
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024 5385

Fairness-Guaranteed Task Assignment for
Crowdsourced Mobility Services

Yafei Li , Huiling Li , Baolong Mei , Xin Huang , Jianliang Xu , Senior Member, IEEE, and Mingliang Xu

Abstract—As a new computing paradigm, crowdsourced mobil-
ity service is booming with the rapid development of sharing econ-
omy. In the typical crowdsourced mobility service, a large number
of part-time workers perform the spatial tasks offered by the
platform and share the benefits in proportion, thereby, the strategy
of task assignment directly affects the level of revenue and fairness
among workers. In order to balance the revenue and fairness of
workers, in this paper we study a novel type of fairness-aware
spatial crowdsourcing problem, namely Fairness-Guaranteed Task
Assignment (FGTA), which aims to maximize the total revenue of
workers at a certain level of fairness guarantee and that is proved
to be NP-hard. To solve this problem, we propose an efficient
game-theory based approach for task assignment, which makes use
of the best-response framework to iteratively select the best strategy
for each worker until a Nash equilibrium is reached. Inspired by the
observation that tasks with similar spatial and temporal features
can be assigned together to a worker, we propose a spatial-temporal
grouping based optimization to further improve the efficiency of
task assignment. Furthermore, to improve the quality of Nash
equilibrium, we present an effective large neighborhood search
based optimization that trains a DQN decision model as destroy
operator to accelerate the convergence of optimal task assign-
ment. Finally, extensive experiments conducted on two real-world
datasets demonstrate that our proposed approaches achieve better
effectiveness and efficiency than the state-of-the-arts.

Index Terms—Crowdsourced mobility services, fairness, game
theory, reinforcement learning, task assignment.

Manuscript received 22 April 2023; revised 24 July 2023; accepted 24 August
2023. Date of publication 31 August 2023; date of current version 4 April 2024.
This work was supported in part by the NSFC under Grants 61972362, 62372416,
62325602, and 62036010, in part by YKLBAT under Grant 202105AG070005,
in part by the HNSF under Grant 202300410378, in part by CPSF under Grant
2018M630836, in part by HK RGC under Grants C2004-21GF, 12200021, and
12202221, in part by GDNSF under Grant 2019B1515130001, and in part by
the Project of Science and Technology Major Project of Yunnan Province under
Grant 202102AD080006. Recommended for acceptance by A. Abdrabou.
(Corresponding authors: Jianliang Xu; Mingliang Xu.)

Yafei Li is with the School of Computer and Artificial Intelligence, Zhengzhou
University, Zhengzhou 450001, China, and also with the Yunnan Key Laboratory
of Blockchain Application Technology, Beihang Yunnan Innovation Institute,
Kunming 650001, China (e-mail: ieyfli@zzu.edu.cn).

Huiling Li, Baolong Mei, and Mingliang Xu are with the School of Computer
and Artificial Intelligence, Zhengzhou University, Zhengzhou 450001, China
(e-mail: huilingli@gs.zzu.edu.cn; blmeizzu@gs.zzu.edu.cn; iexumingliang@
zzu.edu.cn).

Xin Huang and Jianliang Xu are with the Department of Computer Science,
Hong Kong Baptist University, Hong Kong, SAR, China (e-mail: xinhuang@
comp.hkbu.edu.hk; xujl@comp.hkbu.edu.hk).

This article has supplementary downloadable material available at
https://doi.org/10.1109/TMC.2023.3310591, provided by the authors.

Digital Object Identifier 10.1109/TMC.2023.3310591

I. INSTRUCTION

W ITH the rapid development of GPS-enabled mobile de-
vices, Crowdsourced Mobility Services (CMSs), such

as Uber [1], Didi [2], Meituan [3], and Gigwalk [4], are becom-
ing increasingly booming. In general, CMSs mainly consist of
three parties: service provider, crowd workers, and customers,
where crowd workers enter and exit the platform dynamically,
customers send in their spatial tasks to the service provider in
real time, and the service provider is in charge of assigning the
spatial tasks to suitable crowd works. In order to complete these
spatial tasks for revenue, crowd workers are always required to
travel from one location to another by a specific deadline.

The core issue of CMSs is task assignment [5], [6], [7]. That
is, the service provider assigns tasks that dynamically arrive at
the platform to appropriate workers. A line of existing works
focus on how to efficiently allocate workers and tasks to achieve
the best overall utility of the platform [8], [9], [10], [11], [12],
[13], [14], [15], [16], [17], [18], [19], [20], [21], e.g., maximizing
overall revenue [8], [9], [10], [11], [12], maximizing task com-
pletion ratio [13], [15], and minimizing total travel cost [16],
[17], [18]. However, considering only the overall utility (e.g.,
revenue) may lead to a large individual utility difference among
workers and inevitably result in part of workers getting less
income than they expected, thereby reducing their participation
enthusiasm and affecting the service reputation. Furthermore, a
recent study [22] reports that individual utility difference among
workers could lead to workers leaving the platform, which in turn
affects the platform’s long-term benefits, i.e., task assignment
schemas that fail to achieve a low level of individual utility
difference are detrimental to the platform.

To address this issue, several recent works [23], [24], [25]
have focused on the fairness of task assignment in crowdsourced
services, with the aim of minimizing the individual utility dif-
ference among workers or achieving a trade-off between overall
utility and individual utility difference. In this case, fairness task
assignment in CMSs shares similar ideas with load balancing
which always aims to achieve balance in allocating workload to
resources [26], [27], but it has its own characteristics such as
the requirement of optimizing both fairness and overall utility
and the dynamics of both workers and tasks [23]. Also, despite
existing efforts [22], [23], [24], [25], [26], [27], [28], [29],
[30] on fairness task assignment are greatly insightful, we still
observe several counterintuitive results in real-world settings.
On the one hand, fairness in CMSs should consider not only
workers, but also customers, where workers should be paid fairly
based on their online working hours, and customers should pay

1536-1233 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9651-6092
https://orcid.org/0009-0002-2815-7598
https://orcid.org/0009-0002-9966-9013
https://orcid.org/0000-0002-3650-0301
https://orcid.org/0000-0001-9404-5848
https://orcid.org/0000-0002-6885-3451
mailto:ieyfli@zzu.edu.cn
mailto:huilingli@gs.zzu.edu.cn
mailto:blmeizzu@gs.zzu.edu.cn
mailto:iexumingliang@penalty -@M zzu.edu.cn
mailto:iexumingliang@penalty -@M zzu.edu.cn
mailto:xinhuang@comp.hkbu.edu.hk
mailto:xinhuang@comp.hkbu.edu.hk
mailto:xujl@comp.hkbu.edu.hk
https://doi.org/10.1109/TMC.2023.3310591


5386 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 1. Running example for fairness task assignment.

Fig. 2. Total revenue and difference of different task assignment cases in
Example 1.

commensurate with the quality of service they receive. However,
the existing works fail to address both workers’ and customers
fairness simultaneously. On the other hand, since it is difficult
to justify the correlation between overall revenue and individual
revenue difference, there are limitations in integrating revenue
and revenue difference in a linear fashion to optimize mixed
utility.

Inspired by these observations, in this paper, we present a
novel problem of task assignment in crowdsourced mobility ser-
vices, namely Fairness-Guaranteed Task Assignment (FGTA),
where the platform assigns the arrived tasks to suitable workers
with the purpose of maximizing the platform’s total revenue with
ensuring a certain level of individual revenue difference. Next,
we further illustrate the FGTA problem with a running example.

Example 1: As shown in Fig. 1, there are three workers W =
{w1,w2,w3} and five tasksΓ={τ1, τ2, · · · , τ5}. Fig. 1(a) shows
the revenue of worker w completing task τ and Fig. 1(b) shows
three cases of task assignments. For simplicity, we assume the
revenue of a worker is the sum of the revenues for the tasks
he/she performs, and the total revenue of an assignment case
is the sum of the revenues of workers in W and the revenue
difference is the average difference between the revenues of any
two workers in W . Thus, we have the total revenue and the
revenue difference of three cases in Fig. 1(c). Fig. 2 illustrates the
distribution of total revenue and individual revenue difference
for all 72 cases in Example 1. Note that, all task assignment cases

are sorted in ascending order by individual revenue difference.
The mentioned three cases in Example 1 are indicated by the
dotted lines in Fig. 2. In this example, we require the revenue
difference of task assignment to meet a fair level that the revenue
difference is less than 15. As such, the main goal becomes to
maximize total revenue for the cases to the left of the red line
in Fig. 2. Obviously, since case 1 does not meet the fairness
requirement, the optimal solution in this example is case 3 which
achieves a higher total revenue than case 2.

