
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 1

GPU-accelerated Structural Diversity Search in
Graphs

Jinbin Huang, Xin Huang, Jianliang Xu, Byron Choi, and Yun Peng

✦

Abstract—The problem of structural diversity search has been widely
studied recently, which aims to find out the users with the highest
structural diversity in social networks. The structural diversity of a user
is depicted by the number of social contexts inside his/her contact
neighborhood. Three structural diversity models based on cohesive
subgraph models (e.g., k-sized component, k-core, and k-truss), have
been proposed. Previous solutions only focus on CPU-based sequential
solutions, suffering from several key steps of that cannot be highly par-
allelized. GPUs enjoy high-efficiency performance in parallel computing
for solving many complex graph problems such as triangle counting,
subgraph pattern matching, and graph decomposition. In this paper, we
provide a unified framework to utilize multiple GPUs to accelerate the
computation of structural diversity search under the mentioned three
structural diversity models. We first propose a GPU-based lock-free
method to efficiently extract ego-networks in CSR format in parallel.
Secondly, we design detailed GPU-based solutions for computing k-
sized component-based, k-core-based, and also k-truss-based struc-
tural diversity scores by dynamically grouping GPU resources. To effec-
tively optimize the workload balance among multiple GPUs, we propose
a greedy work-packing scheme and a dynamic work-stealing strategy
to fulfill usage. Extensive experiments on real-world datasets validate
the superiority of our GPU-based structural diversity search solutions in
terms of efficiency and effectiveness.

Index Terms—Structural diversity search, GPU-accelerated graph al-
gorithms, Workload balance optimization.

1 INTRODUCTION

G RAPH is an important data model for representing and ana-
lyzing relations between entities. As a typical example, users

and their relationships in online social networks can be formalized
as graphs. An important concept of structural diversity [1] refers
to the number of social contexts inside a user’s ego-network
(subgraph induced by his/her one-hop neighbors). In the literature,
there exist a wide range of structural diversity search studies [2],
[3], [4], [5], [6], [7], the goal is to find out the top-t users with
largest structural diversity in a social network, which has broad
applications in user recruitment, political campaigns, promotion
of health practices, and commercial marketing [1].

To solve the top-t structural diversity search problem for
different structural diversity models (e.g., k-sized component, k-
core, k-truss), several CPU-based sequential solutions has been

Jinbin Huang, Xin Huang, Jianliang Xu, and Byron Choi are with the
Department of Computer Science, Hong Kong Baptist University, Hong Kong,
China. E-mail: jbhuang@comp.hkbu.edu.hk, xinhuang@comp.hkbu.edu.hk,
bchoi@comp.hkbu.edu.hk, xujl@comp.hkbu.edu.hk
Yun Peng is with the Department of Artificial Intelligence, Guangzhou Univer-
sity, Guangdong,China. E-mail: yunpeng@gzhu.edu.cn

proposed [2], [3], [4], [5], [6], [7]. The sequential online solutions
suffer from the same weakness of high computation complexity,
which is caused by expensive computation steps of ego-network
extraction and decomposition. Fortunately, most of the compli-
cated computations steps in the above solutions are computa-
tionally independent. Parallelization is obviously a good choice
to improve the efficiency of the online solutions. A CPU-based
parallel solution is proposed to solve the parameter-free structural
diversity search problem over the core-based structural diversity
model. However, the improvement in efficiency is still limited
due to the coarse parallel architecture and lack of computational
resources of CPU. This motivates us to turn our attention to inves-
tigating the GPU-based solution because of the rich computational
resources and the massive parallel thread architecture of GPU that
enables us to manage the computing resources in different levels
to solve different tasks flexibly.

Recently, GPU has been shown to be effective in improving the
efficiency of many graph analytic tasks such as triangle listing [8],
[9], constraint shortest path [10], subgraph matching [11], [12],
etc. GPU-based subgraph matching methods [11], [12] focus on
general subgraph pattern counting solutions, which lack specific
optimization for mining particular cohesive subgraph structures
like k-core and k-truss. GPU-based k-core [13], [14] and k-
truss [15] decomposition can be beneficial to some sub-steps
of our structural diversity search problems. However, they need
extra effort to construct the required auxiliary data structure like
COO+CSR. Moreover, all of the above research focuses on the
computation of the entire graph. None of them can be directly
applied to our ego-network extraction and structural diversity
search problems.

Compared with the architecture of CPUs, GPU follows the
single instruction multiple threads (SIMT) execution model and
coalesced memory access pattern, which encounters several chal-
lenges when designing efficient parallel graph algorithms. Be-
cause of the special architecture of GPU, accelerating the top-t
structural diversity search on it is still challenging. In the first
place, it’s difficult to store the intermediate data (ego-network
, maps) on GPU. Because in GPU, traditional STL containers
in C++ are not supported. In the second place, synchronization
and branch divergence caused by data-dependent operations and
conditional checking (filtering qualified vertices and edges in the
decomposition phase) are expensive in GPU because of the SIMT
architecture. Finally, serious workload imbalance problems may
be incurred because of different workloads for computing the
structural diversity of vertices with diverse ego-network structures.

To address the above challenges, we propose a unified GPU-

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 2

Block 0

Warps

…

Block n

Warps

GPU Grid 1

Vertex 0 Vertex n

0
1

2
3

0 1
1 2 3

0 2 3

𝑣!:

𝑣":

Threads: 0 1 2Warp 0

Support Computation

0
1

2
3

0 1

0 2

0 3

Warp 0

Warp 1

Warp 2
Edge Searching

0 1

Threads:
0 1

Warp 0

2 3

0 1

2

0 1

3

Tasks Dispatching

and Rescheduling

Return Structural
Diversity Scores

Structural Diversity Computation

Graph Storage

Result
Maintenance

The detail of GPU-based structural diversity
computation is presented in Fig. 4.

Fig. 1. A general framework for CPU+GPU based structural diversity search.

based solution for the structural diversity search problem based
on three structural diversity models, which apply the idea of
dynamically organizing the computing resource of GPU according
to specific tasks. Figure 1 shows an example of accelerating the
truss-based structural diversity search by GPU. A block in a GPU
grid is used to process the ego-network of a particular vertex. In
the truss decomposition phase, different levels of parallelism are
used to deal with tasks with different complexity. For example,
in support computation, a warp is used to deal with the support
counting of an edge. Moreover, a thread in the warp is used to
handle a vertex in the adjacency list of an end vertex of the edge
to find out common neighbors in the adjacency list of another end
vertex.

Specifically, we first propose a GPU-friendly lock-free al-
gorithm to extract the ego-network of a vertex in CSR format,
which is efficient for graph data storing and retrieving on GPU.
We also propose efficient GPU-based solutions equipped with
task-dependent parallelism to structural diversity computation for
three structural diversity models respectively. Specifically, for the
component-based structural diversity computation, we utilize the
GPU parallel library GUNROCK to efficiently search qualified
social contexts inside an ego-network, and design an effective
algorithm to compute the final diversity score. For the core-based
structural diversity computation, we propose an H-index-based
GPU-friendly scheme to utilize different levels of GPU parallelism
to avoid massive synchronizations. For the most challenging truss-
based structural diversity computation, we first propose to use
the GPU-based binary search to compute the support of all edges
inside an ego-network. Secondly, we propose a GPU thread-level
parallelism to search qualified edges to peel in an efficient way.
Finally, we design a multi-level parallel hierarchy to identify the
affected triangles efficiently and peel the edges safely. To further
improve the performance, we extend our GPU-based solutions
to multiple GPU environments, which achieves significant speed
up in efficiency. In order to optimize the workload balance, we
propose an effective global work-stealing technique to handle data
skewness in complex networks.

To summarize, we make the following contributions:
• We formulate the structural diversity search problem in

GPU environment to improve the efficiency of the existing
solutions. (Section 2)
• We propose a unified GPU-based solution to tackle three

typical structural diversity search models comp-div, core-
div, and truss-div based on two commonly key steps of ego-

network extraction and decomposition. (Section 3)
• We first propose a GPU-friendly and lock-free algorithm to

extract the ego-network of a vertex in CSR format, which can
achieve efficient processing speed. (Section 4)
• We propose comprehensive and efficient GPU-based struc-

tural diversity search solutions over three structural diversity
models. Specifically, we design dynamic parallel architec-
tures for the comp-div and core-div to utilize the computing
resources of GPU. For the truss-div, we divide the entire
process into different steps and propose several useful parallel
strategies to leverage the strong GPU computation resource
to avoid complex atomic operations. (Section 5)
• We extend the GPU-based solutions to multiple GPU scenar-

ios to further improve the efficiency. We identify the cause of
workload imbalance and propose an effective global work-
stealing strategy to optimize the workload balance. (Section
6)
• We conduct extensive experiments to verify the efficiency and

effectiveness of our proposed techniques. (Section 7)
We discuss related work in Section 8 and conclude the paper

in Section 9.

2 PRELIMINARIES

We consider an undirected and unweighted simple graph G =
(V,E) with n = |V | vertices and m = |E| edges. For a vertex
v ∈ V , we define N(v) = {u ∈ V : (v, u) ∈ E} as the
set of v’s neighbors and d(v) = |N(v)| as the degree of v in
G. Let dmax represent the maximum degree in G. For a set of
vertices S ⊆ V , the induced subgraph of G by S is denoted by
GS , where the vertex set is V (GS) = S and the edge set is
E(GS) = {(v, u) ∈ E : v, u ∈ S}. Without loss of generality,
we assume that the considered graph G is connected, indicating
that m ≥ n− 1 and n ∈ O(m), which is similarly made in [16],
[7].

2.1 Structural Diversity Models

For a given vertex v in G, we consider the structural diversity of v
in the subgraph of v’s 1-hop neighborhood, which is represented
as an ego-network [17], [18] as follows.

Definition 1 (Ego-Network). Given a vertex v ∈ V , the ego-
network of v is the subgraph of G induced by the vertex set
N(v), denoted by GN(v), where the vertex set V (GN(v)) =

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 3

𝒗

𝒖𝟏

𝒖𝟐

𝒖𝟒

𝒖𝟑

𝒘𝟐

𝒘𝟏
𝒘𝟑

𝒔

(a) Graph G

𝒗

𝒖𝟏

𝒖𝟐

𝒖𝟒

𝒖𝟑

𝒘𝟐

𝒘𝟏
𝒘𝟑

𝑯𝟏
𝑯𝟐 𝑯𝟑

(b) Ego-Network GN(v)

Fig. 2. A running example

N(v) and the edge set E(GN(v)) = {(u,w) ∈ E : u,w ∈
N(v)}.

