
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024 1935

DKWS: A Distributed System for Keyword Search
on Massive Graphs

Jiaxin Jiang , Byron Choi , Xin Huang , Jianliang Xu , Senior Member, IEEE, and Sourav S Bhowmick

Abstract—Due to the unstructuredness and the lack of schemas
of graphs, such as knowledge graphs, social networks, and RDF
graphs, keyword search for querying such graphs has been pro-
posed. As graphs have become voluminous, large-scale distributed
processing has attracted much interest from the database research
community. While there have been several distributed systems, dis-
tributed querying techniques for keyword search are still limited.
This paper proposes a novel distributed keyword search system
called DKWS. First, we present a monotonic property with key-
word search algorithms that guarantees correct parallelization.
Second, we present a keyword search algorithm as monotonic
backward and forward search phases. Moreover, we propose new
tight bounds for pruning nodes being searched. Third, we propose
a notify-push paradigm and PINE programming model of DKWS.
The notify-push paradigm allows asynchronously exchanging the
upper bounds of matches across the workers and the coordi-
nator in DKWS. The PINE programming model naturally fits
keyword search algorithms, as they have distinguished phases, to
allow preemptive searches to mitigate staleness in a distributed
system. Finally, we investigate the performance and effectiveness
of DKWS through experiments using real-world datasets. We find
that DKWS is up to two orders of magnitude faster than related
techniques, and its communication costs are 7.6 times smaller than
those of other techniques.

Index Terms—.

I. INTRODUCTION

KNOWLEDGE graphs, social networks, and RDF graphs
have a wide variety of emerging applications, includ-

ing semantic query processing [48], information summariza-
tion [40], community search [14], collaboration and activity
organization [36], and user-friendly query facilities [45]. Such
graphs often lack useful schema information for users to for-
mulate their queries. To make querying such data easy, keyword
search has been proposed. Users can retrieve information with-
out the knowledge of the schema or query language. In a nutshell,
users only specify a set of keywords Q as their query on a data

Manuscript received 29 December 2022; revised 14 July 2023; accepted
26 August 2023. Date of publication 25 September 2023; date of current
version 5 April 2024. This work was supported by HKRGC GRF under Grants
12203123, 12201119, 12200022, 12202221, and C2004-21GF. Recommended
for acceptance by B. C. M. Fung. (Corresponding author: Byron Choi.)

Jiaxin Jiang is with the School of Computing, National University of Singa-
pore, Singapore 119077 (e-mail: jxjiang@nus.edu.sg).

Byron Choi, Xin Huang, and Jianliang Xu are with the Department
of Computer Science, Hong Kong Baptist University, Kowloon Tong,
Hong Kong (e-mail: bchoi@comp.hkbu.edu.hk; xinhuang@comp.hkbu.edu.hk;
xujl@comp.hkbu.edu.hk).

Sourav S Bhowmick is with the School of Computer Engineering, Nanyang
Technological University, Singapore 639798 (e-mail: assourav@ntu.edu.sg).

Digital Object Identifier 10.1109/TKDE.2023.3313726

Fig. 1. Example of keyword search on a knowledge graph

graph G. In recent years, there have been well-known projects
that build graph-structured databases and allow querying with
simply a set of keywords, e.g., BioCyc1 and Google’s knowledge
graph search API.2

The answer of keyword search semantics (cf. [5], [9], [16],
[21], [31], [34], [47]) is generally a set of matches, where each
match is a rooted subtree of G such that query keywords belong
to the labels of leaf vertices. These semantics differ mainly
in the score function of the matches. Interested readers may
refer to comprehensive surveys on the keyword search semantics
for more information [39], [43], [46]. For example, consider a
partial knowledge graph shown in Fig. 1, where a node is an
entity and an edge is a relation between entities. Assume that
a user is identifying “who owns Y Combinator and graduated
from Havard University and Cornell University?”. He/She may
simply provide the keywords Q={Y Combinator, Havard Uni-
versity, Cornell University} as his/her query. If users apply the
keyword search to the knowledge graph, a substree rooted at Paul
Graham can be returned as an answer (e.g., [9], [16], [31]).

Nowadays, graphs with billions of vertices or edges are
common, and their sizes continue to increase. For example,
WebUK [3], a large Web graph, contains 106 million nodes
and 3.7 billion edges. Keyword search often involves numerous
traversals of such massive graphs, which are computationally
costly. Indexes (e.g., for shortest distance computations) on such
graphs are often large, e.g., O(|V |2) in the worst case, where
|V | is the number of the vertices. Still, it is infeasible to load
the index into the main memory, e.g., [16], [22]. As a result,
distributed graph processing systems are a competitive solution.
In this paper, we aim to propose a distributed system to answer
the top-k keyword search on distributed graphs. Intuitively, each
worker computes local top-k matches on a graph partition and

1http://biocyc.org
2https://developers.google.com/knowledge-graph/

1041-4347 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8748-3225
https://orcid.org/0000-0002-8381-336X
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0003-1957-8016
mailto:jxjiang@nus.edu.sg
mailto:bchoi@comp.hkbu.edu.hk
mailto:xinhuang@comp.hkbu.edu.hk
mailto:xujl@comp.hkbu.edu.hk
mailto:assourav@ntu.edu.sg
http://biocyc.org
https://developers.google.com/knowledge-graph/

1936 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

Fig. 2. Illustration of stragglers of distributed keyword search (grey denotes
the worker Pi is busy, whereas white color denotes the worker Pi is idle.)

Fig. 3. Example of distributed keyword search

the global top-k matches are generated from such local matches.
However, several major technical challenges of keyword search
have not been addressed by existing generic distributed process-
ing systems, e.g., [4], [13], [41].

Challenge 1. Straggler problem: Some workers in a dis-
tributed system may take substantially longer than others. We
show the working status of supersteps 1-4 of a cluster with
8 workers (P1 to P8) as shown in Fig. 2. In each superstep,
there are concurrent computation and barrier synchronization.
The workers start concurrent computations and become busy
(if there is some work) until a barrier synchronization. In the
first superstep, worker P2 take longer than the other 7 workers.
They keep waiting idly and the computing power is not used
until P2 completes its tasks. This is known as the straggler
problem. Similarly, P2 is also the straggler in third superstep
and P5 is the straggler of second and fourth supersteps. This
problem can be caused by either workload imbalance or graph
characteristics. Previous studies have frequently focused on
rebalancing partitions [8] or predicting machine workloads [10]
during runtime. Nevertheless, these approaches come with addi-
tional costs, including the expenses associated with data transfer.
Moreover, setting up the training model for keyword search is a
non-trivial task.

Challenge 2. Lack of pruning techniques: Another challenge
is that existing sequential keyword search works often utilize
the global graph information (e.g., the upper bound of the score
of the top-k matches) to develop some pruning techniques,
e.g., [16], to avoid exhaustive traversals on the graph. Consider
a graph G in Fig. 3, the upper bound of the score of top-k
matches is 2 when the subtrees of G rooted at ri (i ∈ {1, 2, 3})
are retrieved. ri (i ∈ {4, 5, 6, 7}) and xi (i ∈ [1, n]) are not
traversed. However, in a distributed graph system, such pruning
techniques can be hardly directly applied since each machine
only maintains a graph fragment. In Fig. 3, the workersP1 andP2

process the graph fragments F1 and F2, respectively. There are
two local upper bounds S1 = 2 and S2 = 8 generated on F1 and
F2, respectively. The search onF2 can only be pruned byS2. We

Fig. 4. Illustration of the potential of bound refinements, and messages of
distributed keyword search

show the refinement of bounds after each superstep in Fig. 4(a).
The bound values tighten faster with our techniques. With tighter
bounds, unnecessary node visits are significantly reduced, and
false matches are pruned early, as shown in Fig. 4(b). Existing
research studies such as [16], [22] often rely on indexing distance
information for pruning. However, these types of indexing meth-
ods are typically designed for single-machine algorithms. Each
machine lacks global information, which significantly limits the
potential for pruning.

Challenge 3. Message passing: Since keyword search on
graphs often involves numerous traversals, keyword search on
distributed graphs might cause massive message passing. For
instance, in previous studies [47] and [28], the local matches
rooted at ri (i ∈ [1, 2, 3]) (resp. ri (i ∈ [4, 5, 6])) are sent from
F1 (resp. F2) to the coordinator for verification. The matches on
F2 are not among the final top-k matches, i.e., most of the com-
putation on F2 does not lead to matches. As shown in Fig. 4(c),
the messages not yielding final matches are significantly re-
duced in our system. Previous works such as [24], [29] have
often utilized partitioning strategies to reduce message overhead.
However, these studies are designed for general purposes, where
the partitioning is primarily based on the graph’s structure. In
a distributed environment, the message overhead in keyword
search often depends on the distribution of the query keywords.
This dependency makes these approaches less effective in such
scenarios.

Contributions: In this paper, we propose a system for answer-
ing top-k keyword search called DKWS and show that all three
challenges can be addressed. We investigate keyword search
algorithms in a distributed environment and the techniques for
DKWS as opposed to individual keyword search semantics (or
algorithms).

1) We present the monotonic property with the keyword
search algorithm which leads to correct parallelization.
We show that a sequential keyword search algorithm can
be rewritten into two main phases, (a) backward keyword
search (bkws), and (b) forward keyword search (fkws). We
propose new lower and upper bounds for pruning in fkws.
We prove that bkws and fkws implemented in DKWS are
monotonic.

2) We propose a notify-push paradigm for DKWS: (a) each
worker asynchronously notifies the coordinator when the
local upper bound is refined; (b) the coordinator main-
tains a global bound. When it receives the notification
from workers, it refines the global upper bound and asyn-
chronously pushes it to all workers. This incurs a small
communication overhead, but the refined global bounds

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DKWS: A DISTRIBUTED SYSTEM FOR KEYWORD SEARCH ON MASSIVE GRAPHS 1937

TABLE I
FREQUENTLY USED NOTATIONS

provide global information to workers to prune some
search locally.

3) We propose a PINE programming model that naturally
fits the keyword search algorithm that has distinguished
search phases. DKWS launches a preemptive execution
of the searches. Hence, keyword searches are no longer
one blocking operation in the distributed environment. We
propose staleness indicators and a lightweight cost model
that mitigate the straggler problem.

4) Using real-life graphs, we empirically compare the per-
formance of DKWS and two baselines. We verify that
(a) DKWS speeds up the query performance of top-k
keyword search up to two orders of magnitude; (b) The
communication cost of DKWS is 7.6 times smaller than
that of baseline; and (c) DKWS using all optimizations is
on average 1.64 times faster than DKWS without them.

5) Due to space limitations, we put the proofs, some opti-
mizations, and more experiments in a technical report [17].

