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Utility-Aware Dynamic Ridesharing in Spatial
Crowdsourcing

Yafei Li, Huiling Li, Xin Huang, Jianliang Xu, Yu Han, and Mingliang Xu

Abstract—With smartphones and geo-locating devices widely used around the world, ridesharing, as a main application field of spatial
crowdsourcing, has been fast expanding its widespread adoption and potentially brings great benefits to human society and the
environment. However, ridesharing has so far not been as popular as expected. A recent survey shows that notable obstacles come
from concerns about social comfort and price fairness when riding with strangers. To defeat these obstacles, in this paper, we study a
novel problem of utility-aware ride matching (URM) for dynamic ridesharing, where drivers and riders are matched in batches by
considering their social comfort and price revenue. While the URM problem is of practical usefulness, we prove that this problem is
Nondeterministic Polynomial Hard (NP-hard). To tackle the problem optimally and find exact answers, we present a novel bipartite
matching algorithm by integrating an effective Driver-Rider Graph (DR-Graph) index. To balance the effectiveness and efficiency, we
propose two efficient algorithms to solve the URM problem with only a small loss of utility. Leveraging a bounded Driver-Rider-group
Graph (DRg-Graph) and several useful pruning bounds for matching utility and travel cost, we develop an ε-refining algorithm to find an
ε-approximation matching utility of the optimal answer. Extensive experiments on real datasets showed that our proposed algorithms
achieved effective matching results of social-pricing based utilities and the efficient performance of quick matching under various
parameter settings.

Index Terms—Spatial crowdsourcing, ridesharing, social network, location-based services, optimization.
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1 INTRODUCTION

NOWADAYS, smartphones, equipped with rich built-in
sensors (e.g., GPS and accelerometers) and multiple

radios (e.g., Wi-Fi and cellular), become ubiquitous and are
widely used around the world. This trend leads to a new
computing paradigm, spatial crowdsourcing (SC), that can
be fully explored for real-time and location-aware crowd-
sourced tasks. As a main application field of SC, ridesharing,
which emerged as the times require, has greatly facilitated
people’s daily commutes. Major commercial platforms, such
as DiDi [1], Uber [4], and Lyft [2], offer ridesharing services
that enable multiple riders to travel towards the same direc-
tion to share rides with drivers. So far, however, ridesharing
has not been becoming as popular as expected, e.g., only
35 percent of trips are shared nationwide in the United
States [3], which eliminates many professed benefits, such
as reduced congestion and carbon output. As reported in
a recent survey [24], notable obstacles in current rideshar-
ing are the lower utility about social comfort and pricing
fairness, which affects the customer satisfaction and quality
of experience (QoE), the keys to the platform’s retention of
customers and the enthusiasm for encouraging customers to
participate in ridesharing [21], [22], [33]. Thus, in this paper,
we focus on the utility-aware ridesharing taking both social
comfort and pricing fairness into account.
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In the literature, there is a line of existing works that
examine issues related to utility-aware carpooling [9], [23],
[14], [15], [24], [17], [43], [10]. However, most of these works
only focus on one aspect of social comfort and pricing
fairness. On one hand, in terms of social comfort, Li et al.
[23] and Cheng et al. [14] suggested enforcing a specific
social constraint for ride group formulation. However, the
social models adopted in [15] and [23] are too restrictive
and thus reduce the ridesharing success rate. To address
this weakness, the techniques presented in [24] and [17]
make use of social distance to model social comfort among
drivers and riders, in which the social constraint is relaxed
to a certain extent. On the other hand, in terms of pricing
fairness, current commercial platforms provide a static pric-
ing scheme for riders by pre-calculating the sharing cost
(i.e., by giving a fixed discount on the original travel cost
even without passengers sharing a ride). Obviously, such a
pricing scheme is unfair for long-trip riders, since they must
bear more detours on their entire trip caused by picking
up and dropping off other riders. Several recent works [9],
[43], [10] have attempted to study the problem of dynamic
pricing by proposing a system where the rider’s fare is
dynamic and proportional to the actual detour cost. It is
certain that a dynamic pricing mechanism makes the rider’s
fare fairer and more flexible. To sum up, since social comfort
and pricing fairness are two primary concerns that affect
riders’ willingness to participate in ridesharing, they should
be offered simultaneously instead separately.

To accomplish this, we study a novel utility-aware ride
matching (URM) problem for dynamic ridesharing. Given
a set of drivers and a stream of riders, the URM-problem
aims to find out the matching plan for drivers and riders
that offers maximum platform utility in terms of social
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Fig. 1: A toy example of the URM-problem.
comfort and price revenue. Figure 1 depicts a toy example
for the URM-problem. Assume that there exist three riders
r1, r2, r3, and three drivers d1, d2, and d3. The available
number of seats with d1, d2, and d3 are 1. The matching
utilities for drivers and riders are listed in Figure 1. Here,
the matching means that the driver can pick up and drop
off the rider subject to his/her trip constraints. Therefore,
there exist two candidate matching plans, including P1 =
{(d2, r1), (d1, r2), (d3, r3)} with utility 16+21+18=55 and
P2 = {(d1, r1), (d2, r2), (d3, r3)} with utility 24+20+18=62.
Thus, P2 is the optimal matching plan.

The integrated consideration of social comfort and pric-
ing revenue in the URM-problem brings non-trivial chal-
lenges. First, it is difficult to model the utility of drivers and
riders acting under the influence of social comfort and price
revenue. Second, the URM-problem is shown to be NP-hard
in our theoretical analysis. Thus, a baseline exact method
requires a time complexity of dynamically assigning drivers
to serve more riders, which is exponential to the number
of drivers and riders. To satisfy real-time matching require-
ments, we need to design a highly efficient algorithm. In
this paper, we first present an integer linear programming
algorithm to solve the URM-problem optimally. Then, we use
a bipartite graph to model the URM-problem and present
an efficient DR-Graph-based bipartite matching algorithm.
To further accelerate the search speed, we present a fast
matching algorithm and an approximate algorithm to solve
the URM-problem with a quality guarantee. The major con-
tributions of this paper are summarized as follows:

• We first present a framework of ridesharing match-
ing, equipped with four entities of road networks,
social networks, drivers, and riders. Based on the
constraints of drivers’ route schedules, we formally
give a definition of matching utility based on the
quantified metrics of social comfort and price rev-
enue. Then, we define a novel URM-problem to find
the best matching plan for drivers and riders with
the maximum utility, and theoretically analyze the
hardness of the URM-problem.

• We present two exact algorithms for the URM-
problem to find optimal matching plans. We first
reformulate the URM-problem and use an integer lin-
ear programming algorithm to solve it. Furthermore,
we propose a novel bipartite matching algorithm by
integrating an effective DR-Graph structure to find
optimal answers.

• We propose two efficient algorithms, FMA and eRA,
to balance the efficiency and effectiveness of solu-
tions to the URM-problem. FMA is an efficient heuris-
tic greedy algorithm that integrates an effective DRg-
Graph index. Moreover, we design a bounded DRg-
Graph and several useful pruning bounds for match-

ing utility and travel cost. Integrating these pruning
bounds, we develop an effective ε-refining algorithm
eRA to find an ε-approximation matching utility of
the optimal answer.

• We conduct extensive experiments on two real-world
datasets to show that our proposed algorithms can
achieve desirable performance under a wide range
of parameter settings.

The rest of this paper is organized as follows. Section 2
reviews the related works. Section 3 formally defines the
URM-problem. Section 4 proposes two exact algorithms to
solve the URM-problem. Section 5 presents two efficient
algorithms to find approximate matching answers. Exten-
sive experiments are conducted in Section 6 to evaluate the
performance of our proposed algorithms, followed by the
conclusion and future work in Section 7.