Throughout this paper, we consistently use Gv to represent the
ego-network GN(v) for short when the context is obvious. Figure 2
(a) shows a graph G. The ego-network of vertex v is the subgraph
H1 highlighted by light gray color in Figure 2 (b). The graph Gv

is induced by vertices {u1, u2, u3, u4, w1, w2, w3}. The vertices
s and v itself are discarded from G, excluding from Gv .

Based on the ego-network structure, we identify a social
context as a densely-connected subgraph in Gv . Given an integer
k ∈ Z+, we use three cohesive subgraph models of k-sized
component, k-core, and k-truss to depict the structural contexts,
respectively. Moreover, the structural diversity is defined as the
number of social contexts in the ego-network Gv . In the following,
we show three representative structural diversity models.

• comp-div model: The component-based structural diver-
sity model treats each connected component that has the
number of vertices greater than k as a distinct social
context [2].

• core-div model: The core-based structural diversity model
treats one maximal connected k-core as a distinct social
context, in which a k-core requires that each vertex has at
least k neighbors [7].

• truss-div model: The truss-based structural diversity
model treats each maximal connected k-truss as a distinct
social context, in which each edge of k-truss is contained
by at least k − 2 triangles [6].

In summary, we consider three structural diversity models
denoted byM = {comp-div, core-div, truss-div}.
Definition 2 (Structural Diversity). Given a vertex v, a structural

diversity model M = {comp-div, core-div, truss-div}, and
an integer k ∈ Z+, the structural diversity of v is the number
of social contexts SC(v) in ego-network Gv , denoted by
sc(v) = |SC(v)|.

Example 1. Given an ego-network of v in G in Figure 2 (b) and the
parameter k = 3. Assume that the structural diversity model
M uses the comp-div to treat each k-sized component as a
social context. Thus, the subgraph H1 is regarded as a social
context. The structural diversity of v is 1. On the other hand,
we use the core-div model and treat each maximal k-core as
a social context. Thus, the subgraph H2 will be regarded as a
distinct social context since H2 is a maximal connected 3-core.
Hence, the structural diversity of v is also 1. However, when
M is set to the truss-div model, indicating the use of maximal
connected k-truss subgraphs as social contexts, H2 and H3 are
treated as two social contexts since H2 is a maximal connected
4-truss and H3 is a maximal connected 3-truss. Therefore, the
structural diversity of v is sc(v) = |SC(v)| = |{H2, H3}| =
2 under the setting of truss-div model.

2.2 GPU Architecture and Problem Formulation
In the existing study, most studies of structural diversity search
have been focused on in-memory computation using CPUs. Dif-
ferent previous studies, we intend to study generalized novel prob-
lems of GPU-based structural diversity search under alternative
structural diversity model inM.

GPU computation architecture. We first introduce the GPU
computation architecture. As shown in the gray region in Figure 1,
a grid is mapped to a GPU unit. Inside a GPU grid, threads are
organized in computing blocks. A thread block is mapped to a
multiprocessor. Consecutive threads (e.g., every 32 consecutive
threads) are grouped into a warp inside a thread block. The
threads inside a warp will be executed simultaneously and follow
the Single Instruction Muti-Thread (SIMT) manner. The global
memory of GPU can be accessed by all threads in a coalesced
memory access pattern. Each thread block contains a fixed-size
shared-memory (usually 64KB), which can only be accessed by
the threads in the same block.

Next, we formulate the problem of GPU-based structural
diversity search studied in this paper as follows.

Problem statement: Given a graph G = (V,E), an integer
t ∈ Z+, a structural diversity model M = {comp-div, core-
div, truss-div}, and a model threshold k ∈ Z+, the goal of
GPU-based structural diversity search problem is to compute the
top-t vertices S∗ with highest structural diversity score sc(v) and
retrieve their social contexts SC(v) on one GPU-based machine,
which is equipped with a single CPU and multiple GPUs.

The objective of GPU-based structural diversity search is to
utilize multiple GPUs to accelerate the computation process of
finding a t-sized answer S∗ ⊆ V where |S∗| = t and ∀v ∈ S∗

with sc(v) ≥ sc(u) for all u ∈ V \ S∗.

3 FRAMEWORK

In this section, we propose a unified CPU+GUP framework
to utilize GPU computation sources for fast structural diversity
search under three different structural diversity models.

Overview. In our framework, the input graph data is firstly stored
in the CPU side. The structural diversity computation tasks for
different vertices are then grouped and dispatched to the GPU
side. The GPU side is only responsible for structural diversity
computation. During the computation, the CPU will dynamically
monitor and re-schedule the tasks among GPUs. After computa-
tion, the intermediate results will be returned to the CPU side.
A top-t result list will be maintained and dynamically updated
in the CPU side. A general framework is shown in Figure 1. To
summarize, our framework is consisted of four phases as follows.

Phase 1: GPU-based upper bound computation. This
phase first makes use of GPUs to parallel compute upper
bounds for all vertices for efficiently pruning the search
space. An upper bound denoted by sc(v) for each vertex
v is proposed by the previous CPU-based solution based on
the structural properties of each structural diversity model.
Assume that it applies the structural diversity model of comp-
div, sc(v) = |N(v)|

k . Similar upper bounds can be extended
to core-div and truss-div models.
Phase 2: GPU-based structural diversity computation.
In this phase, we propose detailed GPU-based ego-network
decomposition solution to extract ego-networks and then
compute exact structural diversity scores, according to the

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 4

Algorithm 1 GPU-Accelerated Top-t Search Framework
Input: G = (V,E), an integer t, a structural diversity modelM
and the model threshold k
Output: Top-t structural diversity results

1: // Phase 1: GPU-based upper bound computation.
2: thread-level parallel for v ∈ V do
3: Compute the upper bound sc(v);
4: L ← sort all vertices V in descending order of sc(v);
5: S ← ∅;
6: // Phase 2: GPU-based structural diversity computation
7: while L ≠ ∅
8: v∗ ← argmaxv∈L sc(v); Delete v∗ from L;
9: if |S| = t and sc(v∗) ≤ minv∈S sc(v) then

10: break;
11: Group consecutive vertices inL and dispatch them to GPUs

for their structural diversity computation.
12: Apply Algorithm 2 on vertices of L for ego-network

extraction.
13: Invoke GPU-based solutions for computing sc(v) using

different models of comp-div in Algorithm 3, core-div in
Algorithm 4, and truss-div in Algorithm 5, respectively.

14: // Phase 3: Workload balance optimization on CPU.
15: Monitor and reschedule the tasks dispatched to each GPU

dynamically.
16: // Phase 4: Top-k result maintenance on CPU.
17: for each result sc(v∗) returned from GPUs do
18: if |S| < t then S ← S ∪ {v∗};
19: else if sc(v∗) > minv∈S sc(v) then
20: u← argminv∈S sc(v);
21: S ← (S/{u}) ∪ {v∗};
22: return S and their social contexts SC(v) for v ∈ S;

particularly adopted structural diversity model M in Sec-
tions 4 and 5.
Phase 3: Workload balance optimization on CPU. To
optimize the workload imbalance issue for multiple GPUs,
the CPU side dynamically monitors and reschedules the
computation tasks dispatched to each GPU. The objective
is to balance the workload by dynamic work stealing strategy
detailed presented in Section 6.
Phase 4: Top-t result maintenance on CPU. Finally, it
updates the structural diversity computation results returned
by GPU side to the top-t list S stored in the CPU side.

Our GPU-based framework. Algorithm 1 shows the detailed
framework for GPU-based structural diversity search. Algorithm 1
computes the upper bound sc(v) for each vertex v in G using GPU
thread-level parallelization (lines 2-3). The vertices are sorted
in descending order according to their upper bounds (line 4).
Then, it first checks the early stop condition by comparing the
smallest upper bound in L with the smallest structural diversity
score in the top-k result list S (lines 8-10). Next, it iteratively
groups the consecutive candidate vertices in L, and offloads their
structural diversity computation to GPU side (line 11). In the
GPU side, we first propose a lock-free GPU-based ego-network
extraction method to extract the ego-network of the vertices (line
12) and apply structural diversity score computation algorithms
(line 13). After that, it dynamically monitors and reschedules
the computation tasks dispatched to each GPU (line 14). Finally,
it updates the structural diversity computation results returned

𝒗𝟎

𝒗𝟐

𝒗𝟑

𝒗𝟏

𝒗𝟎 𝒗𝟏 𝒗𝟐 𝒗𝟑

0 2 5 7 10

𝒗𝟏 𝒗𝟑 𝒗𝟎 𝒗𝟐 𝒗𝟑 𝒗𝟏 𝒗𝟑 𝒗𝟎 𝒗𝟏 𝒗𝟐

0 1 0 2 3 2 4 1 3 4

𝒗𝟎 𝒗𝟎 𝒗𝟏 𝒗𝟏 𝒗𝟐
𝒗𝟏 𝒗𝟑 𝒗𝟐 𝒗𝟑 𝒗𝟑

𝒗𝒊𝒅

𝒓𝒑𝒕𝒓

𝒂𝒅𝒋

𝒆𝒊𝒅

𝒆𝒍

Fig. 3. An example of the CSR format.

by GPU side to the top-t list S stored in the CPU side, until
all candidates in L are computed or the early stop condition is
triggered (lines 17-21).

4 LOCK-FREE EGO-NETWORK EXTRACTION

In this section, we present an GPU-based ego-network extraction
method for multiple vertices in parallel. We first introduce an
CSR format for graph storage in GPU. To make fully use of
multiple threads in GPUs, we develop a lock-free ego-network
extraction, including two key techniques: 1) GPU-based ego-
edge retrieval, and 2) GPU-friendly Scatter-Aggregate based ego-
network extraction.

Graph-based CSR format. We start with introducing the data
structure of the graph storage. The in-memory storage of a graph
often contains a vertex list, an edge list, and the adjacency lists
of all vertices. To save space and allow efficient access, the
Compressed Sparse Row (CSR) format [19] is widely adopted by
existing works [20], [21], [19]. An example of the CSR format is
shown in Figure 3. It consists of a compressed adjacency list adj
and a list of row pointers rptr that points to the starting position
of corresponding adjacency list of a vertex. Edges are stored in
value pairs recording the two end vertices IDs. An edge list el
is generated to store all the edge information. To quickly retrieve
the edge information by adjacency lists, an edge ID list eid is
constructed to map the edges to the adjacency lists. For example,
if we need to retrieve the neighborhood of vertex v1, the start and
end positions of its adjacency list is stored in second and the third
position of the row pointer rptr, which is 2 and 5. Hence we can
find v1’s adjacency list in adj from index 2 to index 5, which
is v0, v2, v3. In this manner, the graph information can be easily
transferred and operated between CPU and GPU.