Organization: Section II provides some background and the
problem statement. In Section III, we illustrate an efficient
monotonic sequential keyword search algorithm. In Section IV,
we propose DKWS and its two novel ideas, namely the notify-
push paradigm and the PINE model. Section V reports ex-
perimental results. Section VI, presents the related work. We
conclude the paper and present the future works in Section VII.

II. PRELIMINARIES AND PROBLEM STATEMENT

This section presents some background and the problem
statement. Some frequently used notations are summarized in
Table I.

Graphs: We consider a labeled, weighted, directed graph
modeled asG = (V,E, L,Σ, w), where (a)V is a set of vertices;
(b) E (⊆ V × V) is a set of edges; (c) Σ is a set of keywords;
(d) L : V → Σ is a label mapping function such that for each
vertex v ∈ V , L(v) maps v to a subset of labels/keywords in
Σ; and (e) w(e) is a positive weight of an edge e = (u, v) ∈ E.
For simplicity, we may omit L, Σ and w when they are irrel-
evant to the discussions. The size of the graph is denoted by
|G| = |V |+ |E|.

Example II.1: Consider a graph G in Fig. 5 , a) V =
{v1, v2, v3, v4, v5, v6, v7} is the vertex set, b) E is a set of edges,
e.g., (v1, v2) ∈ E is an edge, c) Σ = {a, b} is a set of keywords,
d) L maps each vertex in V to a subset of keywords in Σ, e.g.,

Fig. 5. Example of frequently used graph notations

TABLE II
REPRESENTATIVE KEYWORD SEARCH INVOLVED TRAVERSALS AND SHORTEST

DISTANCE COMPUTATION OR ESTIMATION

L(v4) = {a} ⊆ Σ, and e) w maps each edge in E to a positive
weight, e.g., w(v1, v2) = 9.

Partition strategy: Given a numberm, a strategyPar partitions
a graph G into fragmentsF = {F1, . . . , Fm} such that each
Fi = (Vi, Ei, Li) is a subgraph of G, E =

⋃
i∈[1,m] Ei, V =⋃

i∈[1,m] Vi and Li = L, and Fi resides at worker Pi, where
i ∈ [1,m] is the fragment id. There are two special sets of nodes
for each fragment.
� Fi.I ⊂ Vi: the set of nodes v ∈ Vi such that there is an

edge (v′, v) incoming from a node v′ in Fj (i �= j); and
� Fi.O: the set of nodes v′ such that there exists an outgoing

edge (v, v′) in E, v ∈ Vi and v′ is in some Fj (i �= j).
In addition, we denote F .O =

⋃
i∈[1,m] Fi.O, and F .I =⋃

i∈[1,m] Fi.I . We refer to the nodes inFi.I ∪ Fi.O as the border
nodes (a.k.a. portal nodes) of Fi w.r.t. Par. Partition strategies
(e.g., [24]) are orthogonal to our work. In this paper, we utilize
the edge-cut partitioning approach, where vertices are assigned
to different partitions. As a result, edges may span across two
partitions.

Platform: In this work, we propose our system, DKWS, built
on top of the code-base of GRAPE [13]. GRAPE exemplifies a
generic approach to parallel computations through a program-
ming model that consists of three functions for implementing
user-defined algorithms - PEval, IncEval, and Assemble. These
functions together form the PIE program paradigm. GRAPE
parallelizes the sequential algorithms (and minor revisions are
required). GRAPE inherits all optimization strategies available
for sequential algorithms and graphs, such as indexing. DKWS
inherits the strengths of GRAPE while introducing a novel
efficient paradigm PINE (detailed in Section IV) and novel
optimizing such as indexing techniques for keyword search.

Semantics of keyword search (kws) for graphs: Several key-
word query semantics have been proposed, e.g., [16], [22], [47].
They are driven by various interesting applications. We list some
representative works of keyword search and their characteristics
in Table II. Many of them involve backward search (bkws) and/or
forward search (fkws). We consider the same query semantic of
[9], [16], [31], which is the most popular semantic among the

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

1938 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

TABLE III
IMPORTANT VERTEX SETS FOR THE DISCUSSION OF bkws AND fkws

others.3 A keyword query is a binary tuple (Q, τ) which contains
a set of keywords Q={q1, . . . , ql} and a distance threshold τ .
Given a graphG = (V,E), a match ofQ inG is a subgraph ofG,
denoted by T = {u, 〈v1, . . . vl〉}, such that (i) T is a tree rooted
at u; (ii) ∀i ∈ [1, l], vi is a leaf vertex of T and qi ∈ L(vi); and
(iii) dist(u, vi) ≤ τ , where dist(u, vi) is the shortest distance
between u and vi. Existing works design indexes for distance
estimation/computations. However, the indexes for computing
exact matches are large on massive graphs and also non-trivial
to be adapted in a distributed environment. On the other hand,
the indexes for approximate match computation return bounds
for pruning false matches. This work proposes new bounds for
pruning false matches and adopts a lightweight index.

Keyword searches can yield numerous matches, particularly
within a massive graph. However, users are often concerned
with interpreting most compact matches. As such, our focus is
on the top-k query that determines the top-k matches as the
query answers. To facilitate this approach for top-k queries,
each vertex can serve as the root match only once. The more
compact, the higher the rank. Accordingly, we augment the
query structure from (Q, τ) to (Q, τ, k), where τ is the distance
threshold between the root vertex and the leaf vertices.

It is well-received that an ideal match is a compact structure
that contains all keywords. Hence, existing studies assign a score
to each matchT , using the rootu as a basis. This score is denoted
as scr(u). In this context, a lower score for T signifies a more
compact match, considered preferable. Specifically, we employ
the same score function as presented in [9], [16], [31]. This
function is defined as follows.

Definition II.1 (Score function scr(u)): Given a match, T =
{u, 〈v1, . . . vl〉}, to the query (Q, τ, k), the score of T is denoted
by scr(u) =

∑
i∈[1,l] dist(u, vi), where dist(u, vi) is the shortest

distance between u and vi.
Problem statement: Given a graph G, a keyword query

(Q, τ, k), we investigate a distributed system to compute the
top-k matches A (i.e., the answer) of the query on G.

III. BACKWARD AND FORWARD KEYWORD SEARCH

In this section, we discuss the monotonic property of key-
word search (kws) algorithms, which is crucial for its correct
parallelization [13]. Specifically, backward and forward key-
word search (bfkws) consists of two phases, namely, backward
keyword search (bkws) and forward keyword search (fkws).
Intuitively, bkws starts from the vertices that contain the query
keywords and performs a backward search to identify potential
vertices that might serve as the roots of a match. fkws initiates
its search from these identified roots and proceeds forward. The

3According to Google scholar in Jun 2023, the total number of citations of
the query semantic [16] received 718 citations.

objective of fkws is to discover any missing keywords within
the subtrees that consider these vertices as roots. We prove that
both bkws and fkws have the monotonic property (detailed at the
end of Sections III-B and III-C, respectively). The monotonic
property of a few popular keyword search algorithms, such as
[9], [16], [31], can be analyzed similarly, which is omitted.

A. Monotonic Algorithms for Keyword Search

This subsection presents how the keyword search algorithm
has the monotonic property. More specifically, the monotonic
property is defined with a partial order of match variables from
a finite domain. Intuitively, the shortest distance between the
root u and a query keyword q ∈ Q, denoted as dist(u, q) (i.e.,
dist(u, q) = min{dist(u, v)|q ∈ L(v)}), is of a finite domain.
When the monotonic property holds, its value decreases or
remains unchanged during query processing and converges to
the exact shortest distance after query processing ends. Before
providing further details, we present the structure of the match
variable, matu, which maintains the substree rooted at u.

Definition III.1 (Match matu): For a given graph G and a
query (Q, τ, k), a matchmatu with its root atu represents a map.
∀q ∈ Q, if dist(u, q) ≤ τ ,matu[q] is set todist(u, q). Otherwise,
matu[q] is set to null.

Complete matches and partial matches: matu[q] is initialized
to null. Throughout the search process, certain keywords for allu
may be discovered within matu and matu[q] is set to dist(u, q),
while others may remainnull. Formally, a matchmatu is referred
to as a partial match if and only if ∃q ∈ Q, matu[q] is null (i.e.,
some keyword is not matched). Otherwise, matu is a complete
match.

Definition III.2 (Monotonic kws algorithm): Given a graph
G = (V,E), where each node u ∈ V is associated withmatu. A
monotonic keyword search algorithm kws satisfies the following
conditions:

1) matu of all vertices are in a finite domain; and
2) there exists a partial order � on matu such that, ∀u ∈ V ,

kws updates matu in the order of �.
We next illustrate the details of the monotonic property of kws

in relation to a finite domain and a partial order on the matches.
(1) Finite domain of kws: To illustrate a finite domain of match

variables, we encode null with a constant large value +∞ larger
than

∑
ei∈E w(ei). Consider the value of matu[q]. matu[q] ∈{∑

ei∈E′ w(ei)|E ′ ⊆ E} ∪ {+∞
}

.

(2) Partial order of kws: We propose the partial order �
on matu which is defined as follows. Suppose kws updates
the (partial or complete) matches by following an order �. If
mat′u � matu, mat′u[q] ≤ matu[q] or matu[q] = null, then � is
a partial order of kws. Intuitively, kws follows the partial order
and keeps refining the distances between the roots of the matches
and the query keywords to obtain the top-k complete matches.

Remarks: A keyword search algorithm kws can be parallelized
and terminated with the correct answer (a.k.a. the top-k matches)
in a distributed environment if kws is correct for the query Q on
a single machine and has a monotonic property. We follow the
proof pipeline of Theorem 1 in [13].

(i) Termination: In each superstep, at least one matu has to
be updated. Given a graph G, the number of distinct values to

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DKWS: A DISTRIBUTED SYSTEM FOR KEYWORD SEARCH ON MASSIVE GRAPHS 1939

update matu is bounded since all matu are in a finite domain
and updates follow the partial order �. Therefore, the number
of supersteps is bounded.

(ii) Correctness: Given that kws is correct for query Q, at the
superstep R = 1, kws returns a set of correct local matches with
roots in each fragment Fi. Matches with roots on portal nodes
are passed to their copies in other fragments (if any) at the end
of each superstep. At the superstep R = s, each node u contains
its local match matu from the superstep R = (s− 1) and the
matches mat′u which are rooted at its copies in other fragments.
Therefore, kws can compute the correct match for the current
superstep for each node. The correctness of the final matches is
thus established by induction on the supersteps.

B. Monotonic Backward Search (bkws)

We next present the major steps of backward search for key-
word search (bkws), which is essential to many previous studies,
e.g., [9], [16], [31], [47]. The detailed pseudocode is illustrated
with Lines 2-22 of Algorithm 2, to be discussed with PINE in
Section IV-B. Given a keyword query, bkws goes through three
key steps. First, bkws initializes a set of search origins. Second,
bkws expands the search origins backward. Third, a complete
match is found once the node u is expanded by all search origins.
We elaborate the details below.

