
Efficient Adaptive Matching for Real-Time
City Express Delivery

Yafei Li , Qingshun Wu, Xin Huang , Jianliang Xu , Wanru Gao, and Mingliang Xu

Abstract—City express delivery services (a.k.a. last-mile delivery) have become more prominent in recent years. Many logistics giants,

such as Amazon, JD, and Cainiao, have deployed intelligent express delivery systems to deal with the growing demand for parcel

delivery. Existing works adopt queuing or batch processing approaches to assign parcels to couriers. However, these approaches do

not fully consider the distribution of parcels and couriers, leading to poor quality of task assignment. In this paper, we investigate a

problem of delivery matching based on revenue maximization in real-time city express delivery services. Given a set of couriers and a

stream of parcel collection tasks, our problem aims to assign each collection task to a suitable courier to maximize the overall revenue

of the platform. The problem is shown to be NP-hard. To tackle the problem efficiently, we present a time-aware batch matching

algorithm to offer high-quality courier-task matching in each sliding window. We further theoretically analyze the matching

approximation bound. In addition, we propose an efficient deep reinforcement learning based approach to adaptively determine the

sliding window size for better matching results. Finally, extensive experiments demonstrate that our proposed algorithms can achieve

desirable effectiveness and efficiency under a wide range of parameter settings.

Index Terms—City express delivery, location-based service, real-time system, optimization, adaptive matching

Ç

1 INTRODUCTION

DRIVEN by the continuous proliferation of e-commerce
and logistics industries, city express delivery services (a.

k.a. last-mile delivery) have become more prominent in
recent years. As shown by the latest statistics [1], in 2020, the
business volume of city express delivery services in China
has exceeded a total of 70 billion transactions and achieved
an increase of 12.6% over 2019. Many logistics giants such as
Amazon [2], JD [3], and Cainiao [4], have deployed intelli-
gent real-time express delivery services to deal with the
huge demand. In a typical city express delivery system, the
platform manages a number of express stations (hereinafter
referred to simply as stations) to provide parcel delivery and
collection services for the whole city. The platform distrib-
utes the parcels to the relevant stations whose service regions
can cover the parcels’ destinations. In practice, each station
typically receives the parcels to be delivered twice a day (e.g.,
at 8:00 am and 1:00 pm). After receiving the parcels, the sta-
tion immediately arranges suitable couriers to deliver them

to the customers. On guaranteeing the time constraints of
parcel deliveries, the platformdynamically arranges couriers
to collect online ad-hoc parcel collections requested by cus-
tomers. Comparedwith the traditional way of separating the
parcel delivery and collection services, a courier in a real-
time city express delivery service can complete parcel collec-
tions on the way to delivering parcels, which significantly
improves the efficiency of the service. In this paper, we focus
on efficiently allocating parcel collections to couriers while
guaranteeing the time and capacity constraints of parcel
deliveries. Fig. 1 illustrates the general process of a real-time
city express delivery service.

Example 1. In Fig. 1, there exists a station s1 and two cou-
riers c1 and c2. At first, c1 loads parcels d1; d2; d3 and c2
loads the parcels d4; d5; d6 for delivery according to indi-
vidual routes (i.e., c1 the red solid line and c2 the blue
solid line). Assume now the platform receives two parcel
collection requests r1 and r2 when c1 and c2 leave for the
destinations of d1 and d4. Since r1 is near the route of c1
and r2 is near the route of c2, the platform arranges for c1
to collect r1 and c2 to collect r2. Otherwise, c1 and c2 may
not complete their parcel deliveries (i.e., delivering all
parcels and returning to the station in time).

The city express delivery problem is essentially a task
assignment problem. Current works related to task assign-
ment can be categorized into two types: i) instant assign-
ment [5], [6], [7], [8], the system assigns each task to a suitable
courier immediately when it arrives. If there is no courier
who can serve the task, it will wait until a qualified courier
appears or the task’s deadline is passed; ii) batch assignment
[9], [10], [11], the system periodically fetches the tasks from a
task queue in batches, matches themwith currently available
couriers, and finds the best assignments between tasks and
couriers. For the tasks that are not assigned in the current

� Yafei Li, Qingshun Wu, Wanru Gao, and Mingliang Xu are with the
School of Computer and Artificial Intelligence, Zhengzhou University,
Zhengzhou, Henan 450001, China. E-mail: yafeics@outlook.com, wqszzu@gs.
zzu.edu.cn, {iewrgao, iexumingliang}@zzu.edu.cn.

� Xin Huang and Jianliang Xu are with the Department of Computer Sci-
ence, Hong Kong Baptist University, Hong Kong, China.
E-mail: {xinhuang, xujl}@comp.hkbu.edu.hk.

Manuscript received 7 Sept. 2021; revised 15 Feb. 2022; accepted 19 Mar. 2022.
Date of publication 24 Mar. 2022; date of current version 1 May 2023.
This work was supported in part by the NSFC under Grants 61972362,
62036010, 61822701, 62106231, and 61602420, in part by CPSF under Grant
2018M630836, in part by HNSF under Grant 202300410378, in part by Hong
KongRGCunder Grants 12200021 andC2004-21GF, and in part by Guangdong
Basic and Applied Basic Research Foundation under Grant 2019B1515130001.
(Corresponding author: Mingliang Xu.)
Recommended for acceptance by M. A. Cheema.
Digital Object Identifier no. 10.1109/TKDE.2022.3162220

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023 5767

1041-4347 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9651-6092
https://orcid.org/0000-0001-9651-6092
https://orcid.org/0000-0001-9651-6092
https://orcid.org/0000-0001-9651-6092
https://orcid.org/0000-0001-9651-6092
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0002-6885-3451
https://orcid.org/0000-0002-6885-3451
https://orcid.org/0000-0002-6885-3451
https://orcid.org/0000-0002-6885-3451
https://orcid.org/0000-0002-6885-3451
mailto:yafeics@outlook.com
mailto:wqszzu@gs.zzu.edu.cn
mailto:wqszzu@gs.zzu.edu.cn
mailto:iewrgao@zzu.edu.cn
mailto:iexumingliang@zzu.edu.cn
mailto:xinhuang@comp.hkbu.edu.hk
mailto:xujl@comp.hkbu.edu.hk


batch, they will be assigned again in the next batch. How-
ever, both of these two approaches have issues. With regard
to the instant assignment approach, it is easy to implement
but may not generate high quality matching results [12], [13].
While the batch assignment approach can improve the qual-
ity of matching results to some extent, manually tuning the
batch size to achieve a better result is not easy in real-time
scenarios. In addition, optimizing the revenue of the plat-
form is one of the main concerns for most commercial plat-
forms. However, existing studies mainly focus on improving
the computational efficiency rather than increasing the plat-
form revenue.

In this paper, we investigate a novel problem of real-time
city express delivery via an adaptive sliding window
(denoted as RTDW). In the RTDW problem, a stream of par-
cel collections enters the platform in real time. The platform
dynamically dispatches the most suitable parcel collections
to couriers by considering several constraints (e.g., time,
capacity, and detour) and aims to maximize the platform’s
revenue. However, due to the parcel collections stochasti-
cally appearing in the platform, the dispatch processing is
highly dynamic. As such, there are two key challenges to be
resolved for the RTDW problem. First, considering a set of
couriers and a set of parcel collection tasks, the issue of how
to efficiently match them with a quality guarantee is hard to
resolve. Second, as well as being widely used in many exist-
ing works, sliding window is a common processing strategy
in real-time scenarios; however, dynamically determining
the sliding window size to achieve a better matching result
is still a challenge. To address the above two issues, we
present an efficient time-aware batch matching (TBM) algo-
rithm for the first issue which guarantees the matching
result under a 2-approximation bound. For the latter issue,
on the basis of TBM, we propose an efficient deep reinforce-
ment learning (DRL) based optimization that can adaptively
determine the sliding window size for better matching
results. The main contributions of this paper can be summa-
rized as follows:

� We first present an adaptive matching framework of
city express delivery, equipped with three entries of
delivery tasks, collection tasks, and couriers. Based
on the constraints of courier schedule, we formally
define a novel RTDW problem which aims to maxi-
mize the platform revenue by assigning each courier
with suitable collection tasks.