To compute one vertex v’s structural diversity score sc(v), a
fundamental and necessary step is to extract the ego-network Gv .
Next, we present a lock-free GPU-based ego-network extraction
solution to construct CSR-based graph storages in parallel.

GPU-based ego-edge retrieval. Before constructing the CSR for
each ego-network, the first step is to retrieve the edges inside each
ego-network. This step is done by a global triangle listing in a
previous work [6]. However, the CPU-based solution is costly in
efficiency. To accelerate this process, we propose a multiple GPUs
based parallel solution. The core idea is to partition the edge-
centric computational task into each GPU. On the CPU side, the
adjacency lists of the two end vertices of each edge are retrieved
and compacted firstly. The edge data will be divided into equal
size and transfer to each GPU. Inside each GPU, it utilizes block-
wise parallelism to compute the triangles associated with each
edge. After identifying the triangles, we are able to figure out

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 5

Algorithm 2 GPU-based Ego-network Extraction
Input: A vertex v, an edge id list EGv

the CSR of global graph
G
Output: The CSR of the ego-network of v Gv

1: Let mv ← |EGv
|, nv ← |N(v)|;

2: Initialize the CSR of Gv by adjv[mv ∗ 2], deg[nv],
rptrv[nv + 1], eidv[mv ∗ 2], elv[mv];

3: Let MapSize be the largest vertex id in N(v);
4: Initialize a MapSize-sized array map, i.e.,

map[MapSize];
5: Thread-level parallel for each u in N(v) do
6: map[u]← the index of u in N(v);
7: Thread-level parallel for each eid ∈ EGv

do
8: e = (x, y)← el[eid];
9: elv[i]← (map[x],map[y]), where i is the index of eid in

EGv
;

10: AtomicAdd(deg[map[x]], 1);
11: AtomicAdd(deg[map[y]], 1);
12: rptrv ← ParallelPrefixSum(deg);
13: for each edge e = (u,w) ∈ elv do
14: adjv[rptrv[u+ 1]− deg[u]]← w;
15: eidv[rptrv[u+ 1]− deg[u]]← the index of e in elv;
16: deg[u]← deg[u]− 1;
17: adjv[rptrv[w + 1]− deg[w]]← u;
18: eidv[rptrv[w + 1]− deg[w]]← the index of e in elv;
19: deg[w]← deg[w]− 1;
20: Return the ego-network CSR of Gv;

which ego-networks the edge is belong to. The temporary result
will be stored in shared memory, and later transferred to global
memory of the GPU in a lazy manner. After processing all edges,
the results will be returned back to the CPU. On the CPU side, it
will iteratively copy the edges to each ego-network.
Naive ego-network extraction. After retrieving the edges in
each ego network, our next task is to extract the ego-network
structures for all vertices in CSR format. Existing sequential
solution iteratively scans the edge list and adds the neighbors to the
corresponding adjacency lists one by one. Then the adjacency lists
will be concatenated to form adj. And the prefix sum algorithm
will be conduct on the degree of each vertex to obtain the row
pointer array rptr. A great amount of temporary array will be
produced in this solution, which will waste the limited GPU
memory resources.

Lock-free Ego-Network Extraction. To address these issues, we
present a lock-free ego-network extraction algorithm in parallel
to improve efficiency, which is outlined in Algorithm 2. In Algo-
rithm 2, it first initializes a map array map to rehash the vertex id
in an ego-network , since the vertex id inside an ego-network may
be sparse for storage and computing (lines 3-4). The size of the
map is set to the largest vertex id in the neighbor list. This can be
done in O(1) because the neighbor list is well-sorted in the global
CSR. Secondly, a thread-level parallel scheme is applied to each
vertex in N(v) to set the mapping from the original vertex id to
the new vertex id starting from 0 to |N(v)| − 1 for each vertex
v (lines 5-6). Next, an individual thread is used to process an
edge in parallel (lines 7-11). It first obtains the original edge from
the global CSR (line 8). Then it creates a new edge according
to the new vertex id of the two end points of this edge, and
inserts the new edge to the edge list of v (line 9). For the two end

Algorithm 3 GPU-accelerated Comp-Div Computation
Input: A vertex v, the CSR of the Gv and a model threshold k
Output: The structural diversity score sc(v)

1: sc(v)← 0, SC ← ∅;
2: for each u in N(v) do
3: if visited(u) ̸= FALSE do
4: SC ← GUNROCKBFS(u);
5: if |SC| ≥ k do
6: sc(v)← sc(v) + 1;
7: thread-level parallel for each x in SC do
8: visited(x)← TRUE;
9: Return the sc(v) of Gv;

vertices of the new edge, increase the degree of each vertex using
AtomicAdd operation (lines 10-11). Then a thread-level parallel
prefix sum algorithm provided from CUDA can be applied based
on the degree of each vertex to obtain the row pointer array rptrv
for each v (line 12). Finally, to ensure the well-sorted feature of
the adjacency list, a single thread is used to iteratively process each
new edge in the edge list of v (lines 13-19). It will insert the vertex
id and the corresponding edge id to the correct position of the
adjacency list adjv and edge id list eidv . This solution is a lock-
free solution that utilize the thread-level parallelism to improve
the efficiency and ensure the correctness at the same time.

5 GPU-ACCELERATED STRUCTURAL DIVERSITY
COMPUTATION

In this section, we present three GPU-based algorithms of struc-
tural diversity score computations, in terms of three considered
structural diversity models M = {comp-div, core-div, truss-
div}, respectively. Specifically, we first propose a GPU-based
parallel BFS scheme to count the connected component in each
ego-network for comp-div. Secondly, we implement a H-index
based core decomposition in GPU environment to compute the
core-based structural diversity. Finally, for the truss-based struc-
tural diversity computation, we dynamically group different levels
of GPU computing resources to propose fine-grained parallel
solutions according to different sub-tasks.

5.1 Component-based Structural Diversity Search

As the component-based structural diversity model treats each
connected component inside an ego-network as a distinct social
context, the key step in computing component-based structural
diversity is quantifying the connected components with size larger
than k. Breadth-first search (BFS) is a natural approach for iden-
tifying connected components. However, performing BFS concur-
rently from multiple vertices encounters massive synchronizations
and thread communications, which is highly expensive in GPU
computing. To address this, we propose a combinational scheme to
reduce the synchronizations and communications and well utilize
the parallel features of GPU.

Comp-Div computation algorithm. Algorithm 3 outlines the de-
tails of the GPU-accelerated component-based structural diversity
computation for (v). In each iteration, it retrieves a neighbor
u ∈ N(v) to perform BFS (line 1). If this u has not been
visited, it applies the GPU-based BFS using GUNROCKBFS [22]
to identify the connected component starting by u (lines 3-4).

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 6

Algorithm 4 GPU-accelerated Core-Div Computation
Input: A vertex v, the CSR of the Gv and a model threshold k
Output: The structural diversity score sc(v)

1: sc(v)← 0, SC ← ∅;
2: Thread-Parallel for each u in N(v) do
3: c(u)← |NGv

(u)|;
4: F ← TRUE;
5: while F do
6: F ← FALSE;
7: Warp-Parallel for each u in N(v) do
8: Apply thread-level parallelism to compute H(u);
9: if c(u)! = H(u)

10: c(u)← H(u)
11: F ← TRUE;
12: Apply parallel BFS to compute sc(v) according to the core

decomposition result;
13: Return the sc(v) of Gv;

After obtaining the connected component, it compares the size of
the component and updates the structural diversity score sc(v)
(lines 5-6). Then it applies the GPU thread-level parallelism to
update the visit array (lines 7-8). When all neighbors are visited,
it returns the final results (line 9).

5.2 Core-based Structural Diversity Search

When it comes to the core-based structural diversity search, the
key step for computing core-based structural diversity computa-
tion is the core decomposition of the ego-network . Traditional
peeling method iteratively deletes the vertices with lowest degrees
to perform the core decomposition. It consists of deep data
dependency as one vertex removal leading to other neighbor
degree decrement, which requires massive synchronizations when
updating the degrees. This is obviously unsuitable for parallel
environment like GPU. On the contrary, a H-index based core
decomposition scheme proposed by [23] treats the coreness of a
vertex as the H-index of the coreness among its neighbors, i.e.,
H(v) = maxk∈Z |u ∈ N(v) : H(u) ≥ k| ≥ k. This scheme
requires more computational steps, but it’s suitable for parallel
environment. In our solution, we propose a novel GPU-based
solution that utilizes different level of parallelism to deal with
different type of tasks based on the H-index based approach.

H-index based Core-Div computation algorithm. Algorithm 4
illustrates the details of the GPU-accelerated core-based structural
diversity computation. We deonte H(v) as the H-index of coreness
of a vertex v. It first applies a thread-level parallelism to initialize
the estimated coreness of each vertex u in N(v) by u’s degree
|Nv(u)| (lines 2-3). Secondly, in each iteration, it uses the H-
index H(u) to estimates the coreness of each vertex u. Until
all the estimated coreness remain unchanged, it safely terminates
the decomposition (lines 5-11). To better utilize the computing
resources of GPU and achieve fine-grained parallelism, it applies
a thread-level parallelism to compute the H-index H(u) for each
vertex u. A flag F is initialized to be TRUE for identifying
the changing state of H-indexes (line 4). F is set to FALSE at
the begining of each iteration (line 6). Once the H-index of an
vertex changes, it alter the flag F back to TRUE to indicate the
execution of the next round (line 11). When all of the H-indexes
stay unchanged, the iteration can be terminated safely. Finally, it

computes the structural diversity sc(v) of v by a coreness-aware
breath-first-search.

5.3 Truss-based Structural Diversity Search
Dislike the component-based and core-based structural diversity
model, the computation of the truss-based structural diversity
contains more computation steps caused by the truss decompo-
sition. The truss decomposition consists of three important steps
of support computation, edge searching and edge peeling, which
encounters synchronization cost and complex computation steps.
To address this, we propose a novel GPU-based solution using
the high-level idea of a CPU-based parallel work PKT [24]. Our
core idea is to dynamically utilize different levels of parallelism
to handle tasks with different complexity.

