14: Apply a bitmap-based peeling process for truss decom-

position [36] on GNðvÞ;
15: Apply GCT-index construction in Algorithm 6 on GNðvÞ

to obtain GCTv;
16: return the GCT-index fGCTv : v 2 V g;

6.2 Fast Ego-Network Truss Decomposition

In this section, we propose a fast method of ego-network
truss decomposition, which leverages on the global triangle
listing and bitmap-based truss decomposition.

Global Triangle Listing based Ego-Network Extraction. Ego-
network extraction is the first key step of score computation
in Algorithm 1 and TSD-index construction in Algorithm 3.
However, it suffers from heavily duplicate triangle listing.
Specifically, for each vertex v, it needs to perform a triangle
listing to find all triangles ~vuw and generate an edge ðu;wÞ
in ego-network GNðvÞ.~vuw is generated twice, which checks
the common neighbors of NðvÞ \NðuÞ and NðvÞ \NðwÞ for
two edges ðv; uÞ and ðv; wÞ respectively. Similarly, for verti-
ces u and w,~vuw is generated twice respectively for extract-
ing ego-networks GNðuÞ and GNðwÞ. Unfortunately, ~vuw is
repeatedly enumerated for six times, which is inefficient for
local ego-network extraction.

To this end, we propose to utilize global triangle listing
once to generate all the ego-networks in G. The details of
fast ego-network extraction is presented in Algorithm 5
(lines 1-4). Specifically, for each edge e ¼ ðu; vÞ 2 E, it iden-
tifies triangle ~vuw by enumerating all the common neigh-
bors w 2 NðuÞ \NðvÞ, and adds edge e into ego-network
GNðwÞ (lines 2-4). Thus, it finishes the construction for all
ego-networks, which can be directly used in the following
ego-network truss decomposition. Each triangle ~vuw is
enumerated for three times, which saves a half of original
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computations using six enumeration times. Overall, our
methodof fastego-network extractionmakesuse of global trian-
gle listing for best sharing in local ego-network computations.

Bitmap-Based Truss Decomposition. We propose a bitmap-
based approach to accelerate the truss decomposition. To
apply truss decomposition on an obtained ego-network
GNðvÞ, an important step is support computation, i.e., calcu-
lating supGNðvÞ

ðeÞ as the number of triangles containing e ¼
ðx; yÞ for each edge e 2 EðGNðvÞÞ. The existing method of
computing supGNðvÞ

ðeÞ [36] uses the triangle listing, which

checks each neighbor z 2 NðxÞ in ego-network GNðvÞ to see
whether z 2 NðyÞ using hashing technique. The hash check-
ing takes constant time Oð1Þ in theoretical analysis, but in
practice costs an expensive time overhead of support compu-
tation appeared in large graphs for frequent hash updates
and checks. To this end, we propose to use a bitmap tech-
nique to accelerate the support computation. First, we give
an order ID to every vertex inGNðvÞ sequentially from 1 to L,
where L ¼ jNðvÞj. For each vertex x 2 NðvÞ, we create a
binary bitmap Bitsx with all 0 bits. For each edge e ¼ ðx; yÞ 2
EðGNðvÞÞ, we set to 1 for both the xth bit of bitmap Bitsy and
the yth bit of bitmap Bitsx, indicating x 2 NGNðvÞ ðyÞ and y 2
NGNðvÞ ðxÞ. Then, the support of supðeÞ equals to the number

of 1 bits commonly appeared in Bitsx and Bitsy, denoted by
supGNðvÞ

ðeÞ ¼ jNðuÞ \NðvÞj ¼ Bitsx AND Bitsy. Note that the
binary operation of bitwise AND can be done efficiently.