2 RELATED WORK

In this section, we survey the related studies on dynamic
ridesharing and personalized ridesharing.

2.1 Dynamic Ridesharing
Dynamic ridesharing refers to matching drivers and riders
on very short notice or even en-route. Unlike static rideshar-
ing, dynamic ridesharing does not need pre-arranged com-
mutes for drivers and riders, it plays an important role in
ridesharing studies and attracts more attentions from both
academia and the industry [37], [40], [42], [36], [31], [12],
[18], [38].

Shuo et al. [27] developed a taxi-sharing system that
accepts the real-time ride request and arranges appropriate
taxis to serve them by ridesharing under different con-
straints. Cheng et al. [13] studied the maximum revenue ve-
hicle dispatching problem and proposed efficient learning-
based algorithms to predict vehicle demands. Ta et al.
[35] studied the ridesharing problem from two approaches:
search-based ridesharing and join-based ridesharing. They
respectively proposed a best-first algorithm and an ap-
proximated algorithm to tackle the problem. To evaluate
the feasibility of large-scale fleet operation, Alonso-Mora
et al. [6] presented a real-time optimization request match-
ing and dynamic vehicle route selection method for low-
and-high-capacity vehicles. Liu et al. [25] considered the
mobility-aware taxi ridesharing problem and presented a
mT-Share method, which constructs an index on taxis and
ride requests with both geographical information and travel
directions to serve both online and offline ride requests.
All the above works contribute significantly to ridesharing
service but do not consider the ride experience to improve
the arrangement quality for users. This differentiates them
from the goal of our utility-aware ridesharing problem.

2.2 Personalized Ridesharing
Recently, personalized ridesharing has attracted lots of at-
tention in the literature. In ridesharing studies, utility factors
like price and social cohesion, are thought to improve the
service quality [9], [39], [41], [32], [26].

To improve the pricing fairness, Chen et al. [10] pre-
sented a new price-aware ridesharing model. To accelerate
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TABLE 1: Frequently used notations

Notation Definition

Gn, Gs a road network and a social network
r, d a rider and a driver
R, D a set of riders and a set of drivers
Vd the onboard riders of d
Rg , RG a rider group and a set of rider group
κ(d,Rg) the matching utility of d and Rg

ϕ(d,Rg) the social comfort of d and Rg

µ(d,Rg) the price revenue for d serving Rg

η the benefit of unit travel cost
P a matching plan
Score(P) the utility of P
Gh, Gb a DR-Graph and a bipartite graph
GB,BG an DRg-Graph and a bounded DRg-Graph
κl(d,Rg) the matching utility lower bound of d and Rg

κu(d,Rg) the matching utility upper bound of d and Rg

Scorelb(GB) the utility lower bound of P in GB
Scoreub(GB) the utility upper bound of P in GB

the matching between drivers and riders, they designed
two efficient matching algorithms that follow the single-
side and dual-side searches. Pamula et al. [30] proposed
a taxi-ridesharing service that reduces the total travelling
distance per taxi and travelling cost per person. Wang et
al. [28] proposed a new spatial query and answered the
question of how to reduce travel cost. Li et al. [24] proposed
a price-aware top-k problem in ridesharing, which used
widespread ranking functions to rank the matching and
developed several efficient algorithms. On the other hand,
to further improve the ride experience, several other works
have integrated social cohesion into ridesharing [23], [17],
[15], [14], [7], [16], [34], [14]. Li et al. [23] proposed a social-
aware ridesharing group formulation problem in which
drivers and riders forming a ride group in terms of their
social connections. To further enrich the ride experience, Fu
et al. [17] considered both social cohesion and interest simi-
larity to measure a ridesharing group and proposed several
greedy algorithms to accelerate the matching efficiency. Cici
et al. [15] studied some mobility datasets to understand
mobility patterns and social ties among users, and then
(by considering a range of trip constraints) proposed an
efficient algorithm to match users with similar mobility
patterns. Cheng et al. [14] opined that the riders’ satisfaction
is important, and then formulated the problem of utility-
aware ridesharing to improve the ride experience. Despite
those extensive studies on personalized ridesharing, the
two primary concerns of social comfort and pricing fairness
(which affect the willingness of passengers to participate in
ridesharing) should be taken into account simultaneously
instead of independently as they have been in these previ-
ous studies. In this work, we integrate both social comfort
and pricing fairness in our consideration.

3 SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model, then
provide some preliminaries and the problem statement.
Table 1 gives a summary of the notations used in this paper.

Fig. 2: The system model of ridesharing matching.

3.1 System Model
In a ridesharing service, there are many part-time drivers
who are willing to offer available seats to the riders heading
in the same direction as their own. Simply put, the travel
pattern is that the driver starts from his/her origin to pick
up the riders at their pick-up points, then takes the riders
to their drop-off points, and finally ends the driver’s trip at
his/her own destination [24].

Figure 2 outlines our utility-aware ridesharing matching
(URM) framework. The general processing framework con-
sists of three parties, namely the drivers, the riders, and the
server. Specifically, drivers submit ride offers and riders send
in ride requests to the server in a stream fashion (e.g., Step-1);
The server handles the arrived ride offers and ride requests
in each batch by considering their overall utility in terms
of social comfort and price revenue. Drivers and riders are
respectively notified of their matched ride requests and ride
offers (Step-2 and Step-4); The unmatched ride offers and
ride requests are placed into the next batch for re-matching
(Step-3). Note that the expired ride offers and ride requests
are discarded from the server.

We clarify that our system is centralized. Once drivers
enter the system, they should send their real-time status to
the system periodically (e.g., every few seconds), including
their current locations, travel routes, and the number of un-
occupied seats. On the other hand, when a rider is assigned
to a driver, his/her real-time status dynamically changes as
the driver moves, including the rider’s current location and
actual pick-up and drop-off time.

3.2 Networks, Drivers, Riders, and Schedules
Our ridesharing matching problem consists of four entities,
including a road network Gn, a social network Gs, drivers
D, and ridersR. We define them one by one as follows.
• Road network: denoted as Gn = (Vn, En), where Vn

and En are the sets of road intersections and road seg-
ments, respectively. An edge lij ∈ En is a road segment
linking two road intersections li and lj (li, lj ∈ Vn).
• Social network: denoted as Gs = (Vs, Es), where Vs

and Es are the sets of users and acquaintance relations,
respectively. A user u ∈ Vs can be either a driver or
a rider. An edge uij ∈ Es indicates that two users
ui and uj (ui, uj ∈ Vs) are acquainted. Each user u
is associated with a set of keywords Ku that describes
the user’s personalized interests and features, such as
educations, preferences, favorite sports, and so on.
• Drivers: a set of users who offer ridesharing service,

denoted as D. Here, D ⊆ Vs. Each driver d ∈ D can
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be represented by a tuple d = (lpd, l
d
d, t

p
d, γd, χd,Kd,Vd),

which depicts the current status of driver d for further
ridesharing considerations. Here, lpd ∈ Vn and ldd ∈ Vn
denote the source and the destination of this driving
route, respectively. The tuple d also indicates tpd ∈ R≥0

the starting time, γd ∈ R≥0 the tolerable detour, χd ∈
Z≥0 the number of unoccupied seats, Kd the driver’s
interests, and Vd ⊆ Vs the set of onboard riders;
• Riders: a set of users who request ridesharing service

from drivers, denoted as R (R ⊆ Vs). Each rider r ∈ R
can be represented by a tuple r = (lpr , l

d
r , t

p
r , t

w
r , γr,Kr),

which describes the requested information of this rider
to identify high-quality ridesharing matching. Here,
the rider r is located at the pick-up point lpr ∈ Vn at
time tpr , and desires to drop off at the point ldr ∈ Vn.
The maximum tolerated waiting time and detour of
rider r are twr ∈ R≥0 and γr ∈ R≥0, respectively. The
personalized interests of rider r are Kr .