Answer A: The answer to the query is a set of the top-k
matches at the end of the query algorithm. If matu is a top-k
match, matu ∈ A. We use S to denote the score of the current
k-th match in A. Hence, S is the upper bound of the score of
any match in A. Given a complete match matu, if scr(u) > S,
we say that matu is a candidate match, i.e., it is not among the
current top-k matches. Candidate matches may be refined and
added to A by traversing adjacent fragments.

Maintenance of answer: bfkwsmaintains the top-k matchesA
in a priority queue of a fixed size k and is ordered in descending
order according to the scores of the matches. The match at the
head ofA has the highest priority to be removed as it has the least
compact structure. S is initialized to +∞. It remains unchanged
when |A| < k. Otherwise, it is always set to the score of the
match at the head of A. S will be refined once there is a match
found with a score which is smaller than S. Formally, when a
candidate match matu is refined, the following are checked:

1) if |A| < k, matu is inserted into A directly; and
2) if |A| = k and scr(u) < S, the match at the head of A is

removed and matu is inserted into A.
(Step 1) Initialization: Consider a set of query keywords

Q = {q1, q2, . . . , ql}. We denote the set of vertices that contain
the keyword q ∈ Q as Oq (a.k.a. search origin), and the set of
vertices that could reach q (i.e., one of the vertices in Oq) as Vq .

(Step 2) Backward expansion: bkws expands the vertex set
Oq backwardly. In each search step, bkws compares the next
vertex to be expanded for each query keyword, and the vertex
u with the smallest distance to the search origin is selected. In
the expansion, u is added to Vq and matu is checked whether
it is a complete match, where (u, v) is an incoming edge of
v. If (a)

∑
q∈Q dist(u, q) > S, where u is the nearest vertex

of Oq and has not been expanded by query keyword q (i.e.,

Fig. 6. Query, a data graph (top) and indexes (bottom) for the illustration of
the key steps of bkws and fkws

ui = argminu dist(u, v), where u �∈ Vq and v ∈ Oq) or (b) all
adjacent vertices of Vqs are expanded, the expansion stops.
Otherwise, the backward expansion continues.

(Step 3) Match discovery: It discovers a complete match
rooted at u such that u can reach at least one node that contains
q, for each q ∈ Q, i.e., u ∈ ⋂

q∈Q Vq .
Example III.1: Consider the graph in Fig. 6 . Given a keyword

query (Q, τ, k), where Q = {q1, q2} that is q1 = a and q2 = b,
τ = 6 and k = 2. For brevity, Fig. 6 only shows the vertex labels
relevant to Q. We illustrate the backward search with Step (a) in
Fig. 7 . Initially, Oa = {v4, v6, v8, v9} and Ob = {v5, v7}. The
backward expansion iterates over Va. The first seven vertices are
[v4, v6, v8, v9, v2, v1, w1], which are ordered by the first time the
vertices expanded. Similarly, the vertices of Vb can be expanded
as follows: [v5, v7, v3, v2, y1, y2, v1]. Two complete matches
rooted at v1 and v2 are discovered. The score of matv1

(resp.
matv2

) is scr(v1) = 8 (resp. scr(v2) = 4). Hence, the upper
bound S = 8. The next vertex to expand for Va is x1. The next
vertex to expand for Vb is x1, too. dist(x1, a) + dist(x1, b) =
5 + 5 = 10 > S. The subsequent backward expansions, such as
xi (i ∈ [1, j]), are skipped since the termination condition is met.

Analysis of bkws: We show that bkws identifies all the partial
and complete matches. We denote the union (resp. intersection)
of Vq by V =

⋃
q∈Q Vq (resp. V =

⋂
q∈Q Vq). We note that u ∈

V \ V reaches some of the query keywords but not all of them,
i.e., matu is a partial match. We denote the set of roots by V̄ =
V \ V and have the following proposition.

Proposition III.1: The node set visited by bkws, V, has the
following properties:

(1) ∀u �∈ V, matu �∈ A; and (2) ∀matu ∈ A, u ∈ V.
Proof: The proof is presented in Appendix A.1 of [17], avail-

able online.
Intuitively, if a vertex is not visited during the backward

expansion of any query keyword, it cannot serve as the roots of
the top-k matches. Proposition III.1 ensures that the roots of the
top-k matches are in V. Some vertices in V that are not roots of
the top-k matches will be further pruned in fkws (Section III-C).

Example III.2: We illustrate the key steps of bkws with
the graph in Fig. 7(a). Va = {v4, v6, v8, v9, v2, v1, w1} and
Vb = {v5, v7, v3, v2, y1, y2, v1} are expanded, after bkws. V
= Va ∩ Vb = {v1, v2} are the roots of the complete matches,
i.e., they can reach the vertices containing the query key-
words {a, b}. V = {v4, v6, v8, v9, v2, v1, w1, v5, v7, v3, y1, y2}
are the vertices which are traversed during bkws. V̄ = V \ V =
{v4, v6, v8, v9, w1, v5, v7, v3, y1, y2} are the vertices that are not
backward traversed by either keyword a or b.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

1940 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

Fig. 7. Key steps: Backward search (Section III-B), refinement and pruning (Example III.3 and III.4), and forward search (Section III-C)

Correctness: By using match refinement, bkws is monotonic.
Since matu[q] is refined when a shorter path between u and q in
a complete match matu or a new path between u and a missing
keyword q in a partial match matu is identified, the refinement
follows the partial order � on matu. We recall that matu[q] is
from a finite domain {∑ei∈E′ w(ei)} ∪ {+∞}, whereE ′ is any
subset of E. By Definition III.2, bkws can be parallelized and
terminated correctly.

Complexity: bkws takes O(|Q|(|E|+ |V | log |V |)), where
|Q| is the number of query keywords. For simplicity, we provide
the analysis in Appendix B.5 of [17], available online. The size
of a match, matu, is bounded by O(|Q|). Hence, the space
complexity is bounded by O(|Q||V |).

C. Monotonic Forward Search (fkws)

The main purpose of fkws is to retrieve the missing keywords
of the partial matches via forward expansion. fkws is also widely
used in existing keyword search algorithms, e.g., [5], [16], [21],
[34], [47]. Due to a potentially large number of partial matches,
forward expansion for the vertices V̄ could be costly. Existing
studies can be space-consuming [16] or do not guarantee exact
matches [21]. We describe the forward expansion and propose
new bounds for pruning in fkws.

Forward expansion: Consider a partial matchmatu. Suppose a
query keyword q ∈ Q is missing in matu. fkws forward expands
from u by using Dijkstra’s algorithm to retrieve the nearest node
that contains q.

Pruning in fkws: Some forward expansions do not lead to
complete matches and can be pruned as shown in Proposi-
tion III.2.

Proposition III.2: Consider the forward expansion for vertex
u. Suppose the next vertex to be expanded by Dijkstra’s algo-
rithm is v, the forward expansion is terminated when any of the
following conditions holds.

1) q ∈ L(v), i.e., the keyword q is found;
2) dist(u, v) > τ , the vertex containing keyword q is farther

than τ from u or does not exist (i.e., dist(u, q) > τ); or
3) scr(u) + dist(u, v) > S ⇒ scr(u) + dist(u, q) > S.
As indicated by Condition 2, if dist(u, q) has been indexed,

early termination can be determined if dist(u, q) > τ . Fur-
thermore, Condition 3 posits that the current top k-th match
score, denoted as S, serves as an upper bound. If dist(u, q)

is indexed, we can employ a tightly estimated upper bound
of S to facilitate decisions on early termination. Thus, we
engage state-of-the-art indexing techniques – PageRank-based
All-distances Sketches (PADS) and PageRank-based Keyword
Distance Sketches (KPADS) [19]. Specifically, PADS(u) is a
sketch for u, which indexes the shortest distance between u and
the sketch’s centers (some vertices in the graph). Given that
PADS(vi) and PADS(vj) may share common centers where
q ∈ L(vi) ∩ L(vj), these shared centers can be merged. In the
process of merging, only the smallest distance is retained.
KPADS(q) sketch is constructed through such merges and is
used to index the shortest distance between the keyword q and
the centers. These sketches assist in estimating both the upper
and lower bounds of the shortest distance betweenu and q, where
u belongs to V̄ and q is a missing keyword in matu.

Indexing: PADS and KPADS have been shown to be both
space- and time-efficient in practice with theoretical guar-
antees on the accuracy of the shortest distance which can
be readily distributed. However, we remark that [19] con-
sidered undirected graphs. To support directed graphs, we
make a modification to PADS as follows. The sketch of a
node u is two sets of vertices and their corresponding short-
est distances from (resp. to) u, denoted by PADSout(u) =
{(w, d)} (resp. PADSin(u) = {(w, d)}), where w ∈ V and
d = dist(u,w) (resp. d = dist(w, u)). Similarly, the sketch of
a keyword q is denoted by KPADSout(q) = {(w, d)} (resp.
KPADSin(q) = {(w, d)}), where w ∈ V and d = dist(q, w)
(resp. d = dist(w, q)). For brevity, we leave the construction
pseudo-code of PADS and KPADS in [17].

Since PADS yields estimated bounds, fkws needs to handle
both approximate and exact matches. Specifically, fkws com-
putes the upper bound of the score for any u ∈ V̄ , scr(u), by
estimating the shortest distance between u and the missing
keywords, i.e., Σdist(u, qi) + Σmatu[qj], where qi, qj ∈ Q, qi
is missing from matu whereas qj has been found in matu. If
the upper bound is smaller than S, matu is inserted into A and
S is refined accordingly. To avoid ambiguity, we denote the A
that may consist of exact matches and approximate matches by
Â. The approximate matches in Â are further refined during
forward expansion. Â is eventually refined to yield A.

Next, we present the upper and lower bounds of dist(u, q)
for the termination of forward expansion from u. These bounds
can be applied to other keyword search semantics as they

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DKWS: A DISTRIBUTED SYSTEM FOR KEYWORD SEARCH ON MASSIVE GRAPHS 1941

involve numerous distance computations, such as [16], [22],
[23].

(1) Upper bound of the shortest distance: Given a shortest dis-
tance query (u, q), the upper bound is computed by PADSout(u)
and KPADSin(q) as follows:

dist(u, q) ≤ dist(u,w) + dist(w, q), (1)

where (w, dist(u,w)) ∈ PADSout(u), (w, dist(w, q)) ∈
KPADSin(q), and w is a common center in PADSout(u)
and KPADSin(q).