� We present two efficient algorithms SMA and TBM
to solve the RTDW problem. SMA is a greedy
approach for fast finding the suitable courier for
each collection task. Furthermore, we develop an
effective partition strategy for sliding window based
on the distribution of historical collection tasks. Inte-
grating this partition strategy, we propose an effi-
cient algorithm TBM to find the better matching
result in a sliding window under a 2-approximation
bound on quality.

� We further present an efficient DRL-based optimiza-
tion that is equipped with a novel state representa-
tion to adaptively determine the sliding window size
for a good long-term revenue of the platform. In
addition, we also theoretically analyze the competi-
tion ratios of our proposed algorithms.

� We conduct extensive experiments to demonstrate
that our proposed algorithms can achieve desirable
effectiveness and efficiency under different parame-
ter settings.

The remainder of this paper is organized as follows. We
first formulate the RTDW problem in Section 2. Then, in Sec-
tion 3, we propose several solutions to solve the RTDW
problem. Next, we evaluate our solutions in Section 4 and
review the related work in Section 5. Finally, in Section 6,
we conclude the paper and introduce several possible opti-
mizations for future works.

2 PROBLEM FORMULATION

In this section, we present several preliminaries and provide
the problem statement, followed by a theorem to establish
the hardness of the RTDW problem. Table 1 summarizes
the notations frequently used in this paper.

2.1 Basic Concepts

In our RTDW problem, we consider three entities that con-
sist of a set of stations S, a set of couriers C, and a road net-
work G ¼ ðL;E;WÞ. For road network G, each vertex l 2 L
denotes a road intersection and each edge eij 2 E denotes a
road segment with a weight wij 2W linking two road inter-
sections li and lj. The platform manages a number of courier

TABLE 1
Notations and Descriptions

Notations Description

G a road network
¡ a set of delivery tasks
� a set of collection tasks
g a delivery task
� a collection task
tg the deadline of the delivery task
t� the deadline of the collection task
C a set of couriers
kc the maximum capacity of courier c
Rðc; �Þ the revenue of a courier c collecting �
EðMÞ the total revenue of a matching planM
w a sliding window
M a feasible matching allocation
Mw a feasible matching of sliding window w
h a time slice

Fig. 1. A toy example of real-time city express delivery.

5768 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



stations S to provide the whole city’s express service. Each
station s 2 S is represented as a tuple s ¼ ðls; Cs; RsÞ, where
ls 2 L is the location of s, Cs is the set of couriers hired in
station s, and Rs is the service region of s. Following the set-
tings of existing works [14], [15] and commercial platforms
[3], [4], in this paper each station manages a number of cou-
riers to deliver and collect parcels in its service region. Next,
we give the definitions of delivery task and collection task.

Definition 1 (Delivery task). A delivery task is a two-entry
tuple g ¼ ðlg ; tgÞ indicating that the parcel taken from the sta-
tion should be delivered to location lg before the deadline tg .

Definition 2 (Collection task). A collection task is a four-
entry tuple � ¼ ðb�; l�; t�; r�Þ indicating that the parcel
appearing at time b� should be collected at location l� before the
deadline t�, and the corresponding fare is r�.

We clarify that the definitions of delivery task and collec-
tion task are derived from real express delivery services. On
one hand, each courier is fully loaded with delivery tasks
and starts from the station to deliver these parcels to the loca-
tions of customers on or before their delivery deadlines. Note
that the courier usually earns a monthly basic salary by com-
pleting the daily delivery tasks assigned by the station; On
the other hand, the platform usually encourages couriers to
complete as many collection tasks as possible and that cuts a
fixed rate of revenue from each completed collection task as
the payment of the courier, because the number of collection
tasks usually determines the amount of platform revenue.
According to the definitions of delivery task and collection
task, we can define a courier as follows:

Definition 3 (Courier). A courier c 2 C is denoted as a six-
entry tuple c ¼ ðlc; sc; kc; tc;¡ c;�cÞ, where lc is the current
location of c, sc is the belonging station, kc is the maximum
capacity, tc is the deadline of needing to be back at sc, ¡ c is a set
of delivery tasks, and �c is a set of collection tasks.

We remark that couriers normally receive several batches
of delivery tasks per day from the stations they belong to. A
courier should complete its own current batch of delivery
tasks and return to its own station before the next batch
starts. The platform dynamically arranges couriers to com-
plete the collection tasks that arrive in a stream. Note that
each courier c fully loads a set of delivery tasks ¡ c (j¡ cj ¼ kc)
when leaving the station andwill be allocatedwith some col-
lection tasks �c while executing delivery tasks under the
constraints that the tasks in ¡ c and �c should be finished on
or before tc.

Definition 4 (Courier Schedule). Given a courier c 2 C, the
schedule of c denoted as Sc ¼ l1; l2; . . . ; lmh i is a sequence of
locations, where each location lk 2 L is to be reached by c to exe-
cute a collection task of �c or a delivery task of ¡ c.

A schedule Sc is valid iff for any collection/delivery task
assigned to courier c, courier c can satisfy their deadline con-
straints, and the number of collection and delivery tasks left
cannot exceed its maximum capacity kc at any time. Here, we
assume that couriers always select the shortest path between
two points. Moreover, if a collection task � can be served by a
courier cwithout violating the time and capacity constraints,
c and � are a valid courier-task pair c; �h i. Following the

existing works [16], [17], [18], in this paper we assume that
the order of the existing tasks in the schedule Sc remains
unchanged when inserting a new collection task � into Sc,
and � will be inserted between two consecutive tasks in Sc
that incurs the smallest detour distance.Meanwhile, the time
constraints of the new collection task � and the tasks in Sc
after � should be satisfied. Once any time constraint is bro-
ken, we consider the new collection � cannot be served by
the courier c.

Next, we define the revenue brought to the platform by a
courier c serving a set of collection tasks �c as follows.

CRðc;�cÞ ¼ r�c
� k � pðc;�cÞ; (1)

where r�c
is the sum of the fare of � 2 �c, k is the cost per

kilometer (i.e., fees paid to couriers), and pðc;�cÞ is the
detour cost of c finishing �c (i.e., the travel distance differ-
ence between collecting �c and not collecting �c). Note that
the above revenue model is widely adopted in other trans-
port management systems, such as ridesharing [19], [20]
and spatial crowdsourcing [21].

On the basis of the above definitions, we can formally
formulate our studied RTDW problem as follows:

Definition 5 (RTDW Problem). Given a set of couriers C and
a stream of collection tasks �, the RTDW problem is to find the
best matching plan M� C �� such that the total platform
revenue EðMÞ is maximized,

EðMÞ ¼
X

c2C;�c��
CRðc;�cÞ; (2)

where for each matching ðc;�cÞ 2 M, c and �c should satisfy
two conditions: i) each � 2 �c should be collected by c on or
before its deadlines t�; ii) the sum of j¡ cj and j�cj should not
exceed kc at any time.

2.2 Problem Hardness

We theoretically analyze the hardness of the RTDWproblem.

Theorem 1. The RTDW problem is NP-hard.

Proof. We omit the proof due to the space limitation and put
it in Appendix A.1, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2022.3162220. tu

Discussion. Ideally, the objective of the RTDW problem is
to maximize the platform’s total revenue over the collection
tasks in the entire stream and all the available couriers. In
reality, considering the rigid real-time scenario, the plat-
form only holds the information of current collection tasks
and couriers and thus is impossible to achieve the highest
revenue over the entire collection task stream. In addition,
as proved in Theorem 1, the RTDW problem is NP-hard. As
such, similar to the greedy approach used in many real-
time streaming data processing problems, in this paper we
adopt the approaches of sequential processing or batch
processing to solve the RTDW problem.

3 PROPOSED SOLUTIONS

In this section, we present a novel two-stage solution frame-
work that consists of batch division and batch matching for

LI ETAL.: EFFICIENTADAPTIVE MATCHING FOR REAL-TIME CITY EXPRESS DELIVERY 5769

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TKDE.2022.3162220
http://doi.ieeecomputersociety.org/10.1109/TKDE.2022.3162220


solving the RTDW problem. Based on this solution frame-
work, we present three courier-task matching solutions. In
what follows, we introduce them one by one in details.