In practice, since road segments in the city are usually
short and road intersections are the most recognizable pick-
up and drop-off points for drivers and riders, for simplicity,
we follow the existing works [24], [19], [11] assuming that
the pick-up and drop-off points are located at the road
intersections. Then, we introduce a definition of route sched-
ule, which serves as a basic component of the ridesharing
service.

Definition 1 (Route schedule). Given a driver d with an on-
board rider set Vd = {r1, r2, · · · , rm} (m ∈ Z+), the route sched-
ule of d is a time-aware point sequence Sd = 〈l1, l2, · · · , l2m〉
with minimum travel cost of

∑2m−1
i=1 π(li, li+1), where the road

intersection l1 is the d’s source (i.e., l1 = lpd), the road intersection
l2m is the d’s destination (i.e., l2m = ldd), li (1 < i < 2m) is the
pick-up or drop-off point of rj where 1 ≤ j ≤ m, and π(li, li+1)
is the travel cost between two points li and li+1.

Note that the route schedule Sd is valid if and only if it
follows two conditions: (i) for any rider r ∈ Vd, the pick-up
point lpr is ahead of the drop-off point ldr in Sd, and (ii) d can
serve all riders in Vd (i.e., d can pick up/drop off the riders
in Vd without violating their waiting time and detour con-
straints). Additionally, we use π(·, ·) to represent the travel
cost between two points on the road network, and πv(·, ·) to
represent the actual travel cost for a driver or rider to move
from one point to another on the road network according
to the driver’s route schedule. In this paper, the travel cost
can be expressed as the travel distance or the travel time.
Since these two measurements can be inter-converted when
the travel speed is known, we do not explicitly distinguish
them and use travel cost for consistency.

3.3 Matching Utility
Given a driver d and a group of riders (a.k.a., a rider group)
Rg , we say the driver d matching the potential ride group
Rg if the following two constraints hold: (i) |Rg| ≤ χd, and
(ii) there exists a valid route schedule for d to serve the
onboard riders in Vd and the riders in Rg , namely Vd ∪Rg ,
according to Definition 1. Although the above two con-
straints can reduce lots of disqualified matchings, there still
exist multiple different choices for ride matching between
drivers and riders. Therefore, to quantify the quality of a

matching, we formulate the definition of matching utility
based on the two important considerations of social comfort
and price revenue.

Social comfort ϕ(d,Rg). We first introduce the social com-
fort. In a ridesharing service, riders and the driver often
seek for the social comfort among themselves in terms of
common interests and social cohesion. For instance, two
riders who are friends and have a common interest (e.g.,
sport) tend to feel comfortable when they share a ride. Thus,
following the existing works [17], [16], we define the social
comfort for driver d and ride group Rg as

ϕ(d,Rg) =
τ(d,Rg)
ξ(d,Rg)

. (1)

Here, τ(d,Rg) is to measure the common interests of all
potential ridesharing users Φd, that is, Φd = {d} ∪Rg ∪ Vd,
including driver d, the existing riders Vd, and also the can-
didate ride group Rg . We calculate the similarity by a mod-

ified Jaccard similarity function τ(d,Rg) =
|
⋂

u∈Φd
Ku|+1

|
⋃

u∈Φd
Ku|+1 .

The social cohesion ξ(d,Rg) is the maximum social dis-
tance between two users in Φd (the maximum hops be-
tween users Φd in social network), denoted as ξ(d,Rg) =
maxu,v∈Φd

distGs
(u, v), where distGs

(u, v) is the social dis-
tance between u and v in social network Gs.

Price revenue µ(d,Rg). We next present the price revenue.
In a ridesharing service, the price cost and total revenue are
critical important for both riders and drivers, respectively.
To give a fair price, we adopt the setting of a price scheme
following [24]. We assume that each rider can enjoy a certain
discount on his/her original travel cost that is proportional
to the detour incurred by the driver serving other riders.
The fare of a rider r served by a driver d is defined as
F(r, d) = πv(l

p
r , l

d
r) · f(∆) · η, where η is the benefit of unit

travel cost, ∆ =
πv(lpr ,l

d
r)−π(lpr ,l

d
r)

π(lpr ,ldr)
is the actual detour rate,

and f : R[0,+∞) → R(0,1] is the discount function. Thus, for a
rider group of multiple users Rg and the driver d, the price
revenue µ(d,Rg) is defined as,

µ(d,Rg) =

∑
r∈Rg

F(r, d)− πv(lpd, ldd)

M
. (2)

Here,
∑
r∈Rg

F(r, d) is the total fare for d serving all riders
in Rg , M is the maximum revenue in the historical data
for a driver offering a ride, which is used for normalizing
µ(d,Rg) into [0, 1] and πv(l

p
d, l

d
d) is the total travel cost for

driver d serving all riders in Rg . For simplicity, we set the
cost of unit travel cost as 1. Note that the ridesharing service
platform receives a cut with a fixed rate on the revenue
of each driver in practice. Thus, the platform’s revenue is
proportional to the total revenue of all drivers. In the sequel,
we do not distinguish the platform’s revenue from drivers’
revenue.

Matching utility κ(d,Rg). Integrating the utilities of social
comfort and price revenue, the matching utility between the
driver d and the rider group Rg is defined as

κ(d,Rg) = α× ϕ(d,Rg) + (1− α)× µ(d,Rg), (3)

where the parameter α ∈ [0, 1] is used to make a trade-off of
user preferences between social comfort ϕ(d,Rg) and price
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revenue µ(d,Rg).

3.4 Problem Formulation
Next, we consider a set of drivers D and a set of riders R,
and define a matching plan between D and R, in the aspect
of drivers and riders matching globally on a ridesharing
service platform.

Definition 2 (Matching plan). Given a driver set D and a rider
setR, a matching plan is defined as P = {(d,Rg)|d ∈ D,Rg ⊆
R, |Rg| ≤ χd} where for any two matchings (d,Rg) ∈ P and
(d′,R′g) ∈ P with d 6= d′, it holds for Rg ∩R′g = ∅.

Note that in a matching plan P in Def. 2, each rider can
be assigned to at most one driver. Meanwhile, each driver
can be assigned a rider set Rg where the size upper bound
of Rg is the number of available seats of d (i.e., |Rg| ≤ χd).
The matching utility of P can be calculated as

Score(P) =
∑

(d,Rg)∈P

κ(d,Rg). (4)

According to the matching plans and the correspond-
ing matching utilities, we formulate as follows the URM-
problem studied in this paper.

Problem 1 (URM-problem). Given a set of drivers D and a set
of riders R, the URM-problem aims to find the best matching
plan P with the largest matching utility Score(P), that is, there
exists no other matching plan P ′ 6= P such that Score(P ′) >
Score(P).

3.5 Problem Analysis
In the following, we analyze the hardness of the URM-
problem in Theorem 1.

Theorem 1. The URM-problem is NP-hard.

Proof. Please refer to Appendix A.1.

In this paper, we study how to solve the URM-problem
efficiently and effectively. We aim at developing optimal and
scalable solutions that have short response times and high-
quality answers. This is mainly achieved by several efficient
algorithms, which are presented in Sections 4 and 5.

4 EXACT UTILITY-AWARE MATCHING

In this section, we first reformulate the URM-problem in an
optimization way, which is addressed by integer linear pro-
gramming. Then, we present a bipartite matching algorithm
to find optimal answers with the largest matching utilities.