Example III.3: Consider the graph in Fig. 7(b1).
PADSout(y1) = {(w1, 1)} and KPADSin(a) = {(w1, 4)}.
The common center of PADSout(y1) and KPADSin(a) is w1.
Hence, the upper bound of the shortest distance between y1 and
keyword a is derived by dist(y1, w1) + dist(w1, a) = 5. Then,
the upper bound of the score of the match rooted at y1 is 7.
Since the upper bound is smaller than S, the approximate match
maty1

is inserted into A to yield Â. S is refined accordingly,
S = scr(y1).

(2) Lower bound of the shortest distance: We also derive
a lower bound of the shortest distance between u and q by
exploiting PADSout(u) and KPADSout(q) to prune unnecessary
traversals in an early stage of forward expansion. We have the
following inequality.

dist(u, q) ≥ dist(u,w)− dist(q, w), (2)

where (w, dist(u,w)) ∈ PADSout(u), (w, dist(q, w)) ∈
KPADSout(q), and w is a common center in PADSout(u)
and KPADSout(q). Therefore, the minimum of dist(u,w)−
dist(q, w) is the lower bound of dist(u, q).

If the lower bound is larger than τ , the forward expansion
from u is simply skipped, since dist(u, q) > τ , and Proposi-
tion III.2-Condition 2 is already satisfied. Similarly, if the lower
bound of the score of the match rooted at u is larger than S,
Proposition III.2-Condition 3 is met.

Example III.4: Consider the graph in Fig. 7(b2). Suppose
PADSout(y2) = {(w2, 10)} and KPADSout(a) = {(w2, 2)}.
The common center of PADSout(y2) and KPADSout(a) is w2.
The lower bound of the shortest distance between y2 and key-
word a, dist(y2, a), is derived by dist(y2, w2)− dist(a,w2) =
8. The lower bound of the score of the match rooted at y2 is
10 > S. The forward expansion of y2 is pruned.

Correctness: The analyses of partial order and the finite
domain of fkws are similar to those of bkws. Hence, fkws can
be parallelized correctly since it has the monotonic property.

Complexity: In the worst case, fkws performs a single source
shortest path computation for each vertex u ∈ V̄ . Therefore,
the time complexity of fkws is bounded by O(|V̄| (|E|+
|V | log |V |)). The space complexity fkws is identical to that of
bkws, which is bounded by O(|Q||V |), whereas the space for
PADS and KPADS is O(|V | log |V |) [19].

IV. DISTRIBUTED KEYWORD SEARCH (DKWS)

We illustrate PIE [12] with a keyword search algorithm,
denoted as kws. (a) PEval is partial evaluation of kws. Partial
results are passed to the next function. (b) IncEval is incremental
evaluation of kws that takes partial results and computes the

Fig. 8. Workflow of DKWS

changes. IncEval is repeated until no more changes are com-
puted. (c) Assemble collects local matches from workers. These
functions are evaluated in a non-preemptive manner and defined
formally as follows.

The partial evaluation (PEval) utilizes a query Q and a frag-
ment Fi of the graph G as inputs. PEval then concurrently
computes partial answers, represented as Q(Fi), consisting of
current matu for all u ∈ V at each worker Pi.

The incremental evaluation (IncEval) takes four inputs: a
query Q, a fragment Fi of graph G, partial results derived
from the application of the query to the fragment Q(Fi),
and a message Mi. The function then incrementally computes
Q(Fi ⊕Mi), optimizing the computation of Q(Fi) from the
previous superstep to maximize efficiency. After every execution
of IncEval, DKWS updates its state by considering Fi ⊕Mi and
Q(Fi ⊕Mi) as the new Fi and Q(Fi), respectively, forming the
input for the incremental computation in the next superstep.
Assemble starts its computation when Mi is empty for any

worker Pi. Assemble accepts Q(Fi ⊕Mi) as inputs. It consoli-
dates for all i ∈ [1,m],Q(Fi ⊕Mi), to compute the final answer
Q(G).

Architecture ofDKWS (Fig. 8): The coordinatorP0 is respon-
sible for receiving and transmitting the query to all workers.
Workers P1 to Pn are in charge of computing the query on
their fragmentsF1 toFn. When receiving the query, the workers
perform PEval. During each superstep (IncEval) of query com-
putation, a selector of each Pi decides to perform either bkws or
fkws on Fi. When all workers meet the termination condition,
the coordinators assemble the (local) top-k matches and select
the (global) top-k matches from the local ones.

Programming model of DKWS: DKWS differs from previous
studies in two major ways: (1) DKWS is the first to introduce
a notify-push paradigm into a distributed programming model.
The notify-push paradigm allows the coordinator and workers
to asynchronously exchange refined bounds (Section IV-A) at
runtime; and (2) PINE consists of PEval, IncEval (n subtasks),
and one Assemble functions (Section IV-B) that the users can
use to solve their problems by composing several PI algorithms
and assembling the matches at the end, rather than only one
PIE algorithm. DKWS runs the PI algorithms in a preemptive
manner and therefore interactions, such as exchange of tighter
bounds (presented in Section III) between them are possible.

A. Notify-Push (NP) Paradigm

With the Notify-Push paradigm, the bounds can be exchanged
at run-time and provide a global scope for each worker. The

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

1942 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

Algorithm 1: API of DKWS.

pruning techniques are more efficiently on the workers with the
tighter bounds.

Definition IV.1 (Notify API): Notify(i, Si) is an API that a
worker refines the global upper bound S with the local upper
bound Si. Notify(i, Si) takes a worker’s id i and a local upper
bound Si as input. Notify must be invoked by a worker Pi to
notify the coordinator with its worker id i and the local upper
bound Si.

Local upper bound Si: For fragment Fi, DKWS maintains
a local upper bound Si to prune false matches locally. DKWS
maintains a priority queue Ai with a fixed size k to store the
local top-k matches, which are ordered in descending order of
the score of the matches for each fragment Fi. Once a better
match is inserted into Ai, Si is refined locally. The worker Pi

sends the refined local upper bound Si to the coordinator P0

and notifies the coordinator to refine the global upper bound by
calling function Notify(i, Si).

Definition IV.2 (Push API): Push(i, S) is an API that the
coordinator P0 broadcasts the global upper bound S to all the
workers and refines the local upper bounds. Push(i, S) takes a
worker’s id i and the global upper bound S in the coordinator
P0 as input. Push is invoked by the coordinator P0 and pushes
the global upper bound S to worker Pi.

Global upper bound S: When the coordinator receives a local
upper bound from a worker, it refines its local upper bound table
which records the local upper bounds from all the workers.
The global upper bound S is the smallest among the local
upper bounds. To avoid excessive refinements, the coordina-
tor maintains a notification counter Ni for each fragment Fi.
Consider any Ni. If max{Nj |j ∈ [1,m]} −Ni is larger than a
threshold, andSi > S, this impliesPi may be doing unnecessary
computation on the fragmentFi for a long time. The coordinator
pushes the global upper bound to Fi by calling Push(i, S). Once
Pi receives the global upper bound S, it refines the local upper
bound Si with S.

Note that the notify-push paradigm is established on the fact
that the local upper bound Si is the upper bound of the global
upper bound S. We formalize this as follows.

Lemma IV.1: ∀i ∈ [1,m], Si ≤ S.
Proof: We can prove this assertion by contradiction. Let’s

suppose that Si > S. By definition, Si (resp. S) denotes the
score of the local (resp. global) k-th match, represented by
matuk

(resp. matu′
k
). Considering any local top-k match matuj

with j ∈ [1, k], scr(matuj
) ≤ scr(matuk

) < scr(matu′
k
). This

implies that matu′
k

is not included among the global top-k

matches, as there are k matches with lower scores on Fi. Hence,
we deduced that Si ≤ S.

Example IV.1: Given a distributed graph G, which has been
partitioned into three fragments (F1,F2, andF3), shown in Fig. 9
, assume that the query keywords are Q = {a, b} and k = 2. In
the first superstep of DKWS, P3 finishes the computation earlier
since the size of F3 is smaller. The local upper bound S2 on F2

is 6. Without the NP paradigm, P2 does not terminate until all
vertices of F2 are traversed. The vertices x1, x2, and x3, are
not pruned by S2 since dist(x1, b) = 5 < S2 and the termina-
tion condition of backward expansion is not met as presented
in Section III-B. With the paradigm, P3 sends S3 = 5 to the
coordinator by Notify(3, S3). Then, the coordinator refines the
global upper boundS withS3 and pushes the global upper bound
to all the workers, e.g., P2, by Push(2, S). Once P2 receives the
global upper S = 5, it refines the local upper bound S2 (denoted

by 6
R−→ 5) accordingly. Since the paradigm allows exchanging

the bounds during a superstep, if x1, x2 and x3 have not been
visited, they are pruned, since dist(xi, b) = 5 ≥ S2. Then, the
termination condition of backward search is met. Similarly, in
Superstep 2, the backward expansion at v16 is skipped.

Remarks: DKWS is efficient for several reasons: (a) Notify
API provides a way for each worker to send refined bounds
which help to prune more false matches on stragglers; and (b)
The communication cost is small since DKWS only exchanges
the local upper bounds rather than intermediate matches during
distributed query evaluation.

B. PINE Programming Model

1) Overview of PINE: The overview of PINE is illustrated
with Fig. 8. PINE consists of PEval and IncEval of n subtasks,
along with one Assemble. In the first superstep,PEval of all sub-
tasks are executed in each worker Pi. In subsequent supersteps,
each worker Pi features an IncEval selector that decides which
subtask’s IncEval to execute. This granular level of execution is
designed to address the straggler problem (refer to the Challenge
1 in Section I).

We next illustrate the PINE programming model with an
efficient implementation of bfkws. There are two subtasks, bkws
(Section IV-B.2) and fkws (Section IV-B.3), respectively. For
each subtask, we only need to declare its messages, PEval and
IncEval. We propose preemptive execution of IncEvals inDKWS
(shown in Fig. 8). We use matbu (resp. matfu) to denote the
partial match found by bkws (resp. fkws) rooted at u. Finally,
we implement Assemble by collecting the local top-k matches
from all fragments to yield the global top-k matches after both
the IncEvals terminate.

2) PI for bkws: Message declaration: DKWS declares a
variable matbu for each vertex u, where matbu is a map such
that matbu[q] = 〈v, d〉 is used to denote the shortest distance be-
tween u and a query keyword q ∈ L(v) ∩Q, i.e., d = dist(u, q).
Intuitively, u is considered as the root of a match, while v is a
leaf vertex of the match, the labels of which contain a query
keyword, q.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DKWS: A DISTRIBUTED SYSTEM FOR KEYWORD SEARCH ON MASSIVE GRAPHS 1943

Fig. 9. Illustration of the change of bounds during query processing of DKWS

Algorithm 2: PEval for bkws.