3.1 Solution Framework

To solve the RTDW problem, we propose a novel solution
framework that consists of batch division and batch match-
ing, as illustrated in Fig. 2. Initially, the customers send in
their requested collection tasks to the server, while the cou-
riers report their current statuses (e.g., location, capacity,
and schedule) to the server. After receiving the collection
tasks, the server divides the collection tasks into a sequence
of batches to match based on some division strategies (Step-
1). According to batch’s sequence, the server conducts the
matching for the collection tasks and available couriers in a
batch to maximize the revenue of the platform, while the
available couriers and unmatched collection tasks return to
the streams for the next batch matching, and the expired
collection tasks will be discarded from the server (Step-2).
Finally, the matching results are notified to the couriers and
customers, respectively.

3.2 Service Region Division

As discussed in Section 2, the RTDW problem is NP-hard, it
is very challenging to make real-time assignment for a huge
number of couriers and collection tasks in a city per day. To
reduce the computing complexity, we divide the whole city
into a set of disjoint service regions and focus on each of the
service regions separately. Such division strategy also
brings practical benefits. For example, station managers
often prefer managing the business in their own service
regions separately, which is consistent with the settings of
commercial platforms in reality [14], [15].

In this paper, we divide the road network into a set of ser-
vice regions by the K-means algorithm that is one of the most
frequently used clustering algorithms. More specifically, we
use the K-means algorithm to classify the vertices of the road
network into k independent spatial clusters according to their
geographical distribution. Correspondingly, the whole city is
divided into k independent service regions where any two
service regions do not overlap with each other. As illustrated
in Fig. 3, Fig. 3a shows the road network of Chengdu, Fig. 3b
shows the service regions of Chengdu divided by K-means
algorithmwhere each color represents a service region. Based
on the divided service regions, we set the station at the center
of each service region. Specifically, for each service region, we

select the vertex with the smallest sum of distances to other
vertices as the center of the service region. Note that the ser-
vice region division requires a one-time offline calculation, it
will not affect the efficiency of online assignment.

3.3 Sequential Matching Solution

As mentioned in our solution framework, the server divides
the stream of collection tasks into batches according to a cer-
tain strategy and then performs batch-by-batch matching. In
this section, we present a sequential matching algorithm
(SMA) to solve the RTDW problem where the collection
task is immediately matched when it arrives in the server.
The main idea of SMA is illustrated as Algorithm 1. Given a
collection task � and a set of couriers C, we first find out the
couriers C0 who can serve the collection task � without vio-
lating the deadline and capacity constraints (lines 2-4).
Then, for the couriers C0 we find, we return the nearest cou-
rier c 2 C0 to the collection task � as the result � (line 5).

Algorithm 1. SMA Algorithm

Input: A collection task � and a set of couriers C
Output: A feasible courier c

1: C0  f

2: foreach courier c0 2 C do
3: if c0 can serve � then
4: Add c0 into C0

5: Match the courier in c 2 C0 nearest to �, i.e.,
c argminc2C0 jlc � l�j;

6: return c;

Complexity analysis. The SMA algorithm takes OðjCjÞ time
to deal with a collection �. Thus, considering a stream of col-
lection tasks �, the time complexity to finish courier-task
matching for all the collection tasks � is Oðj�jjCjÞ. The
SMA algorithm is simple and fast, especially for a large-
scale RTDW problem, but the quality of the result obtained
by this approach is not that good.

3.4 Time-Aware Batch Matching Solution

The SMA algorithm actually treats each collection task in the
stream as a batch, it does not consider the batch division based
on the distribution of collection tasks, leading to a poormatch-
ing result. In this section, we propose an efficient time-aware
batch matching (TBM) algorithm to solve the RTDW problem.
We adopt sliding window to divide the collection task stream
into batches of reasonable size to match, which improves the
quality of the solution against the SMA algorithm. Next, we
start with a definition of slidingwindow.

Fig. 3. An example of service region division.

Fig. 2. The solution framework of the RTDW problem.

5770 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



Definition 6 (SlidingWindow). A sliding window is denoted
by w ¼ fh0; h1; . . . ; hi; . . . ; hbjb 2 Ng, where hi is a time slice
and each time slice appears at most once.

A good sliding window division strategy is extremely
useful to improve overall matching quality. Inspired by
this, we propose a novel sliding window division method
that is implemented by the DBSCAN algorithm [22] in an
offline model. Simply put, the whole day is divided into a
sequence of sliding windows by the DBSCAN algorithm in
terms of the deadline distribution of historical tasks. After
dividing the sliding windows, we split the collection task
stream into a set of batches based on the divided sliding
windows. Then, we invoke Algorithm 2 to find the suitable
couriers for each batch of collection tasks. For the unas-
signed collection tasks in the current batch, we will assign
the suitable couriers for them in the next batch. Compared
with existing equal-size sliding window processing meth-
ods [15], our method makes good use of the distribution
information of historical orders and can determine the size
of collection task batch more reasonably. Leveraging the
divided sliding windows, for each sliding window, we use
a group-based greedy strategy to match the couriers and
collection tasks iteratively, making sure the quality of the
matching is under a 2-approximation bound. Note that the
sliding window division is processed in the offline model,
which does not take up the online processing time.

Algorithm 2. TBM Algorithm

Input: A set of collection tasks �w and a set of couriers Cw in
the sliding window w

Output: A feasible matchingMw of w
1: A feasible matchingMw  f;
2: A set of collection task groups G  f;
3: for k 1 to d do
4: G  the set of collection task groups containing k

different collection tasks in �w;
5: G  G [ G;
6: repeat
7: foreach courier c 2 Cw do
8: g�  the collection task group in Gwith the highest

revenue that c can serve;
9: if c is the best courier for g� then
10: Mw  Mw [

S
�2g�f c; �h ig;

11: Remove the task group g 2 G that contains any
collection task � 2 g�;

12: until none task group can be assigned;
13: returnMw;

Algorithm 2 presents the procedures of our TBM algo-
rithm. First, we initialize a matching setMw and a set of col-
lection task groups G (lines 1-2). Then, we divide the
collection tasks into a set of groups with a size less than d by
considering their time constraints (lines 3-5). Specifically, the
process of task grouping is that of enumerating all size-k task
groups and checks whether they are valid. For a systematic
enumeration of all candidate task groups, we employ the
branch and bound algorithm presented in [23]. During the
grouping process, we present an efficient rule to accelerate
the pruning process, that is, two collection tasks can be
grouped if and only if there exists a nearby courier who can

serve them together based on the constraints of location,
time, and capacity. As for the group size d, it is set based on
user historical experience. In practice, the value of d is usu-
ally small due to the location, time, and capacity constraints.
After that, we select one or more suitable task group for each
courier c 2 Cw in a multi-round approach (lines 6-11). In
each round of assignment, for each courier c 2 Cw, if there
exists a collection task group g� 2 G such that g� is the best
for c and c is the best for g � , we assign g� to c and remove
the task groups including the task � 2 g� from G. Note that
there is at least one task group in G assigned to a courier in
each round of assignment, and the multi-round assignments
will stop until none of the task groups in G can match a suit-
able courier in a round. In what follows, we illustrates the
TBM algorithm by a running example as follows.

Example 2. In Fig. 4, Algorithm 2 is invoked iteratively to
find the optimal assignment of couriers and tasks in each
sliding window. Taking the k-th sliding window wk as an
example, we observe that there exist three couriers c1 �
c3, and seven collection tasks �1 � �7 in wk. Assume the
collection tasks �1 � �7 can form three task groups g1 �
g3 by the grouping method stated above. Then, we per-
form multiple rounds of assignments between couriers
and collection task groups according to the assigning
strategy illustrated in Algorithm 2. In each round of
assignment, only couriers and task groups that best suit
each other can be assigned. As shown in Fig. 4, in the first
round of assignment (e.g., Round 1 in Fig. 4), c2 and g3 (c3
and g2) are mutually optimal. Then, g3 and g2 are assigned
to c2 and c3, respectively. Meanwhile, g2 and g3 are
removed from the system. In the second round of assign-
ment (e.g., Round 2 in Fig. 4), g1 is assigned to c2 since c2
and g1 are the best for each other, and then g1 is removed
from the system. Finally, since there is no task group left,
the round assignment is terminated.