Algorithm 5 presents the detailed procedure of bitmap-
based truss decomposition (lines 5-15). The algorithm first
retrieves ego-network GNðvÞ directly from the global triangle
listing (line 6). It then initializes the Bitsx for all vertices x 2
NðvÞ and calculates the support supGNðvÞ ðeÞ as Bitsx AND

Bitsy for all edges e 2 EðGNðvÞÞ (lines 8-13). Next, The algo-
rithm applies a bitmap-based peeling process for truss
decomposition [36] on GNðvÞ. Specifically, when an edge
ðx; yÞ is removed from a graph, it updates Bitsx½y	 ¼ 0 and
Bitsy½x	 ¼ 0. Due to the limited space, we omit the details of
similar bitmap-based peeling process (line 14). After obtain-
ing all the edge trussnesses, we invoke Algorithm 6 (to be
introduced in Section 6.3) to construct GCT-index (line 15).

6.3 GCT-Index Construction and Query Processing

In this section, we propose a new data structure of
GCT-index, which compresses the structure of TSD-index in
a more compact way.

We start with discussing the limitations of TSD-index.
Each social context is defined as a maximal connected
k-truss. The spanning forest structure of TSD-index stores
not only the edge connections between different social con-
texts, but also the internal edges within a social context.
However, such information of internal edges is redundant,
which can be avoided for indexing. For example, consider
the TSD-index of vertex v in Fig. 6a. The vertices fx1; x2;
x3; x4g form a social context of maximal connected 4-truss.
The edges ðx4; x1Þ, ðx4; x2Þ, and ðx4; x3Þ can be ignored for
indexing storage. Instead, we keep a node list of fx1; x2;
x3; x4g, which is enough to recover the information of social
contexts by saving the cost of edge listing.

GCT-Index Structure. GCT-index keeps a maximum-
weight forest-like structure similar as TSD-index, which
consists of supernodes and superedges. Specifically, for a

vertex v, the GCT-index of v is denoted by GCTv ¼ ðVv; EvÞ,
where Vv and Ev are the set of supernodes and superedges
respectively. A supernode S 2 Vv represents a group of ver-
tices that are connected via the edges of the same trussness
tðSuÞ in a social context. Each supernode is associated with
two features, including the trussness of connecting edges
tðSuÞ and a vertex list VS of the vertices belonging to
this social context. Based on the isolated supernodes of Vv,
we add the superedges Ev ¼ fðSi; SjÞ : Si; Sj 2 Vv and 9vi 2
VSi ; vj 2 VSj such that the edge ðvi; vjÞ 2 Eg into GCTv,

such that all vertices form a forest with the largest weight.
Note that the weight of a superedge ðSi; SjÞ 2 Ev is denoted by

the corresponding edge trussness in GNðvÞ, i.e., wððSi; SjÞÞ ¼
maxvi2VSi ;vj2VSj tGNðvÞ ðvi; vjÞ. For example, for a vertex v, the

corresponding TSD-index in Fig. 6a is compressed into a small
GCT-index GCTv as shown in Fig. 6b. GCTv ¼ ðVv; EvÞ where
Vv ¼ fS1; S2; S3g and Ev ¼ fðS1; S2Þg. The supernode S1 con-
sists of tðS1Þ ¼ 4 and VS1 ¼ fx1; x2; x3; x4g that belong to 4-
truss social context. The superedge ðS1; S2Þ has a weight of
wððS1; S2ÞÞ ¼ 3, due to tGNðvÞ ððx2; y1ÞÞ ¼ 3. This edge indicates

that the vertices in S1 and S2 belong to the same 3-truss social
context, i.e., VS1 [ VS2 ¼ fx1; x2; x3; x4; y1; y2; y3; y4g.

Algorithm 6. GCT-indexConstruction for an Ego-Network

Input: an ego-network GNðvÞ for a vertex v
Output: GCT-index of v
1: Vv  ;; Ev  ;;
2: for each vertex u 2 NðvÞ do
3: Super-node Su: tðSuÞ ¼ tGNðvÞ ðuÞ and VSu ¼ fug;
4: Vv  Vv [ fSug;
5: Let an edge set L  EðGNðvÞÞ;
6: while L 6¼ ; do
7: Pop out an edge e ¼ ðu;wÞ 2 L with the largest truss-

ness tGNðvÞ ðeÞ from L;
8: Identify the corresponding supernodes Su and Sw for u

and w respectively.
9: if Su ¼ Sw or Su and Sw are connected then continue;
10: if tðSuÞ ¼ tðSwÞ ¼ tGNðvÞ ðeÞ then
11: Two supernodes merge: VSu  VSu [ VSw ;
12: Assign all Sw’s incident edges to Su and delete Sw;
13: else
14: Superedge insertion: Ev  Ev [ ðSu; SwÞ;
15: wððSu; SwÞÞ  tGNðvÞ ðeÞ;
16: return GCTv ¼ ðVv; EvÞ;