Despite its practical uses, solving the FGTA problem still
requires nontrivial efforts. The main technical challenges are two
aspects. First, fairness model is the key to addressing fairness
in task assignment, and it is difficult to formulate a fair and
reasonable fairness model for both workers and customers. As
mentioned above, measuring the fairness of worker revenue is
not only related to whether tasks can be completed but also
closely related to the quality of task completion. Second, the
FGTA problem is NP-hard as proved later, it means that in the
worst case the time complexity of finding optimal assignment
is exponential to the number of tasks and workers. Therefore,
designing efficient algorithms to meet real-time requirements
is the other challenge. To address the above two challenges,
we first propose a novel fairness model to measure task assign-
ment, which considers both the quality of workers completing
tasks, such as the waiting time to start a task and the detour
cost during task completion and the online time for work-
ers to obtain the same benefit. On the basis of the proposed
fairness model, we propose an effective game theory-based
approach and design two improved strategies based on group-
ing and reinforcement learning optimized large neighborhood
search to tackle the FGTA problem efficiently and effectively.
The main contributions of this paper can be summarized as
follows:
� We present a fairness model to measure the value of work-

ers performing tasks and evaluate the revenue difference
among workers, based on which we formally define a novel
FGTA problem in crowdsourced mobility services with
the aim of maximizing workers’ total revenue within a
certain level of fairness. We prove that the FGTA problem
is NP-hard.

� We formulate the FGTA problem as the multi-round n-
player strategy game that is solved by an efficient multi-
round task assignment approach. We have proven that each
round of task assignment can find a Nash equilibrium
solution.

� We propose an efficient spatio-temporal grouping opti-
mization to improve the efficiency of multi-round task
assignment approach, and also present an efficient large
neighborhood search based optimization that integrates a
learning destroy operator to further improve the solution
quality.

� We conduct extensive experiments on two real-world
datasets to demonstrate the effectiveness and efficiency of
our proposed algorithms by comparing them with state-of-
the-art methods.

The remainder of this paper is organized as follows. Section II
introduces some preliminaries and formally defines the FGTA

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: FAIRNESS-GUARANTEED TASK ASSIGNMENT FOR CROWDSOURCED MOBILITY SERVICES 5387

TABLE I
SUMMARY OF MAIN NOTATIONS

problem. Section III details our proposed solutions to solve the
FGTA problem. We evaluate the performance of our proposed
algorithms in Section IV. Section V reviews the related works.
Finally, we conclude this paper and discuss future work in
Section VI.

II. MODELS AND PROBLEM STATEMENT

In this section, we first present the system and fairness models.
Then, we formally define the FGTA problem, followed by a
theorem to establish its hardness. Table I summarizes the main
notations used throughout this paper.

A. System Model

Generally, we define our FGTA problem on a road network
represented by a graph Gr = (Nr, Er), where Nr is a node
set and Er is an edge set. Each nr

i ∈ Nr represents a road
intersection, each eri,j ∈ Er represents a road segment and is as-
sociated with a weight dis(nr

i , n
r
j) indicating the travel distance

between nr
i and nr

j through edge eri,j . For simplicity, our subse-
quent definitions of locations are all on nodes and we also use
dis(·, ·) to represent the shortest travel distance between any two
nodes.

Definition 1 (Spatial Task): A spatial task τ ∈ Γ is denoted
as a tuple τ = (tc, oτ , eτ , td) where τ is created at timestamp
tc and requires a single worker moving from location oτ to eτ

before deadline td. �
In crowdsourced mobility services, such as ridesharing [1], [2]

and takeaway [3], locations oτ and eτ are specified by riders or
customers as their origin and destination of tasks (i.e., rideshar-
ing requests or takeaway orders), respectively. Meanwhile, the
deadline td is issued by riders or customers as the expected
completion time.

Definition 2 (Worker): A worker w ∈ W is denoted as a
tuple w = (lw, tw, cw) where w is currently located at location
lw with a time tw of leaving from the platform and a capac-
ity cw representing the number of tasks that w can perform
simultaneously. �

A worker w comes to the platform randomly, continuously
reveals current location lw of w, and is expected to leave the

platform after time tw.1 Subject to the constraints, e.g., available
vehicle seats and backpack capacity, workers can perform at
most cw tasks at the same time. To simplify, we assume that
workers are equally productive, it is reasonable because travel
speed is an important indicator to evaluate the efficiency of
workers in performing spatial tasks and the speed limitation on
road network are the same for workers.

Definition 3 (Worker Schedule): Given a worker w ∈ W ,
the schedule of w denoted as Sw = {s1, s2, . . . , s2|Γw |} is a
sequence of moving events, where Γw denotes the set of tasks
in schedule Sw. Each s ∈ Sw specifics a location, which may
be the origin oτ or the destination eτ of a task τ ∈ Γw. �

Note that the schedule Sw for a given worker w is valid if
it satisfies the following conditions: i) the terminal time of Sw

cannot exceed the leaving time tw of w, ii) for any task τ in Γw,
it should be finished before its deadline td, and iii) the number of
tasks performed simultaneously byw cannot exceed the capacity
cw of w at any time. Since the worker schedule Sw changes over
time when the tasks inΓw are finished and new tasks are inserted,
it only maintains current uncompleted tasks.

Definition 4 (Task Assignment): In our FGTA problem, tasks
and workers arrive at the platform dynamically in the form of
streams and the platform periodically assigns tasks to suitable
workers. We call each assignment cycle a batch and the tasks not
assigned in current batch will be deferred to the next batch. �

As mentioned above, the platform performs task assignment
in a batch fashion, which divides workers and tasks arriving
in the form of time-series data streams into batches by fix-size
time windows and performs task assignment at the end of each
batch [5], [31].

B. Fairness Model

In crowdsourced mobility services, a reasonable pricing
model for tasks plays a vital role in measuring fairness. In this
section, we propose a novel pricing model that takes into account
task difficulty and task completion quality to evaluate the value
of workers performing spatial tasks, thereby ensuring that the
customers pay a fair price consistent with the quality of service
they receive. Specifically, for a task τ , it usually has a default
price that reflects task difficulty based on the shortest travel
distance dτ ∈ R+, from location oτ to eτ , and it is calculated
by an arbitrary function fb: R+ → $. For example, in Fig. 3(a),
fb is directly proportional to dτ . For task completion quality,
since one worker can perform multiple tasks at the same time,
it may lead to detours (e.g., in the ridesharing scenario, picking
up another rider on the way to drop off a rider may increase
his/her trip distance, and the added trip distance is the detour
for him/her) or slow response (i.e., tasks are performed later
than expected, during task execution). Therefore, we evaluate
task completion quality in terms of detour ratio and response
time. Intuitively, the earlier the task starts and the less detour the
task incurs, the higher the quality of the task completes. Here,
the detour can be calculated by Δd = d′τ − dτ where d′τ is the

1In crowdsourced services, many workers are part-time, and they have ex-
pected off-hours.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



5388 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 3. Example of functions fb(dτ ), fd(Δd), and fr(Δr).

actual travel distance from location oτ to eτ when performing τ ,
and the response time can be calculated by Δr = t′ − tc where
t′ is the actual time when the worker arrives at origin oτ , and tc

is the created time of τ . Consequently, considering a task τ and
a worker w, we define our generic pricing model as

pricew(τ) = fb(dτ )
(
αfd(Δd) + (1− α)fr(Δr)

)
, (1)

where fb(dτ ) is the default price of τ , and αfd(Δd) + (1−
α)fr(Δr) is the discount function with range [0, 1]. Here,
fd(Δd) and fr(Δr) representing discounts based on detour
and response time are two mapping functions that normalize
Δd and Δr into [0, 1], α is the price balance parameter for
balancing the influence of detour and response time on the
default price. Fig. 3(b) and (c) show examples of fd(Δd) and
fr(Δr), where fd(Δd) decreases as detour Δd increases. Also,
fr(Δr) decreases as response time Δr increases and the point
fr(Δr) = 0 indicates that response time longer than that is
unacceptable. Note that only when τ is completed, Δd and Δr

are determined, and its price is finally determined.
Subsequently, the total revenue of worker w from completing

tasks in Γw can be calculated as

rev(w,Γw) =
∑
τ∈Γw

pricew(τ)− cost(w,Γw), (2)

where cost(w,Γw) is the total travel cost of worker w following
schedule Sw to finish tasks in Γw and can be calculated as

cost(w,Γw) = dis(lw, s1) +

|Sw |−1∑
i=1

dis(si, si+1), (3)

where the cost per unit of travel distance is set to 1.
Based on (2), an effective means of evaluating fairness is the

difference in revenue among workers [25]. Given the assumption
that workers are equally productive, the fairness in crowdsourced
mobility services can be modeled as different workers earning
comparable revenues within the same number of working hours.
However, the model in [25] ignores the impact of working hours
on revenue. As such, we improve it and propose our revenue
difference model. Specifically, we take into account workers’
working hours over a period of time to increase the rationality
of it. Given a set of workers W (|W | ≥ 2), the total revenue
difference in W can be calculated as:

D(W ) =
∑
w∈W

∑
w′∈W,w �=w′

∣∣∣∣rev(w,Γw) + histw
tw + tSw

Fig. 4. Spatio-temporal distribution of tasks.