(1) Partial evaluation (PEval) for bkws (Algorithm 2). Upon
receiving a query Q, PEval computes the partial matches of
bkws, matbu on Fi locally, for all i ∈ [1,m] in parallel. Pi

initializes its local upper boundSi with a large constant value and
initializes a match variable matbu for each vertex (Lines 1–2).
Lines 3–8 initialize the search origins and the priority queue
for the search. Lines 11-12 present the pseudo-code of bkws
(described in Section III-B). In addition, in the NP paradigm, at
runtime,PEval sends the local upper boundSi to the coordinator
and notifies it to refine the global upper bound whenSi is refined
(Line 23). In Line 24, the messages are grouped into Mi at
the incoming portal nodes on fragment Fi. Partial matches that
are relevant to Fj (Mi,j = {matbu|u ∈ Fi.I ∩ Fj .O} ∈ Mi) are
transmitted to worker Pj .

(2) Incremental computation (IncEval) for bkws (Algo-
rithm 3). Upon receiving messages Mi, IncEval iteratively com-
putes the partial matches, matbu, on Fi with the updates (mes-
sages)Mi. Specifically, if the distance betweenu and q ∈ Q, i.e.,
d = matbu[q], is refined by using message Mi, u is pushed into
the priority queue Pq with the refined distance. Then, IncEval

Algorithm 3: IncEval for bkws.

Fig. 10. Message exchange during query processing (matbu (resp. matfu):
keep track the shortest distance between u and a query keyword by bkws (resp.
fkws); and fu: the longest distance needed to be forward expanded starting from
u)

propagates the distance refinement to the affected area by bkws.
WorkerPi notifies the coordinatorP0 once the local upper bound
Si is refined by invoking Notify(i, Si). At the end of IncEval,
the messages are grouped into Mi at the incoming portal nodes
and sent to the relevant workers, similar to PEval.

Completeness: We assume that DKWS takes R supersteps to
finish the evaluation of a keyword query. We denote the vertices
that have been visited on Fi at the s-th (s ≤ R) superstep for a
query keyword qj ∈ QbyV s

qj ,i
. We denote the union set of all the

visited vertices by V. Hence, V =
⋃

i∈[1,m],j∈[1,l],s∈[1,R] V
s
qj ,i

,
where m is the number of workers and l = |Q|. We have the
following proposition.

Proposition IV.1: Suppose the top-k matches of a keyword
query is A and all the visited vertices V, the following hold:

(1) ∀u �∈ V, matu �∈ A; and (2) ∀matu ∈ A, u ∈ V.
Proof: The proof is presented in Appendix A.2 of [17], avail-

able online.
Example IV.2: As shown in Fig. 10 .(1), when bkws expands

fromv1 tov3,matbv3
[a] = 2 is sent fromFi toFj sincev3 ∈ Fi.I .

Similarly, matbv4
[c] = 1 is sent from Fi to Fj . IncEval of bkws

is invoked in Fj to search for matches.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

1944 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

Algorithm 4: PEval for fkws.

3) PI for fkws: Message declaration:DKWS declares a vari-
able matfu, where matfu is a map, matfu[q] = 〈v, d〉, where d is
the shortest distance between vertex u and a query keyword
q ∈ L(v) ∩Q, i.e., d = dist(u, q). matfu is to keep track of the
updates to u during the forward expansion. DKWS also declares
a variable fu for each vertex u to indicate the distances of
the longest forward expansion of retrieving missing keywords
starting from u. Formally, fu is a map (q, d), where q ∈ Q is a
query keyword and d is the longest distance needed to be forward
expanded starting from u to retrieve the query keyword q.

(1) Partial evaluation (PEval) for fkws (Algorithm 4). fkws
mainly conducts the forward expansion to complete the partial
matches. Lines 2-3 are the initialization of the vertices for
the expansion and match variables. In the forward expansion
starting fromu, if any condition(s) in Proposition III.2 is met, the
expansion is terminated (Lines 16-17). Suppose u is expanded
to vertex v and the missing keyword q is found in matv =
matbv ∪matfv , matfu[q] is refined (Lines 11-15). If v ∈ Fi.O,

the remaining distance of the forward expansion to retrieve the
query keyword q on other fragments is stored in fv[q] (Lines 23).

At the end of PEval (Line 31), messages matfu (resp. fu)
are grouped into M1

i (resp. M2
i) in worker Pi. Mi,j ∈ Mi is

sent to worker Pj . Formally, M1
i,j = {matu|u ∈ Fi.I ∩ Fj .O}

and M2
i,j = {fu|u ∈ Fi.O ∩ Fj .I} are sent from worker Pi to

worker Pj . Moreover, PEval sends the refined Si to the coordi-
nator and notifies it to refine the global upper bound S once the
local upper bound is refined.

(2) Incremental computation (IncEval) for fkws is derived with
the following two modifications.

(2.1) Refinement propagation: First, Pi receives the partial
matches, matfu in previous supersteps from other fragments
through the portal nodes. If a shorter path between u and q is
found crossing multiple fragments, the forward match matfu[q]
is refined. IncEval propagates the distance refinement to the
ancestor vertices.

(2.2) Incremental forward expansion: Second, upon receiving
some forward expansion requests from other fragments, worker
Pj further forward expands to retrieve missing keywords on Fj

through the incoming portal nodes, Fj .I . Specifically, if f inu ∈
M2

j is received and u �∈ V̄ , u is added to V̄ . Since search requests
come from different fragments, fu keeps the largest one for each
keyword. If u is forward expanded in previous iterations for
query keyword q or f inu [q] is smaller than fu[q], f inu [q] is skipped.

At the end of IncEval, the partial matches found by forward
expansions are grouped into M1

i and the remaining forward ex-
pansion requests are grouped intoM2

i , respectively, for fragment
Fi and sent to the corresponding fragments, which is the same
as that of PEval.

Example IV.3: As shown in Fig. 10.(2), when fkws expands
from v4 to v5 to search for the missing keyword c, fv5

[c] = 3 is
sent from Fi to Fj since v5 ∈ Fi.O. IncEval of fkws is invoked
in Fj to search on Fj forwardly. Once the keyword c is re-
trieved in Fj as recorded in matfv6

[c] = 1 (shown in Fig. 10.(3)),
matfv6

[c] = 1 is sent to Fi via the portal node v6 ∈ Fj .I .
4) Preemptive Execution of IncEvals in PINE: Even if the

complexity of bkws (analyzed in Section III-B) is smaller than
that of fkws (analyzed in Section III-C), running bkws first and
then fkwsmay not exhibit the best query performance in practice.
In particular, we provide three insights: (a) bkws increases the
size of V̄ but k of top-k is fixed. Relatively more vertices of V̄
may not be backward expanded to final matches; (b) some early
messages from bkws may not effectively refine into tight upper
bounds for fkws; and (c) some workers running bkws can be
stragglers, as fkws is blocked by them, i.e., it cannot yet start.
Hence,PINE provides a lightweight selector (as shown in Fig. 8)
and allows the computation of bkws and fkws in a preemptive
manner. At runtime, each workerPi determines to execute either
bkws or fkws, independently. Each of them maintains a set of
status parameters to estimate the performance improvement of
executing either bkws or fkws.

Message buffers: Each worker Pi maintains two message
buffers Bb

i and B
f
i to keep track of backward and forward mes-

sages from other workers. The more messages are accumulated
in B

b
i (resp. Bf

i), the earlier Pi should start bkws (resp. fkws)
computation, and vice versa.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DKWS: A DISTRIBUTED SYSTEM FOR KEYWORD SEARCH ON MASSIVE GRAPHS 1945

Fig. 11. Illustration of the preemptive execution

Expansion distance: Denote matb,inu as a message gener-
ated by bkws and maintained in B

b
i . If matbu[q] is larger than

matb,inu [q],DKWSneeds to backward expand starting fromu. We
call dbq = min{S −matb,inu [q], τ} backward expansion distance
starting from u for query keyword q. Without prior statistics,
if dbq is larger, the backward expansion is more costly and
the messages are less likely to finally yield one of the top-k
matches. Worker Pi may stop expanding matbu[q] by postponing
the execution of bkws, but start fkws to prune some unyielding
messages. Similarly, we definedfq = min{f inu [q], τ}, the forward
expansion distance.

Staleness indicators: Inspired by the complexities of bkws
and fkws, we propose the staleness indicators of the accumulated
backward messages and forward messages for each worker Pi,
denoted by SIbi and SIfi . SIbi and SIfi are formally defined below:

SIbi =

{
+∞, if Bb

i is empty
∑

u∈Fi.O

∑
q∈Qdb

q

|Bb
i |

, otherwise
(3)

SIfi =

⎧⎨
⎩

+∞, if Bf
i is empty

∑
u∈Fi.I

∑|Q|
q∈Qdf

q

|Bf
i |

, otherwise
(4)

where dbj (resp. dfj) is the average backward (resp. forward)

searching distance for query keywords and |Bb
i | (resp. |Bf

i |) is
the size of backward (resp. forward) messages buffer.

If SIbi < SIfi , worker Pi conducts bkws. Otherwise, worker
Pi conducts fkws. PINE is able to simulate PIE by enforcing
SIbi to +∞ at the even supersteps and SIbi to +∞ at the odd
supersteps.

Example IV.4: Consider the two cases in Fig. 11 . In Case 1,
when the backward expansion from v1 is performed via v2, the
backward expansion distance starting from v2 is 4 and SIb2 = 4.
When the forward expansion from v3 is performed via v5, the
forward expansion distance from v5 is 2 and SIf2 = 2. Since
SIf2 < SIb2, fkws has a higher priority to be executed. We can
observe that an answer rooted at v3 is returned, and the upper
bound S is refined to 6. Consequently, dba is refined to 3, and
fewer traversals are required in the next iteration. Similarly, in
Case 2, bkws has a higher priority and produces the matches
earlier, which reduces the number of traversals of fkws after the
upper bound S is refined.

5) Assemble for bfkws: DKWS only collects the local top-k
matches to yield the global top-k matches A by selecting the
top-k matches from

⋃
i∈[1,m] Ai after the executions of IncEvals

of bkws and fkws have terminated. Hence, the cost of collecting
local matches from all the workers is bounded by O(km).

Example IV.5: Consider the graph and query in Fig. 9. Local
matches of F1 are rooted at v15 and v17 and scr(v15) = 4 and
scr(v17) = 3. Similarly, we have two local matches on F2 with
scr(v11) = 4 and scr(v6) = 4 and two local matches on F3 with
scr(v4) = 2 and scr(v5) = 5. Hence, the coordinator collects
all the 6 local matches. The matches rooted at v4 and v17 are
returned since they are the top-2 among the 6 matches.