4.1 Integer Linear Programming Approach
We first reformulate URM-problem to be solved by integer
linear programming. Given a set of drivers D and a set
of riders R, the URM-problem aims to find out an optimal
matching plan P in D×RG whereRG (which can be found
by DFS) denotes a set of rider groups that can be served by
the drivers in D. For a driver di ∈ D (i ∈ [1, |D|]) and a
rider group Rgj ∈ RG (j ∈ [1, |RG|]), we use the decision
variable xij ∈ {0, 1} to indicate the matching of di and

Algorithm 1: Basic Bipartite Matching
Data: a set of drivers D, a set of riders R
Result: the best matching plan P

1 Initialize a driver-rider set DR;
/* Filtering (lines 2--4): filter out

invalid driver-rider matching. */
2 for each pair (d, r) ∈ D ×R do
3 if the matching of d and r is valid then
4 Add the pair (d, r) into DR;
5 Build the weighted bipartite graph Gb based on DR;
/* Verification (line 6): invoke the KM

algorithm to find the best matching
plan. */

6 Find the best matching plan P in Gb using KM
algorithm [29], [20];

7 return P ;

Rgj where xij = 1 denotes the matching of di and Rgj
is valid and xij = 0 otherwise. We use the decision variable
yik ∈ {0, 1} (i ∈ [1, |D|] and k ∈ [1, |R|]) to reveal the
matching of di and rk where yik = 1 denotes that di serves
rk and yik = 0 otherwise. Hence, the objective function for
solving the URM-problem can be formulated as follows:

max

|D|∑
i=1

|RG|∑
j=1

wij · xij

s.t.,

xij ∈ {0, 1}, (5)

yik ∈ {0, 1}, (6)

wij = κ(di,Rgj ), (7)
|D|∑
i=1

yik ≤ 1,∀k ∈ {1, 2, · · · , |R|}, (8)

|RG|∑
j=1

xij ≤ 1,∀i ∈ {1, 2, · · · , |D|}. (9)

Here, constraint (5) and constraint (6) simply enforce
the binary nature of xij and yik; constraint (7) calculates
the matching utility of di and Rgj ; constraint (8) implies
that each rider can match at most with one driver; and
constraint (9) requires that each driver can serve at most
one rider group. The integer linear programming is the basic
approach for solving the URM-problem and is effective only
when the number of drivers and riders is in a small size.
As proved in Theorem 1, however, the URM-problem is NP-
hard. If there are many drivers and riders, solving the URM-
problem by integer linear programming is computationally
intensive and thus it cannot work well on real applications
with more than thousands of drivers and riders. Hence, we
should propose solutions that are more efficient to solve this
problem.

4.2 Bipartite Matching Approach

In this section, we solve the URM-problem by bipartite
matching, which finds the best matching plan between
drivers and riders. We model the underlying setting of the
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Fig. 3: The structure of DR-Graph and its maintenance.
URM-problem as a weighted bipartite graph Gb = (D,R, E)
that contains a set of drivers D, a set of riders R, and a set
of edges E . Each edge e ∈ E linking a driver d ∈ D and a
rider r ∈ R exists if the matching of d and r is valid and
associated with a weight indicating the utility for d serving
r. Hence, solving the URM-problem means finding the best
matching plan P over Gb such that the overall utility of P is
maximized.

Basic Bipartite Ride Matching. We illustrate a basic algo-
rithm of bipartite matching on Gb, which serves as a general
framework for finding the best driver-rider matching plan
as shown in Algorithm 1. The framework is composed of
two steps including filtering and verification. In short, we
first find all valid driver-rider matchings DR by checking
whether the drivers can serve the riders (lines 2–4). After
that, we build the weighted bipartite group Gb based on
DR (line 5). Finally, we invoke the KM algorithm [20], [29]
to find the best matching plan P (line 6). Algorithm 1 can
correctly find the optimal matching plan when each driver
can serve at most one rider. However, it cannot tackle the
case when a driver serves multiple riders optimally.

Next, we present a novel index structure, called Driver-
Rider Graph (DR-Graph), to address this issue. We give the
definition of the DR-graph as follows.

Definition 3 (DR-Graph). A DR-Graph, denoted as Gh =
(Vh, Eh), is a graph where each vertex v ∈ Vh denotes a driver or
a rider, and an edge e = (v, u) ∈ Eh linking two vertices v and
u exists if the matching of v and u is valid.

Figure 3(a) illustrates the graph structure of DR-Graph.
Note that the matching of v and u in Definition 3 is twofold:
(1) if v and u are riders, the matching (v, u) indicates that at
least one nearby driver can serve both v and u; (2) if v is a
driver and u is a rider, the matching (v, u) indicates that v
can serve u.

DR-Graph Construction and Maintenance. In the follow-
ing, we present how to construct the DR-Graph and main-
tain it with dynamic updates. Given a set of drivers D and
a set of riders R, an essential task for building a DR-Graph
is to find both kinds of edges, that is, driver-rider and rider-
rider matchings. For the driver-rider matching, it is easy to
identify if the driver can serve the rider without violating
their trip constraints (e.g., tolerable waiting time and detour
ratio). For the rider-rider matching, given two riders r1 and
r2, we assume that there exists an ideal driver d whose
source and destination are the same as those of riders r1 or
r2. Then, the rider-rider matching (r1, r2) exists if an ideal
driver d can serve riders r1 and r2 without violating the
constraints of r1 and r2. In other words, at least one of the

following four schedules for d serving r1 and r2 is valid,

Sd = {< lpr1 , l
p
r2 , l

d
r2 , l

d
r1 >,

< lpr1 , l
p
r2 , l

d
r1 , l

d
r2 >,

< lpr2 , l
p
r1 , l

d
r1 , l

d
r2 >,

< lpr2 , l
p
r1 , l

d
r2 , l

d
r1 >}.

On the other hand, the DR-Graph can be also adapted to
the dynamic updating setting of our URM-problem, which
maintains the matching computations performed up-to-now
and uses them efficiently for newly joined and unmatching
drivers/riders in the next batch. Specifically, we dynami-
cally insert and remove edges for the newly arrived drivers
and riders.

Example 1. We illustrate an example of DR-Graph and its
dynamic maintenance in Figure 3. Figure 3(a) shows an initial
DR-Graph, which consists of five riders r1 ∼ r5 and two drivers
d1 and d2. The edges have two kinds of driver-rider and rider-
rider matchings. Figure 3(b) depicts the best matching plan of
the DR-Graph in Figure 3(a). The driver d1 matches the rider
group {r1, r2} and the driver d2 matches the rider r5. Note that
the rider-rider matching between r3 and r4 remains for the next
round matching. Assume that three new riders r6, r7, r8 and
two new drivers d3, d4 arrive in the DR-Graph. We accordingly
update the DR-Graph as shown in Figure 3(c). As the matching
(r3, r4) is still valid for matching, we do not need to build this
matching from scratch and thus save computation costs via this
method of DR-Graph maintenance.

Although the DR-Graph can keep all matching informa-
tion among drivers and riders, it is not precise enough to
infer the matching between a driver and a group of riders.
Thus, we propose an advanced graph model DRg-Graph
based on the DR-Graph.
DRg-Graph Construction. The DRg-Graph is formulated by
the three entities of drivers, riders, and rider groups. We can
construct the DRg-Graph based on the DR-Graph as follows.
We adopt the depth-first search algorithm to quickly find
a set of rider groups Rdg that can be served by a driver
d on the DR-Graph. We treat each set of rider groups as
a super vertex in DRg-Graph. Making use of these rider
groups, we then define the DRg-Graph as GB = (D,RG, E+)
to support finding the best matching plan that allows a
driver to serve multiple riders, in which RG =

⋃
d∈DRdg ,

E+ contains all edges linking d ∈ D and Rg ∈ RG. For
each bipartite graph Gb enumerated from GB , we invoke the
KM algorithm to find the best matching plan Pb. Then the
best matching plan with the maximum utility is returned as
the final result. However, this approach needs to compute
the matching utilities for all ridesharing match plans. To
further improve the processing performance, we present a
utility upper bound in Lemma 1 to stop the computation
process early, guaranteed by Theorem 2. Here, Lemma 1 can
be easily proved and thus omitted.