GCT-Index Construction. Algorithm 6 presents the proce-
dures of constructing GCT-index in an ego-network GNðvÞ
for a vertex v. The algorithm first creates the supernodes Su

Fig. 6. GCTv is a compressed data structure of TSDv for vertex v in
graph G as shown in Fig. 1a.
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for each vertex u in ego-network GNðvÞ (lines 2-4). For each

supernode Su, the trusssness tðSuÞ is initialized as the vertex

trussness of tGNðvÞ ðuÞ and VSu ¼ fug (line 3). Next, the algo-
rithm continues to construct GCT-index by adding super-
edges andmerging supernodes, via a traverse of the whole set
of edges L ¼ EðGNðvÞÞ (lines 5-15). In each iteration, it
retrieves an edge e ¼ ðu;wÞ with the largest trussness in L
(line 7). If two vertices u and w belong to the same supernode
or their supernodes Su and Sw are already connected inGCTv,
then it continues to check the next edge in L (lines 8-9). If two
different supernodes Su and Sw have the same trussnesses
as tGNðvÞ ðeÞ, it merges two supernodes into one by assign-

ing all Sw’s feature to Su. Specifically, it unites two vertex
lists as VSu ¼ VSu [ VSw and assigns to Su the edges that are
incident to supernode Sw, and then removes Sw from Vv
(lines 10-12); Otherwise, it adds a superedge between Su

and Sw and assigns the edge weight as wððSu; SwÞÞ ¼
tGNðvÞ ðeÞ (lines 14-15). After processing all edges in L, the
algorithm finally returns the GCT-index as GCTv ¼ ðVv; EvÞ
(line 16).

GCT-index-Based Query Processing. Thanks to a very ele-
gant and compact structure of GCT-index, we next intro-
duce a fast method to compute scoreðvÞ for a given vertex v.

Lemma 3. For a vertex v 2 V and a number k, the structural
diversity score of v is scoreðvÞ ¼ Nk �Mk, where Nk and Mk

are the number of supernodes and superedges with trussness no
less than k in GCTv, i.e., Nk ¼ jfS 2 Vv : tðSÞ � kgj and
Mk ¼ jfe 2 Ev : tðeÞ � kgj.

Proof. Let scoreðvÞ ¼ x w.r.t. a particular k. This indicates
that ego-network GNðvÞ has x social contexts. In terms of
the structural properties of GCT-index, each maximal
connected k-truss is represented by a connected structure
of spanning tree or just one single supernode. In the ith
spanning tree (or ith single supernode), the number of
supernodes is denoted as ni, and the number of super-
edges is ni � 1. Thus, Nk ¼

Px
i¼1 ni and Mk ¼

Px
i¼1 ni �

1. As a result, Nk �Mk ¼
Px

i¼1 ni �
Px

i¼1ðni � 1Þ ¼Px
i¼1 1 ¼ x.
Note that the GCT-index-based query processing for

structural diversity search takes OðmÞ time in worst,
wherem is the number of edges in G. tu

7 EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency
of our proposed algorithms on real-world networks. All
algorithms mentioned above are implemented in C++ and
complied by gcc at -O3 optimization level.

Datasets. We use eight datasets of real-world networks,
and treat them as undirected graphs. Except for socfb-
konect,1 all other datasets are available from the Stanford
Network Analysis Project [26]. The network statistics are
described in Table 1. We report the node size jV j, the edge
size jEj, the maximum degree dmax, the maximum edge
trussness t�G ¼ maxe2EtGðeÞ, the maximum edge trussness
among all ego-networks t�ego ¼ maxv2V;e2EðGNðvÞÞ ftGNðvÞ ðeÞg,
and the number of triangles T .