C. Analysis of bfkws on DKWS

In this section, we present an analysis of the correctness of
PINE. Following [38] and [11], a parallel model model1 can
be optimally simulated by another one model2 if there exists a
compilation algorithm that transforms any program on model1
with a constant costC to a program onmodel2 with a costO(C).

Proposition IV.2: A PINE algorithm can be compiled into a
PIE algorithm with a cost O(C).

Proof: Any PINE algorithms developed on DKWS can be
compiled into a PIE algorithm. Given a PINE algorithm algo
that consists of n PEvals (denoted by Pi, where i ∈ [1, n]), n
IncEvals (denoted by Ii, where i ∈ [1, n]), and one Assemble
(denoted byE). algo is compiled intoGRAPE by aPIE algorithm
as follows. (a) PEval of GRAPE runs Pis sequentially over the
workers. The messages are exchanged by PEval after Pn is
executed. (b) IncEval of GRAPE introduces a selection control
mechanism by a switch statement. GRAPE plugs Ii into the i-th
branch of the switch statement. The control flow of IncEval
execution is determined by staleness indicators provided by
users. The messages are exchanged at the end of each round
of IncEval. (c) Assemble of GRAPE is identical to E.

Due to Proposition IV.2, DKWS inherits all properties of
GRAPE (Theorem 1 of [13]), including convergence and cor-
rectness theorems.

Theorem IV.2: The general form of aPINE algorithm consists
of the following:

1) n PEvals (denoted by Pi, where i ∈ [1, n]),
2) n IncEvals (denoted by Ii, where i ∈ [1, n]), and
3) one Assemble (denoted by E), and any partition strategy

Par.
The PINE algorithm on DKWS terminates correctly if
1) Ii satisfies the monotonic condition,4 for all i ∈ [1, n]; and
2) Pi, Ii and E are correct w.r.t. Par.5

Proof: The proof is presented in A.1 of [17].
The correctness of bfkws implemented using PINE is assured

by the correctness of bkws and fkws (Sections III-B and III-C)
and Theorem IV.2.

Complexities: The time complexity of bkws (resp. fkws)
is O(|Q|(|E|+ |V | log |V |)) (resp. O(|V̄|(|E|+ |V | log |V |))).
The space complexity of bkws and fkws is bounded by

4There exists a partial order on the variables attached on the vertices such that
IncEval updates the variables in the partial order [13].

5Pi is correct if it returns correct answer on an input graphG for any queries. Ii
is correct if it returns correct answer on an input graph G and a set of messages
for any queries. E is correct if it yields the answer on the input graph G by
assembling all the local matches.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

1946 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

O(|Q||V |). The size of PADS(u) is bounded by O(log |V |).
Hence, the overall index size of PADS is bounded by
O(V log |V |) (cf. [19]).

V. EXPERIMENTAL STUDY

We experimentally evaluate (1) efficiency, (2) performance
under different settings, and (3) communication costs on massive
graphs with competitors [31] and [9].

A. Experimental Setup

Software and hardware: Our experiments were run on a
cluster with eight machines. Each machine had one Xeon X5650
CPU, 128GB memory and was running CentOS 7.4. The imple-
mentation was made memory-resident. We used METIS [24] as
the graph partition strategy.

Algorithms: We implemented all algorithms in C++. The
settings followed [31] and [9] whenever appropriate. Our
implementation of PINE was done by modifying the PIE model
running on the platform of GRAPE [13]. We used the following
implementations for algorithms.

1) DKWS-BF: We implemented bfkws using the PIE pro-
gramming model (detailed in Section IV).

2) DKWS-PADS: We applied PADS and KPADS to DKWS-
BF for deriving a lower bound between a vertex and
a query keyword for pruning the forward expansion as
proposed (detailed in Section III).

3) DKWS-NP: We applied NP paradigm to DKWS-PADS.
4) DKWS-PINE: We applied PINE model to DKWS-NP.
5) Baseline: We implemented the distributed algorithms pro-

posed in [31] and [9], both of which share the same
keyword semantics as ours. These were established on
GRAPE[13], serving as our baseline algorithms. We did
not compare DKWS with [47] since their algorithm (a)
returns a set of approximate matches, and (b) proposes a
different subtree semantic.

6) BANKS-II: BANKS-II [21] is the only sequential algo-
rithm we could run on a single machine. In particular,
BANKS-II does not require massive indexes. BANKS-II
is widely used in the experimental comparison of existing
works, such as [16], [44].

Datasets: We used four popular real-world graphs: (a)
YAGO3 [26], a large knowledge base with 2.6 million entities
and 5.26 million factors; (b) WebUK [3], a large Web graph with
106 million nodes and 3.7 billion edges; (c) DBLP [1] is a social
network with 2.2 million authors and 5.4 million collaboration
relationships; and (d) DBpedia [2] is a knowledge base with
5.8 million entities and 15.7 million factors. These datasets are
widely used in previous keyword search works such as [16],
[22], [23], [34] or used to test the scalability of distributed graph
evaluation systems, such as [13], [42].

Queries: We followed [47] to generate the queries by varying
the number of query keywords |Q|. The number ranged from 2 to
6. The average query time is stable when the number of queries is
50. Hence, we generated 50 random synthetic keyword queries
for each query size in our experiments and reported the average
evaluation time.

Default settings: We fixed k = 10, the number of query key-
words |Q| to 4, the number of workers to 8, and the τ to 3. Each
worker was assigned one fragment. Unless specified otherwise,
we conducted experiments with default values of the parameters
and varied values of a specific parameter.

B. Experimental Results

Exp-1. Efficiency: We first evaluated the efficiency of DKWS
by varying the number of query keywords |Q| from 2 to 6. All
algorithms take longer when |Q| gets larger since the size of
search space increases. The results are shown in Fig. 12(a) to
(d). (a) On YAGO3, DKWS-PADS is on average 1.24 times
faster than DKWS-BF. The main reason is that most forward
expansions are pruned byPADS.DKWS-NP is 2.32 times faster
than Baseline as DKWS-NP avoids the straggler problem. The
slower workers are terminated early by using the global upper
bound. DKWS-PINE is 3.3 times faster than Baseline since the
computing tasks of DKWS-PINE are finer-grained, avoiding the
straggler problem and tighter bounds are retrieved by taking
advantage of both bkws and fkws.

(b) On WebUK, DKWS-BF is on average 14.6 times faster
than Baseline. The reason for such a significant speedup is that
a tight local upper bound on WebUK is derived early, since We-
bUK is denser than the other three datasets. Hence, the vertices,
which require forward expansion, are few. DKWS-PADS (resp.
DKWS-NP and DKWS-PINE) is 17.05 (resp. 21.45 and 46.8)
times faster than Baseline.

(c) On DBLP, the query time ofDKWS-BF is 5.73 times faster
than Baseline. Since the diameter of DBLP is small, the forward
expansion distance is not far. DKWS-PADS is 6.12 times faster
than Baseline. Pruning by PADS on DBLP is not as obvious as
that on the other three datasets due to the small graph diameter.
DKWS-NP (resp.DKWS-PINE) is on average 9.22 (resp. 12.86)
times faster than Baseline.

(d) The query performance improvement on DBpedia is
similar to that on YAGO3. DKWS-BF (resp. DKWS-PADS,
DKWS-NP, and DKWS-PINE) is 5.06 (resp. 5.31, 5.83, and
22.32) times faster than Baseline.

In a nutshell, the performance improvement is due to the
following reasons: (a) DKWS-BF avoids the exhaustive explo-
rations by the backward search and forward search; (b) DKWS-
PADS prunes the redundant forward search by computing the
tight lower bound of the shortest distance between a vertex
and a query keyword, which prunes some unnecessary forward
search at an early stage; (c) DKWS-NP improves the query
performance by exchanging the local upper bounds to yield a
global upper bound, which reduces the stragglers’ computation;
and (d) DKWS-PINE further improves the query performance
since it is finer-grained.

Exp-2. Scalability: We next investigated the scalability of
DKWS over real-life graphs by varying the number of work-
ers (m) from 2 to 12. a) All algorithms take a shorter time
when the number of workers becomes larger, as expected. b)
All algorithms scale reasonably well with the increase of m.
When m increases from 2 to 12, the running time of Baseline

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DKWS: A DISTRIBUTED SYSTEM FOR KEYWORD SEARCH ON MASSIVE GRAPHS 1947

Fig. 12. Query performance on the four real-life datasets

(resp. DKWS-BF, DKWS-PADS, DKWS-PINE and DKWS-
NP) decreases to 21.63% (resp. 23.18%, 28.99%, 31.62%, and
25.75%) on average. c) DKWS-NP consistently outperforms
Baseline, DKWS-BF, DKWS-PADS and DKWS-PINE for all
queries. Specifically, the results are shown in Fig. 12(f) to (h).
DKWS-BF andDKWS-PADS take less time when the number of
workers increases. More specifically, DKWS-BF is on average
1.65 (resp. 8.81, 2.65, and 1.60) times faster than Baseline on
YAGO3 (resp. WebUK, DBLP, and DBpedia), when the number
of workers varies from 2 to 12. DKWS-PADS is on average
1.81 (resp. 13.11, 2.92, and 2.11) times faster than Baseline on
YAGO3 (resp. WebUK, DBLP, and DBpedia). The reason is
that DKWS-BF, and DKWS-PADS avoid exhaustive search and
prune some redundant stale computations. By exchanging the
local upper bounds, DKWS-NP exploits parallelism, since it re-
duces the straggler problem.DKWS-NP is on average 2.03 (resp.
21.19, 3.31, and 3.67) times faster than Baseline on YAGO3
(resp. WebUK, DBLP, and DBpedia). DKWS-PINE is the most
efficient since the computing tasks are finer-grained. On average,
DKWS-PINE is 3.47 (resp. 26.94, 5.00, and 22.82) times faster
than Baseline on YAGO3 (resp. WebUK, DBLP, and DBpedia).
It is also worth noting that in a single-machine environment,
there is no difference in the performance of DKWS-PINE,
DKWS-NP, andDKWS-PADS. This is because the fine-grained
execution of PINE and notify-push paradigm are not activated
in a single-machine setting.

Fig. 13. Scalability on synthetic graphs

Impact of the graph size |G|: We also evaluated the scalability
of DKWS over larger synthetic graphs. We use the graph gen-
erator of [13] to produce graphs G = (V,E, L) with L drawn
from an alphabet L of 50 labels. It is controlled by the numbers
of nodes |V | and edges |E|, up to 200 million and 5 billion,
respectively. Fixing n = 12, we varied |G| from (40M,1B) to
(200M,5B). As reported in Fig. 13, the results are consistent with
Fig. 12 over real-life graphs. (a) All algorithms take a longer
time when the G gets larger, as expected. (b) DKWS scales
reasonably well with the increase of |G|. When G increased
by 5 times, the running time of Baseline (resp. DKWS-BF,
DKWS-PADS, DKWS-PINE and DKWS-NP) increases by 6.7
(resp. 6.3, 6.8, 6.3 and 6.1) times. DKWS-PINE consistently
outperforms Baseline, DKWS-BF, DKWS-PADS and DKWS-
NP.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

1948 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

Exp-3. Impact of parameters: The elapsed time of keyword
search is relevant to the threshold, τ and the number of matches,
k. We next present the impact of these parameters.