Overview. Figure 4 gives an overview of our GPU-based solu-
tion for truss-based structural diversity computation. As shown
in Figure 4 (a), we apply a wrap-level parallelism to process
each edge inside an ego-network , and a thread-level parallelism
to process the common neighbor look-up in an adjacency list.
For example, the support computation of (v0, v1) is assigned to
Warp 0. Inside Warp 0, each thread corresponds to a neighbor
in v0’s adjacency list. In each thread, a binary search approach
is used to find common neighbor matching in v1’s adjacency
list. Finally, the support of (v0, v1) is 1 since they have only
1 common neighbor v3. Figure 4 (b) and (c) further show the
examples for our GPU-based edge searching and edge peeling
steps in the truss decomposition process. For edge searching, each
edge checking is assigned to a thread, and is checked if it is a
qualified one for peeling. In this example, when the current support
value k = 1, (v1, v3) is unqualified. Hence, candidate edges are
{(v0, v1), (v0, v3), (v1, v2), (v2, v3)}. For edge peeling process,
it uses a thread-level parallelism to perform set intersection to find
out the triangle related to a given edge in a warp. In this example,
the edge peeling process of (v1, v3) is assigned to Warp 0. Inside
Warp 0, each thread corresponds to one of the neighbors of v1.
After binary look-up in v3’s adjacency list, it can identify two
triangles △v0v1v3 and △v1v2v3 that relate to edge (v1, v3).

Truss-Div computation algorithm. The details of the GPU-
accelerated truss-based structural diversity computation is shown
in Algorithm 5. It first utilizes a warp-level parallelism to deal
with the support computation of each edge e in ego-network
GN(v) (line 3). In the support computation of each edge, it applies
the GPU binary search based set intersection technique proposed
in [8] to look up the common neighbors in two adjacency lists in
a coalesced memory access manner (line 4). The decomposition
process starts from support value 0 (line 8). For efficient edge
retrieval, the boolean lists delete, inCurr and inNext are used
to record the status of the edges of being deleted, being processed
in the current iteration or to be processed in the next iteration
respectively (lines 5 and 7). For each support value, it uses thread-
level parallel Algorithm 6 to search the qualified edges for peeling
(line 11). Next, it continues to peel the edge in a warp-level
parallel manner using Algorithm 7 (line 14). The peeling algorithm
is optimized by utilizing different thread level parallel based on
the particular task. After peeling the qualified edges, the affected
edges in the next array will be also peeled in the same iteration
(lines 15-16). After all the affected edges in the same level is
peeled, it continues to process the edges with the next support
value (line 17). After all the edges are peeled, the algorithm
finishes and returns the trussness of each edge (line 9). Based

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 7

��

�� ��

��

��Warp 0:

Threads: 0 1

�0’s adj:

�1’s adj:

����(�0,�1) = 1

Warp 0: (�0, �1), (�2, �3)
Warp 1: (�0, �3), (�1, �3)
Warp 2: (�1, �2)

��

Warp-level parallelism

(a) GPU-based Support Computation

Threads:

Candidate edges: {(�0, �1), (�0, �3), (�1, �2), (�2, �3)}

Iteration: � = �

�� ��0

�� ��1

�� ��2

�� ��3

�� ��

Thread-level Parallelism

��

�� ��

��
1

1

1

12

(b) GPU-based Edge Searching

��Warp 0:

Threads:0 1

�1’s adj:

�3’s adj:

��

2

Threads:

1

2

��

�� ��

��

�� ��

��

�� ��

��

(c) GPU-based Edge Peeling

Fig. 4. Details of GPU-based Truss Decomposition. Assume the GPU setting contains 3 warps in each block, and each warp contains 4 threads.
Fig. 4 (a) shows the detail of support computation, where each edge support computation is assigned to a warp. Fig. 4 (b) shows the qualified edge
searching, where each edge computation is assigned to a thread. Fig.4 (c) is shows the detail of edge peeling step under hierarchical parallelism
levels.

Algorithm 5 GPU-accelerated Truss-Div Computation
Input: The CSR of a vertex v
Output: The trussness array trussv for all edges in Gv

1: // Warp-level Parallel Support Computation
2: Initialize supv[mGv

] with zero values;
3: Warp-level parallel for each edge e = (x, y) ∈ EGv

do
4: supv[e]← Apply the binary set intersection method in [8]

to compute the edge support;
5: Initialize trussv[mGv

]; delete← {false};
6: removeCount← 0;curr ← ∅; inNext← ∅
7: inCurr ← {false}; inNext← {false};
8: k ← 0
9: while removeCount < |elv| do

10: // Thread-level Parallel Edge Searching
11: Apply Algorithm 6 to search the qualified edges;
12: while |curr| > 0 do
13: // Warp-level Parallel Edge Peeling
14: Apply Algorithm 7 to peel the qualified edges

and update the information in the following arrays:
supv, inCurr, removeCount, next, inNext;

15: curr ← next; next← ∅;
16: inCurr ← inNext; inNext← {false};
17: k ← k + 1;
18: // Score Computing
19: Apply parallel BFS to compute sc(v) according to the truss

decomposition result;
20: Return the sc(v) of Gv;

on the trussness of each edge, we are then able to compute the
truss-based structural diversity score using the BFS mechanism
similar to the core-based solution (lines 19-20).

GPU-based edge searching. To be specific, we presents our GPU-
based edge searching algorithm in Algorithm 6. Its goal is to filter
all the qualified edges with the support equals to the current k

Algorithm 6 Parallel Edge Searching Procedure
Input: The CSR of a vertex v, target support k, support array
supv , output edge list curr, edge flag array inCurr
Output: The output array curr, flag array inCurr

1: Initialize a local buffer array buf of size s for each thread;
2: j ← 0;
3: Thread-level Parallel for each e ∈ elv with index i do
4: if supv[i]=k then
5: buf [j]← i; j ← j + 1;
6: inCurr[i]← true;
7: if j = s then
8: Atomically copy buf to curr;
9: Atomically update the end pointer of curr;

10: buf ← ∅; j ← 0;
11: Thread-level Parallel
12: if j > 0 then
13: Atomically copy buf to curr;
14: Atomically update the end pointer of curr;

value. It assigns a thread for the checking of each edge inside an
ego-network (line 3). Inside each thread, it maintains a local buffer
list of size s and an index j (lines 1-2). In each thread, when it
finds a qualified edge, it adds the edge to the end of its local buffer
and updates the end pointer j. It also set the status of this edge in
inCurr to be true to indicate that it will be process in the current
iteration (lines 4-6). If the buffer of the current thread is full, the
edge IDs in the buffer will be copy to the end of curr list in an
atomic way (lines 7-9). The buffer and its end pointer is then reset
(line 10). Finally, it continues to deal with the qualified edges in
the buffer list in the last iteration in each thread (lines 11-14).

GPU-based edge peeling. Next, we introduce the details of the
GPU-based edge peeling algorithm in Algorithm 7. The goal of
Algorithm 7 is to peel the qualified edges filtered by the above
edge searching algorithm, assign the trussness to the edges to be

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 8

Algorithm 7 Parallel Edge Peeling Procedure
Input: The CSR of a vertex v, target support k, support array
supv , peeling edge list curr, edge flag array inCurr, affected
edges next, edge flag array inNext, removed edges count
removeCount
Output: The trussness array truss, affected edges next, edge
flag array inNext

1: Warp-level Parallel for each eid in curr do
2: e1 = (x, y)← elv[eid];
3: truss[eid]← k + 2;
4: AtomicAdd(removeCount,1);
5: Thread-level Parallel for each △xyz identified by GPU-

BinarySetIntersection [8] do
6: e2 ← (x, z);e3 ← (y, z); Assume x < y < z;
7: Update the support of e2 and e3 if necessary;
8: Update the next and inNext if necessary;
9: Thread-level Parallel for each eid in curr do

10: delete[eid]← false;
11: inCurr[eid]← false;

peeled, and identify the affected edges by the broken triangles. It
uses a warp to process an edge in the qualified edge list curr (line
1). It assigns the correct trussness to the edge and increases the
counter of the removed edges by 1 (lines 3-4). Next, it utilizes each
thread in the current warp to identify a triangle formed by the edge
processed in the warp using the set intersection operation proposed
in [8] (line 5). It updates the support of the affected edges if
necessary (i.e., the affected edges are not deleted, not in the current
round and has support greater than k) (line 7). Accordingly, it
updates the affected edges to the next list and the their status
in the inNext list to indicate that these edges should be further
processed in the same round (i.e., edges that have support k after
update) (line 8). Finally, for each edge in the curr list, we apply
thread-level parallelism to set its status in the delete and inCurr
to be false to indicate the end of processing of this edge (lines
9-11).

6 MULTIPLE GPUS SOLUTION AND WORKLOAD
BALANCE OPTIMIZATION

The above sections of GPU-based ego-network extractions and
structural diversity computations can be processed in one CPU
and one single GPU with multiple cores and threads. To fur-
ther accelerate the parallel efficiency, we explore multiple-GPUs
scheme and propose two effective workload balance optimization
techniques in this section: 1) work packing based on estimated
workload, and 2) dynamic work stealing strategy during runtime.

6.1 Workload Imbalance Analysis and Our Optimiza-
tion Framework
To maximize the acceleration, a natural way is to extend our
solutions to multiple GPUs. However, the workload imbalance
issue will be raised when assigning different workload to each
GPU. Specifically, vertices with different ego-network structures
may encounter different computation times. Randomly grouping
the vertices with different computation costs into a GPU may
cause severe workload imbalance among multiple GPUs.

Workload balance optimization. To address the above problem,
we propose a workload balance optimization framework as shown

in Figure 5. The framework contains three key steps. The first step
is to estimate the workload for each vertex to be computed via a
well-design cost estimation function. The second step is to apply
a workload balance strategies to pack the workload of each vertex
to achieve workload balance among multiple GPUs in theoretical
level. In the last step, we propose a global work stealing strategies
to re-balance the workload according to practical running status.

Workload estimation. We propose a cost model to quantitatively
optimize the workload balance discussed above. Assume that we
can derive some function c(v) to estimate the computational cost
of the ego-network of a vertex v. c(v) is a function relevant to the
degree of v and the ego-network size of Gv .

Given a vertex ordering OS of a set of vertex S, in which the
computation of consecutive vertices will be grouped into a GPU
Bi for computing. Denote the total computation cost of a GPU Bi

by Ci, we have Ci =
∑

v∈Bi
c(v). The total computation cost of

all ego-networks is given by Tcost =
∑

v∈S c(v).