The approximation ratio of Algorithm 2 is proved in The-
orem 2.

Theorem 2. Given a set of collection tasks �w and a set of cou-
riers Cw, letMw be the matching derived by Algorithm 2 and
M�

w be the optimal matching, EðMwÞ 	 1
2EðM

�
wÞ holds.

Proof. We omit the proof due to the space limitation and
put it in Appendix A.2, available in the online supple-
mental material. tu

Fig. 4. A running example for the TBM algorithm. The yellow area shows
the distribution of couriers c1 � c3 and collection tasks �1 � �7 as well as
the task groups g1 � g3. The dotted rectangle area shows two rounds of
assignments between couriers c1 � c3 and task groups g1 � g3.

LI ETAL.: EFFICIENTADAPTIVE MATCHING FOR REAL-TIME CITY EXPRESS DELIVERY 5771

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



Complexity analysis. The time complexity of the TBM algo-
rithm is Oðj�wjd þ jCwjjGjÞ, where j�wjd is the time cost of
collection group division (lines 3–5) and jCwjjGj is the time
cost of group assignment (lines 6–11).

Discussion. The TBM algorithm employs an effective par-
tition strategy to divide the sliding window based on the
distribution of historical collection tasks and that achieves a
2-approximation bound on quality for the matchings
between couriers and collection tasks in each sliding win-
dow. However, such clustering-based sliding window parti-
tion strategy cannot make full use of the supply-demand
relationship of couriers and collection tasks, which may
affect the overall quality of the results.

3.5 DRL-Based Solution

The sliding window partition strategy we present in TBM
algorithm improves the quality of task assignment, how-
ever, we observe some counterintuitive cases in practical
settings, e.g., the collection tasks and couriers in a sliding
window cannot achieve any matching due to the insuffi-
cient unoccupied capacity. Motivated by this observation,
in this section, we use the model of Markov decision process
model (MDP) [24] with unknown parameters to model the
sliding window decision process and adopt the DRL-based
method to adaptively determine the sliding window size in
terms of several combined features.

Given an RTDW problem P, we formulate a Markov
decision processM ¼ ðS;A; Ra

ss0 ; P
a
ss0 ; �Þ on P, where

� S is the state space, where each state s 2 S denotes a
bipartite graph composed of current couriers and
collection tasks;

� A ¼ ½hmin; hmax
 denotes the action space where hmin,
hmax 2 N are the minimum and maximum time slices
to divide the sliding window respectively. Each
action a 2 Ameans the time slice to perform the best
matching for the accumulated collection tasks (i.e.,
invoke the TBM algorithm);

� Ra
ss0 : S �A� S ! R is the reward function. If the

states transit from s to s0 by executing the action a,
we will obtain a reward of Ra

ss0 (i.e., EðMÞ);
� Pa

ss0 : S �A� S ! ½0; 1
 denotes the probability of
transiting the states from s to s0 by executing the
action a, which models the dynamic process for cou-
riers and collection tasks entering or leaving the
platform;

� � 2 ½0; 1
 is the discount factor.
To better determine the sliding window size, we present

a novel state representation. Given a set of couriers Ch and a
set of collection tasks�h at time slice h, we denote each state
as a feature vector sh ¼ ðjLj; jRj; jF j; jSj; jT j; hÞ, where jLj is

the number of couriers, jRj is the number of collection tasks,
and jF j is the total remaining capacity of all couriers:

jF j ¼
X
c2Ch

ðkc � j¡ cj � j�cjÞ; (3)

where j¡ cj and j�cj denote the numbers of delivery tasks
and collection tasks of courier c, respectively. Fig. 5a illus-
trates the state of unoccupied capacity. We can observe that
the total unoccupied capacity of the couriers on the left side
of Fig. 5a is sufficient. Therefore, these couriers can wait for
more collection tasks to match. For the couriers on the right
side of Fig. 5a, since the unoccupied capacities of couriers
cannot accept more collection tasks, it is suitable to divide
the sliding window for matching. jSj is the distribution met-
ric for the couriers and collection tasks:

jSj ¼
X
�2�h

DMðl�; LdÞ: (4)

Here, DMðl�; LdÞ is the Mahalanobis distance [25], where l�
is the location of collection task � and Ld is the location dis-
tribution of couriers. Typically, the smaller the value jSj, the
closer the couriers are to the parcels. This situation is suit-
able for dividing the sliding window. On the left side of
Fig. 5b, the distribution of couriers and collection tasks are
scattered. Hence, the matching may not achieve good per-
formance at this time. In contrast, the distribution of the
couriers and collection tasks on the right side of Fig. 5b is
evenly distributed and is suitable for dividing the sliding
window. jT j is the time metric to measure the general gap
between the current time slice and the deadline of collection
tasks:

jT j ¼ min
x2ftc�tjc2Chg[ft��tj�2�hg

x; (5)

where t is the current time slice. If jT j is smaller, it means
that there exist couriers and collection tasks close to their
deadlines and it is suitable to divide the sliding window at
the current time. For example, comparing the two cases in
Fig. 5c, the case on the right side is suitable for dividing the
sliding window at once, since there exist a courier and a col-
lection task whose deadlines are almost there.

For an action a 2 A, we represent it by a value between
hmin and hmax, since making the size of the sliding window
too large or too small is not an optimal strategy in practice.
If the sliding window is set too small, there are less collec-
tion tasks participating in matching, leading to a poor
matching result; otherwise, too many collection tasks con-
tained in a sliding windowmay cause a huge computational
cost and cannot meet the needs of real-time scenarios. In
this paper, we set hmin and hmax on the basis of historical

Fig. 5. Illustration of state representation.

5772 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



collection tasks. In detail, we cluster historical collection
tasks according to the distribution of arrival time, and then
select the lower and upper bounds of the time interval in
length concentration as hmin and hmax respectively. For the
action selection, our DRL algorithm selects the value of
action a from the time interval [hmin, hmax] with the highest
revenue based on the current state sh and the previous
learning strategy.

After modeling the sliding window decision process, we
present a DRL-based algorithm to find an optimal strategy
for dividing the sliding window, and the pseudo code is
illustrated in Algorithm 3. We first perform a series of initi-
alizations (lines 1-4). Specifically, for Q-network Q and its
target network Q̂, we use the same random weights u and
u� for initialization (line 1). Moreover, we initialize the
action space with hmin and hmax. Then, we iteratively collect
experience and update the network (i.e., learning) (lines 5-
16). For action ah, the probability of � is determined by the
network, and the probability of 1� � is randomly selected
in the action space (line 7). We store every ”trial and error” (
i.e., the process of performing action ah) experience ’h in the
experience memory V (lines 8-9). For network updates
(lines 10-14), we first randomly sample a batch of experien-
ces C from V (line 10). Then, we calculate the target value
(line 12), perform a gradient descent (line 13), and calculate
the back-propagation error (line 14). Finally, after every N
steps, we synchronize the parameters of the Q network to
its target network Q̂ (line 16).

Algorithm 3. DRL-based Algorithm

Input: greedy factor � 2 ½0; 1
, discount factor � 2 ½0; 1
,
learning rate a 2 ½0; 1
, iteration step E, hmin, hmax,
synchronous step N

Output: memory V

1: Initialize the Q-network Qwith random weights u and its
target network Q̂with random weights u� ¼ u

2: Initialize experience replay memory V
3: Initialize action space A ¼ ½hmin; hmax

4: Initialize the initial state s0 with random action a0 2 A
5: for episode 1 to E do
6: repeat
7:

ah ¼ argmaxa2AQ̂ðsh; a; u�Þ; with �
random a 2 A; with 1� �

�
()

8: execute action ah, obtain reward rh and next state shþ1
9: store experience ’h ¼ ðsh; ah; rh; shþ1Þ in memory V
10: random samplingC ¼ f’1;’2; . . . ;’Ig from V
11: foreach experience ’ 2 C do
12: calculate target value yi ¼ riþ

�maxaiþ12AQ̂ðsiþ1; aiþ1; u�Þ, with Q̂ðsiþ1; aiþ1; u�Þ ¼ 0 if
siþ1 is terminal

13: perform a gradient descent step on ðyi �Qðsi; ai; uÞÞ2
with respect to the network parameters u