Compared Methods and Evaluated Metrics. To evaluate the
effectiveness of top-r truss-based structural diversity model,
we conduct the simulation of social influence process and
report the number of affected vertices of the r selected verti-
ces by all methods. We test and compare our truss-based
structural diversity method with three other methods as
follows.

� Random: is to select r vertices from graph by random.
� Comp-Div: is to select r vertices with the highest

k-sized component-based structural diversity [6].
� Core-Div: is to select r vertices with the highest

k-core-based structural diversity [18].
� Truss-Div: is our method by selecting r vertices with

the highest k-truss-based structural diversity.
In addition, to evaluate the efficiency of improved strate-

gies, we compare our algorithms with two state-of-the-art
methods Comp-Div [6] and Core-Div [18]. Note that the
implementation of Comp-Div in [6] is much faster than the
method in [19]. We also test and compare four algorithms
proposed in this paper as follows.

� baseline: is the online search algorithm that com-
putes structural diversity for all vertices in Section 3.

� bound: is the efficient approach using graph sparsifi-
cation and an upper bound for pruning vertices in
Algorithm 2.

� TSD: is the TSD-index based approach, which uses
Algorithm 4 to compute structural diversity.

� GCT: is theGCT-index based approach inAlgorithm5.
We compare them by reporting the running time in sec-

onds and the search space as the number of vertices whose
structural diversities are computed in search process. The
less running time and search space are, the better efficiency
performance is.

Parameters. We set the parameters r ¼ 100 and k ¼ 3 by
default. We also evaluate the methods by varying the
parameters k in {2, 3, 4, 5, 6} and r in f50; 100; 150; 200;
250; 300g.

7.1 Efficiency Evaluation

Exp-1 (Efficiency Comparison on All Datasets). We compare the
efficiency of our proposed methods on all datasets. Table 2
shows the results of running time and search space. Clearly,
TSD is the most efficient in terms of running time, and
baseline is the worst. TSD uses less search space than
bound, indicating a stronger pruning ability of gscoreðvÞ
against scoreðvÞ in Lemma 2. The speedup ratio Rt between
TSD and baseline is defined by Rt ¼ tbaseline=tTSD where
tbaseline and tTSD are the running time of baseline and TSD

TABLE 1
Network Statistics(K¼ 103 and M¼ 106)

1. http://networkrepository.com/socfb_konect.php
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respectively. The speedup ratio Rt (column 5 in Table 2)
ranges from 265 to 2,745. In other words, our method TSD
achieves up to 2,745X speedup on the network NotreDame.
In addition, the pruning ratio Rs between TSD and baseline
is defined by Rs ¼ Sbaseline=STSD where Sbaseline and STSD are
the search space of baseline and TSD respectively. The
pruning ratio Rs (column 9 in Table 2) ranges from 3.1 to
3,355. The pruning performance of bound and TSD are close
and the best as the two upper bounds are derived in a simi-
lar way. However, as an index-based method, TSD is much
faster than bound.

Exp-2 (Efficiency Comparison of All Different Methods). We
vary parameter k to compare the efficiency of all different
methods. We compare six methods of baseline, bound, TSD,
GCT, Comp-Div, and Core-Div on three datasets Gowalla,
Livejournal, and Orkut. The results of running time and
search space are respectively reported in Figs. 7 and 8.
Similar results can be also observed on other datasets. GCT
is a clear winner for the varied k on all datasets. Thanks to
efficient GCT-index, GCT significantly outperforms two
state-of-the-art methods of Comp-Div and Core-Div on large
networks of LiveJournal and Orkut. Moreover, GCT outper-
forms TSD, indicating the superiority of a more compact
GCT-index against TSD-index. In addition, we report the
search space results in Fig. 8. It shows that the search space
is significantly reduced by bound against baseline on all
datasets, indicating the technical superiority of graph spar-
sification and the upper bound of scoreðvÞ. TSD performs
the best in search space by leveraging another tight upper
bound gscoreðvÞ, which learns structural information from
the TSD-index.