Work packing. Assume that there is a total of mGPU ∈ Z+

GPUs. If the workload are balanced among all GPUs, the ideal
computation cost in each GPU should be an average on the total
computation cost, i.e., Tcost

mGPU
. The optimization objective is to find

a vertex reordering scheme OS such that:

min
OS

∑
i=1

|Ci −
Tcost

mGPU
| (1)

In our optimization goal of |Ci− Tcost

mGPU
|, we want to minimize

the difference between the actual computation cost in a GPU
and the average computation cost to achieve workload balance.
Next, we analyze that the hardness of finding the optimal vertex
reordering scheme OS such that equation 1 is minimized to be
NP-hard similarly as the partition problem [9].
A near-linear time greedy algorithm for vetex ordering. Since
the optimization problem is NP-hard, we propose a greedy algo-
rithm to solve the problem in a heuristic manner. The detail of the
greedy algorithm is presented in Algorithm 8. For each GPU Bi, it
assigns a weight of zero and inserts it to a priority queue Q (lines
1-3). For each vertex v ∈ V , it pops out the GPU Bi with the
smallest workload Ci from the priority queue Q (line 5). Next,
it assigns the vertex v to Bi and update the workload Ci with
v’s computation cost c(v) (lines 6-7). The updated GPU is then
inserted back to the priority queue Q (line 8). Finally, it reorders
the vertex IDs according to the vertex distribution to each GPU
(line 9). Instead of performing actual reordering operation to the
vertices, it just groups the vertices in each GPU assignment into
an individual array.
Cost function design. To estimate the workload of the structural
diversity computation of a vertex over different models, we derive
the cost functions based on the computation complexity of each
model. For the component-based structural diversity model, the
computation time estimation function of a vertex v is given by
c(v) = α|EGN(v)

|. For the core-based structural diversity model,
c(v) is given by c(v) = α|NGN(v)

| + β|EGN(v)
|. And for

the truss-based model, c(v) is given by c(v) = α|NGN(v)
| +

β|EGN(v)
|1.5. α and β are two weighting parameters. The design

of the cost function for all models are based on their computation
complexities. Noted that the complexity of truss decomposition
for GN(v) is |EGN(v)

|1.5 [25]. Hence, the exponent for |EGN(v)
|

is 1.5 in the cost function for the truss-based model. The detail
method for obtaining the weighting parameters α and β is pre-
sented in Exp-1 of Section 7.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 9

1

7

2
5
8

3

9

4

6

1
7
8

2
5

8

3

9

4

6

The IDs of the vertices to be computed:

Workload estimation

Work Packing Work Stealing

GPU 3GPU 2GPU 1 GPU 4 GPU 3GPU 2GPU 1 GPU 41 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Fig. 5. The workload balance optimization framework.

1
7

2
5

8
10

3

9

4

6

GPU 3GPU 2GPU 1 GPU 4

(a) The workload status after
GPU 1 finishes its work.

1
7
9

2
5

8
10

3

9

4

6

GPU 3GPU 2GPU 1 GPU 4

(b) A random work stealing strategy.

1
7

2
5

8
10

3

9

4

6

GPU 3GPU 2GPU 1 GPU 4

8
10

(c) An exhausted work stealing
strategy.

1
7

2
5

8
10

3

9

4

6

GPU 3GPU 2GPU 1 GPU 4

10

(d) An optimized global work
stealing strategy.

Fig. 6. A running example of the work stealing strategies.

Algorithm 8 Greedy Algorithm for Vertex Reordering
Input: A set of vertices S, computation cost estimation c(v) for
all v
Output: Vertex reordering OS , i.e., S′

1: Initialize a priority queue Q;
2: for each GPU Bi do
3: Q.insert(Bi, 0);
4: for each v ∈ V do
5: (Bi, Ci) ← Pop out GPU Bi with the smallest total cost

Ci from Q;
6: Bi ← Bi ∪ {v};
7: Ci+ = c(v);
8: Q.insert(Bi, Ci);
9: return OS ← Reorder the id of vertex according to each Bi;

Algorithm 9 Global Workload Stealing Algorithm
Input: A max-heap Q for storing the work lists in all GPUs
Output: A new work listW for the current GPU.

1: W ← ∅; C ← 0;
2: (Bi, Ci) ← Pop the work list Bi associated with the largest

computation cost Ci from Q;
3: while C < Ci do
4: Retrieve v from the back of Bi;
5: C ← C + c(v);W ←W ∪ {v};
6: Bi ← Bi \ v; Ci ← Ci − c(v);
7: Return The new work listW ;

Complexity analysis. Firstly, it conducts the ego-network ex-
traction for all vertices to estimate the computation cost c(v)
for each vertex v, which runs in O(m1.5) time [6]. In each
iteration, it inserts back a new element to the priority queue,
which runs in O(logmGPU) time. Hence, Algorithm 8 runs in
O(m1.5 + n logmGPU) time. Since the GPU number is much
less the vertex size, i.e., |mGPU | << n, Algorithm 8 has near-
linear time complexity.

6.2 Dynamic Global Work Stealing Strategy
Although the greedy work packing techniques above can theoreti-
cally alleviate the workload imbalance problem, the practical run-
ning circumstance usually differs since the work packing is based
on estimation. Hence, the workload imbalance problem may still
exist due to inaccurate estimation. Work-stealing strategies can be
applied to optimize this workload imbalance issue. However, an
ineffective work-stealing strategy may lead to limited workload
balance improvement. Figure 6 illustrate a toy example. Consider
the running state shown in Figure 6 (a), only GPU 1 has finished
its workload at this moment. It can steal work from the other three
GPU to balance the workload. GPU 2 has the heaviest workload
based on estimation, which will exactly influence the total running
time. We have two useful observations for work-stealing strategies
as follows.

Observation 1: Non-optimized random work stealing. A
random work-stealing strategy is shown in Figure 6 (b). GPU
1 will randomly steal one task associated with vertex 9 from
GPU 3. However, this optimization will not contribute to the
reduction of total running time, since GPU 2 still possesses
the heaviest workload.
Observation 2: Unbalance exhausted work stealing. In-
spired by this, the work-stealing strategy shown in Figure 6
(c) chooses to steal works from GPU 2 which has the heaviest
workload. It exhaustedly steals all the unfinished tasks from
GPU 2. Although this strategy can reduce the total running
time, the contribution is limited since GPU 2 will be idle after
it finishes the computation of vertex 5, and will suffer from
frequent work stealing from others.

Figure 6 (d) shows a reasonable work-stealing strategy, it only
steals one task from GPU 2, and the reduction of overall running
time can be maximized. This motivates the design of our dynamic
global working strategy.

To maximize the workload balance optimization, as shown
in Figure 6 (d), we propose a global work-stealing strategy to
dynamically manage the global workload at run time. Firstly, a
status table with task lists is maintained in main memory by a
CPU thread. Secondly, when a GPU finishes one of its tasks, it

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 10

TABLE 1
Network Statistics (K= 103 and M= 106)

Name |V | |E| dmax τ∗
G τ∗

ego T
Wiki-Vote 7K 103K 1,065 23 22 608,389

Email-Enron 36K 183K 1,383 22 21 727,044
Epinions 75K 508K 3,044 33 32 1,624,481
Gowalla 196K 950K 14,730 29 28 2,273,138

NotreDame 325K 1.4M 10,721 155 154 8,910,005
LiveJournal 4M 34.7M 14,815 352 351 177,820,130
socfb-konect 59M 92.5M 4,960 7 6 6,378,280

Orkut 3.1M 117M 33,313 73 72 412,002,900

should update its working progress and its remaining computation
cost on the status table. Thirdly, if a GPU finishes all its tasks,
it clears its task list on the status table and checks the progress
of other GPUs from the status table. Since the total running time
may only depend on the GPU with the largest workload, it always
steals tasks from the GPU with the largest unfinished workload.
Moreover, an effective algorithm is designed to decide how many
works can be stolen in Algorithm 9. In this manner, the workload
imbalance can be alleviated significantly.

Dynamic work-stealing algorithm. Algorithm 9 shows the de-
tails of the dynamic global work-stealing strategy. After the work
packing step in Algorithm 8, each GPU is assigned a work list. On
the CPU side, the work lists of all GPUs are maintained in a max-
heap Q according to the total cost of each work list. Algorithm 9
uses the max-heap Q as input. Each time when a GPU finishes its
work, it pops a work list Bi with estimated cost Ci from the max-
heap Q (line 2). In each iteration, it retrieves a task associated
with a vertex v from the back of the work list Bi (line 4). Then, it
pushes v to the result work listW , and accumulates its estimated
cost c(v) to the current cost C (line 5). The information of v will
be removed from Bi (line 6). The process will be terminated until
the current cost C exceeds the remaining cost Ci in Bi (line 3).
Finally, it returns the work list W as the result (line 7). The new
work listW will be assigned to the current GPU for work stealing.

Discussion. Both the work packing and the work-stealing tech-
niques are based on the estimation of the workload of each
structural diversity computation task, which depends on the com-
putation complexity of different operations. For the warp-wise
workload balance optimization, the computation cost of the sub-
steps inside each structural diversity computation task is unpre-
dictable. Therefore, the workload balance optimization strategies
above are not applicable to the warp-wise workload balancing. For
the block-wise workload balance optimization, each block runs
in an optimistic manner to automatically retrieve tasks from the
work list when it finishes the current tasks, which causes only a
little waiting time. The workload balance optimization techniques
above is not necessary for this case.

7 EXPERIMENTS

All algorithms are implemented by C++ and CUDA on a machine
equipped with a 6-core 2.9GHz Intel CPU and four Tesla V100
GPUs. The main memory of the machine is 128GB, and each GPU
has 32 GB global memory.

Datasets: We conduct our experiments on eight real-world social
networks downloaded from SNAP. Table 1 shows the statistic of
the datasets. |V | and |E| is the number of the vertices and edges
of the dataset respectively. We use dmax to denote the maximum
degree of vertex in a graph. We also report the maximum trussness

 0
 5

 10
 15
 20
 25
 30
 35

0.1 0.5 1 5 10

R
un

ni
ng

 T
im

e
(s

)

Sample Ratio (%)

Component
Core

Truss

(a) Gowalla

102

103

104

0.1 0.5 1 5 10

R
un

ni
ng

 T
im

e
(s

)

Sample Ratio (%)

Component
Core

Truss

(b) LiveJournal

103

104

0.1 0.5 1 5 10

R
un

ni
ng

 T
im

e
(s

)

Sample Ratio (%)

Component
Core

Truss

(c) Orkut

Fig. 7. The running time against different sampling ratio for workload
estimation under three structural diversity models on three graphs.

inside a graph and inside all ego-networks of the graph as τ∗G
and τ∗ego. And the number of triangles inside a graph is denoted
as T . In our experiments, all networks can be stored in main
memory. We fix the parameters k = 4 and t = 100 without loss
of generality.