Lemma 1. Given a bipartite graph Gb, the utility upper bound of
a matching plan Pb derived from Gb is

Scoreub(Pb) =
∑
d∈D

maxRg∈Rd
g
κ(d,Rg), (10)
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Algorithm 2: Bipartite Matching Algorithm (BMA)
Data: a set of drivers D, a set of riders R, and a

DR-Graph Gh
Result: the final matching plan P

1 queue← NewPriorityQueue();
2 for each driver d ∈ D do
3 Find the rider group set R+

d in Gh using DFS;
4 Bb ← Bb ∪R+

d ;
5 Build the super bipartite graph GB ;
6 for each bipartite graph Gb in GB do
7 Compute the utility upper bound Scoreub(Gb);
8 queue.Enqueue(Gb, Scoreub(Gb));
9 while queue 6= ∅ do

10 G′b ← queue.Dequeue();
11 Find the best matching plan P ′ of G′b using

KM [29];
12 if Score(P ′) ≥ Score(P) then
13 P ← P ′;
14 G′′b ← queue.First();
15 if Score(P) ≥ Scoreub(G′′b ) then
16 break;
17 return P ;

where Rdg is a set of rider groups that can be served by driver d.

Theorem 2. Given a queue of bipartite graphs B = (Gb1 , Gb2 ,
· · · , Gbm ), where the bipartite graph Gbi is sorted in descending
order of the utility upper bound Scoreub(Pbi). If Score(Pbi) ≥
Scoreub(Pbi+1

), then Pbi is the optimal matching plan from B.

Proof. Please refer to Appendix A.2.

BMA Algorithm. Leveraging the DR-graph and DRg-Graph,
we present the bipartite matching algorithm (BMA) for find-
ing the best matching plan. Algorithm 2 describes the details
of the bipartite matching algorithm. We first initializes a
priority queue queue where each entry is a bipartite graph
sorted in the decreasing order of utility upper bounds (line
1). Then, the rider groups that can be served by each driver
in D are calculated using the DFS algorithm and stored
in Bb (lines 2-4). With these rider groups, we construct a
DRg-Graph with rider groups GB (line 5) and computes the
utility upper bound Scoreub(Gb) for each bipartite graph Gb
in GB . The algorithm adds each Gb into queue according to
its Scoreub(Gb). Afterwards, it dequeues the bipartite graph
G′b from queue and computes the best matching plan P ′ of
G′b by KM algorithm [29], [20]. Here, we use the matching
plan P to store the current best matching plan (lines 12-13).
If the utility of P is larger than the utility upper bound of
the next processing bipartite graph in queue, the matching
plan P is returned as the final answer (lines 14-17).

Example 2. We illustrate a running example of applying the
bipartite matching approach in Algorithm 2 on DR-graph Gh in
Figure 4. The drivers and riders are shown in Gh in Figure 4(a).
Given this DR-Graph Gh, we invoke the DFS algorithm to
construct DRg-Graph GB as shown in Figure 4(b). Based on
the derived DRg-Graph GB , we enumerate all possible cases of
bipartite graphs and sort them in the descending order of their
utility upper bounds. We sequentially calculate the utility of the

Algorithm 3: Fast Matching Algorithm (FMA)
Data: a set of drivers D, a set of riders R, and a

DRg-Graph GB
Result: the final matching plan P

1 Initialize the best matching plan P from GB by KM;
2 for each rider group Rg in GB do
3 Find the drivers DRg in P that can serve Rg ;
4 if no subset of Rg appears in P then
5 for each driver d in DRg do
6 Rg ← the rider group served by d;
7 D′ ← the drivers in D but not in P ;
8 d′ ← argmaxd′∈D′κ(d′,Rg);
9 δ′ ← κ(d′,Rg)− κ(d,Rg);

10 δ ←max{δ′, δ};
11 else
12 Dp ← the drivers in P serving subset of Rg ;
13 H ← the rider groups in GB but not in P ;
14 if DRg is not empty then
15 d′ ← argmaxd∈DRg

κ(d,Rg);
16 δ′ ←max

∑
d∈Dp\{d′},Rg∈H κ(d,Rg);

17 δ ← κ(d′,Rg) + δ′ −
∑
d∈Dp

κ(d,Rg);
18 if δ > 0 then
19 Update P with Rg accordingly;
20 return P ;

best matching plan for each bipartite graph. For instance, when
the best utility of the bipartite graph in Case 1 is calculated, the
best matching utility is shown as 10+9+5=24. It is higher than
the utility upper bound of that in Case 2 (i.e., 22), which leads to a
stop of the calculation by Theorem 2. Therefore, the best matching
plan in Case 1 is returned as the final matching answer.

Complexity analysis. The time cost of BMA algorithm con-
sists of two parts: (i) DRg-Graph construction, the time com-
plexity for constructing DRg-Graph isO(n(m+n)+nβ|Rdg |)
(denoted as DRG) where m is the number of riders, n is the
number of drivers, and |Rdg | is the number of rider groups
in Rdg ; and (ii) matching plan finding, the time complexity
for finding the optimal matching plan is βm3 where β is
the number of bipartite graphs enumerated from GB , m is
the maximum number of drivers or ride groups in G′b, and
O(m3) is the time complexity of KM algorithm. Therefore,
the time complexity of the BMA is O(DRG+ βm3).

5 EFFICIENT UTILITY-AWARE MATCHING

In this section, we develop two efficient solutions for the
URM-problem. We propose a greedy algorithm for quickly
finding ridesharing matching answers. Moreover, to balance
the efficiency and effectiveness, we propose an ε-refining
algorithm with quality guaranteed.

5.1 Fast Matching Approach

Although the bipartite matching algorithm finds the best
matching plan correctly, it is very time consuming to enu-
merate all the possible cases in the worst. To improve the
efficiency, we propose an efficient fast matching approach
(FMA) in Algorithm 3 to solve the URM-problem.
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Fig. 4: A running example for bipartite matching approach.
Overview. The general idea of our FMA approach in Algo-
rithm 3, is that given a set of driversD, a set of ridersR, and
a DRg-Graph GB , we first use the KM algorithm to initialize
the best matching plan P over GB , where each driver serves
at most one rider. Then, we invoke the DFS algorithm to
find all rider groups over Gh. For each rider group Rg ,
we continuously update the rider in P with Rg to improve
the overall utility. Finally, the updated matching plan P is
returned as the final answer. In general, the updates of the
rider group of d in P given Rg are twofold:

• CASE 1. If no subset of Rg appears in P , we attempt
to find a driver d in P to serve Rg and find a driver
in D (but not in P) to serve d’s matched rider group
Rd in P such that the utility increment for the rider
group exchange is maximized.

• CASE 2. If there exist some subsets of Rg appearing
in P , we attempt to find a driver d in P to serve Rg
instead of the drivers D′ serving the subsets of R′ in
P . Meanwhile, we match each driver d ∈ D′ with a
suitable rider group of GB that is not in P , such that
the utility increment for the rider group exchange is
maximized.