14: Du ¼ aðri þ �maxaiþ12AQ̂ðsiþ1; aiþ1; u�Þ�
Qðsi; ai; uÞÞruQðsi; ai; uÞ

15: until shþ1 is terminal;
16: Q̂ Q everyN steps
17: returnmemory V;

Fig. 6 illustrates the sliding window division framework
that consists of planning, learning, and their interaction
with the environment. The workflow of the sliding window

division can be expressed as follows. First, we encode the
environment state as a feature vector sh ¼ ðjLj; jRj; jF j;
jSj; jT j; hÞ, where jLj is the number of couriers, jRj is the
number of collection tasks, jF j is the total unoccupied
capacity of the couriers, jSj is the location distribution of
couriers and collection tasks, and jT j is the available time of
couriers and collection tasks. The state feature vector sh fully
describes the quantitative relationship between couriers and
collection tasks in the environment and their constraints on
capacity, time, and spatial distribution. Second, we feed the
environment state sh into the planning module to fit an
expected number of time slices (i.e., the action value ah)
based on the learned sliding window division network Q̂. If
the number of time slices currently accumulated is equal to
ah, we perform the sliding window division action. After
performing the division action, the accumulated time slices
will be counted from zero again. For example, as shown in
Fig. 6, since the action value ah is equal to the current accu-
mulated time slice number h, we invoke the TBM algorithm
with the inputs of the collection tasks accumulated in the
last h time slices and the currently available couriers to
conduct task assignments. Third, we encode decision
experience as a four-entry tuple ’h ¼ fsh; ah; rh; shþ1g and
store it in the replay memory, where sh is the environ-
ment state at time slice h, ah is the number of time slices
to wait, rh is the reward (i.e., total revenue) of the
matching plan returned by the TBM algorithm in the sec-
ond step, and shþ1 the environment state at the next time
slice hþ 1. For the learning module, we periodically ran-
domly sample a batch of decision experiences © ¼
f’1;’2; . . . ;’ng from the replay memory and use them to
update the Q-network Q. Meanwhile, we synchronize
the weight parameters of the Q-network Q to the sliding
window division network Q̂ of the planning module.
Finally, as shown in Fig. 6, the above mentioned three
steps are performed iteratively until a better predictive
sliding window division model is learned.

Discussion. Compared with TBM algorithm, the DRL-
based algorithm can determine the sliding window size rea-
sonably to achieve a better result in quality based on the
spatial-temporal distribution and supple-demand relation-
ship between couriers and collection tasks. Although we

Fig. 6. The framework of the DRL-based solution.

LI ETAL.: EFFICIENTADAPTIVE MATCHING FOR REAL-TIME CITY EXPRESS DELIVERY 5773

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



need a longer time to train the decision model offline, it is
worth that we can get a high-quality result on short notice.
In addition, the work [26] studied a fundamental bipartite
graph matching problem, namely DBGM, where each node
in the bipartite graph has a duration and arrives dynami-
cally. They simplified the DBGM problem by considering
only the time constraints and assumed that in a bipartite
graph each node on one side can match at most one node on
the other side. However, in many application scenarios of
bipartite graph matching, the constraints of location and
capacity are very important and cannot be ignored in real-
world scenarios (e.g., carpooling, food delivery, logistics).
Although our RTDW problem is also a dynamic bipartite
graph matching problem, in contrast to [26], it needs to
simultaneously consider many practical factors such as cou-
rier capacity, parcel location, and deadlines for delivery or
collection, making the RTDW problem more complicated.

Since the action and state space of the RTDW problem is
more complex than the DBGM problem, we use DQN to
solve the RTDW problem rather than Q-learning adopted in
[26] in order to avoid huge computation and storage costs.
Furthermore, unlike [26], which only considers the number
of two-side nodes in the bipartite graph to represent the envi-
ronmental state, in our work we comprehensively consider
five types of state features, i.e., the number of couriers, the
number of collection tasks, the capacity, the location distri-
bution, and the task completion time, which can well
describe the environment and thusmake the slidingwindow
division more precise. Our experiments indeed show that
the performance of our DRL algorithm is superior to that of
RQL algorithm proposed in [26] in terms of average elapsed
time, average revenue, and average completion ratio.

3.6 Theoretical Analysis

In this section, we analyze the competition ratios of our pro-
posed algorithms. The competition ratio is an important
indicator used to measure the performance of online algo-
rithms [27]. The competition ratio Rc for our problem can
be expressed as the minimum ratio between the revenue of
the matchingM produced by our online algorithms and the
revenue of the offline optimal matchingMopt of the RTDW
problem P, over any input data G, S, C, and �.

Rc ¼ min
G;S;C;�

EðMÞ
EðMoptÞ

(6)

Assumptions. We assume that the upper bound of the dura-
tion of collection tasks in an RTDW problem is Dub 2 N,
where the existence of Dub is reasonable since in practice the
deadline of collection tasks is limited. In addition,we assume
that at most one courier and one collection task appear in the
same time slice and that the capacity of a courier is abundant
enough. We adopt the remaining model [26] to handle the
task stream because it is in line with the real-world scenario,
i.e., the unmatched collection tasks in a sliding window will
enter the next sliding window for matching until their dead-
lines are reached. Next, we analyze the upper and lower
bounds of the competition ratio Rc in Theorem 3. Note that
the work [26] assumes that at most one node appears in the
same time slice, but in our RTDWproblem, there may be one
courier and one collection task appearing in the same time

slice. Therefore, the assumption of Theorem 2 in [26] is
unsuitable for our problem. Since the proof method of Theo-
rem 3 is similar to that of Theorem 2 in [26], we follow their
method to prove the competitive ratio bound for the RTDW
problem.

Theorem 3 (Bounds for competitive ratio Rc). Given an
RTDW problem P with the duration upper boundDub, ifDub ¼
1,Rc ¼ 1; Otherwise, if Dub 	 2,

1

Dub
� Rc <

2

Dub � 1
(7)

Proof. We omit the proof due to the space limitation and
put it in Appendix A.3, available in the online supple-
mental material. tu

4 EXPERIMENTS

In this section, we experimentally evaluate the efficiency
and effectiveness of our proposed algorithms. We first intro-
duce the experimental settings and then report the experi-
mental results on both real-world datasets.

4.1 Experimental Settings

Datasets. We evaluate the algorithms over two road net-
works of Chengdu and New York City (NYC) extracted
from OpenStreetMap.1 Since there is no direct parcel deliv-
ery and collection task information, we extract the pick-up
and drop-off points and time from two real taxi trajectory
datasets collected by NYCTaxi2 and DiDi,3 and treat them
as the parcels’ collection and delivery locations and times.
In practice, these pick-up and drop-off points are usually
residential and working places which are also the collection
and delivery points for parcels. The Chengdu dataset con-
tains 209,423 orders, 36,630 nodes, and 50,786 edges. The
NYC dataset contains 10,906,858 orders, 264,346 nodes, and
366,923 edges. Note that we divide each road network into
100 regions. The center location of each region has a station,
which is responsible for parcel collection and delivery in
that region. For DQN, we adopt the RMSprop algorithm as
the optimizer with the learning rate of 0.001, the discount
factor is set as 0.9.

Compared methods. We evaluate the performance of our
proposed algorithms against two state-of-the-art methods,
RQL [26] and FST [15]:

� RQL [26]: a Q-learning based method that adaptively
decides the batch size for parcel assignment;

� FST [15]: a batch processing method which splits the
whole parcel stream into a set of equal-size batches
for matching;

� SMA: our greedy sequential matching algorithm
described in Section 3.3;

� TBM: our time-aware batch matching algorithm
described in Section 3.4;

� DRL: our DRL-based optimization described in
Section 3.5;

1. https://www.openstreetmap.org
2. http://www.nyc.gov
3. http://gaia.didichuxing.com

5774 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



Evaluation metrics and parameters.The performance of these
matching algorithms is evaluated using three metrics: aver-
age total revenue, average elapsed time, and average comple-
tion ratio. The experimental parameters are summarized in
Table 2, where the bold values represent the default parame-
ter values. The algorithms are implemented in Python and
tested on a machine with Intel i7-9700K @ 3.6GHz CPU and
16GB RAM.