Comparing methods: We compare our proposed techniques with
existing ones in term of efficiency. The existing baseline methods
are listed as follows:
• BC-Div [13]: The baseline core-based structural diversity

search method equipped with the SOTA GPU-based k-core
decomposition solution.
• PGL-Div [15]: The baseline truss-based structural diversity

search method equipped with the GPU-based k-truss decom-
position solution.
• CPU-Div: The sequential algorithm for computing top-t

structural diversity for all three models presented in [2], [7],
[6].
• MCPU-Div: The CPU-based parallel version of the sequen-

tial algorithm [5]. Here we set the thread number to 6, since
it performs the best on our machine.

We compare the above baselines with the following methods
proposed in this paper:
• GPU-Div: The GPU-accelerated version on single GPU.
• MGPU-Div: The GPU-accelerated version on four GPUs.
• MGPU-Div-E: The GPU-accelerated version equipped with

four GPUs and exhausted global work stealing workload
balancing optimization.
• MGPU-Div-D: The GPU-accelerated version equipped with

four GPUs with dynamic global work stealing workload
balancing optimization as described in Algorithm 9.

Exp-1: Weighting parameter estimation for workload cost
function. We obtain the two parameters α and β for different
structural diversity model by sampling and regression. We first
sample a small portion of vertices with different degrees from
the entire graphs and offload their structural diversity computation
under three structural diversity models to the GPU, and record
their actual running time. Then we obtain the two parameters
by linear regression. Since different sampling ratio can lead to
different estimation accuracy and also different overall running
time. In this experiment, we report the overall running time under
different sampling ratio. Figure 7 shows the running time against
different sampling ratios under three structural diversity models
on the ‘Gowalla’, ‘LiveJournal’ and ‘Orkut’ datasets. The results
suggest that at most case, the overall performance achieves the
best when the sampling rate is set to around 0.5% or 1%. Since
the two settings has similar effect, we fix the sampling rate to 1%
in the following experiments.

Exp-2: Efficiency comparison between different structural
diversity search methods. In this experiment, we test the running
time of each comparing algorithm on all datasets. The results of all

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 11

TABLE 2
Running time (in seconds) for different structural diversity search models among all competitors

Models Graph CPU-Div MCPU-Div GPU-Div MGPU-Div MGPU-Div-E MGPU-Div-D R

Comp-div
Wiki-Vote 2.93 2.08 1.95 1.88 1.85 1.81 1.61

Email-Enron 4.16 3.75 2.42 2.27 2.16 2.07 2.0
Epinions 9.79 7.59 5.83 4.09 4.03 3.92 2.49
Gowalla 17.99 12.32 8.21 4.73 3.87 3.63 4.95

NotreDame 19.83 13.78 10.07 6.76 6.47 5.66 3.5
socfb-konect 6.74 5.17 4.03 3.88 3.57 3.20 2.1
LiveJournal 1243.71 746.93 637.82 307.28 293.6 275.71 4.52

Orkut 8682.24 4863.72 3839.56 1977.36 1923.7 1870.30 4.64

Core-div
Wiki-Vote 3.54 2.93 2.88 2.63 2.61 2.57 1.38

Email-Enron 7.81 5.64 4.22 3.65 3.57 3.44 2.27
Epinions 16.43 12.34 10.38 8.09 7.64 7.54 2.17
Gowalla 25.9 14.5 9.7 4.9 4.04 3.92 6.61

NotreDame 32.59 20.87 14.72 7.92 7.79 7.37 4.42
socfb-konect 10.37 7.68 6.46 5.87 5.49 4.99 2.07
LiveJournal 1732.1 994.6 672.2 353.2 298.7 267.5 6.47

Orkut 10609.2 5473.7 4965.4 2836.6 2380.7 2284.2 4.64

Truss-div
Wiki-Vote 8.91 6.78 4.75 3.47 3.41 3.38 2.63

Email-Enron 12.82 8.95 6.78 5.53 5.36 4.69 2.73
Epinions 34.83 25.27 19.69 13.92 13.07 12.31 2.82
Gowalla 54.7 38.4 28.9 19.7 17.6 16.5 3.31

NotreDame 297.4 155.29 116.40 109.12 98.36 89.49 3.32
socfb-konect 17.22 12.15 9.49 6.86 6.23 5.96 2.88
LiveJournal 10302.8 6590.5 6321.2 4824.6 3987.2 3669.9 2.81

Orkut 19023.6 12082.7 11243.8 7628.5 7022.4 6590.6 2.89

TABLE 3
Comparison of running time (in seconds) against existing

competitors in multiple GPUs scenario

Graph Core-based Truss-based
BC-Div MGPU-Div-D PGL-Div MGPU-Div-D

Gowalla 12.43 3.92 39.24 16.52
LiveJournal 702.32 267.50 6644.98 3669.89
Orkut 5121.11 2384.20 12352.70 6590.63

TABLE 4
Running time (in seconds) for Ego-network Extraction in

Truss-based Structural Diversity Search

Graph CPU-Div MCPU-Div MGPU-Div Re

Gowalla 10.7 8.6 2.8 3.07
LiveJournal 1021.3 637.2 275.1 3.71

Orkut 4218.7 3629.6 1456.5 2.89

methods with respect to different structural diversity models are
reported in Table 2. The winner is highlighted in bold font. The
speed up ratio in the last column is computed by the running time
of the CPU sequential version CPU-Div divided by the running
time of the optimized multiple GPUs solution MGPU-Div-D, i.e.,
R = CPU−Div

MGPU−Div−D . The results show that our method MGPU-
Div-D achieves 1.38 to 6.61 times faster as the existing CPU
based sequential solution, which validates the superiority of our
GPU solution. Moreover, comparing to the result of MCPU-Div
shown in column 4, the improvement in efficiency of our parallel
GPU-based solutions is still significant as shown in columns 5-
8. Observed from the result that our work stealing techniques
MGPU-Div-D works well comparing to the baseline multi-GPU
solution MGPU-Div on structural diversity model with more
complex structure, e.g., the effectiveness is more significant on
the truss-based structural diversity search reported in the last three
rows. This is because more complicated computation task will
cause more serious workload imbalance.

Exp-3: Efficiency comparison against existing structural di-
versity search competitors. In this experiment, we compare

100

101

102

103

Wiki-Vote Epinions Gowalla NotreDame LiveJournal Orkut

Th
ro

ug
hp

ut
 (N

ps
)

Datasets

GPU-Div MGPU-Div MGPU-Div-E MGPU-Div-D

Fig. 8. Throughput (in Nps) for different work stealing strategies during
truss-based structural diversity search on six datasets.

our MGPU-Div-D method with the competitors BC-Div and
PGL-Div equipped with existing GPU-based k-core and k-truss
decomposition techniques respectively. BC-Div and PGL-Div are
equipped with sequential ego-network extraction method because
they require special input data structures. And the load balancing
mechanism is unavailable for these two methods. All methods
are run on multiple GPUs environment. The experimental results
are reported in Table 3. Our method MGPU-Div-D is the clear
winner on the three representative datasets, which reflects the
superiority of our proposed techniques in terms of efficiency and
effectiveness. Moreover, the performance of the two competitors
BC-Div and PGL-Div is even worse than some baseline methods
like MCPU-Div and GPU-Div, because they have to construct the
special data structure for all ego-network using naive way, which
is very costly.

Exp-4: Ego-network extraction efficiency evaluation. In or-
der to show the effectiveness of our GPU-based ego-network
extraction technique, this experiment compares the ego-network
extraction time of the CPU-based solutions CPU-Div, MCPU-
Div and our GPU-based solution MGPU-Div. Without loss of
generality, we report the running time of the truss-based structural
diversity search in Table 4. The speed-up ratio Rs in the last
column is given by Re = CPU−Div

MGPU−Div . It shows that our GPU-
accelerated ego-network extraction can achieve 2.89 to 3.71 speed-
up against the CPU-based solution.

Exp-5: Effectiveness comparison for different work stealing

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 12

TABLE 5
Ablation Study: Slow Down Ratio of Removing Individual

Techniques (Truss-based).

Competitor Gowalla LiveJournal Orkut
NoGPUEgo 1.46X 1.19X 1.39X

NoMultipleGPU 1.64X 1.58X 1.60X
NoWorkBalance 1.19X 1.31X 1.16X

FullVersion 1X 1X 1X

 0

 5

 10

 15

 20

 25

 30

2 3 4 5 6

R
un

ni
ng

 T
im

e
(s

)

k

CPU-Div
MCPU-Div

GPU-Div

MGPU-Div
MGPU-Div-E
MGPU-Div-D

(a) Gowalla

103

104

2 3 4 5 6

R
un

ni
ng

 T
im

e
(s

)

k

CPU-Div
MCPU-Div

GPU-Div

MGPU-Div
MGPU-Div-E
MGPU-Div-D

(b) LiveJournal

104

2 3 4 5 6

R
un

ni
ng

 T
im

e
(s

)

k

CPU-Div
MCPU-Div

GPU-Div

MGPU-Div
MGPU-Div-E
MGPU-Div-D

(c) Orkut
Fig. 9. Running time (in seconds) for different setting of k in truss-based
structural diversity search.

strategies. To compare the work-stealing optimization techniques
for workload balancing, this experiment reports the throughput of
methods GPU-Div, MGPU-Div, MGPU-Div-E and MGPU-Div-
D during truss-based structural diversity search on six datasets.
Here the throughput of a method is measured in the number of
vertices the GPUs can process per second (Nps). The larger the
value is, the better the effectiveness is. The result is reported
in Figure 8. According to Figure 8(b) and (c), we can observe
that the effectiveness of the exhausted work stealing technique
MGPU-Div-E degrades when the ego-network structures become
more complicated in larger graphs. Its improvement upon the
baseline MGPU-Div is very minor on LiveJoural and Orkut
datasets. This is because the data skewness tends to be much more
serious on larger graphs. However, the throughput is significantly
improved by MGPU-Div-D, which reveals the superiority of our
global work-stealing techniques for workload balancing in terms
of effectiveness.