− rev(w′, Γw′) + histw′

tw′ + tSw′

∣∣∣∣× 2

|W |(|W | − 1)
, (4)

where tw, tSw and histw is the time that w has been on the
platform before performing Sw, the time required to complete
Sw and the history revenue w got in a time period, respectively.
Here, a time period refers to a working cycle (e.g., a day). Simply
put, D(W ) is the average of the revenue difference between all
pairs of workers in W .

C. Problem Formulation

Based on the above system model and fairness model, we
elaborate on the FGTA problem in this subsection. In real
application scenarios, since tasks are unevenly distributed in
both temporal (Fig. 4(a)) and spatial (Fig. 4(b)), imposing exact
averages on workers’ revenue is too strict. As such, we aim
at performing task assignment within a certain level of fairness
among workers and subsequently formulate our FGTA Problem.

Definition 5 (FGTA Problem): Given a set of tasks Γ , a set
of workers W , and a fairness threshold Θ, the goal of the FGTA
problem is to schedule workers in W to perform tasks in Γ such
that the total revenue of all workers is maximized, provided that
the fairness threshold Θ is satisfied, i.e.,

max
∑
w∈W

rev(w,Γw) s.t., D(W ) ≤ Θ. �

In what follows, we theoretically analyze the hardness of
FGTA problem in detail.

Theorem 1: The FGTA problem is NP-hard. �
Proof: Please refer to Appendix A.1, available online. �

III. SOLUTIONS FOR FGTA PROBLEM

As stated above, the FGTA is a typical dynamic task assign-
ment problem, and the platform adopts a batch fashion task
assignment model to solve this problem. Generally, the platform
periodically collects the unassigned tasks and performs task
assignment, i.e., finds the optimal assignment plan for each time
window. Since FGTA is proven to be NP-hard in Theorem 1, we
propose several efficient heuristic algorithms to solve the FGTA
problem below.

Following the existing works [8], [31], [32], we model the
relationships between workers and tasks within a batch by a
weighted bipartite graph Gb = (W b, Γ b, Eb,Ub), where W b is
the set of available workers,Γ b is the set of tasks in this batch. For

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: FAIRNESS-GUARANTEED TASK ASSIGNMENT FOR CROWDSOURCED MOBILITY SERVICES 5389

an edge eb ∈ Eb linking workerw and task τ , it is associated with
a weightu(w, τ). As such, we propose a solution framework that
first calculates the weights Ub of edges in Gb and then performs
task assignment on the basis of Gb. In this paper, we regard
the weight w ∈ W b of an edge eb ∈ Eb between worker w and
task τ as the utility, which indicates the potential revenue for w
completing τ .

In the following, we first elaborate on how the utility that a
given worker performs one task or multiple tasks is calculated
according to the revenue function (2). Then we propose the game
theory-based task assignment algorithm by modeling the FGTA
problem as a multi-round n-player strategy game, proving that it
is an exact potential game with Nash equilibrium, and designing
the GT algorithm to find the solution with Nash equilibrium. To
optimize the efficiency of GT, we propose a grouping-based
strategy. While since the Nash equilibrium found by GT is
not unique, we adopt Large Neighborhood Search (LNS) to
iteratively optimize its quality and propose a reinforcement
learning-based destroy operator for accelerating the convergence
of LNS.

A. Worker-Task Utility Calculation

As mentioned in our proposed solution framework, the first
step is to calculate the utilities of edges in a weighted bipartite
graph. In this section, we first give a method to calculate the
utility of assigning a task to a worker, and then extend it to
compute the utility of assigning multiple tasks to a worker.
Finally, we propose an efficient indexing structure to speed up
the utility computation, and a discussion is presented to further
elaborate its usage.

1) Utility Calculation for a Single Task: According to our
pricing model, the price of a task is related to the detour and
response time when it is completed, i.e., the price of a task is
dominated by the schedule of workers to perform the task. For
a worker’s schedule, inserting a new task may affect the price
of other tasks in the schedule. Therefore, it is unreasonable to
simply count the expected price of a new task as the utility of
assigning it to a worker. An effective approach is to construct an
evaluation metric that measures the utility of inserting a new task.
Specifically, we measure the utility by the increase in worker’s
revenue, which can be calculated as

u(w, τ) = rev(w,Γw ∪ {τ})− rev(w,Γw). (5)

Next, we discuss how to calculate rev(w,Γw ∪ {τ}). Accord-
ing to (2) and (3), we need to get the schedule after assigning
τ to w. Generally, we plan a new route for w performing tasks
in Γw ∪ {τ} by maximizing the utility u(w, τ), which is proven
to be NP-hard [8]. To solve this issue, we follow the existing
works [24], [33], [34], [35], [36] and adopt insertion operation
to plan new routes. That is, when assigning a task to a worker,
we insert the task into the worker’s schedule without reordering
the original schedule. For a more detailed description, please
refer to Appendix B, available online.

2) Utility Calculation for Multiple Tasks: Based on single
task utility calculation, we introduce how to calculate the utility
for assigning multiple tasks to a worker. Given a worker w and a

task setΓ , the utility of inserting the tasks inΓ intow’s schedule
Sw can be calculated as

u(w,Γ ) = rev(w,Γw ∪ Γ )− rev(w,Γw). (6)

As such, the key issue is to obtain schedule S ′w, we have
designed two insertion-based algorithms to solve this issue.
Due to space limitation, please find more details of these two
algorithms in Appendix C, available online.

3) Distance Estimation Index: Note that, for worker-task
utility calculation, it is very time-consuming to frequently invoke
the shortest path finding algorithm (e.g., Dijkstra algorithm) to
calculate the shortest distance between nodes [37]. In fact, there
is no need to frequently calculate the exact shortest distance
between nodes, we can make use of distance estimation to reduce
lots of calculation cost. Inspired by the observation, we propose a
novel index structure, namely distance estimation (DSE) index,
using grid and clustering techniques to estimate the distance
bounds between nodes. Moreover, when constructing the DSE
index, we take the task emergence pattern hidden in historical
data into account to make distance estimation more precise.

Fig. 5 shows the structure of DSE index. Specifically, the index
construction process consists of two phases. In the first phase,
we use a probabilistic model presented in [38] to divide the road
network (as shown in Fig. 5(a)) into a number of contiguous
cells by estimating the computation cost of different cell sizes.
In the second phase, we count the number of occurrences of
the start and end nodes of tasks (represented as num) in each
grid cell based on historical task data and invoke the k-means
algorithm [39] to cluster them into 	num

ς 
 regions (as shown
in Fig. 5(b)), where ς is a hyperparameter indicating that each
region’s num is at most ς . If a region’s num is greater than ς ,
we repeat the above strategy until the region’s num is less than
ς or there is only one node in the region. Note that each region’s
center is the clustering center of this region, while each grid
cell’s center is the node closest to the geometric center of this
grid cell. As shown in Fig. 5(b), different colors indicate that
different regions and highlighted points indicate region centers,
where the center of a region and a node are denoted by z and
l, respectively. The two matrices shown in Fig. 5(c) and (d)
store the distances between region centers and the distances
between nodes in region z2, which can be calculated offline.
Therefore, we can quickly estimate the distance between nodes
by Lemma 1.

Lemma 1: Considering two locations l1 and l2, the distance
upper bound between l1 and l2 is

disub(l1, l2) = dis(z1, z2) + maxz1 +maxz2 , (7)

and the distance lower bound between l1 and l2 is

dislb(l1, l2) = MAX(0, dis(z1, z2)−maxz1 −maxz2), (8)

where l1 (l2) denotes in region z1 (z2), dis(z1, z2) denotes the
shortest distance between the center nodes of z1 and z2, maxz1
(maxz2 ) denotes the maximum distance from the node in z1 (z2)
to the center node of z1 (z2). �

Proof: The proof is straightforward and thus is
omitted. �

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



5390 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 5. Structure of DSE index.

Discussion: Different from the typical grid index with equal
cell size, in this paper we optimize the grid index by considering
historical order distribution in each grid cell. Fig. 4(a) and (b)
show the task distribution in temporal and spatial of one week
on Haikou dataset, respectively. It can be seen that the task
distribution has periodicity and uneven quantity features, the
number of tasks is very dense in hot spots and peak hours. If the
road network is divided into a set of grid cells of equal size, the
distance estimation error in hotspots will be large, resulting in
a large recomputation cost. That is why we consider the order
distribution of the EST index, which provides a good balance
between efficiency and accuracy for distance estimation.

B. Game Theory Based Task Assignment

In this subsection, based on the above calculation of utility,
we propose our task assignment algorithm. It is natural to solve
fairness-aware task assignment by the n-player strategy game
model [25], [31], [40] that considers a general game with n
players who are allowed to select strategies for maximizing
their utilities and achieve a Nash equilibrium. Note that a Nash
equilibrium is the state where no players can improve their
utilities by varying strategies. In our FGTA problem, we model
workers as the players, thus Nash equilibrium means that all
workers get the maximum revenues they can make under their
current situation, i.e., although the revenues may vary among
workers, they all get the maximum revenues they can receive.
Based on that, we propose a novel multi-round task assignment
approach based on n-player strategy game model to solve the
FGTA problem.