FMA Algorithm. Algorithm 3 describes the procedures for
the fast matching algorithm. The algorithm takes the input
of a set of drivers D, a set of ridersR, and a DRg-Graph GB .
It first invokes the KM algorithm to find the initial matching
result where each driver serves one rider at most (line 1).
Then, for each rider group Rg in GB , it finds the drivers
DRg

in P that can serve Rg (line 3). The algorithm next
identifies which exchange the update falls into according to
whether the subset of Rg appears in P . If there is no subset
of Rg appearing in P , the algorithm adopts the exchange
of CASE 1 (lines 4-10); otherwise, it finds the driver set DP
that can serve the subset of Rg and the rider groups H in
GB but not in P . After that, it selects the driver d′ ∈ DP
who matches Rg with the maximum utility. Since the riders
inRg are served by d′, it needs to match each driver in DP \
{d′} with a suitable rider group in H such that the overall
utility of DP \ {d′} is maximized (lines 12-17). Finally, if the
utility increment δ is larger than zero, it executes the rider
group exchange in P accordingly (lines 18-19). The process
of rider group exchange executes until all rider groups in
GB are attempted. The final matching plan P is returned as
the answer (line 20).

Example 3. We illustrate a running example to introduce the
general ideas of our fast matching approach in Figure 5. Fig-
ure 5(a) shows an input DRg-Graph of drivers, riders, and rider
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Fig. 5: A running example for fast matching approach.

groups. Figure 5(b) depicts an initial matching plan in which each
driver serves at most one rider. Figures 5(c)∼5(e) illustrate the
process of matching plan updates. In Figures 5(c)∼5(e), we use the
rider groups {r1, r2}, {r3, r4}, and {r6, r7} to update the initial
matching plan, respectively. Specifically, the utility increment of
the updated matching plan in Figure 5(c) is 8−6 = 2 by changing
r1 with {r1, r2}. Similarly, the utility increment in Figure 5(d) is
11−8 = 3 by changing r4 with {r3, r4}, the utility increment in
Figure 5(e) is 11− 8 + 6− 7 = 2 by changing r7 with {r6, r7}.

Complexity analysis. The time complexity of the fast match-
ing approach is O(m3 + ν2k), where m is the number of
riders, ν is the number of rider groups, and k is the number
of drivers that matches the rider groups. Here, O(m3) is the
complexity of the KM algorithm.

5.2 ε-Refining Matching Approach

Although the fast matching algorithm can greatly improve
processing efficiency, it cannot guarantee the quality of the
matching result. To address this issue, we propose an effi-
cient ε-refining algorithm for balancing the answer quality
and processing efficiency, ensuring the matching answer
P achieves an ε-approximation to the matching utility of
optimal answer P∗. Here, the value of ε is a user-defined
parameter of practicality.

5.2.1 Bounded DRg-Graph and Pruning Bounds

Bounded DRg-Graph. We begin with a new definition
of the bounded DRg-Graph. The index structure of the
bounded DRg-Graph is built upon the DRg-Graph in Defini-
tion 4. Thus, the bounded DRg-Graph also consists of drivers
and rider groups but keeps records of the upper bound and
lower bound of utilities (instead of the exact utilities), which
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bounds are used for pruning disqualified matchings and
reducing computation costs.

Definition 4 (Bounded DRg-Graph). A bounded DRg-Graph
BG = (D,R+

D, E+) is a DRg-Graph. Each edge e = (d,Rg) ∈
E+ linking a driver d and a rider groupRg is with a utility lower
bound κl(d,Rg) and a utility upper bound κu(d,Rg).

Next, we introduce two useful properties in Theorems 3
and 4 to calculate the lower bound κl(d,Rg) and the upper
bound κu(d,Rg) for each matching between drivers and
rider groups, that is, κl(d,Rg) ≤ κ(d,Rg) ≤ κu(d,Rg). In
the following, we still consistently denote the all potential
ridesharing users for driver d as Φd = {d} ∪ Rg ∪ Vd.

Theorem 3. Given a matching of a driver d and a rider group
Rg , the utility lower bound of the matching (d,Rg) is

κl(d,Rg) =α ·
|
⋂
u∈Φd

Ku|+ 1

SDmax ·
∑
u∈Φd

|Ku|+ 1
+ (1− α)·∑

r∈Rg
πv(l

p
r , l

d
r) · f(∆max) · η − πv(lpd, ldd)

M
,

(11)

where SDmax is the maximum social distance between users.

Proof. Please refer to Appendix A.3

Theorem 4. Given a matching of a driver d and a rider group
Rg , the utility upper bound of the matching (d,Rg) is

κu(d,Rg) = α·maxu∈Φd
|Ku|+ 1

|
⋃
u∈Φd

Ku|+ 1
+ (1− α)·∑

r∈Rg
F(r, d)− πv(lpd, ldd)

M
.

(12)

Proof. Please refer to Appendix A.4

In Theorems 3 and 4, it is time consuming to calculate the
travel cost π(lpr , l

d
r) frequently. In practice, for bound com-

putations, we can use the travel cost lower bound πl(l
p
r , l

d
r)

and upper bound πu(lpr , l
d
r) given in Lemma 2 instead of the

travel cost π(lpr , l
d
r). In the following, we propose a novel

grid-based index to accelerate the computations of upper
and lower bounds.
Grid-based Distance Index. We design a novel grid-based
distance index to estimate the travel cost upper and lower
bounds. Figure 6(a) illustrates the data structure of our grid-
based distance index. We partition the road network into
a set of continuous cells, according to the number of road
intersections within a cell, where each cell is represented by
an internal entry. Each cell contains a fixed number of road
intersections at most. Besides the grid-partitioned map in
Figure 6(a), it is also equipped with two distance matrices of
grids Mg and cells Mc, as shown in Figures 6(b) and 6(c), re-
spectively. The grid-based matrix Mg is an internal distance
matrix, which keeps the distance between any two cells’
center road intersections. The cell-based matrix Mc is an
external distance matrix, which keeps the distance between
the center road intersection and the road intersection within
a cell. Note that the grid-based index and two distance
matrices Mg , Mc only need to be calculated once offline.
Making use of Mg and Mc, we can quickly calculate the
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Fig. 6: The structure of the grid-based index. Figure 6(a) is the
partition of the road network, the centre points in each cell
are marked in red and the other points are marked in blue.
Figures 6(b) and 6(c) are two distance matrices.

travel cost upper bound πu(lpr , l
d
r) and the travel cost lower

bound πl(lpr , l
d
r), guaranteed by the following Lemma 2.

Lemma 2. Given two road intersections li and lj , assume that li
locates in cell ck and lj locates in cell cm. The travel cost upper
bound πu(li, lj) and the travel cost lower bound πl(li, lj) are
πu(li, lj) = Πkm + πki + πmj and πl(li, lj) = max(0,Πkm −
πki − πmj), respectively. Πkm is the distance between cells ck
and cell cm.

Proof. The proof can be easily completed through the trian-
gle inequality. Thus, we omit the proof here.

5.2.2 ε-Refining Algorithm
In the following, we state how to use bounded DRg-Graph
to find out an ε-approximation matching answer. In general,
adopting the bounded DRg-Graph, we can quickly compute
the utility upper and lower bound for an optimal matching
plan P ∗ based on Theorem 5. We iteratively calculate the
real utility of each matching and use it to update the utility
upper and lower bounds for the matching plan until the
ratio between the utility upper bound and the utility lower
bound is less than the threshold ε. Finally, the matching plan
with the lower bound is returned as the final answer.
Bounds for Score(GB). We first introduce the upper and
lower bounds for Score(GB) as follows.

Theorem 5. The utility upper bound Scoreub(GB) and utility
lower bound Scorelb(GB) for the matching plan derived from the
bounded DRg-Graph are

Scoreub(GB) =
∑
d∈D

maxRg∈Rd
g
{κu(d,Rg)} (13)

and

Scorelb(GB) =

|D|∑
i=1

maxdi∈D{κl(di,Rig)} (14)

where Rig ∈ Rdig , Rjg ∈ R
dj
g and ∪ij=1{Rig ∩Rjg} = ∅.