Exp-6: Ablation study. In this experiment, we provide an abla-
tion study to test the effectiveness of each individual technique.
Table 5 reports the speedup ratio of MGPU-Div-D against each
competitor that removes a corresponding technique. The results of
‘NoGPUEgo’ are computed by the running time of the MGPU-
Div-D using sequential ego-network extraction method divided
by the running time of MGPU-Div-D equipped with GPU-based
ego-network extraction. Similarly, the results of ‘NoMultipleGPU’
are computed by the running time of a single GPU-based solu-
tion divided by the multiple GPU-based solution, i.e., GPU−Div

MGPU−Div .
MGPU-Div achieves 1.58X to 1.64X speed up compared to GPU-
Div. The speed up ratio is not linear to the increase of the
number of GPUs, since the truss-based structural diversity search
still contains atomic operations such as buffer array copying and
conditional branching, which cannot fully parallelize and can
cause warp divergence. The non-linear speed up feature can be
also observed from the results of the two CPU solutions CPU-Div
and MCPU-Div. The results of ‘NoWorkBalance’ are computed
by the running time of the multiple-GPUs-based solution without
workload balance optimization techniques divided by the running
time of the solution equipped with all workload balance optimiza-
tion techniques, i.e., MGPU−Div

MGPU−Div−E . The result shows the significant
effectiveness of our proposed techniques.

Exp-7: Running times for different setting of parameters k
and t. In this experiments, we vary the setting of parameter k
and t and report the running times for the truss-based structural
diversity search on three datasets ‘Gowalla’, ‘LiveJournal’, and

 0

 50

 100

 150

 200

10 100 1000

R
un

ni
ng

 T
im

e
(s

)

t

CPU-Div
MCPU-Div

GPU-Div

MGPU-Div
MGPU-Div-E
MGPU-Div-D

(a) Gowalla

103

104

105

10 100 1000

R
un

ni
ng

 T
im

e
(s

)

t

CPU-Div
MCPU-Div

GPU-Div

MGPU-Div
MGPU-Div-E
MGPU-Div-D

(b) LiveJournal

103

104

105

10 100 1000

R
un

ni
ng

 T
im

e
(s

)

t

CPU-Div
MCPU-Div

GPU-Div

MGPU-Div
MGPU-Div-E
MGPU-Div-D

(c) Orkut
Fig. 10. Running time (in seconds) for different setting of t in truss-based
structural diversity search.

‘Orkut’. Firstly, parameter t is fixed to t = 100, we vary parameter
k in {2, 3, 4, 5, 6} and report the running times of all methods in
Figure 9. As the value of k increases, the running times for all
methods reduce because the early termination condition is easier
to trigger for larger k, which leads to a much smaller search
space. Secondly, we fix parameter k to 3, and vary parameter
t in {10, 100, 1000}. The running times for all methods are
reported in Figure 10. The running times of all methods grow
as the magnitude of t increases. However, we can observe that the
growing speed of the running times of the CPU-based methods is
faster than the GPU-based methods, which shows the robustness
of our GPU-based solution.

8 RELATED WORK

Our work is related to structural diversity search, GPU-based
graph computing, and top-k search on graphs.
Structural diversity search. Social decisions can significantly
depend on the social network structure [26], [27]. Ugander et al.
[1] conducted extensive studies on the Facebook to show that the
contagion probability of an individual is strongly related to its
structural diversity in the ego-network . A follow-up work by Su
et al. [28] conduct experimental studies on the correlation of the
structural diversity and the retention. Similarly, Graham et al. [29]
provide experimental studies to analyze the connection between
structural diversity and information diversity. Motivated by [1],
Huang et al. [2] studies the problem of structural diversity search
to find k vertices with the highest structural diversity in graphs. To
improve the efficiency of [2], Chang et al. [3] propose a scalable
algorithm by enumerating each triangle at most once in constant
time, which is a fast solution on the sequential component-based
structural diversity search. However, it needs to maintain and
update the connected component in the ego-network of every
vertex using a disjoint-set data structure, which is difficult for
extending to the parallel environment directly. Moreover, note that
a recent study [6] shows that the index-based approaches can
achieve much faster query time than [3], reflecting that the index
construction is more feasible to parallelize in the future study.
Moreover, the method proposed by [3] focuses on the component-
based structural diversity model only. In this paper, we propose
to study an one-off GPU-based parallel solution for all three
structural diversity models, including the component-based model,
core-based model, and truss-based model. Structural diversity
search based on a different k-core model is further studied in
[7]. Recently a parameter-free approach for the core-based model
is proposed in [4], and is extended to a parallel version based
on CPU environment in [5]. The problem of structural diversity
search based on k-truss and the GCT-index is investigated by
the study in [6]. Beside of the studies of structural diversity of a
vertex, Zhang et al. [30] propose a new definition of edge-based
structural diversity to study the structural diversity of an edge.
Recently, Chen et al. [31] extends the structural diversity search
problem to streaming graphs. Different from the above research

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 13

works that are conducted in CPU environment, in this paper, we
study the structural diversity search problem on static graphs for
three structural diversity models in GPU environment.
GPU-based graph computing. GPU is a new hardware equipped
with massive computing units. Powered by the CUDA program-
ming model, GPU is recently used to accelerate many traditional
graph algorithms such as general graph processing [32], [33], [34],
constraint shortest path [10], subgraph matching [11], [12], [35],
label propagation [36], etc. Triangle counting and truss decompo-
sition are two fundamental problem in subgraph mining. Recently,
a great amount of work study the acceleration for this two problem
leveraging the powerful computing resources of GPU. For triangle
counting, the very basic problem of it is set intersection. State-of-
the-art studies mainly work on three ways of parallel set intersec-
tion: merge-based, hash-based, bitmap-based and binary search
based set intersection [37], [38], [39], [40], [8]. And the binary
search based set intersection proposed in [8] is known to be the
best in terms of performance in single GPU environment. To solve
the workload imbalance problem in GPU-based triangle counting,
a recent work [9] propose a general workload balance model to
accelerate the existing GPU-based triangle counting algorithms.
Comparatively, recent studies of GPU-based k-core decomposition
and k-truss decomposition is more related to the sub-steps of
our structural diversity search problem. For GPU-based k-core
decomposition, BC-Div [13] is the SOTA method that can achieve
the best performance in single GPU environment. Since k-core de-
composition is just a sub-step of the core-based structural diversity
search problem, in order to maximize the overall performance, we
focus on solutions in multiple GPUs scenario, which will raise the
problem of cross-GPU workload balancing. Existing GPU-based
graph-parallel systems such as Medusa [14] and GUNROCK [22]
propose multi-GPU solutions for k-core decomposition. However,
they only focus on the k-core decomposition on the entire graph.
In our structural diversity search problem, only offloading the k-
core decomposition step for small subgraphs like ego-network
to multiple GPUs is obviously an under utilization of the GPU
hardware, which is impractical. For truss decomposition, PKT
[24] is a CPU-based parallel solution that can achieve good
performance for shared-memory system. Recently, Che et al. [19]
perform detail optimization based on the PKT algorithm with
CPU+GPU environment. PGL-Div [15] is a pure single GPU-
based solution for the truss decomposition problem. However, it
needs extra processing time for constructing the required auxiliary
data structure COO. In our structural diversity problem, we need to
construct the COO structure for the ego-network of all the vertices,
which is an extremely expensive cost. In this paper, we study a new
problem of GPU-based structural diversity search, and propose
problem-oriented detailed solution based on GPU environment.
Top-k search on graphs. Top-k query processing is an important
direction in graph analytics. The problem of top-k keyword search
on graphs [41], [42], [43], [44] aims at finding the k closest ver-
tices whose labels contain the input keywords. The goal of another
typical problem of top-k graph pattern matching [45], [46], [47]
is to find top-k subgraphs that match the input graph pattern.
Recently, a new topic of top-k community search [48], [49], [50],
[51] appears to discover the k most important communities on an
input graph. In a recent study, Ye et al. [52] study a keyword-based
top-k community search problem, which finds top-k communities
with both highest keyword relevance and structural cohesiveness.
In our study, we focus on finding the top-k vertices with highest
structural diversity scores.

9 CONCLUSION

In this paper, we study the structural diversity search problem for
three structural diversity models in CPU+GPU environment. To
solve this problem, we propose a one-off parallel framework to
leverage the GPU to accelerate the structural diversity computa-
tion. In our framework, we propose efficient GPU-based structural
diversity computation techniques including a GPU-friendly lock-
free ego-network extraction approach and fine-grained GPU-based
parallel solutions to the ego-network decomposition according
to three structural diversity models. Moreover, to address the
workload imbalance issue, we design an efficient work packing
scheme before computing and an effective dynamic work stealing
strategy to redistribute the workload at run time. Experiments on
several real-world datasets show that our method can achieve up
to 6.6X speed up against the baseline sequential approach, which
validates the superior efficiency and effectiveness of our proposed
techniques.

10 ACKNOWLEDGMENT

This work is supported by National Key R&D Program of China
2023YFC3321300, Hong Kong RGC Projects Nos. 12201923,
12200424, 12202221, 12202024, C2003-23Y, RIF R1015-23,
GRF HKBU12203123, NSFC Grant No. 62102341, Guangdong
Basic and Applied Basic Research Foundation (Project No.
2023B1515130002), NSF of China 62472116, and NSF of Guang-
dong Province 2023A1515030273. Xin Huang is the correspond-
ing author.

REFERENCES

[1] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg, “Structural
diversity in social contagion,” PNAS, vol. 109, no. 16, pp. 5962–5966,
2012.

[2] X. Huang, H. Cheng, R.-H. Li, L. Qin, and J. X. Yu, “Top-k structural
diversity search in large networks,” PVLDB, vol. 6, no. 13, pp. 1618–
1629, 2013.

[3] L. Chang, C. Zhang, X. Lin, and L. Qin, “Scalable top-k structural
diversity search,” in ICDE, 2017, pp. 95–98.

[4] J. Huang, X. Huang, Y. Zhu, and J. Xu, “Parameter-free structural
diversity search,” in WISE. Springer, 2020, pp. 677–693.

[5] J, Huang and X, Huang and Y, Zhu and J, Xu, “Parallel algorithms for
parameter-free structural diversity search on graphs,” WWWJ, vol. 24, pp.
397–417, 2021.

[6] J. Huang, X. Huang, and J. Xu, “Truss-based structural diversity search
in large graphs,” TKDE, 2020.

[7] X. Huang, H. Cheng, R. Li, L. Qin, and J. X. Yu, “Top-k structural
diversity search in large networks,” VLDB J., vol. 24, no. 3, pp. 319–343,
2015.

[8] Y. Hu, H. Liu, and H. H. Huang, “Tricore: Parallel triangle counting on
gpus,” in SC, 2018, pp. 171–182.

[9] L. Hu, L. Zou, and Y. Liu, “Accelerating triangle counting on gpu,” in
SIGMOD, 2021, pp. 736–748.

[10] S. Lu, B. He, Y. Li, and H. Fu, “Accelerating exact constrained shortest
paths on gpus,” Proc. VLDB Endow., vol. 14, no. 4, pp. 547–559, 2020.