The main idea of multi-round task assignment is that workers
and tasks are matched in rounds until there are no available
tasks for workers, and each worker is assigned at most k tasks
in the kth round of task assignment. We model each round
of task assignment as a n-player strategy game, which can
be denoted as a three-entry tuple P = 〈W,ST ,U〉. Specifi-
cally, W = {w1, w2, . . . , wn} is the set of n workers, ST =
ST k

1 × ST k
2 × . . .× ST k

n is the joint strategy set for workers
in W where ST k

i is the set of strategies of wi in the kth

round of task assignment. Then, �st
k
= (stk1 , st

k
2 , . . . , st

k
n) is

a joint strategy, where stki ∈ ST k
i is the strategy selected by

wi. U = {U1, U2, . . . , Un} is the set of utility functions for
all players and Ui : ST → R is the utility function of wi. In
particular, wi’s strategy stki in the kth round of task assignment
specifies a task set Γstki

with no more than k tasks, all of which
can be inserted into wi’ schedule simultaneously. Considering

that in our problem workers perform tasks under the same pricing
model and players share the same utility function. Therefore, the
utility function of wi can be represented as:

Ui(�st
k
) = u(wi, Γstki

). (9)

Next, we show that we can find a pure Nash equilibrium in
each round of task assignment. Existing works [25], [41], [42]
show that for an exact potential game, a solution converging to
a pure Nash equilibrium can be found through the best response
framework, which iteratively selects the best strategy for each
worker until a Nash equilibrium is reached. Given a worker w,
the strategy of w is to select a set of tasks and insert them into
the schedule of w. Since the task set is finite, the strategies of
workers are obviously countable. As such, we only need to prove
that each round of task assignment, i.e., P , is an exact potential
game.

Theorem 2: The n-player strategy game P for the kth round
of task assignment is an exact potential game. �

Proof: Please refer to Appendix A.2, available online. �
The detailed pseudo code for multi-round task assignment is

presented in Algorithm 1. It takes a worker set W , workers’
schedule set S, and a task set Γ as input and outputs the set S
of updated schedules for workers. We first calculate the set of
candidate tasks Γ̂ (wi) for each worker (lines 1–2) and initializek
to be 1 (line 3). Then, we assign tasks to workers continuously in
successive rounds until there are no assignable tasks (lines 4–13).
For the assignment in each round, we achieve a Nash equilibrium
through best-response framework, i.e., iteratively select the best
strategy including at most k tasks for each worker (lines 5–11).
Specifically, we first select workers from W in a random order
(line 6), and for each selected worker wi, we choose a subset
Γstki

′ of k tasks at most from set Γ̂ (wi) ∩ Γ , so that the workers
can get the maximum utility from completing these tasks (line 7).
Here, Γ̂ (wi) ∩ Γ represents the tasks that wi is currently likely
to perform and in factΓ dynamically maintains tasks that are not
chosen by workers. Then if strategy stki

′
bringswi a higher utility

than the previous strategy stki and the fairness threshold is met,
we replacewi’s best strategy stki with stki

′
and updateΓ (lines 8–

11). In detail, we delete the tasks in set Γstki
′ \ Γstki

from Γ and

add the tasks in set Γstki
\ Γstki

′ to Γ . When a Nash equilibrium
in current assignment round is reached, we increment k (line
12). We repeat the above process until there are no more tasks
in Γ that workers can perform (line 13). Finally, we update
workers’ schedules and return S (lines 14–16). Lemma 2 shows
that the total utility is monotonically increasing as the number of

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: FAIRNESS-GUARANTEED TASK ASSIGNMENT FOR CROWDSOURCED MOBILITY SERVICES 5391

Algorithm 1: Game Theory-Based Algorithm.

assignment rounds increases, which is consistent with our goal
of maximizing total revenue.

Lemma 2: Let F (�st
k

i ) and F (�st
k+1

i ) be the total utilities of
all workers for batches bk and bk+1, respectively. Then, we have

F (�st
k+1

i ) ≥ F (�st
k

i ). �
Proof: As workers update their best strategies only when the

updating leads to an increase in utility, it holds

∀w ∈ W, u(w,Γstk+1) ≥ u(w,Γstk). (10)

Then, we have

F (�st
k+1

i ) =
∑
w∈W

u(w,Γstk+1) ≥ F (�st
k

i ) =
∑
w∈W

u(w,Γstk).

(11)
The proof is completed. �

Since task assignment for workers and tasks are conducted
in a batch fashion, we should consider how to deal with the
unassigned tasks in the current batch. Generally, if they have
not expired in the current batch, they will be sequentially treated
as input of the next batch. However, we do not need to treat
them as newly arrived tasks, since some computations in the
current batch still hold in the next batch. Therefore, we give
Lemma 3 to guide task and worker assignment across batches,
which can significantly reduce computational cost, especially
when the previous batch has too many unassigned tasks.

Lemma 3: Let Γi be the set of tasks that cannot be assigned to
workers Wi in batch bi, W ′ be the arrived workers in batch bi+1

but not in batch bi. For a task τ ∈ Γi, τ can only be assigned to
the workers W ′ in batch bi+1. �

Proof: Obviously, since the worker constraints and task con-
straints do not change over time, if a task τ ∈ Γi cannot be
assigned to workers Wi in batch bi, it also cannot be assigned
to workers Wi in batch bi+1. As such, in batch bi+1, tasks in
Γi can only be assigned to the newly arrived workers W ′. The
proof is completed. �

Complexity Analysis: The time complexity of Algorithm 1 is
O(nm|S|3 + k2(Pn|ST |k2|S|3)), where O(|S|3) is the time
complexity of Algorithm 5, P is the number of iterations
required to achieve a Nash equilibrium using best-response
framework, |ST | is the size of the worker’s strategy set and
k is the largest assignment round.

C. Spatio-Temporal Grouping Based Optimization

As stated in Lemma 3, we can assign tasks batch by batch
incrementally, which greatly reduces the computational cost.
While, in this subsection, to further improve the efficiency of
task assignment, we propose an efficient task grouping based
optimization. Specifically, based on this observation that tasks
with similar starting/ending points and deadlines can be assigned
to the same worker in group, we divide the tasks into groups
and compute candidate task groups rather than tasks for task
assignment.

Definition 6 (Task Group): A task group g ∈ G is denoted as
a tuple g = (Γg, z

o, ze, tmax, tmin), where Γg is a set of tasks
in g, zo (ze) is the region covering the starting nodes (ending
nodes) of tasks in Γg , and tmax (tmin) is the latest creation time
(earliest deadline) of tasks in Γg . �

We construct task groups based on the feature that tasks with
similar spatial and temporal features are likely to be candidate
tasks for the same worker, and workers are likely to achieve
higher revenue increase when they select tasks in the same group.
Specifically, we construct groups according to the following two
rules: i) spatial constraint: tasks can be grouped together only if
their start nodes and end nodes are both in the same regions; and
ii) temporal constraint: the task with the earliest deadline tmin

can still be completed under the latest start time tmax.
Algorithm 2 gives the pseudo code of constructing task

groups, it takes a set of tasks Γ as input and outputs the con-
structed groups set G. We first initialize the set G (line 1). Then
we traverse every task in Γ and classify it into the appropriate
group (lines 2–15). In detail, for each task τ , we iterate over each
existing group, and if its start node o and end node e are in the
start region zo and end region ze of group g respectively, which
means that the spatial constraint is satisfied (line 4), we check
the temporal constraint (lines 5–10). Then, if both the spatial
and temporal constraints are satisfied, we add t into set Γg and
update tmax and tmin (lines 11–12). What’s more, if τ is not in
any existing groups, we build a new group g′ for τ and add g′ into
G (lines 13-15). Finally, after all the tasks have been traversed,
we return the set of constructed groups G (line 16).

Next, we utilize task groups to improve the efficiency of
task assignment. In particular, it helps our game theory-based
approach in the following two ways: i) considering a task group
g and a worker w, if a task τ in Γg can be assigned to worker
w, all the tasks in Γg are the candidate tasks for w, which can
improve the efficiency of candidate tasks set calculation; ii) since
the tasks Γg in a task group g have similar spatial and temporal
features, assigning them together to a worker can potentially
achieve higher revenue increase. Inspired by this, we can first
screen each worker from the group-level to obtain the groups
with the most utilities. Then from these groups, we select the

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



5392 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Algorithm 2: Task Group Construction.

best subset of k tasks for each worker as its best strategy. In
this way, since the number of groups is always less than that of
tasks, the efficiency of our game theory-based algorithm can be
improved.

In addition to improving pruning capability from task-level
to group-level for task assignment within a batch, the grouping
technique can also make a difference for tasks and workers
across batches. Intuitively, if the new tasks arriving in the current
batch can be added into unassigned groups in previous batch, we
only need to assign them to the workers newly arrived in current
batch. As such, we extend Lemma 3 and present Lemma 4.