4.2 Experimental Results on Chengdu Dataset

Exp-1: Effect of sliding window with fixed size fs. Since FST is
implemented by a sliding window with a fixed size, we
select an optimal sliding window size fs=20 with the best
performance (varying fs from 10 to 50) when comparing
FST with other algorithms. Table 3 shows the results of
varying the size of the fixed sliding window fs from 10 to

50. As fs grows, the elapsed time increases, but the revenue
first increases and then decreases. The reason for this is that
the larger fs is, the more collection tasks are contained in
each sliding window, so the elapsed time keeps increasing.
The couriers can select higher revenue collection tasks, so
the revenue increases at first. However, due to the limited
deadline of collection tasks, some collection tasks have
expired before they are matched, which leads to a decrease
in revenue and the completion ratio. When we adjust fs
from 20 to 30, the elapsed time increases by about 51%, and
the revenue only increases by about 14%. Therefore, in the
default setting of FST, we set fs ¼ 20.

Exp-2: Effect of the number of collection tasks j�j. In this set
of experiments, we evaluate the compared algorithms by
varying the number of collection tasks j�j. In Fig. 7e, as
expected, the revenues of all the algorithms grow when j�j
is increased from 500 to 1,000. Among all the algorithms,
our proposed DRL achieves the most revenue, follow by
RQL, TBM, FST, and SMA. Due to the limited number of

TABLE 2
Experimental Settings

Parameters Values

the maximum capacity, kc 5, 15, 25, 35, 45
# of couriers (Chengdu) 10, 30, 50, 80, 100
# of collection tasks (Chengdu) 500, 800, 1 K, 2 K, 3 K
# of couriers (NYC) 200, 600, 1 K, 2 K, 3 K
# of collection tasks (NYC) 5 K, 8 K, 10 K, 20 K, 30 K
the sliding window size, fs 10, 20, 30, 40, 50

TABLE 3
Effect of Sliding Window Size

fs 10 20 30 40 50

Elapsed Time(ms) 0.39 0.61 0.92 1.38 1.59
Revenue 625 1,020 1,171 899 830
Completion Ratio(%) 73 78 83 74 70

Fig. 7. Results on Chengdu dataset.

LI ETAL.: EFFICIENTADAPTIVE MATCHING FOR REAL-TIME CITY EXPRESS DELIVERY 5775

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



couriers, the revenues of all the algorithms increase a little
when varying j�j from 1,000 to 3,000. This explains why the
completion ratios of all the algorithms decrease when j�j
increases, as shown in Fig. 7i. In Fig. 7a, the increase of j�j
causes the increase of elapsed time in all the algorithms,
because it needs more time to verify the valid courier-task
pairs and select the best collection task for each courier.
Among all the algorithms, DRL achieves the best results on
revenue and completion ratio due to the adaptive sliding
window. Note that we do not report the evaluation results
of the SMA in the following, since it has the worst perfor-
mance in terms of revenue and completion ratio.

Exp-3: Effect of the maximum capacity kc. Figs. 7b, 7f, and 7j
show the algorithms’ performance when varying the maxi-
mum capacity kc. In Fig. 7b, we can observe that the elapsed
time of all the algorithms keeps increasing as kc grows.
Since the larger maximum capacity enables more couriers
to become candidates for collection tasks, the searching
space is enlarged. It needs more time to find the optimal
solution. However, the elapsed time of FST increases from 5
to 15, almost unchanged from 15 to 45, because the comple-
tion ratio of FST in Fig. 7j almost reaches the upper bound
under the fixed sliding window size. In Fig. 7f, the revenues
of all the algorithms increase when the maximum capacity
is enlarged. Again, DRL performs the best, followed by
TBM and FST.

Exp-4: Effect of the number of couriers jCj. In Fig. 7c, we can
see that the elapsed time of all the algorithms increases when
jCj grows, because they need more time to find the best cou-
rier for each collection task from among a large number of
couriers. In Figs. 7g and 7k, all the algorithms achieve
increasing revenues when varying the number of couriers
from 10 to 50. However, when the number of couriers
exceeds 50, the completion ratio and revenue of all the algo-
rithms show little increase, since at this point most of the col-
lection tasks are completed. In addition, from Fig. 7k, we can
see that the completion ratio of DRL surpasses that of FST
and TBMwhen the number of couriers reaches 30. However,
DRL performsworse than FST and TBMwhen the number of
couriers is 10. This is because when the number of couriers is
small, the couriers cannot serve too many collection tasks in
a short time due to the limited capacity. After releasing the
capacity occupied by the delivery tasks, the couriers can
serve more collection tasks. Simply put, it is a strategy that
uses time to trade for the capacity of serving more collection
tasks. In this case, our DRL approach tends to generate a
larger sliding window. However, a larger sliding window
delays the task assignments and may cause some collection
tasks to expire, reducing the completion ratio.

Exp-5: Results on default parameter values. In this set of
experiments, we study the performance of all the algorithms
under default parameters. Not surprisingly, as can be seen in
Figs. 7d, 7h, and 7l, compared with other approaches, the
elapsed time cost of SMA is the least, owing to the face that it
adopts the sequential matching strategy and only serves one
collection task at a time. Accordingly, it leads to a lower com-
pletion ratio and incurs less revenue. In addition, RQL runs
slower than DRL but faster than TBM since RQL’s selection
strategy requires checking a largeQ-value table. For the reve-
nue and completion ratio, DRL performs the best due to the
use of state representation tomodel the environment.

4.3 Experimental Results on NYC Dataset

Exp-6: Effect of the number of collection tasks j�j. Figs. 8a, 8e,
and 8i show the results of varying the number of requested
tasks j�j from 5K to 30K. When j�j increases, the elapsed
time of all the algorithms increases. DRL is still the fastest,
followed by RQL, FST, and TBM. The results on revenue
and completion ratio are similar to those for the Chengdu
dataset.

Exp-7: Effect of the maximum capacity kc. Figs. 8b, 8f, and 8j
present the results for different maximum capacities of cou-
riers kc, from 5 to 45, while the other parameters are config-
ured to the default values in Table 2. In Fig. 8b, the elapsed
time of all the algorithms first increases and then remains
unchanged when kc increases. DRL still runs the fastest
among all the algorithms and TBM runs a little slower than
FST (about 9 seconds for each sliding window). In Fig. 8f,
we show the revenues of all the algorithms when the maxi-
mum capacity of couriers increases. Similarly, as kc grows,
the revenue of all the algorithms increases at the beginning
and then remains unchanged. DRL performs better than
RQL, FST, and TBM. As shown in Fig. 8j, the completion
ratio of the four approaches are close, DRL being slightly
higher than RQL, FST, and TBM.

Exp-8: Effect of the number of couriers jCj. The results of
varying the number of couriers are illustrated in Figs. 8c,
8g, and 8k. In terms of revenue as shown in Fig. 8g, DRL
outperforms the other algorithms and the interval between
the four is large. As regarding elapsed time, as shown in
Fig. 8c, DRL is still competitive since it is faster than RQL,
FST, and TBM. In Fig. 8k, at the beginning, the completion
ratio of DRL is lower than that of RQL, FST, and TBM, but
when jCj exceeds 600, the completion ratio of DRL is
slightly higher than that of RQL, FST, and TBM.

Exp-9: Results on default parameter values. Figs. 8d, 8h, and
8l report the performance of all the algorithms under the
default parameter values. The performance achieved by
varying parameters on the NYC dataset is similar to that on
the Chengdu dataset. Figs. 8d, 8h, and 8l show the compari-
son results of the algorithms SMA, FST, TBM, DRL, and
RQL. In particular, in Fig. 8d, we observe that DRL still runs
faster than RQL. In Figs. 8h and 8l, DRL still performs the
best in terms of revenue and completion ratio, followed by
RQL, TBM, FST, and SMA.

Exp-10: Results on memory cost. In the last set of experi-
ments, we examine the memory cost of the algorithms on
the Chengdu and NYC datasets. As shown in Table 4, the
memory costs of DRL and RQL are the largest, followed by
TBM, FST, and SMA. The reason for this is that the learning
based algorithms DRL and RQL always need extra space to
store the learned models, i.e., the DRL and RQL algorithms
achieve better performance through extra memory and off-
line computation costs.