Impact of threshold τ : τ has been a crucial parameter of
keyword search. According to the findings of [6], [47], τ = 5
is large enough to obtain satisfactory matches in real applica-
tions. Hence, we next evaluated the scalability of DKWS by
varying τ from 3 to 6. a) All algorithms take longer when τ
becomes larger, as expected, since there are more candidate
answers generated during the backward expansion and forward
expansion. b) All algorithms scale reasonably well with the
increase of τ . When τ increases from 3 to 6, the running time
of Baseline (resp. DKWS-BF, DKWS-PADS, DKWS-PINE,
and DKWS-NP) increases by 71.59% (resp. 82.61%, 138.97%,
81.38%, and 83.56%). c)DKWS-PINE consistently outperforms
Baseline, DKWS-BF, DKWS-PADS and DKWS-NP for all
queries. Specifically, the results are presented in Fig. 12(m) to
(p). In particular, DKWS-BF is 1.08 times (resp. 9.18, 4.37,
and 1.25) times faster than Baseline on YAGO3 (resp. WebUK,
DBLP, and DBpedia). DKWS-PADS is 1.33 (resp. 11.80, 4.76,
and 1.48) times faster than Baseline on YAGO3 (resp. WebUK,
DBLP, and DBpedia).DKWS-PADS is more efficient on τ since
it can prune longer forward searches when τ increases. DKWS-
NP is 3.02 (resp. 19.0, 6.10, and 2.66) times faster than Baseline
on YAGO3 (resp. WebUK, DBLP, and DBpedia). DKWS-NP is
more efficient since it pushed and notified tighter bounds early
which was more efficient when τ was large. DKWS-PINE is
3.71 (resp. 29.32, 6.65, and 16.2) times faster than Baseline on
YAGO3 (resp. WebUK, DBLP, and DBpedia).

Impact ofk: We evaluated the scalability ofDKWS by varying
k. a) All algorithms take longer when k gets larger since more
matches are retrieved. b) All algorithms perform well with the
increase of k. When k increases from 5 to 30, the running time of
Baseline (resp. DKWS-BF, DKWS-PADS, DKWS-PINE, and
DKWS-NP) increases by 4.63% (resp. 1.65%, 9.99%, 60.20%,
and 47.22%). c) DKWS-NP outperforms Baseline, DKWS-BF,
DKWS-PADS andDKWS-PINE for all queries. Specifically, the
experiments are shown in Fig. 12(r) to (s). On average, DKWS-
BF is 1.58 (resp. 14.96, 4.07, and 1.30) times faster thanBaseline
on YAGO3 (resp. WebUK, DBLP, and DBpedia).DKWS-PADS
is 1.67 (resp. 15.97, 4.39, and 1.39) times faster than Baseline
on YAGO3 (resp. WebUK, DBLP, and DBpedia). DKWS-NP is
1.98 (resp. 22.92, 5.83, and 6.37) times faster than Baseline on
YAGO3 (resp. WebUK, DBLP, and DBpedia). DKWS-PINE is
2.54 (resp. 35.63, 7.14, and 19.66) times faster than Baseline on
YAGO3 (resp. WebUK, DBLP, and DBpedia).

Exp-4. Communication costs: We further investigated the
communication cost in terms of the total message size. The
communication costs on WebUK and DBLP are reported in
Fig. 12(j) and (k). The results on other datasets exhibit similar
trends. We obtained the following findings. (a) The communica-
tion cost ofDKWS-PADS is the same as that ofDKWS-BF since
DKWS-PADS only prunes the local traversals. DKWS-BF and
DKWS-PADS ship 33.6% (resp. 36%) of data transmitted by
Baseline on WebUK (resp. DBLP). (b) DKWS-NP ships 29.8%
(resp. 30.4%) compared to that of Baseline on WebUK (resp.
DBLP). This is because DKWS-NP yields tighter bounds and

Fig. 14. Impact of partition strategies (WebUK)

reduces unnecessary message exchange early. (c) DKWS-PINE
ships 13.0% (resp. 18%) compared to that ofBaselineon WebUK
(resp. DBLP). DKWS-PINE takes the advantage of preemptive
execution of both bkws and fkws, which reduces long or useless
traversals. Consequently, the communication cost is reduced
since the messages caused by such traversals have been avoided.

Exp-5. Impact of notification counter threshold: We observed
that on the four real-life datasets, setting the notification counter
threshold to 2 or 3 resulted in a comparatively good performance.
However, when the threshold exceeded 4, there was no sub-
stantial difference in the performance improvement compared
to when the notify-push paradigm was not used. This can be
attributed to the fact that on these datasets, the number of times
the local bounds were refined rarely exceeded 4; thus, the push
function was seldom invoked. The threshold of the notification
counter in the coordinator can be determined by a simple exper-
iment offline on the dataset. The details are presented in [17].

Exp-6. Impact of graph partition: We evaluated the impact of
different partition strategies, including METIS [24], HASH [12],
and FENNEL [37] in Fig. 14. Among these strategies, all algo-
rithms, except for theBaseline, demonstrated faster performance
under METIS partitioning. Considering the significance of ef-
ficiency, we selected METIS as the default partition strategy
for our experiments, as mentioned earlier. Furthermore, we
observed that METIS improved performance in DKWS-NP and
DKWS-PINE. This can be attributed to the notify-push paradigm
employed that helps alleviate the impact of load imbalances.

Exp-7. Comparison with a sequential algorithm: We further
compared our works with a sequential algorithm, BANKS-
II [21]. The results are shown in Fig. 12(a) to (d). On average,
DKWS-PINE is 82.58 times faster than BANKS-II. This verifies
that DKWS-PINE has exploited the efficiency of a distributed
environment.

VI. RELATED WORK

Keyword search semantics: Recently, keyword search has at-
tracted a lot of interest from both industry and research commu-
nities. Bhalotia et al. [5] proposed keyword search on relational
databases. He et al. [16] proposed an index, called Blinks to
reduce the search time. Kargar et al. [22] proposed distance
restrictions on the keyword nodes, i.e., the distance between
each pair of keyword nodes is smaller than τ . Shi et al. [34]
proposed hub labelings to solve Group Steiner Trees (GST).
Kargar et al. [23] proposed an approximate algorithm to retrieve
the GST on weighted graphs. These studies optimize a specific

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

JIANG et al.: DKWS: A DISTRIBUTED SYSTEM FOR KEYWORD SEARCH ON MASSIVE GRAPHS 1949

keyword search semantic. Jiang et al. [18] proposed a generic
index for keyword search semantics running on a standalone
machine.

Distributed systems: Several distributed systems have been
proposed for graphs. Popular graph systems includePregel [27],
Giraph [4], GraphX [41], GraphLab [25], PowerGrapah [15],
Giraph++ [35], Blogel [42], GPS [32], GRAPE [13], and
AAP [11]. Pregel [27] and Giraph [4] are implemented with
the vertex-centric programming model. A superstep executes a
user-defined function at each vertex in parallel. GraphX [41]
is a component built on top of Spark for graphs which ex-
poses a set of operators (e.g., subgraph, joinVertices, and
aggregateMessages) as well as an optimized variant of the
Pregel [27]. Blogel [42], Giraph++ [35] and GRAPE [13]
are implemented with the block-centric programming model.
AAP [11] proposes an adaptive asynchronous parallel model
for graph computations on [13]. These systems are general-
purpose. Keyword search algorithms have not been exploited.
For instance, DKWS can also be beneficial to existing sys-
tems. By integrating PINE, the systems could make the query
evaluation more fine-grained. By integrating the notify-push
paradigm, DKWS allows each worker to broadcast local infor-
mation to their peer workers which can alleviate the straggler
problem.

Distributed kws algorithms: Lu et al. [31] proposed a scalable
algorithm for keyword search in MapReduce. However, the false
matches were pruned at the last superstep, which may cause large
messages. Yuan et al. [47] proposed a search strategy based on
a compressed signature to avoid the exhaustive flooding search.
[47] sent all the local candidate matches to the coordinator at
runtime which may require large messages and extra synchro-
nization cost. DKWS differs from the above in the following
aspects: (a) each worker computes the top-k matches locally.
DKWS sends the local matches to the coordinator when all of
the workers terminate rather than sends massive local candidates
matches; and (b) DKWS exchanges the local upper bounds
which prune some traversals early.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a distributed keyword search system
calledDKWS. We derive new bounds for pruning some keyword
searches that tackle the performance challenges of a general
distributed system. We show that bfkws, which can be used to
express query algorithms for popular keyword semantics, has
a monotonic property that ensures the correct parallelization.
We propose a notify-push paradigm allows asynchronously
exchanging the upper bounds across the workers and the co-
ordinators. We also propose a programming model PINE for
DKWS which fits keyword search algorithms as they have
distinguished n phases, to allow preemptive searches to miti-
gate staleness in a distributed system. We verify that DKWS
significantly reduces the runtimes of distributed top-k keyword
searches.

In the future, we plan to implement PINE into the latest code-
base of GRAPE. Moreover, we will extend DKWS to support

approximate analysis for some keyword search semantics, such
as [22], [23], [34].

REFERENCES

[1] DBLP, 2021. [Online]. Available: https://dblp.org/
[2] DBpedia, 2022. [Online]. Available: http://wiki.dbpedia.org/Datasets
[3] WebUK, 2022. [Online]. Available: http://law.di.unimi.it/webdata/uk-

union-2006--06-2007-05
[4] C. Avery, “Giraph: Large-scale graph processing infrastructure on

hadoop,” in Proc. Hadoop Summit. Santa Clara, vol. 11, no. 3, pp. 5–9,
2011.

[5] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan,
“Keyword searching and browsing in databases using banks,” in Proc.
IEEE Int. Conf. Data Eng., 2002, pp. 431–440.

[6] J. Coffman and A. C. Weaver, “An empirical performance evaluation of
relational keyword search techniques,” IEEE Trans. Knowl. Data Eng.,
vol. 26, no. 1, pp. 30–42, Jan. 2014.

[7] E. Cohen, “All-distances sketches, revisited: Hip estimators for mas-
sive graphs analysis,” IEEE Trans. Knowl. Data Eng., vol. 27, no. 9,
pp. 2320–2334, Sep. 2015.

[8] W. Fan, C. Hu, M. Liu, P. Lu, Q. Yin, and J. Zhou, “Dynamic scaling for
parallel graph computations,” in Proc. VLDB Endowment, vol. 12, no. 8,
pp. 877–890, 2019.