Lemma 4: Let Gi be the set of groups unassigned in batch bi,
Gi+1 be the set of groups constructed in batch bi+1, W ′ be the
newly arrived workers in bi+1 but not in bi. For a group g ∈ Gi,
if there exists a group g′ ∈ Gi+1 subject toΓg ⊆ Γg′ , g′ can only
be assigned to the workers W ′. �

Proof: We prove Lemma 4 by proving its inverse negative
proposition. Specifically, the inverse negative proposition of
Lemma 4 is that, if a group g′ can be assigned to workers
Wi+1 \W ′, then g can also be assigned to workers Wi+1 \W ′,
where Wi+1 is all the workers in batch bi+1.

Obviously, for groups g and g′, the following equations hold:

zo = zo′, ze = ze′, (12)

tmax ≤ tmax′, tmin ≥ tmin′, (13)

|Γg| ≤ |Γg′ |. (14)

Here, (12) means that groups g and g′ have the same start
region and destination region. (13) indicates that the created
time of g is earlier than that of g′ while g has a looser deadline
than g′, i.e., workers have more time to complete tasks in g than
the tasks in g′. (14) means that g requires less worker capacity
than g′. Obviously, if a worker w can complete tasks in g′, w is
also sure to complete the tasks in g. Thus the inverse negative
proposition of Lemma 4 is true. The proof is completed. �

Complexity Analysis: The time complexity of Algorithm 2
is O(m|G|), where |G| is the number of groups. Through
the optimization of grouping, the time complexity of Al-
gorithm 1 can be refined as O(m|G|+ n|G||S|3 + k2

(Pn|ST |k2|S|3)).

D. Large Neighborhood Search Based Optimization

Despite the above optimization of efficiency, improving the
quality of the solution is also necessary. In our game theory-
based approach, we use best-response framework to obtain
feasible solutions with Nash equilibrium. However, since the
solutions with Nash equilibrium are not unique and often not
optimal, we should further improve the quality of task assign-
ment.

In mathematical optimization, large neighborhood search
(LNS) is a technique that tries to find near-optimal solutions to a
combinatorial optimization problem by repeatedly transforming
current solution into another solution in the neighborhood of the
current solution. Here, the neighborhood of a solution is a set
of similar solutions obtained by relatively simple modifications
to the original solution. Inspired by the above, we adopt large
neighborhood search to optimize our game theory-based ap-
proach. The main idea is that we employ two operators, namely
break and repair, to break and repair the solution iteratively
until there is a good solution with desired quality. Specifically,
as detailed in Algorithm 3, in each assignment round, we first
initialize the strategies of all workers through the break operator
(line 3). Then, we iteratively operate break and repair operators
num times to break and repair the joint strategy of workers
(lines 4-8). In each iteration, we first invoke the break operator
to select a group of workers and break their current strategies
(line 5). After that, we invoke the repair operator to find a new
joint strategy �stk′ (line 6). If the utility of �stk′ is greater than the
utility of �stk, i.e., Fp( �stk′) > Fp( �stk), we update �stk with �stk′

(lines 7-8). Finally, we update each worker’s schedule, and the
refined schedule set S is returned (line 13).

In Algorithm 3, the neighbor search always uses some greedy
approaches to destroy the solution, e.g., breaking the edges with
lower utilities or randomly breaking edges, then tries to find
a better solution within the range of neighbors. Obviously, the
neighborhood search with greedy break operation may be easy
to fall into local optimum solution. To address this weakness, we
make use of a learning-based approach, i.e., deep reinforcement
learning, to learn efficient break strategies in order to quickly find
the near-optimal solution. Fig. 6 shows the framework of large
neighborhood search combined with reinforcement learning.
As a whole, it takes the best-response framework as the repair
operator and trains a DQN decision model as the break operator.
In what follows, we explain the optimized break and repair
operators in detail, respectively.

1) Adaptive Break Operator: In this section, we adopt
the model of multi-agent Markov decision process model
(MMDP) [43], [44] to formulate the break decision process
and adopt the DQN-based method to adaptively determine the
break strategy in terms of several combined features. Specif-
ically, we formulate the break decision process as an MMDP

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: FAIRNESS-GUARANTEED TASK ASSIGNMENT FOR CROWDSOURCED MOBILITY SERVICES 5393

Fig. 6. Framework of LNS combined with reinforcement learning.

Algorithm 3: Large Neighborhood Search Based Optimiza-
tion.

game G = (W,X,A, P,R, γ), which can be specified as
follows.

Agent wi ∈ W : We treat each worker as an agent that appears
and disappears as the worker appears and disappears. Further-
more, we assume that all agents are isomorphic since workers
are similar in capability to complete tasks.

State xt ∈ X: At time t, the joint state of all agents is repre-
sented as xt. Then, the state xt

i ∈ xt of an agent wi is denoted
as a four-entry tuple (ηci , η

τ
i , η

w
i , η

n
i ). In detail, ηci represents the

proportion of workers whose current strategy utility is higher
than wi. It can be calculated as:

ηci =
|{w ∈ W |u(w,Γstk) > u(wi, Γstki

)}|
|W | . (15)

Intuitively, ηci reflects the position of current strategy utility of
wi among all workers.

ητi represents the proportion of workers who are likely to
replace their best strategies when the current strategy of wi is
destroyed. Since a task can only be assigned to one worker, the
strategies containing any task in strategy stki are not available for
workers in W \ {wi}. Then, the maximum utility of any worker
w’s strategies that contain tasks associated with wi’s current
strategy stki is

up(w, st
k
i ) = max

stk∈STk;Γ
stk

∩Γ
stk

i
�=∅

u(w,Γstk). (16)

As such, ητi can be calculated as:

ητi =
|{w ∈ W |up(w, st

k
i ) > u(w,Γstk)}|

|W | , (17)

where up(w, st
k
i ) > u(w,Γstk) means that if wi’s strategy stki

is destroyed, there is a strategy for w with a higher utility than
stk becoming selectable, i.e., w’s best strategy has the potential
to be updated.
ηwi represents the proportion of strategies in wi’s strategy set

ST k
i that have higher utility than the strategy stki . Specifically,

it can be expressed as:

ηwi =

{
|{stk∈STk

i |u(wi,st
k)>u(wi,st

k
i )}|

|STk
i | , |ST k

i | > 0

0, |ST k
i | = 0

. (18)

To some extent, it reflects the likelihood that wi’s utility may
increase if his/her strategy is destroyed.
ηni represents the ratio of the maximum utility of strategies in

next round to current strategy’s utility, which can be calculated
as:

ηni =

max
stk+1∈STk+1

i

u(wi, Γstk+1)

u(wi, stki )
. (19)

In fact, it suggests the possible increase in utility of wi when
the task assignment round executes from the kth round of task
assignment to the next one.

Actionat ∈ A: At each time t, the action of agentwi is defined
as ati ∈ {0, 1}, where ati = 1 or 0 indicates whetherwi’s strategy
should be broken or not. Then, the joint action at of all agents
can uniquely represent a break operation.

Reward R = X ×A → R: We evaluate the break operation
based on the utility of solutions optimized by a pair of break
and repair operations. As such, we consider the reward for
joint action at, and give all agents the same reward. Then, the
reward is denoted as the probability that the total solution utility
obtained by destroy and repair operations is greater than that
of the previous solution. In detail, during the training process,
after a destroy operation is performed, we perform ε repair
operations and replace the above probability by counting the
frequency of solutions that satisfy the above conditions. Here,
we define the set of total utilities of solutions obtained by one
break operator and ε repair operations as Û = {û1, û2, . . . , ûε},
where û =

∑
w∈W u(w,Γstk). Then, given the total solution

utility û0 before breaking, the reward function can be expressed

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



5394 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

as:

R =
|{û ∈ Û |û− û0 > 0;D(W ) ≤ Θ}|

ε
. (20)

TransitionP =X ×A×X → [0, 1]: It indicates the transform-
ing probability from state xt to xt+1 by performing action at.

Discount Factor γ ∈ [0, 1]: γ is the discount factor to balance
the current reward with the future reward. The closer it gets to
1, the more important the long-term reward becomes.

We then apply DQN (a value-based deep reinforcement learn-
ing algorithm) proposed in [44], [45] to solve the above MMDP
model.

2) Best Repair Operator: As described in Algorithm 3, we
use the repair operator to adjust workers’ strategies after exe-
cuting the break operator. We can re-establish a new Nash equi-
librium from the broken one. Here, we take the best-response
framework as the repair operator. Since iteratively adjusting
workers’ strategies to their best strategies is unaffected by work-
ers’ previous strategies, we can find a Nash equilibrium based on
any breaking solution. As such, it can serve as the repair operator.
For details on how the best response framework works, please
see lines 5–11 in Algorithm 1.