Proof. Please refer to Appendix A.5

Overview. Based on the bounded DRg-Graph, the general
process of ε-refining algorithm is that we use the real utility
of each matching to iteratively update the matching utility
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Algorithm 4: ε-Refining Algorithm (eRA)
Data: a DRg-Graph GB , a threshold ε
Result: the final matching plan P

1 queue← NewPriorityQueue();
2 for each edge e in GB do
3 queue.Enqueue(e, κu(d,Rg)− κl(d,Rg));
4 ratio← Scoreub(Gb)/Scorelb(Gb);
5 while ratio > ε and queue 6= ∅ do
6 e← queue.Dequeue();
7 Update GB with κ(d,Rg) of e;
8 ratio← Scoreub(GB)/Scorelb(GB);
9 if ratio ≤ ε then

10 Compute an ε-approximation plan P with
Scorelb(GB);

11 else
12 Compute P over GB by BMA in Algorithm 2;
13 return P ;

upper and lower bounds. In each iteration of updating,
we compare the ratio of Scoreub(GB)/Scorelb(GB) with the
threshold ε. If the ratio is less than ε, we return the matching
plan with the utility lower bound Scorelb(GB) as the final
answer. Note that we calculate the real utility of matching
in descending order of the difference between Scoreub(GB)
and Scorelb(GB), because it can quickly narrow down the
gap between Scoreub(GB) and Scorelb(GB) and thus accel-
erate the termination of the search process.
eRA Algorithm. Algorithm 4 introduces the pseudo code
of ε-refining algorithm. It first builds the priority queue to
store the matchings in the decreasing order by the difference
between the utility upper bound and the utility lower bound
(line 1). For each matching in the bounded DRg-Graph, if
the matching linked driver can serve the riders in the linked
rider group, we put the matching into the priority queue
according to the utility bound difference (lines 2-3). As the
upper and lower bounds of all matchings are known in
advance, the ratio between the utility upper bound and
the utility lower bound of the best matching plan derived
from bounded DRg-Graph can be calculated. If it does not
exceed the threshold ε, the matching plan corresponding to
the utility lower bound will be returned as the final result
(lines 5-10). Otherwise, we dequeue and calculate the real
utility of the matching on the top of priority queue, then
update the utility upper and lower bounds using the real
matching utility (line 7). If all the matchings in the queue
cannot satisfy the early stop condition, we use the BMA in
Algorithm 2 to calculate the optimal matching plan (line 12).

Example 4. Figure 7 shows an example of ε-refining approach
where ε = 1.2. In Figure 7(a), there exists an initial bounded
DRg-Graph where each edge is associated with a three-entry tuple
w = (κu, κl, κu − κl). As illustrated in ε-refining algorithm,
we update the weight w of each edge with its real matching
utility in the descending order of utility difference (κu − κl).
In Figure 7(b), the matching (d2, {r2, r3}) has the maximum
utility difference of 4. Thus, we first update (13, 9, 4) with
κ(d2, {r2, r3}) = 12. Now, since Scoreub(GB)/Scorelb(GB)
= 20/16 = 1.25 > 1.2, we continue to update the match-
ing utility. Similarly, in Figure 7(c), we update the edge with

(7, 4, 3) with the real utility κ(d2, {r1}) = 6. Then, we have
Scoreub(GB)/Scorelb(GB) = 19/18 = 1.06 < 1.2. Thus, the
matching plan P = {(d1, {r1}), (d2, {r2, r3})} with a utility
lower bound Scorelb(GB) = 18 is returned as the final answer.

Theorem 6. [Approximation analysis] Let P be the matching
plan derived by Algorithm 4 and P∗ be the optimal matching
plan, then we have

Score(P) ≥ 1

ε
· Score(P∗). (15)

Proof. Please refer to Appendix A.6

Complexity analysis. Algorithm 4 takes O(|E+|log|E+|) to
initialize the queue, takes O(|E+|) time to calculate utility
bounds, and takes O(ψβm3) time to compute P where
O(βm3) is the time cost of BMA algorithm except the
construction of GB , and ψ is the probability to invoke
BMA algorithm (ψ is usually very small). Assume that the
threshold ε is satisfied in η iterations. Here, |E+| is the
number of edges in GB . Therefore, the total time complexity
is O(|E+|(log|E+|+ η) + ψβm3).

6 PERFORMANCE EVALUATION

In this section, we experimentally evaluate the efficiency
and effectiveness of our four proposed algorithms. The first
is the integer liner programming approach described in
Section 4.1 (referred to as ILP), the second is the bipartite
matching algorithm in Algorithm 2 (referred to as BMA),
the third is the fast ridesharing matching algorithm in
Algorithm 3 (referred to as FMA), and the fourth is the
ε-refining approximate algorithm in Algorithm 4 (referred
to as eRA). In addition, we also evaluate the performance
of our four proposed algorithms against three state-of-the-
art methods [24] (referred to as SbA), [43] (referred to as
PBM) and [6] (referred to as ILP-J). The performance of
our algorithms is evaluated in terms of the average elapsed
time, the average number of served riders (denoted as # of
matchings), and the average utility score. We also conduct
some additional experiments to evaluate the quality of the
results.

6.1 Experimental Settings
Datasets. We evaluate the proposed algorithms on two real
trajectory datasets collected from NYCTaxi1 and DIDI2, and
a real social network collected from Gowalla3, which have
been widely used to study ridesharing problems [24]. Specif-
ically, the DIDI dataset collects the trips in Chengdu for one
month; the NYCTaxi dataset records the taxi trips in New
York for one month; the Gowalla dataset contains 196,591
users and 950,327 relations, and each user is associated with
an average of 8 keywords (i.e., interests). Since users’ social
data involves user privacy, relevant laws and regulations
prohibit commercial platforms from sharing these sensitive
data. Thus, it is difficult to obtain the social data for riders
and drivers (i.e., relations and interests), which is a common

1http://www.nyc.gov.
2https://www.didiglobal.com.
3https://snap.stanford.edu/data.
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Fig. 7: An example of ridesharing matching for the ε-Refining Approach.

TABLE 2: Parameter settings

Parameters Value Default

max waiting time (mins) 2, 3, 4, 5, 6 5
tolerant detour ratio 0.1, 0.2, 0.3, 0.4, 0.5 0.2
time window (s) 5, 10, 15, 20, 25 15
number of arrival riders 0.9K, 1.8K, 2.7K, 3.6K, 4.5K 2.7K
value of α 0.1, 0.3, 0.5, 0.7, 0.9 0.5
threshold 1.1, 1.2, 1.3, 1.4, 1.5 1.2

obstacle faced by the research community. For this reason,
we follow the settings of existing works [23], [24], [16],
[14] to perform experiments on datasets synthesized from
multiple sources of real trips, relations, and interests. We
randomly select users for our experiments from the Gowalla
dataset. We extract the road networks from OpenStreetMap
to construct the underlying road networks for Chengdu and
NewYork. Specially, the road network of Chengdu contains
36,630 intersections, 50,786 roads and the road network
of NewYork contains 264,346 intersections, 366,923 roads.
Then, we retrieved the riders and drivers from datasets
NYCTaxi and DIDI, respectively. We map the riders and
drivers to users that are randomly selected from Gowalla
for our experiments. Note that in our setting, we follow the
existing work [43] using the records in the peak ordering
periods 7:00 am-7:30 am to evaluate the compared algo-
rithms where there are 4,914 riders and 2,386 drivers in the
DiDi dataset and 4,856 riders and 2,198 drivers in NYCTaxi
dataset. Since the density of the arriving riders in this period
is usually the largest in a day, it can better verify the per-
formance of different algorithms. For the discount function
f(∆), in our experiment, we specify it as f(∆) = ∆.
Parameters and setup. We conduct our experiments un-
der different parameter settings to evaluate the processing
performance of the proposed algorithms. The parameter
settings are summarized in Table 2. All algorithms are
implemented in Java programming language and evaluated
on the PC with an Intel i9-9900K @ 3.60HZ CPU and 32GB
DDR4 RAM.