5 RELATED WORK

In this section, we review three categories of related studies:
city express delivery, crowdsourcing, and reinforcement
learning.

City Express Delivery. In recent years, there has been a line
of works studying the city express delivery problem under
different settings [14], [15], [28], [29]. Zhang et al. [29] study

5776 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



a large-scale dynamic city express problem, and propose a
batch processing strategy to assign collection tasks requested
by customers to online couriers. In [14], Li et al. present a con-
textual collaboration reinforcement learning framework to
learn courier dispatching policies and guide couriers to
deliver and collect parcels for long-term revenue. In addi-
tion, several recent works have adopted a crowdsourcing
approach to solve parcel delivery problems. Chen et al. [30]
propose a taxi and passenger relay model to achieve parcel
delivery, they design a two-phase framework to solve the
path planning of package delivery. These studies process the
parcel assignment either in a first-come-first-served mode or
a fixed batch model, they do not consider optimizing parcel
assignment using an adaptive approach.

Crowdsourcing. Traditional crowdsourcing that assigns
tasks to suitable workers and allow workers to accomplish
tasks online without moving to the locations of tasks, has
attracted extensive attention from various fields [31], [32]. It
has many successful high practical applications in real-

world, such as Upwork and Amazon Mechanical Turk.
Recently, spatial crowdsourcing has gradually replaced tra-
ditional crowdsourcing with the rapid development of wire-
less networks and sharing economy. Compared with
traditional crowdsourcing, spatial crowdsourcing, which
requires workers physically traveling to locations of spatial
tasks, has stronger spatio-temporal constraints. It has many
application scenarios, such as ridesharing [20], [33], [34],
query [35], [36], city express [29], food delivery [37]. In this
paper, the RTDW problem is one of the spatial crowdsourc-
ing problems that aim to solve the assignment problem
through adaptive slidingwindowdivision.

Reinforcement Learning. Reinforcement learning has been
extensively studied in the fields of resource allocation [14],
[38], [39], decision-making [26], [40], [41], and robot control
[42], [43]. Shan et al. [39] propose a DRL framework for task
scheduling in crowdsourcing, they utilize an RL-based
method to estimate the expected long-term revenue of task
recommendation. Zhou et al. [44] propose a decentralized
execution order-dispatching method based on multi-agent
reinforcement learning to solve a large-scale order dispatch
problem. In [45], Lin et al. study a large-scale online
ride-sharing platform in a dynamic supply and demand
environment, they propose two reinforcement learning
based algorithms to solve a large-scale fleet management
problem such that a large number of agents can efficiently
fit different contexts. Zhang et al. [40] design an end-to-end

TABLE 4
Results on Memory Cost

Datasets(MB) SMA FST TBM DRL RQL

Chengdu 15.3 21.6 24.7 61.7 73.8
NYC 132.4 175.3 189.3 492.7 565.2

Fig. 8. Results on NYC Dataset.

LI ETAL.: EFFICIENTADAPTIVE MATCHING FOR REAL-TIME CITY EXPRESS DELIVERY 5777

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



DRL network to find the best configuration in a high-dimen-
sional continuous database management system space. To
the best of our knowledge, we are the first to study the
RTDW problem, and the methods described above cannot
be directly applied to solve our problem.

6 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of real-time city express
delivery and prove its hardness. To address this problem,
we present an efficient TBM algorithm to perform matching
within a sliding window. We also propose a DRL-based
optimization to further enhance the solution quality. Exten-
sive experimental results confirm the effectiveness and effi-
ciency of our proposed algorithms.

As for future work, we plan to work on the following two
extensions: One is how to reasonably layout express stations
to further improve the efficiency of express delivery serv-
ices; the other is how to develop an efficient collaborative
model to facilitate courier cooperation such that parcels can
be delivered and collected by a group of couriers.

REFERENCES

[1] China express industry development report (2019–2020), 2020.
[Online]. Available: http://www.spbdrc.org.cn/

[2] Amazon, 2021. [Online]. Available: https://www.amazon.com/
[3] Jd, 2021. [Online]. Available: https://www.jd.com/
[4] Cainiao, 2021. [Online]. Available: https://www.cainiao.com/
[5] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Predictive

task assignment in spatial crowdsourcing: A data-driven
approach,” in Proc. IEEE Int. Conf. Data Eng., 2020, pp. 13–24.

[6] J. Xia, Y. Zhao, G. Liu, J. Xu, M. Zhang, and K. Zheng, “Profit-
driven task assignment in spatial crowdsourcing,” in Proc. 28th
Int. Joint Conf. Artif. Intell., 2019, pp. 1914–1920.

[7] Y. Zhao et al., “Preference-aware task assignment in spatial
crowdsourcing,” in Proc. 33rd AAAI Conf. Artif. Intell., 2019,
pp. 2629–2636.

[8] T. Song et al., “Trichromatic online matching in real-time spa-
tial crowdsourcing,” in Proc. IEEE Int. Conf. Data Eng., 2017,
pp. 1009–1020.

[9] P. Cheng, L. Chen, and J. Ye, “Cooperation-aware task assignment
in spatial crowdsourcing,” in Proc. IEEE Int. Conf. Data Eng., 2019,
pp. 1442–1453.

[10] W. Ni, P. Cheng, L. Chen, and X. Lin, “Task allocation in depen-
dency-aware spatial crowdsourcing,” in Proc. IEEE Int. Conf. Data
Eng., 2020, pp. 985–996.

[11] B. Li, Y. Cheng, Y. Yuan, G. Wang, and L. Chen, “Simultaneous
arrival matching for new spatial crowdsourcing platforms,” in
Proc. 29th Int. Joint Conf. Artif. Intell., 2020, pp. 1279–1287.

[12] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial
crowdsourcing: A survey,” Proc. VLDB Endowment, vol. 29, no. 1,
pp. 217–250, 2020.

[13] M. Li et al., “Privacy-preserving batch-based task assignment in
spatial crowdsourcing with untrusted server,” in Proc. 30th ACM
Int. Conf. Inf. Knowl. Manage., 2021, pp. 947–956.

[14] Y. Li and Y. Zheng and Q. Yang, “Efficient and effective express via
contextual cooperative reinforcement learning,” in Proc. 25th ACM
SIGKDD Int. Conf. Knowl. Discov. DataMining, 2019, pp. 510–519.

[15] Y. Li, Y. Zheng, and Q. Yang, “Cooperative multi-agent reinforce-
ment learning in express system,” in Proc. 29th ACM Int. Conf. Inf.
Knowl. Manage., 2020, pp. 805–814.

[16] S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi
ridesharing,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 7,
pp. 1782–1795, Jul. 2015.

[17] P. Cheng, H. Xin, and L. Chen, “Utility-aware ridesharing on road
networks,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017,
pp. 1197–1210.

[18] S. Ma, Y. Zheng, and O. Wolfson, “T-share: A large-scale dynamic
taxi ridesharing service,” in Proc. IEEE Int. Conf. Data Eng., 2013,
pp. 410–421.

[19] L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware
ridesharing,” Proc. VLDBEndowment, vol. 11, no. 8, pp. 853–865, 2018.

[20] L. Chen, Q. Zhong, X. Xiao, Y. Gao, P. Jin, and C. S. Jensen, “Price-
and-time-aware dynamic ridesharing,” in Proc. IEEE Int. Conf.
Data Eng., 2018, pp. 1061–1072.

[21] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic
pricing in spatial crowdsourcing: A matching-based approach,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2018, pp. 773–788.

[22] M. Ester, H. Kriegel, J. Sander, and X. Xu, “A density-based algo-
rithm for discovering clusters in large spatial databases with
noise,” in Proc. 2nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 1996, pp. 226–231.

[23] Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, and B. Choi, “Geo-social
k-cover group queries for collaborative spatial computing,” in
Proc. IEEE Int. Conf. Data Eng., 2016, pp. 1510–1511.

[24] M. Puterman, Markov Decision Processes: Discrete Stochastic
Dynamic Programming. Hoboken, NJ, USA: Wiley, 1994.

[25] H. Ye, D. Zhan, X. Si, and Y. Jiang, “Learning mahalanobis dis-
tance metric: Considering instance disturbance helps,” in Proc.
26th Int. Joint Conf. Artif. Intell., 2017, pp. 3315–3321.