Discussion: In general, the LNS continuously improves the
quality of Nash equilibrium solutions through break and repair
operators. In this way, the increase in the number of iterations
may improve the quality of the solution, but will inevitably
lead to more time consumption. To this end, we train a DQN
to learn break strategies to improve the quality and efficiency of
optimization.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness and efficiency
of our proposed approaches on two real-word datasets. All the
approaches are implemented in Python3, and experiments were
run on a PC with an Intel i9-9900 K 3.6 GHz CPU, NVIDIA
GeForce RTX 2070 GPU, and 32 GB of memory.

A. Experiment Settings

Datasets: We assess our proposed approaches in two real
datasets released by Didi Chuxing from Chengdu (CD) and
Haikou (HK), respectively. Specifically, Chengdu dataset con-
tains 7,065,937 orders from November 1 to November 30, 2016,
and Haikou dataset contains 14,160,170 orders from May 1 to
October 31, 2017. We regard the origin, destination, start time
and end time of orders as the start location, destination, created
time and deadline of tasks, respectively. Also, Chengdu dataset
contains the trajectories of 1,181,180 workers. We extract the
starting location, start time and end time from the trajectories
as the initial location, arrival time and leaving time of workers,
respectively. Then for the experiments in Haikou dataset, we use
simple spatial and temporal mapping to map the workers in the
Chengdu dataset to that in Haikou. As for the road networks of
Chengdu and Haikou, we extract them from OpenStreetMap.2

Specifically, there are 36,630 nodes and 50,786 edges on the

2https://www.openstreetmap.org.

TABLE II
PARAMETER SETTINGS

road network of Chengdu, and 11,644 nodes and 15,398 edges
on the road network of Haikou.

Parameter Settings: Table II describes the main parameter
settings used in the experiments. In addition, we specify the
clustering parameter ς and the number of repair operations ε as
100000 and 10 in our experiment, respectively.

Compared Algorithms: We compare our proposed algorithms
against three algorithms.
� GT: it is our game theory-based approach described in

Section III-B.
� GT+G: it is GT with the spatio-temporal-grouping based

optimization described in Section III-C.
� GT+RL: it is an optimization of GT by large neighborhood

search with a trained DQN as the repair operator, which is
described in Section III-D.

� GT+LNS: it is an approach that replaces the destroy op-
erator in GT+RL with a greedy destroy policy. In the
experiment, we just use it to evaluate the performance of
our adaptive destroy operator.

� EG: we implement a greedy algorithm based on the ef-
fective greedy algorithm in [46] and make an adjustment
as the baseline. The adjusted algorithm iteratively selects
a task-worker pair with the highest utility increase and
without exceeding the fairness threshold until there are
no suitable task-worker pairs. Calculating utilities by (5)
and the additional fairness threshold constraint enable it to
address our FGTA problem.

� REA [22]: it proposes two formulas to evaluate efficiency
and fairness of a matching, respectively. It first computes a
fair matching Mfair by dichotomy. Then it reassigns one
match to another until the given trade-off of fairness and
efficiency is reached.
This is a state-of-the-art matching algorithm in ride-sharing
systems.

� FGT [25]: it first calculates all possible candidate task
sets for each worker and then obtains Nash equilibrium
by best-response method (selecting the best strategy for
workers according to the fair calculation formula proposed
in [25]), and the solution of Nash equilibrium state as
the final matching result. This is a state-of-the-art game
theory-based approach to fair task assignment.

Evaluation Metrics: We evaluate the effectiveness and effi-
ciency of our algorithms through four metrics, including total
revenue, running time, total difference, and completion rate.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: FAIRNESS-GUARANTEED TASK ASSIGNMENT FOR CROWDSOURCED MOBILITY SERVICES 5395

Fig. 7. Effect of the capacity of workers (CD).

B. Experimental Results

In this section, we analyze the experimental results in depth
to validate the performance of our approaches. Since REA [22]
can achieve a given trade-off of fairness and efficiency but their
fairness indicator is not the same as ours, we adjust it to the
same total difference with our GT algorithm under the default
parameters. In this way, we can compare the performance of
our approaches with REA in other metrics. Then, as the fairness
threshold Θ only works on our approaches, we only evaluate
the effect of it among our approaches. Also, we show the ef-
fectiveness of our RL-based repair operator for LNS framework
acceleration by comparing GT+RL and GT+LNS.

Effect of the Capacity of Workers: Fig. 7 shows the experi-
mental results when varying the capacity of workers from 1 to 5.
Specifically, as suggested in Fig. 7(a), our proposed algorithms
GT+RL, GT, and GT+G are always better than the compared
approaches w.r.t., revenue. When cw changed from 1 to 2, the
revenue (Fig. 7(a)) and task completion rate (Fig. 7(d)) of the
algorithms except EG increased significantly. However, when
cw is greater than 2, the revenue and completion rate of the
algorithms change slightly. The reason is that when cw is small,
workers can participate in fewer tasks at the same time, so the
task completion rate and total revenue are low. While with the
increase of cw to a certain value (e.g., in this experiment, 2),
the total revenue and task completion rate stay almost constant,
which indicates that the capacity is no longer the key factor in
limiting workers from completing more tasks and getting more
revenue. In terms of running time (Fig. 7(b)), algorithms except
REA and EG are insensitive to cw.

Effect of the Number of Workers: Fig. 8 illustrates the exper-
imental results when varying the numbers of workers in each
batch from 100 to 500. Generally, as presented in Fig. 8(a)
and (d), as we increase the number of workers, the total revenue
and task completion rate increase significantly. The reason is that
more workers increase the chances of tasks being completed, and
with them the total revenue increases. While as the number of
workers increases from 400 to 500, although the increase in task
completion rate slows down, the total revenue still increases
significantly. It indicates that the increase in the total revenue

Fig. 8. Effect of the number of workers (CD).

Fig. 9. Effect of the number of tasks (CD).

comes from the improvement of service quality in this case,
which further verifies the validity and applicability of our pricing
model. In Fig. 8(b), the running time of algorithms except for GT
and GT+G increases continuously. After the number of workers
exceeds 300, the running time of GT and GT+G even decreases.
The reason is that the increase in the number of workers results
in fewer matching rounds in GT, GT+G, and GT+RL. While, in
GT+RL, since the increase of workers brings additional cost of
state calculation and destroy strategy selection, it does not show
the decrease in running time like GT and GT+G.

Effect of the Number of Tasks: In Fig. 9, we report the
performance of proposed algorithms by varying the number of
tasks in each batch from 200 to 1000. Generally, as the number
of tasks increases, the total revenue increase obviously, but the
rate of increase gradually slows down (Fig. 9(a)). This is because
when workers are relatively sufficient, the increase in tasks obvi-
ously brings about the increase in total revenue. However, since
workers’ scheduling ability is limited by the spatio-temporal
distribution, capacity and leaving times of workers, the increase
in total revenue slows down. Also, as shown in Fig. 9(d) the
completion rate of tasks is decreasing, but the total number of
tasks completed is increasing. Then, as shown in Fig. 9(b), the
running time of all algorithms is increasing across the board.
The reason is that there are more candidate tasks per worker, so

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



5396 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Fig. 10. Effect of the size of time window (CD).

we need to deal with more candidate tasks when assigning tasks
to workers. The running time of REA and EG increase more
rapidly, indicating that they perform worse in large-scale data.
Fig. 9(c) suggests that the total difference decreases and then in-
creases as the scale of the task becomes larger. The reason is that
when the number of tasks is less than that of workers, differences
in revenue among workers are inevitable. While in the case of
larger number of tasks, workers in advantageous spatio-temporal
conditions (e.g., there are more tasks around) may be assigned
more tasks, which is in line with our goal of maximizing revenue.
However, despite the introduction of mechanisms to guarantee
fairness, the total difference still increases within the range of
fairness threshold Θ.

Effect of the Size of Time Window: Fig. 10 illustrates the
experimental results with the time window of task assignment
(batch size) varying from 100 to 300. Regardless of the size
of time window, GT+RL and GT invariably perform better
than other algorithms in terms of total revenue. As shown in
Fig. 10(a) and (d), there is a slight increase in the total revenue
and task completion rate of all algorithms as the time window
size increases. The reason is that a larger time window size
contributes to search for the better matching plans globally. As
such, the running time of all algorithms shows an increasing
trend in Fig. 10(b).

Effect of the Price Balance Parameter α: Fig. 11 illustrates
the comparison of all the algorithms under different values of the
price balance parameterα. As summarized in Table II, we adjust
α from 0.1 to 0.9 at 0.2 intervals. Generally, in Fig. 11(a), the
revenue of all algorithms changes significantly as α increases.
However, the relative relationship among the performance of
all the algorithms in terms of revenue has not changed greatly.
For example, GT+RL and GT are always better than other
algorithms, w.r.t., total revenue. It indicates that the superior
performance of GT and GT+RL in revenue is almost unaffected
by α. The reason is that α mainly affects the calculation of
revenue, but rarely affects the effort of task strategy on revenue.
Furthermore, Our proposed algorithms are insensitive toαw.r.t.,
the running time. As elaborated in Fig. 11(b), the running time
of GT+RL is higher than that of GT because LNS framework

Fig. 11. Effect of α (CD).