6.2 Experimental Results

6.2.1 Effect of the waiting time
Figure 8 reports the performance of all algorithms varying
by different waiting time. As expected, the exact algorithms
ILP, BMA and PBM achieve almost the best performance in
terms of the number of served riders (# of matchings) and
utility scores. However, the average running time for ILP,
PBM and ILP-J is significantly higher than other algorithms
and increases with the increase of waiting time. It is obvious
that the longer waiting time places a larger number of
riders into the search space, and this large number requires

more time to find the best result. Compared with ILP,
PBM and ILP-J, the algorithms FMA, eRA, and SbA reduce
the running time a lot but sacrifice a little utility. While
compared with BMA, FMA and eRA do not show extremely
obvious advantages in running time. The reason is that
although FMA and eRA can reduce the running time of
matching, they need to spend time on constructing the DRg-
graph. Since the running times of ILP are extremely high,
it is not scalable on real-time scenario; we only report the
results here and skip their evaluations in the remaining
experiments.
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Fig. 8: Effect of the waiting time.
6.2.2 Effect of the detour ratio
In this experiment, we investigate how different values of
detour ratios affect the performance of the algorithms. As
shown in Figure 9, the number of served riders, the total
utility, and the running time for the compared algorithms
except PBM all increase when the value of the detour ratio
increases. On the one hand, more riders can be served at a
higher detour ratio, leading the increased total utility. On
the other hand, a larger detour ratio results in more riders
involved in the search space, indicating that more running
time is required to find the best matching plan. However,
since PBM is a packing-based approach, the increase of
the tolerable detour rate allows more riders to be packed
together, which reduces its running time. From the com-
parison of these algorithms, we can observe that for each
value of the detour ratio, BMA has the largest number of
served riders and the highest utility. PBM has the much
higher running time than other algorithms. Our proposed
method FMA and eRA run slightly faster than PBM at the
expense of a slight loss in quality.

6.2.3 Effect of the time window size
In Figure 10, we report the performance of the proposed
algorithm by varying time window size. Since SbA tackles
the URM problem in a first-come-first-served approach that
does not refer to time window size, we only report the
performance of FMA, eRA, and BMA. Generally, a larger
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Fig. 9: Effect of the detour ratio.

time window size results in a larger number of riders to
be matched, and that is usually used to test the algorithm
scalability. This explains why the running time of all algo-
rithms increases when the time window size is larger. From
Figure 10, we can observe that the number of served riders
and the total utility for all algorithms except PBM become
larger. The reason is that a larger time window size helps
to achieve better matchings for drivers and riders globally.
However, it also offers more packing opportunities resulting
in the decrease in matched riders, score and running time
of PBM. Compared with BMA, FMA and eRA show a
compromise performance between the quality and time cost.
We also note that when the time window size is larger than
15 seconds, the number of served riders and the value of
utility of FMA and eRA are close to those of BMA, which
demonstrates that our proposed eRA also achieves good
performance in most cases.
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Fig. 10: Effect of the time window size.

6.2.4 Effect of the number of arriving riders
We vary the number of riders arriving from 0.9K to 4.5K to
evaluate the reliability of algorithms under different request
pressures. Figure 11 reports the performance of different
algorithms. With the increase of the number of arriving
riders, the number of served riders also increases, but there
is a slowing growth when the number is set from 3.6K to
4.5K. That is because the capacity of the ride offers reaches
a bottleneck and barely deals with more ride requests with
the current number of ride offers.

6.2.5 Effect of the value of α
In Figure 12, we report the performance of the algorithms
by varying the value of α from 0.1 to 0.9. It can be seen that
our proposed algorithms show advantages in effectiveness
or efficiency. Compared to PBM, our proposed algorithms
BMA, FMA and eRA have comparable numbers of match-
ings and utility scores while run much faster than PBM. In
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Fig. 11: Effect of the number of arriving riders.

addition, since the number of drivers and riders is constant,
we can observe that varying α has a very limited impact on
number of matchings and running time. Different from the
effects on number of matchings and running time, varying
α has a great impact on the utility score of all algorithms.
The reason is that although we have normalized both social
comfort and price revenue into [0,1], their data distributions
may be different. In this experiment, the value of social
comfort is mostly close to 0 while the value of price revenue
is generally close to 1. As such, when the value of α increase,
i.e., the platform prefers to find the matchings with higher
social comfort, then the over utility score decreases. This is
also why we provide parameter α for the platform to adjust
the matching results based on its business needs.
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Fig. 12: Effect of the value of α.

6.2.6 Parameter sensitivity evaluation on ε
Since FMA, BMA, and SbA do not involve the parameter ε,
we only report in this experiment how the threshold ε affects
the approximate results of eRA. As mentioned in Section
5.2, the parameter ε is the critical factor to determine the
matching quality and stop condition. Users can balance the
result quality and the efficiency of the algorithm by tuning
the threshold ε. From Figure 13, it can be seen that with the
increase of the threshold from 1.1 to 1.5, in both Chengdu
and New York datasets, the quality and the running time
of eRA decreases. The reason is that a larger threshold ε
allows the algorithm to reach expected results with fewer
iterations. Yet the computational cost decreases at the cost
of a certain quality loss.

6.2.7 Effect of the throughput
The throughput is an important metric to evaluate the
processing performance of algorithms. It refers to the num-
ber of riders matched per second. In this experiment, we
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Fig. 13: Effect of threshold ε.

evaluate the throughput of eRA, BMA, FMA, SbA and PBM
under the default values of all parameters. In Table 3, SbA
shows better performance as it is the faster algorithm; FMA,
eRA and BMA take the second place. However, PBM is
particularly slow. The reason is that PBM spends much more
time to find the best packaging scheme and matching plan.

TABLE 3: Throughput of different algorithms

Dataset Sba FMA eRA BMA PBM
NewYork 64 59 56 52 5
Chengdu 42 24 19 17 3

6.2.8 Effect of the memory usage

Table 4 reports the memory cost (unit MB) for different algo-
rithms under default parameter settings. It can be observed
that PBM and BMA use the most memory since they need
to retrieve many cases of the bipartite graph. eRA stores
the upper and lower bound for achieving better efficiency.
SbA takes the least memory as it match riders and drivers
immediately.

TABLE 4: Memory cost of different algorithms

Dataset Sba FMA eRA BMA PBM
New York 943 1,334 1,783 2,478 3736
Cheng Du 604 1,493 1,628 1,838 2555

7 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel URM-problem that com-
bines social comfort and price revenue together into dy-
namic ridesharing. In practical applications, such consider-
ations not only improve the comfort of ridesharing between
strangers and drivers, but also ensure the interest fairness
among passengers, drivers and platform. Next, with the aim
of maximizing the overall utility, we propose an efficient
bipartite matching algorithm based on a novel DR-Graph
index that enables algorithms to tackle situations where one
driver serves multiple passengers. Moreover, we present
several heuristic algorithms to balance efficiency and effec-
tiveness. Experiments on real-world datasets demonstrate
that our proposed algorithms achieve the desirable rideshar-
ing matching results and meet the efficiency requirements
of real-time scenarios under the order volume of large cities
such as New York and Chengdu.

As for future work, we intend to extend this work in two
aspects. First, we plan to investigate the predictive-aware
ridesharing that integrates real-time and predictive requests
to further improve the matching quality. Second, we hope
to design a more flexible ride model which, through a
transfer approach, allows a rider to be cooperatively served
by multiple drivers.
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