[11] G. Jiang, Q. Zhou, T. Jin, B. Li, Y. Zhao, Y. Li, and J. Cheng, “VSGM:
view-based gpu-accelerated subgraph matching on large graphs,” in SC.
IEEE, 2022, pp. 52:1–52:15.

[12] X. Sun and Q. Luo, “Efficient gpu-accelerated subgraph matching,”
PACMMOD, vol. 1, no. 2, pp. 181:1–181:26, 2023.

[13] A. Ahmad, L. Yuan, D. Yan, G. Guo, J. Chen, and C. Zhang, “Accelerat-
ing k-core decomposition by a gpu,” in ICDE, 2023, pp. 1818–1831.

[14] J. Zhong and B. He, “Medusa: Simplified graph processing on gpus,”
TPDS, vol. 25, no. 6, pp. 1543–1552, 2013.

[15] M. Almasri, O. Anjum, C. Pearson, Z. Qureshi, V. S. Mailthody, R. Nagi,
J. Xiong, and W.-m. Hwu, “Update on k-truss decomposition on gpu,” in
HPEC. IEEE, 2019, pp. 1–7.

[16] M. Latapy, “Main-memory triangle computations for very large (sparse
(power-law)) graphs,” Theor. Comput. Sci., vol. 407, no. 1-3, pp. 458–
473, 2008.

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 36, NO. 1, JANUARY 2024 14

[17] F. Ding and Y. Zhuang, “Ego-network probabilistic graphical model for
discovering on-line communities,” Appl. Intell., vol. 48, no. 9, pp. 3038–
3052, 2018.

[18] J. Mcauley and J. Leskovec, “Discovering social circles in ego networks,”
TKDD, vol. 8, no. 1, p. 4, 2014.

[19] Y. Che, Z. Lai, S. Sun, Y. Wang, and Q. Luo, “Accelerating truss
decomposition on heterogeneous processors,” PVLDB, vol. 13, no. 10,
pp. 1751–1764, 2020.

[20] K. Date, K. Feng, R. Nagi, J. Xiong, N. S. Kim, and W.-M. Hwu,
“Collaborative (cpu+ gpu) algorithms for triangle counting and truss
decomposition on the minsky architecture: Static graph challenge: Sub-
graph isomorphism,” in HPEC. IEEE, 2017, pp. 1–7.

[21] V. S. Mailthody, K. Date, Z. Qureshi, C. Pearson, R. Nagi, J. Xiong, and
W.-m. Hwu, “Collaborative (cpu+ gpu) algorithms for triangle counting
and truss decomposition,” in HPEC. IEEE, 2018, pp. 1–7.

[22] Y. Wang, Y. Pan, A. Davidson, Y. Wu, C. Yang, L. Wang, M. Osama,
C. Yuan, W. Liu, A. T. Riffel, and J. D. Owens, “Gunrock: GPU graph
analytics,” ACM Transactions on Parallel Computing, vol. 4, no. 1, pp.
3:1–3:49, Aug. 2017.

[23] A. E. Sarıyüce, C. Seshadhri, and A. Pinar, “Local algorithms for hierar-
chical dense subgraph discovery,” Proceedings of the VLDB Endowment,
vol. 12, no. 1.

[24] H. Kabir and K. Madduri, “Shared-memory graph truss decomposition,”
in HiPC. IEEE, 2017, pp. 13–22.

[25] J. Wang and J. Cheng, “Truss decomposition in massive networks,”
PVLDB, vol. 5, no. 9, pp. 812–823, 2012.

[26] J. H. Fowler and N. A. Christakis, “Cooperative behavior cascades in
human social networks,” PNAS, p. 200913149, 2010.

[27] Y. Dong, R. A. Johnson, J. Xu, and N. V. Chawla, “Structural diversity
and homophily: A study across more than one hundred big networks,” in
KDD. ACM, 2017, pp. 807–816.

[28] J. Su, K. Kamath, A. Sharma, J. Ugander, and S. Goel, “An experimental
study of structural diversity in social networks,” in ICWSM. AAAI
Press, 2020, pp. 661–670.

[29] A. V. Graham, J. McLevey, P. Browne, and T. Crick, “Structural diversity
is a poor proxy for information diversity: Evidence from 25 scientific
fields,” Soc. Networks, vol. 70, pp. 55–63, 2022.

[30] Q. Zhang, R.-H. Li, Q. Yang, G. Wang, and L. Qin, “Efficient top-k edge
structural diversity search,” in ICDE. IEEE, 2020, pp. 205–216.

[31] K. Chen, D. Wen, W. Zhang, Y. Zhang, X. Wang, and X. Lin, “Querying
structural diversity in streaming graphs,” Proc. VLDB Endow., vol. 17,
no. 5, pp. 1034–1046, 2024.

[32] P. Cui, H. Liu, B. Tang, and Y. Yuan, “Cggraph: An ultra-fast graph pro-
cessing system on modern commodity CPU-GPU co-processor,” Proc.
VLDB Endow., vol. 17, no. 6, pp. 1405–1417, 2024.

[33] Y. Zhang, Y. Liang, J. Zhao, F. Mao, L. Gu, X. Liao, H. Jin, H. Liu,
S. Guo, Y. Zeng, H. Hu, C. Li, J. Zhang, and B. Wang, “Egraph: Efficient
concurrent gpu-based dynamic graph processing,” IEEE Trans. Knowl.
Data Eng., vol. 35, no. 6, pp. 5823–5836, 2023.

[34] K. Meng, L. Geng, X. Li, Q. Tao, W. Yu, and J. Zhou, “Efficient multi-
gpu graph processing with remote work stealing,” in ICDE. IEEE, 2023,
pp. 191–204.

[35] L. Hu, L. Zou, and M. T. Özsu, “GAMMA: A graph pattern mining
framework for large graphs on GPU,” in ICDE. IEEE, 2023, pp. 273–
286.

[36] C. Ye, Y. Li, B. He, Z. Li, and J. Sun, “Large-scale graph label
propagation on gpus,” IEEE Trans. Knowl. Data Eng., vol. 36, no. 10,
pp. 5234–5248, 2024.

[37] C. Gui, L. Zheng, P. Yao, X. Liao, and H. Jin, “Fast triangle counting on
gpu,” in HPEC. IEEE, 2019, pp. 1–7.

[38] Y. Hu, H. Liu, and H. H. Huang, “High-performance triangle counting
on gpus,” in HPEC. IEEE, 2018, pp. 1–5.

[39] A. S. Tom, N. Sundaram, N. K. Ahmed, S. Smith, S. Eyerman, M. Kodiy-
ath, I. Hur, F. Petrini, and G. Karypis, “Exploring optimizations on
shared-memory platforms for parallel triangle counting algorithms,” in
HPEC, 2017, pp. 1–7.

[40] J. Zhang, D. G. Spampinato, S. McMillan, and F. Franchetti, “Preliminary
exploration of large-scale triangle counting on shared-memory multicore
system,” in HPEC. IEEE, 2018, pp. 1–6.

[41] M. Kargar and A. An, “Efficient top-k keyword search in graphs with
polynomial delay,” in ICDE. IEEE Computer Society, 2012, pp. 1269–
1272.

[42] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian, “Top-k nearest
keyword search on large graphs,” Proc. VLDB Endow., vol. 6, no. 10,
pp. 901–912, 2013.

[43] Q. Zhu, H. Cheng, and X. Huang, “I/o-efficient algorithms for top-k
nearest keyword search in massive graphs,” VLDB J., vol. 26, no. 4, pp.
563–583, 2017.

[44] Y. Yang, D. Agrawal, H. V. Jagadish, A. K. H. Tung, and S. Wu, “An
efficient parallel keyword search engine on knowledge graphs,” in ICDE.
IEEE, 2019, pp. 338–349.

[45] J. Cheng, X. Zeng, and J. X. Yu, “Top-k graph pattern matching over
large graphs,” in ICDE. IEEE Computer Society, 2013, pp. 1033–1044.

[46] W. Fan, X. Wang, and Y. Wu, “Diversified top-k graph pattern matching,”
Proc. VLDB Endow., vol. 6, no. 13, pp. 1510–1521, 2013.

[47] X. Wang and H. Zhan, “Approximating diversified top-k graph pattern
matching,” in DEXA (1), ser. Lecture Notes in Computer Science, vol.
11029. Springer, 2018, pp. 407–423.

[48] J. Xu, X. Fu, Y. Wu, M. Luo, M. Xu, and N. Zheng, “Personalized
top-n influential community search over large social networks,” WWWJ,
vol. 23, no. 3, pp. 2153–2184, 2020.

[49] N. Rai and X. Lian, “Top-k community similarity search over large road-
network graphs,” in ICDE. IEEE, 2021, pp. 2093–2098.

[50] W. Luo, X. Zhou, J. Yang, P. Peng, G. Xiao, and Y. Gao, “Efficient
approaches to top-r influential community search,” IOT, vol. 8, no. 16,
pp. 12 650–12 657, 2021.

[51] R. Sun, Y. Wu, and X. Wang, “Diversified top-r community search in geo-
social network: A k-truss based model,” in EDBT. OpenProceedings.org,
2022, pp. 2:445–2:448.

[52] J. Ye, Y. Zhu, and L. Chen, “Top-r keyword-based community search in
attributed graphs,” in ICDE. IEEE, 2023, pp. 1652–1664.

Jinbin Huang received the PhD degree from
Hong Kong Baptist University (HKBU) in 2024.
His research interests include graph data man-
agement and GPU-accelerated graph algo-
rithms.

Xin Huang received the PhD degree from the
Chinese University of Hong Kong (CUHK) in
2014. He is currently an Associate Professor at
Hong Kong Baptist University. His research in-
terests mainly focus on graph data management
and mining.

Jianliang Xu is a Professor in the Department of
Computer Science, Hong Kong Baptist Univer-
sity (HKBU). He held visiting positions at Penn-
sylvania State University and Fudan University.
He has published more than 150 technical pa-
pers in these areas, most of which appeared in
leading journals and conferences including SIG-
MOD, VLDB, ICDE, TODS, TKDE, and VLDBJ.

Byron Choi is a Professor in the Department
of Computer Science at the Hong Kong Baptist
University. He received the MSE and PhD de-
grees in computer and information science from
the University of Pennsylvania in 2002and 2006,
respectively. His research interestsinclude graph
data management and time series data analysis.

Yun Peng Yun Peng received the PhD degree
from Hong Kong Baptist University. He is the
associate head of the Department of Artificial
Intelligence, Guangzhou University.