Fig. 12. Effect of the fairness threshold Θ (CD).

TABLE III
EFFECT OF THE ITERATIONS OF LNS

optimizes the matching results through continuous iteration of
destroy and repair.

Effect of the Fairness Threshold Θ: As illustrated in Fig. 12,
we evaluate the performance of our proposed algorithms by
varying fairness threshold from 0.04 to 0.1. Specifically, when
we continue to expand the fairness threshold, three algorithms
have increased in total revenue (Fig. 12(a)) and task comple-
tion rate (Fig. 12(d)), and the increase of GT+RL is slightly
higher than that of GT and GT+G. As expected, the increase in
fairness threshold results in the increase in the total difference
(Fig. 12(c)). However, the running time of the algorithm is
insensitive to the change in the fairness threshold (Fig. 12(b)).

Effect of the Iterations of LNS: Table III illustrates the impact
of adaptive destroy operator on total revenue and running time.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: FAIRNESS-GUARANTEED TASK ASSIGNMENT FOR CROWDSOURCED MOBILITY SERVICES 5397

Fig. 13. Effect of the number of workers (HK).

Fig. 14. Effect of the number of tasks (HK).

As summarized in Table III, by training a DQN as destroy oper-
ator, the GT+RL can achieve higher total revenue with the same
number of iterations. The reason is that compared with greedy
destroy strategies, RL can select destroy strategies conducive
to revenue improvement after reconstruction according to the
current environment and state, which can be learned through
sufficient training. In addition, with the increase of iterations, the
running time of two algorithms increases almost proportionally.
The reason is that the time cost is mainly due to the repair
operation, and the number of iterations is exactly proportional
to the repair operation. Since GT+RL spends extra time on state
calculation, the time cost of GT+RL is slightly higher than that
of GT+LNS in any case.

Experimental Results on Haikou Dataset: We further eval-
uate the effectiveness and efficiency of our algorithms when
the number of workers, the number of tasks and the fairness
threshold vary on Haikou data set. As shown in Figs. 13, 14,
and 15, the experimental results on Haikou dataset are similar to
those on Chengdu dataset. Specifically, as detailed in Figs. 13(a),
14(a), and 15(a), GT+RL achieves the highest total revenue,
and our three game theory-based algorithms outperform other
algorithms in terms of total revenue under the condition that
the fairness threshold is met. In addition, as the number of
workers and the number of tasks increase, the total revenue of all

Fig. 15. Effect of the fairness threshold Θ (HK).

algorithms shows an increasing trend. For running time shown
in Figs. 13(b), 14(b), and 15(b), GT+G has the best performance.
The increase in the number of workers has less effect on running
time than the number of tasks. In terms of the fairness threshold,
its effect on running time is slight. While its effect on revenue
and completion rate is significant, especially when the fairness
threshold is changed from 0.04 to 0.05. This suggests that the
excessive demand for fairness does damage the total revenue.

Experimental Summary: In summary, the experimental results
on the two datasets show a similar pattern. Specifically, GT+RL
always performs best in terms of total revenue, followed by
GT, GT+G, REA, FGT, and EG. All six algorithms perform
similarly on completion rate as they do on total revenue, but
GT+RL, GT+G, GT, and REA differ less in completion rate than
in revenue. Because the complete rate is also heavily influenced
by the spatial and temporal constraints of workers and tasks. In
terms of running time, REA, EG, and GT+RL obviously take
much of running time than that of GT, GT+G, and FGT. Since
the total difference is directly affected by the fairness threshold,
GT, GT+G, and GT+RL differ less in total difference. In terms of
the effect of parameter settings, the revenue, complete rate, and
running time are most sensitive to the changes in the number of
tasks and workers but less sensitive to the variation in the size of
the time window. Then only the total revenue is slightly affected
by the price balance parameter α. While the fairness threshold
has an obvious influence on total revenue, a slight influence on
complete rate, but almost no influence on running time.

V. RELATED WORK

In this section, we review literatures on task assignment and
fairness in mobility services.

A. Task Assignment in Mobility Services

Task assignment has attracted widespread attention in crowd-
sourced mobility services. Existing efforts on task assignment
focus on different goals, such as maximizing platform’s total
revenue [8], [9], [10], [48] and task complete rate [13], [15], or
minimizing the total travel cost [16], [17].

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



5398 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

TABLE IV
COMPARISON OF EXISTING FAIRNESS MODELS IN TASK ASSIGNMENT

For instance, in [8], the authors studied the taxi order dis-
patching problem, and to address it in large-scale, they pro-
posed a systematic solution combining reinforcement learning
and combinatorial optimization algorithms. With the aim of
maximizing global assignment quality, Cheng et al. [9] took
both present and future workers/tasks into account by resort-
ing to predictive techniques. In [13], Zhao et al. addressed a
destination-aware task assignment, where workers are assigned
appropriate tasks on the premise of reaching their destinations
before deadlines, so as to maximize the task completion rate.
To settle this problem, they decomposed workers into smaller
worker clusters and developed the depth-first search algorithm
with progressive bounds. In [17], the authors first focused on
optimizing the worst task performance which is modeled as
the task delay cost (travel cost). Further, they discussed the
deterministic boundary of the problem and proposed algorithms
to solve it. Since our problem involves ensuring a certain level of
fairness while maximizing the overall revenue, the approaches
of the above works are difficult to directly solve our problem.

B. Fairness in Mobility Services

The guarantee of fairness has gradually played an important
role in the task assignment of crowdsourced mobility services,
which is primarily aimed at ensuring income fair between crowd-
sourcing participants [47]. In general, recent efforts mainly
focused on balancing effectiveness and fairness [22], [23], [24],
[25], [28], [29], [30]. Also, as shown in Table IV, we present
a summary table for comparison of fairness models in existing
works.

A line of works take fairness and effectiveness (performance
indicators, such as task completion rate [30], workers’ in-
come [29], total utility [23], [24]) as the common optimization
objective and optimize them simultaneously. In [30], the authors
proposed a two-stage assignment model to ensure that workers
perform crowdsourced delivery tasks reliably and assign each
worker a task that minimized unfairness. In online ride-hailing
system, Sühr et al. studied the fairness of drivers’ income being
proportional to their time on the platform, by considering the
fairness of drivers’ revenue over time rather than the fairness
of each match [29]. In [24], Chen et al. studied the problem of
worker fairness problem and its variants in spatial crowdsourc-
ing. Specifically, they solved their dual-objective matching prob-
lem of fairness and effectiveness by optimizing the joint function

of fair and utility. Shi et al. [23] proposed an effective and
efficient assignment scheme based on reinforcement learning,
avoiding the short-sightedness of traditional fairness assignment
algorithms. Also, work [25] maximized the overall fairness of
task assignment on spatial crowdsourcing platforms by min-
imizing the income differences among workers. Specifically,
they adopted game theory-based approaches to find the Nash
equilibrium matching results by choosing the best strategies for
each worker that favors fairness. While different from their work,
our FGTA problem maximizes the workers’ total revenue with
a certain level of fairness.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel fairness-guaranteed task
assignment problem in crowdsourced mobility services, where
the total revenue of workers is maximized under the premise of
a certain degree of fairness guarantee. To solve this problem,
we propose an effective multi-round task assignment approach
and optimize its efficiency via a spatio-temporal grouping strat-
egy. Moreover, we present a novel large neighborhood search
optimization combined with reinforcement learning to improve
the solution quality. Finally, we have conducted extensive ex-
periments on two real-world datasets to show the efficiency and
effectiveness of our proposed solutions by comparing them with
state-of-the-art ones.

As for future work, we attempt to extend this work in two
directions. First, some complex tasks, in reality, need to be com-
pleted by multiple workers, so we intend to study the problem
of collaborative task assignment. Second, we plan to study the
problem of task assignment among different platforms, which
can integrate more workers and tasks in a wide range and achieve
a great utilization increase of social resources.

REFERENCES

[1] “Uber,” [Online]. Available: https://www.uber.com
[2] “Didi,” [Online]. Available: https://www.didiglobal.com
[3] “Meituan,” [Online]. Available: http://www.meituan.com
[4] “Gigwalk,” [Online]. Available: https://www.gigwalk.com
[5] Y. Tong et al., “Spatial crowdsourcing: A survey,” VLDB J., vol. 29, no. 1,

pp. 217–250, 2020.
[6] Y. Tong, L. Chen, and C. Shahabi, “Spatial crowdsourcing: Challenges,

techniques, and applications,” in Proc. VLDB Endow., vol. 10, no. 12,
pp. 1988–1991, 2017.

[7] B. Guo, Y. Liu, L. Wang, V. O. K. Li, J. C. K. Lam, and Z. Yu, “Task
allocation in spatial crowdsourcing: Current state and future directions,”
IEEE Internet Things J., vol. 5, no. 3, pp. 1749–1764, Jun. 2018.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 

https://www.uber.com
https://www.didiglobal.com
http://www.meituan.com
https://www.gigwalk.com


LI et al.: FAIRNESS-GUARANTEED TASK ASSIGNMENT FOR CROWDSOURCED MOBILITY SERVICES 5399

[8] Y. Tong, D. Shi, Y. Xu, W. Lv, Z. Qin, and X. Tang, “Combinatorial
optimization meets reinforcement learning: Effective taxi order dispatch-
ing at large-scale,” IEEE Trans. Knowl. Data Eng., to be published,
doi: 10.1109/TKDE.2021.3127077.