Exp-3 (Indexing Scheme Comparison Between TSD and
GCT). We compare two indexing methods of TSD and GCT
in terms of index construction time, index size, and index-
based query processing time of structural diversity search.
The results of TSD and GCT on all dataset are reported in
Table 3. First, the index size of GCT-index is smaller than
the size of TSD, due to a compact structure of GCT-index

by discarding unnecessary edges within social contexts.
Second, GCT achieves a much faster index construction
time than TSD, thanks to the efficient techniques of fast
ego-network extraction and bitmap-based truss decomposi-
tion. More specifically, Table 4 reports the detailed running
time of ego-network extraction and ego-network truss
decomposition by TSD and GCT on all datasets. The results
reflect that GCT achieves significant accelerations on both
ego-network extraction and ego-network truss decomposi-
tion, which validates the superiority of our speed up techni-
ques proposed in Section 6. Finally, as shown in the
columns 7 and 8 of Table 3, GCT runs much faster than TSD
in terms of the query time of structural diversity search.

Exp-4 (Efficiency Comparison of GCT and Hybrid). In this
experiment, we compare GCT with a very competitive
method Hybrid. As a hybrid approach of partial answer sav-
ing and online search, Hybrid keeps in advanced the top-r
vertices for all possible k and r. For an input query of
parameters k and r, Hybrid can directly get the answer of
top-r vertices and then computes the corresponding social
contexts using Algorithm 1 in an online manner. The main
cost of Hybrid is the social context computation. Fig. 9 shows
the running time of Hybrid and GCT on three datasets by
varying r from 1 to 300 and k ¼ 3. Hybrid is comparative to
GCT when r ¼ 1. However, when r goes larger, GCT is sig-
nificantly faster than Hybrid on all datasets, which reflects
the superiority of our GCT-index-based diversity search.

7.2 Effectiveness Evaluation

This experiment evaluates the effectiveness of truss-based
structural diversity model for social contagion. As men-
tioned in the introduction, social contagion is an informa-
tion diffusion process that a user of a social network gets
affected by the information propagated from his/her neigh-
bors. In this experiment, we simulate the social contagion
by the process of influence propagation using the indepen-
dent cascade model [4], [15]. In the independent cascade
model, vertices in the input graph have two state:

TABLE 2
Comparison of Running Time (in Seconds) and Search Space (the Number of Vertices Whose Structural Diversity are Computed) of

Different Algorithms

Here k ¼ 3 and r ¼ 100.

Fig. 7. Comparsion of baseline, bound, Core-Div, Comp-Div and TSD in
terms of running time (in seconds). Fig. 8. Comparsion of baseline, bound, and TSD in terms of search space.
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unactivated and activated. Initially, we apply influence
maximization algorithm [34] on graph G to obtain 50 verti-
ces as a set of activated seeds. Then we uses these seeds to
influence their neighbors. If one of their neighbors get acti-
vated from the previous unactivated status, we say that this
vertex gets contagion. For a activated seed u and its unacti-
vated neighbor v, the successful activation of v from u only
depends on the edge probability between u an v. We per-
form the Monte Carlos sampling for 10,000 times. Then, we
evaluate the number of target vertices (output by different
approaches) that get activated (social contagion) by these
seeds in the influence propagation. We treat undirected
graphs as directed graphs, by regarding each undirected
edge e ¼ ðu; vÞ as two directed edges < u; v > and <
v; u > , with the same influential probability pðeÞ ¼ 0:01 by
default.

Exp-5 (Correlation Between Social Contagion and Truss-Based
Structural Diversity). This experiment attempts to validate
the correlation between social contagion and truss-based
structural diversity. We test whether the vertices with
higher truss-based structural diversity scores would have
higher probabilities to get activated. We set the parameter
k ¼ 4. According to the scores of truss-based structural
diversity, we partition the vertices into 4 groups with differ-
ent score intervals from low to high. We report the activated
rate of each group, that is, the number of activated vertices
over the total number of vertices in this group. Fig. 10

reports the activated rates of all groups on three networks
of Gowalla, LiveJournal, and Orkut. The results show that
the vertices having higher scores are more easily to get acti-
vated. It confirms that truss-based structural diversity is a
good predictor for social contagion.