[26] Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv, “Adaptive
dynamic bipartite graph matching: A reinforcement learning
approach,” in Proc. IEEE Int. Conf. Data Eng., 2019, pp. 1478–1489.

[27] M. Tennenholtz, “Rational competitive analysis,” in Proc. 17th Int.
Joint Conf. Artif. Intell., 2001, pp. 1067–1072.

[28] A. Sadilek, J. Krumm, and E. Horvitz, “Crowdphysics: Planned
and opportunistic crowdsourcing for physical tasks,” in Proc. 7th
Int. Conf. Weblogs Social Media, 2013, pp. 536–545.

[29] S. Zhang, L. Qin, Y. Zheng, and H. Cheng, “Effective and efficient:
Large-scale dynamic city express,” IEEE Trans. Knowl. Data Eng.,
vol. 28, no. 12, pp. 3203–3217, Dec. 2016.

[30] C. Chen et al., “Crowddeliver: Planning city-wide package deliv-
ery paths leveraging the crowd of taxis,” IEEE Trans. Intell. Transp.
Syst., vol. 18, no. 6, pp. 1478–1496, Jun. 2017.

[31] L. Cui, J. Chen,W.He,H. Li,W.Guo, and Z. Su, “Achieving approx-
imate global optimization of truth inference for crowdsourcing
microtasks,” Proc. Data Sci. Eng., vol. 6, no. 3, pp. 294–309, 2021.

[32] A. I. Chittilappilly, L. Chen, and S. Amer-Yahia , “A survey of
general-purpose crowdsourcing techniques,” IEEE Trans. Knowl.
Data Eng., vol. 28, no. 9, pp. 2246–2266, Sep. 2016.

[33] Y. Li, R. Chen, L. Chen, and J. Xu, “Towards social-aware ride-
sharing group query services,” IEEE Trans. Serv. Comput., vol. 10,
no. 4, pp. 646–659, Jul./Aug. 2017.

[34] Y. Li et al., “Top-k vehicle matching in social ridesharing: A price-
aware approach,” IEEE Trans. Knowl. Data Eng., vol. 33, no. 3,
pp. 1251–1263, Mar. 2021.

[35] Y. Li, R. Chen, J. Xu, Q. Huang, H. Hu, and B. Choi, “Geo-social k-
cover group queries for collaborative spatial computing,” IEEE
Trans. Knowl. Data Eng., vol. 27, no. 10, pp. 2729–2742, Oct. 2015.

[36] L. Chen, Y. Li, J. Xu, and C. S. Jensen, “Towards why-not spatial
keyword top- queries: A direction-aware approach,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 4, pp. 796–809, Apr. 2018.

[37] Y. Liu et al., “FooDNet: Toward an optimized food delivery
network based on spatial crowdsourcing,” IEEE Trans. Mobile
Comput., vol. 18, no. 6, pp. 1288–1301, Jun. 2019.

[38] S. Tian, S. Mo, L. Wang, and Z. Peng, “Deep reinforcement learn-
ing-based approach to tackle topic-aware influencemaximization,”
Proc. Data Sci. Eng., vol. 5, no. 1, pp. 1–11, 2020.

[39] C. Shan, N. Mamoulis, R. Cheng, G. Li, X. Li, and Y. Qian, “An
end-to-end deep RL framework for task arrangement in crowd-
sourcing platforms,” in Proc. IEEE Int. Conf. Data Eng., 2020,
pp. 49–60.

[40] J. Zhang et al., “An end-to-end automatic cloud database tuning
system using deep reinforcement learning,” in Proc. ACM SIG-
MOD Int. Conf. Manage. Data, 2019, pp. 415–432.

[41] Z. Gu, T. Yin, and Z. Ding, “Path tracking control of autonomous
vehicles subject to deception attacks via a learning-based event-
triggered mechanism,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32,
no. 12, pp. 5644–5653, Dec. 2021.

[42] Z. Bing, C. Lemke, Z. Jiang, K. Huang, and A. Knoll, “Energy-effi-
cient slithering gait exploration for a snake-like robot based on
reinforcement learning,” in Proc. 28th Int. Joint Conf. Artif. Intell.,
2019, pp. 5663–5669.

[43] Y. Zhao, Y. Ma, and S. Hu, “USV formation and path-following con-
trol via deep reinforcement learning with random braking,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 32, no. 12, pp. 5468–5478,
Dec. 2021.

5778 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 35, NO. 6, JUNE 2023

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 

http://www.spbdrc.org.cn/
https://www.amazon.com/
https://www.jd.com/
https://www.cainiao.com/


[44] M. Zhou et al., “Multi-agent reinforcement learning for order-dis-
patching via order-vehicle distribution matching,” in Proc. 28th
ACM Int. Conf. Inf. Knowl. Manage., 2019, pp. 2645–2653.

[45] K. Lin, R. Zhao, Z. Xu, and J. Zhou, “Efficient large-scale fleet
management via multi-agent deep reinforcement learning,” in
Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining,
2018, pp. 1774–1783.

[46] F. Focacci, A. Lodi, andM.Milano, “A hybrid exact algorithm for the
TSPTW,” INFORMS J. Comput., vol. 14, no. 4, pp. 403–417, 2002.

Yafei Li received the PhD degree in computer sci-
ence from Hong Kong Baptist University, in 2015.
He is currently an associate professor with the
School of Computer and Artificial Intelligence,
Zhengzhou University, China. His research interests
include span mobile and spatial data management,
location-based services, and urban computing. He
has authored more than 20 journal and conference
papers in these areas, including IEEE Transactions
on Knowledge andData Engineering,IEEETransac-
tions on Services Computing, Transactions on the

Web, ACM Transactions on Intelligent Systems and Technology, Proceed-
ings of theVLDBEndowment, IEEE ICDE,WWW, etc.

QingshunWu received the BEng degree in com-
puter science and technology from Zhengzhou
University, China, in 2019. He is currently working
toward the MEng degree with the School of Com-
puter and Artificial Intelligence, Zhengzhou Uni-
versity. His research interests include multi-agent
computing, deep learning, and spatiotemporal
data processing.

Xin Huang received the PhD degree from the
Chinese University of Hong Kong (CUHK) in
2014. He is currently an assistant professor with
Hong Kong Baptist University. His research inter-
ests mainly focus on graph data management
and mining.

Jianliang Xu received the BEng degree in com-
puter science and engineering from Zhejiang Uni-
versity, Hangzhou, China, and the PhD degree in
computer science from the Hong Kong University
of Science and Technology. He is currently a pro-
fessor with the Department of Computer Science,
Hong Kong Baptist University. He held visiting
positions with Pennsylvania State University and
Fudan University. His research interests include
Big Data management, mobile computing, and
data security and privacy. He has published more

than 200 technical papers in these areas. He has served as a program
cochair/vice chair for a number of major international conferences
including IEEE ICDCS 2012, IEEE CPSNA 2015, and APWeb-WAIM
2018. He is an associate editor for IEEE Transactions on Knowledge
and Data Engineering and Proceedings of the VLDB Endowment 2018.

Wanru Gao received the PhD degree from the
School of Computer Science, University of Ade-
laide, Australia, in 2016. She is currently a lecturer
with the School of Computer and Artificial Intelli-
gence, Zhengzhou University, Zhengzhou, China.
Her current research interests include the combina-
torial optimization, diversity maximization in evolu-
tionary algorithms and theoretical analysis of heuristic
search methods. She has authored more than 20
journal and conference papers in theseareas.

Mingliang Xu received the PhD degree from the
State Key Lab of CAD&CG, Zhejiang University,
China. He is a professor with the School of Com-
puter and Artificial Intelligence, Zhengzhou Uni-
versity, China. His current research interests
include computer graphics, multimedia and artifi-
cial intelligence. He has authored more than 60
journal and conference papers in these areas,
including ACM Transactions on Graphics, IEEE
Transactions on Pattern Analysis and Machine
Intelligence/TIP/IEEE Transactions on Circuits
and Systems for Video Technology, ACM SIG-
GRAPH (Asia)/MM, ICCV, etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LI ETAL.: EFFICIENTADAPTIVE MATCHING FOR REAL-TIME CITY EXPRESS DELIVERY 5779

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on August 01,2023 at 04:35:44 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