[9] W. Fan, C. Hu, and C. Tian, “Incremental graph computations: Doable
and undoable,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2017,
pp. 155–169.

[10] W. Fan et al., “Application driven graph partitioning,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2020, pp. 1765–1779.

[11] W. Fan et al., “Adaptive asynchronous parallelization of graph algorithms,”
ACM Trans. Database Syst., vol. 45, no. 2, pp. 1–45, 2020.

[12] W. Fan, J. Xu, Y. Wu, W. Yu, and J. Jiang, “GRAPE: Parallelizing se-
quential graph computations,” in Proc. VLDB Endowment, vol. 10, no. 12,
pp. 1889–1892, 2017.

[13] W. Fan et al., “Parallelizing sequential graph computations,” in Proc. ACM
SIGMOD Int. Conf. Manage. Data, 2017, pp. 495–510.

[14] Y. Fang, R. Cheng, S. Luo, and J. Hu, “Effective community search
for large attributed graphs,” in Proc. VLDB Endowment, vol. 9, no. 12,
pp. 1233–1244, 2016.

[15] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “PowerGraph:
Distributed graph-parallel computation on natural graphs,” in Proc. 10th
USENIX Symp. Operating Syst. Des. Implementation, pp. 17–30, 2012.

[16] H. He, H. Wang, J. Yang, and P. S. Yu, “Blinks: Ranked keyword
searches on graphs,” in Proc. ACM SIGMOD Int. Conf. Manage. Data2007,
pp. 305–316.

[17] J. Jiang, B. Choi, X. Huang, J. Xu, and S. S. Bhowmick, “DKWS: An effi-
cient distributed system for keyword search on massive graphs,” 2023. [On-
line]. Available: https://www.comp.hkbu.edu.hk/%7Ebchoi/DKWS.pdf

[18] J. Jiang, B. Choi, J. Xu, and S. S. Bhowmick, “A generic ontology
framework for indexing keyword search on massive graphs,” IEEE Trans.
Knowl. Data Eng., vol. 33, no. 6, pp. 2322–2336, Jun. 2020.

[19] J. Jiang, X. Huang, B. Choi, J. Xu, S. S. Bhowmick, and L. Xu, “PPKWS:
An efficient framework for keyword search on public-private networks,”
in Proc. IEEE Int. Conf. Data Eng., 2020, pp. 457–468.

[20] M. Jiang, A.-C. Fu, and R. C.-W. Wong, “Exact top-k nearest keyword
search in large networks,” in Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2015, pp. 393–404.

[21] V. Kacholia, S. Pandit, S. Chakrabarti, S. Sudarshan, R. Desai, and
H. Karambelkar, “Bidirectional expansion for keyword search on graph
databases,” in Proc. 31st Int. Conf. Very Large Data Bases, 2005,
pp. 505–516.

[22] M. Kargar and A. An, “Keyword search in graphs: Finding r-cliques,” in
Proc. VLDB Endowment, vol. 4, no. 10, pp. 681–692, 2011.

[23] M. Kargar, L. Golab, D. Srivastava, J. Szlichta, and M. Zihayat, “Effective
keyword search over weighted graphs,” IEEE Trans. Knowl. Data Eng.,
vol. 34, no. 2, pp. 601–616, Feb. 2022.

[24] G. Karypis, “METIS: Unstructured graph partitioning and sparse matrix
ordering system,” Dept. Comput. Sci., Univ. Minnesota, Minneapolis, MN,
USA, Tech. Rep., 1997.

[25] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M.
Hellerstein, “Distributed graphlab: A framework for machine learning
and data mining in the cloud,” in Proc. VLDB Endowment, vol. 5, no. 8,
pp. 716–727, 2012.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

https://dblp.org/
http://wiki.dbpedia.org/Datasets
http://law.di.unimi.it/webdata/uk-union-2006--06-2007-05
http://law.di.unimi.it/webdata/uk-union-2006--06-2007-05
https://www.comp.hkbu.edu.hk/%7Ebchoi/DKWS.pdf

1950 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 5, MAY 2024

[26] F. Mahdisoltani, J. Biega, and F. Suchanek, “YAGO3: A knowledge base
from multilingual Wikipedias,” in Proc. 7th Biennial Conf. Innov. Data
Syst. Res., 2014.

[27] G. Malewicz et al., “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2010, pp. 135–146.

[28] S. Michel, P. Triantafillou, and G. Weikum, “Klee: A framework for
distributed top-k query algorithms,” in Proc. 31st Int. Conf. Very Large
Data Bases, 2005, pp. 637–648.

[29] A. Pacaci and M. T. Özsu, “Experimental analysis of streaming algo-
rithms for graph partitioning,” in Proc. Int. Conf. Manage. Data, 2019,
pp. 1375–1392.

[30] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian, “Top-k nearest keyword
search on large graphs,” in Proc. VLDB Endowment, vol. 6, no. 10, pp. 901–
912, 2013.

[31] L. Qin, J. X. Yu, L. Chang, H. Cheng, C. Zhang, and X. Lin, “Scalable
big graph processing in mapreduce,” in Proc. ACM SIGMOD Int. Conf.
Manage. Data, 2014, pp. 827–838.

[32] S. Salihoglu and J. Widom, “GPS: A graph processing system,” in Proc.
25th Int. Conf. Sci. Stat. Database Manage., 2013, pp. 22:1–22:12.

[33] J. Shi, D. Wu, and N. Mamoulis, “Top-k relevant semantic place retrieval on
spatial RDF data,” in Proc. Int. Conf. Manage. Data, 2016, pp. 1977–1990.

[34] S. G. Cheng and E. Kharlamov, “Keyword search over knowledge graphs
via static and dynamic hub labelings,” inProc. Web Conf., Taipei, Taiwan,
2020, pp. 235–245.

[35] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson, “From
think like a vertex to think like a graph,” in Proc. VLDB Endowment, vol. 7,
no. 3, pp. 193–204, 2013.

[36] Y. Tian, R. A. Hankins, and J. M. Patel, “Efficient aggregation for graph
summarization,” in Proc. ACM SIGMOD Int. Conf. Manage. Data, 2008,
pp. 567–580.

[37] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic, “FEN-
NEL: Streaming graph partitioning for massive scale graphs,” in Proc. 7th
ACM Int. Conf. Web Search Data Mining, 2014, pp. 333–342.

[38] L. G. Valiant, “General purpose parallel architectures,” in Algorithms and
Complexity. Amsterdam, The Netherlands: Elsevier, 1990, pp. 943–971.

[39] H. Wang and C. C. Aggarwal, “A survey of algorithms for keyword search
on graph data,” in Managing and Mining Graph Data. Berlin, Germany:
Springer, 2010, pp. 249–273.

[40] Y. Wu, S. Yang, M. Srivatsa, A. Iyengar, and X. Yan, “Summarizing answer
graphs induced by keyword queries,” in Proc. VLDB Endowment, vol. 6,
no. 14, pp. 1774–1785, 2013.

[41] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: A resilient
distributed graph system on spark,” in Proc. 1st Int. Workshop Graph Data
Manage. Experiences Syst., 2013, pp. 1–6.

[42] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Blogel: A block-centric framework
for distributed computation on real-world graphs,” in Proc. VLDB Endow-
ment, vol. 7, no. 14, pp. 1981–1992, 2014.

[43] J. Yang, W. Yao, and W. Zhang, “Keyword search on large graphs: A.
survey,” Data Sci. Eng., vol. 6, no. 2, pp. 142–162, 2021.

[44] Y. Yang, D. Agrawal, H. Jagadish, A. K. Tung, and S. Wu, “An efficient
parallel keyword search engine on knowledge graphs,” in Proc. IEEE 35th
Int. Conf. Data Eng., 2019, pp. 338–349.

[45] P. Yi, B. Choi, S. S. Bhowmick, and J. Xu, “AutoG: A visual query auto-
completion framework for graph databases,” in Proc. VLDB Endowment,
vol. 9, no. 13, pp. 1505–1508, 2016.

[46] J. X. Yu, L. Qin, and L. Chang, “Keyword search in relational databases:
A survey,” IEEE Data Eng. Bull., vol. 33, no. 1, pp. 67–78, 2010.

[47] Y. Yuan, X. Lian, L. Chen, J. X. Yu, G. Wang, and Y. Sun, “Keyword
search over distributed graphs with compressed signature,” IEEE Trans.
Knowl. Data Eng., vol. 29, no. 6, pp. 1212–1225, Jun. 2017.

[48] W. Zheng, L. Zou, W. Peng, X. Yan, S. Song, and D. Zhao, “Semantic
sparql similarity search over RDF knowledge graphs,” in Proc. VLDB
Endowment, vol. 9, no. 11, pp. 840–851, 2016.

Jiaxin Jiang received the BEng degree in computer
science and engineering from Shandong University,
in 2015 and the PhD degree in computer science from
Hong Kong Baptist University (HKBU), in 2020. He
is a research fellow with the School of Computing,
National University of Singapore. His research inter-
ests include graph-structured databases, distributed
graph computation and fraud detection.

Byron Choi received the bachelor’s of engineering
degree in computer engineering from the Hong Kong
University of Science and Technology (HKUST), in
1999 and the MSE and PhD degrees in computer
and information science from the University of Penn-
sylvania, in 2002 and 2006, respectively. He is a
professor with the Department of Computer Science,
Hong Kong Baptist University. His research interests
include graph data management and time series anal-
ysis.

Xin Huang received the PhD degree from the Chinese
University of Hong Kong (CUHK), in 2014. He is
currently an associate professor with Hong Kong Bap-
tist University. His research interests mainly focus on
graph data management and mining.

Jianliang Xu (Senior Member, IEEE) is a professor
with the Department of Computer Science, Hong
Kong Baptist University (HKBU). He held visiting
positions with Pennsylvania State University and
Fudan University. He has published more than 150
technical papers in these areas, most of which ap-
peared in leading journals and conferences includ-
ing SIGMOD, VLDB, ICDE, ACM Transactions on
Database Systems, IEEE Transactions on Knowledge
and Data Engineering, and VLDB Journal.

Sourav S. Bhowmick is an associate professor with
the School of Computer Science and Engineering
(SCSE), Nanyang Technological University, Singa-
pore. His core research expertise is in data manage-
ment, human-data interaction, and data analytics. His
research has appeared in premium venues such as
ACM SIGMOD, VLDB, and VLDB Journal. He is
co-recipient of Best Paper Awards in ACM CIKM
2004, ACM BCB 2011, and VLDB 2021. He is also
co-recipient of the 2021 ACM SIGMOD Research
Highlights Award. He was inducted into distinguished

members of ACM in 2020.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:47:52 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