Exp-6 (Effectiveness Comparison of Different Models). We
apply all competitor methods Random, Comp-Div, Core-Div,
and our method Truss-Div to obtain r vertices, by setting the
parameter k ¼ 4 if necessary. We evaluate how many verti-
ces among those top-r vertices selected by different methods
will get activated in the influence propagation. The larger
the number of activated vertices is, the better is. Fig. 11 shows
the number of activated vertices by different methods varied
by parameter r. We can see that our method has more num-
ber of activated vertices than all the other methods, indicat-
ing the vertices with larger truss-based structural diversities
have a higher probability to get affected by others.

Exp-7 (Latency Incurred to Activate the Results of Different
Models). This experiment evaluates the latency (the number
of activation rounds) incurred to activate the top-100 results
of Truss-Div, Core-Div and Comp-Div. Fig. 12 reports the

TABLE 3
Comparison of TSD and GCT Indexing Methods in Terms of the Index Size, Index Construction Time, and Query Time

TABLE 4
Running Time (in Seconds) of TSD and GCT for Ego-Network

Extraction and Ego-Network Truss Decomposition

Fig. 9. Running time (in seconds) of Hybrid and GCT varied by r.

Fig. 10. Correlation between social contagion and truss-based structural
diversity.

Fig. 11. Comparison of Random, Comp-Div, Core-Div, and TSD in terms
of the number of activated vertices.

Fig. 12. Latency of activating top-100 results by three models.
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average number of activation rounds w.r.t the number of
activated vertices on three networks. Truss-Div achieves the
smallest latency to activate the most number of vertices on
Gowalla and Livejournal. Truss-Div is competitive with
Comp-Div on Orkut, due to the imbalanced structural diver-
sity distribution of top-100 results of Comp-Div. The acti-
vated speed of Comp-Div gets fast first and then slows
down significantly. It shows that the vertices selected by
Truss-Div are more quickly and easily to get social conta-
gion than the Core-Div and Comp-Divmodels.

7.3 Case Study on DBLP

We conduct a case study on a collaboration network from
DBLP.2 The DBLP network consists of 234,879 vertices and
542,814 edges. An author is represented by a vertex. An edge
between two authors indicates that they have co-authored for
at least 3 times. We make a comprehensive comparison of
Truss-Div,Comp-Div andCore-Divmodels on the case studies
of DBLPnetwork.

Exp-8 (Top-1 Result by Our Truss-Based Model). We set r ¼ 1
and k ¼ 5 to obtain the author v� whose name is “Gabor
Fichtinger” with the highest structural diversity scoreðv�Þ ¼
6. The ego-networkGNðv�Þ of “Gabor Fichtinger” visualized in
Fig. 13 consists of six maximal connected 5-trusses in green,
which represent six semantic contents (e.g., 6 research groups
working on different topics). In contrast, we apply Comp-Div
and Core-Div on this same ego-network GNðv�Þ and obtain the
following meaningless results. For Comp-Div, the whole net-
work cannot be decomposed into multiple social contexts
using the component-basedmodel for any k-sized component
[6]. ForCore-Div, in Fig. 13, the six components are connected
together to form a connected 4-core through the edges
between the authors highlighted in red.

Hence, it is also difficult to apply the Comp-Div and
Core-Div models for effective structural diversity analysis
on this complex ego-network GNðv�Þ. This further shows the
superiority of truss-based structural diversity model on the
analysis of large-scale complex ego-networks.

Exp-9 (Quality Evaluation of Social Contexts). Table 5
reports the statistics of three ego-networks of top-1 result
by Comp-Div, Core-Div, and Truss-Div on DBLP. We
report the author name of answers, vertex size, edge size,

density, the number of social contexts (i.e., jSCðvÞj), and
activated probability. We perform influence propagation in
the network formed by each top-1 result v and its neighbors.
We assign the edge probability to 0.05 uniformly, and ran-
domly select 10 influential seeds from NðvÞ. The top-1 result
of Truss-Div achieves the highest activated probability of
0.47 on the average of 10,000 runs, which verifies the superi-
ority of our truss-based structural diversity model. More-
over, the ego-network of “Gabor Fichtinger ” by Truss-Div
has the largest density of 5.18.

8 RELATED WORK

Structural Diversity Search. Social decisions can significantly
depend on the social network structure [12], [14]. Ugander
et al. [35] conducted extensive studies on the Facebook to
show that the contagion probability of an individual is
strongly related to its structural diversity in the ego-network.
Motivated by [35], Huang et al. [19] studies the problem of
structural diversity search to find k vertices with the highest
structural diversity in graphs. To improve the efficiency of
[19], Chang et al. [6] proposes a scalable algorithmby enumer-
ating each triangle at most once in constant time. Structural
diversity search based on a different k-core model is further
studied in [18]. The k-truss-based structural diversity studied
in this work is also called k-brace-based structural diversity
[35]. In addition, there also exist numerous studies on top-k
query processing [1], [3], [30], [37] by considering diversity in
the returned ranking results. However, the problem of struc-
tural diversity search based on k-truss model has not been
investigated by any studymentioned above.

K-Truss Mining and Indexing. In the literature, there exist a
large number of studies on k-truss mining and indexing. As
a cohesive subgraph, k-truss requires that each edge has at
least ðk� 2Þ triangles within this subgraph [9]. Interestingly,
several equivalent concepts of k-truss termed as different
names are independently studied. For example, k-truss has

Fig. 13. A case study of structural diversity search on DBLP. Here, k ¼ 5 and r ¼ 1. This is an ego-network of “Gabor Fichtinger”. Each component in
green is a maximal connected 5-truss, which represents a distinct social context.

TABLE 5
Ego-Network Statistics of Top-1 Results on DBLP

2. https://dblp.uni-trier.de/xml
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been named as the k-dense community [16], [31], k-mutual-
friend subgraph [39], k-brace [35], and triangle k-core [38].
The task of truss decomposition is to find the non-empty
k-truss for all possible k’s in a graph. Wang and Cheng [36]
propose a fast in-memory algorithm for truss decomposi-
tion. In addition, truss decomposition has also been studied
in various computing settings (e.g., external-memory algo-
rithms [36], MapReduce algorithms [7], and shared-memory
parallel systems [32]) and different types of graphs (e.g.,
uncertain graphs [13], [22], directed graphs [33], and
dynamic graphs [20], [38]).

Recently, several community models are built on the
k-truss [2], [20], [21], [40]. Meanwhile, a number of k-truss-
based indexes (e.g., TCP-index [20] and Equi-Truss [2]) are
proposed for another problem of community search, which
supports the efficient retrieval of communities. In contrast
to the above studies, k-truss-based structural diversity
search is first studied in this paper. Leveraging the micro-
network analysis of ego-networks, we propose a novel tree-
shaped structure of TSD-index and efficient algorithms to
address our problem. A detailed of index comparison can
be found in [17].

9 CONCLUSION

In this paper, we investigate the problem of truss-based
structural diversity search over graphs. We propose a truss-
based structural diversity model to discover social contexts,
which has a strong decomposition to break up weak-tied
social groups in large-scale complex networks. We propose
several efficient algorithms to solve the top-r truss based
structural diversity search problem. We first develop effi-
cient techniques of graph sparsification and an upper bound
for pruning. We also propose a well-designed and elegant
TSD-index for keeping the information of structural diver-
sity which solves the problem in time linear to graph size.
Moreover, we develop a new GCT algorithm based on
GCT-index. Experiments also show the effectiveness and
efficiency of our proposed truss-based structural diversity
model and algorithms, against state-of-the-art component-
based and core-based methods.
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