[9] P. Cheng, X. Lian, L. Chen, and C. Shahabi, “Prediction-based task
assignment in spatial crowdsourcing,” in Proc. IEEE Int. Conf. Data Eng.,
2017, pp. 997–1008.

[10] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Profit-driven
task assignment in spatial crowdsourcing,” in Proc. Int. Joint Conf. Artif.
Intell., 2019, pp. 1914–1920.

[11] Y. Li, H. Li, X. Huang, J. Xu, Y. Han, and M. Xu, “Utility-aware dynamic
ridesharing in spatial crowdsourcing,” IEEE Trans. Mobile Comput., to be
published, doi: 10.1109/TMC.2022.3232215.

[12] L. Zheng, L. Chen, and J. Ye, “Order dispatch in price-aware ridesharing,”
in Proc. VLDB Endow., vol. 11, no. 8, pp. 853–865, 2018.

[13] Y. Zhao, K. Zheng, Y. Li, H. Su, J. Liu, and X. Zhou, “Destination-aware
task assignment in spatial crowdsourcing: A worker decomposition ap-
proach,” IEEE Trans. Knowl. Data Eng., vol. 32, no. 12, pp. 2336–2350,
Dec. 2020.

[14] L. Wang, Z. Yu, Q. Han, B. Guo, and H. Xiong, “Multi-objective opti-
mization based allocation of heterogeneous spatial crowdsourcing tasks,”
IEEE Trans. Mobile Comput., vol. 17, no. 7, pp. 1637–1650, Jul. 2018.

[15] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Predictive task
assignment in spatial crowdsourcing: A data-driven approach,” in Proc.
IEEE Int. Conf. Data Eng., 2020, pp. 13–24.

[16] Z. Chen, P. Cheng, Y. Zeng, and L. Chen, “Minimizing maximum delay of
task assignment in spatial crowdsourcing,” in Proc. IEEE Int. Conf. Data
Eng., 2019, pp. 1454–1465.

[17] P. Cheng, X. Jian, and L. Chen, “An experimental evaluation of task
assignment in spatial crowdsourcing,” in Proc. VLDB Endow., vol. 11,
no. 11, pp. 1428–1440, 2018.

[18] Y. Zhao, K. Zheng, H. Yin, G. Liu, J. Fang, and X. Zhou, “Preference-aware
task assignment in spatial crowdsourcing: From individuals to groups,”
IEEE Trans. Knowl. Data Eng., vol. 34, no. 7, pp. 3461–3477, Jul. 2022.

[19] L. Zhao, W. Tan, B. Li, L. Xu, and Y. Yang, “Multiple cooperative task
assignment on reliability-oriented social crowdsourcing,” IEEE Trans.
Serv. Comput., vol. 15, no. 6, pp. 3402–3416, Nov./Dec. 2022.

[20] Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv, “Adaptive dynamic
bipartite graph matching: A reinforcement learning approach,” in Proc.
IEEE Int. Conf. Data Eng., 2019, pp. 1478–1489.

[21] M. Asghari et al., “Price-aware real-time ride-sharing at scale: An auction-
based approach,” in Proc. 24th ACM SIGSPATIAL Int. Conf. Adv. Geo-
graphic Inf. Syst., 2016, pp. 1–10.

[22] N. S. Lesmana, X. Zhang, and X. Bei, “Balancing efficiency and fairness
in on-demand ridesourcing,” in Proc. Adv. Neural Inf. Process. Syst., 2019,
pp. 5309–5319.

[23] D. Shi et al., “Learning to assign: Towards fair task assignment in large-
scale ride hailing,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2021, pp. 3549–3557.

[24] Z. Chen et al., “Fair task assignment in spatial crowdsourcing,” in Proc.
VLDB Endowment, vol. 13, no. 11, pp. 2479–2492, 2020.

[25] Y. Zhao, K. Zheng, J. Guo, B. Yang, T. B. Pedersen, and C. S.
Jensen, “Fairness-aware task assignment in spatial crowdsourcing: Game-
theoretic approaches,” in Proc. IEEE Int. Conf. Data Eng., 2021,
pp. 265–276.

[26] M. H. Kashani and E. Mahdipour, “Load balancing algorithms in fog
computing,” IEEE Trans. Serv. Comput., vol. 16, no. 2, pp. 1505–1521,
Mar./Apr. 2023.

[27] S. Sthapit, J. Thompson, N. M. Robertson, and J. R. Hopgood, “Compu-
tational load balancing on the edge in absence of cloud and fog,” IEEE
Trans. Mobile Comput., vol. 18, no. 7, pp. 1499–1512, Jul. 2019.

[28] J. Zhang, T. Jiang, X. Gao, and G. Chen, “An online fairness-aware
task planning approach for spatial crowdsourcing,” IEEE Trans. Mobile.
Comput., to be published, doi: 10.1109/TMC.2022.3229112.

[29] T. Sühr et al., “Two-sided fairness for repeated matchings in two-sided
markets: A case study of a ride-hailing platform,” in Proc. ACM SIGKDD
Int. Conf. Knowl. Discov. Data Mining, 2019, pp. 3082–3092.

[30] F. Basik, B. Gedik, H. Ferhatosmanoglu, and K. -L. Wu, “Fair task
allocation in crowdsourced delivery,” IEEE Trans. Serv. Comput., vol. 14,
no. 4, pp. 1040–1053, Jul./Aug. 2021.

[31] P. Cheng, L. Chen, and J. Ye, “Cooperation-aware task assignment
in spatial crowdsourcing,” in Proc. IEEE Int. Conf. Data Eng., 2019,
pp. 1442–1453.

[32] Y. Li, Q. Wu, X. Huang, J. Xu, W. Gao, and M. Xu, “Efficient adaptive
matching for real-time city express delivery,” IEEE Trans. Knowl. Data
Eng., vol. 35, no. 6, pp. 5767–5779, Jun. 2023.

[33] Y. Xu, Y. Tong, Y. Shi, Q. Tao, K. Xu, and W. Li, “An efficient insertion
operator in dynamic ridesharing services,” IEEE Trans. Knowl. Data Eng.,
2020, pp. 1022–1033.

[34] S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi ridesharing,”
IEEE Trans. Knowl. Data Eng., vol. 27, no. 7, pp. 1782–1795, Jul. 2015.

[35] Y. Tong et al., “Unified route planning for shared mobility: An insertion-
based framework,” ACM Trans. Database Syst., vol. 47, no. 1, pp. 1–48,
2022.

[36] Y. Tong et al., “A unified approach to route planning for shared mobility,”
in Proc. VLDB Endow., vol. 11, no. 11, pp. 1633–1646, 2018.

[37] S. W. AbuSalim et al., “Comparative analysis between Dijkstra and
Bellman-Ford algorithms in shortest path optimization,” in Proc. IOP Conf.
Ser. Mater. Sci. Eng., 2020, Art. no. 012077.

[38] Y. Li et al., “Efficient top-k matching for publish/subscribe ride hitching,”
IEEE Trans. Knowl. Data Eng., vol. 35, no. 4, pp. 3808–3821, Apr. 2021.

[39] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern Recognit.
Lett., vol. 31, no. 8, pp. 651–666, 2010.

[40] Y. Zhao et al., “Coalition-based task assignment in spatial crowdsourcing,”
in Proc. IEEE Int. Conf. Data Eng., 2021, pp. 241–252.

[41] D. Monderer and L. S. Shapley, “Potential games,” Games Econ. Behav.,
vol. 14, no. 1, pp. 124–143, 1996.

[42] L. Du et al., “Dynamic private task assignment under differential privacy,”
in Proc. IEEE Int. Conf. Data Eng., 2023, pp. 2740–2752.

[43] Z. Zhang et al., “Reinforcement learning under a multi-agent predictive
state representation model: Method and theory,” in Proc. Int. Conf. Learn.
Representations, 2021, pp. 1–12.

[44] J. Ke, F. Xiao, H. Yang, and J. Ye, “Learning to delay in ride-sourcing
systems: A multi-agent deep reinforcement learning framework,” IEEE
Trans. Knowl. Data Eng., vol. 35, no. 5, pp. 2280–2292, May 2020.

[45] M. Volodymyr et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 1, pp. 529–533, 2015.

[46] P. Cheng, H. Xin, and L. Chen, “Utility-aware ridesharing on road net-
works,” in Proc. SIGMOD Int. Conf. Manage. Data, 2017, pp. 1197–1210.

[47] R. Borromeo et al., “Fairness and transparency in crowdsourcing,” in Proc.
Int. Conf. Extending Database Technol., 2017, pp. 466–469.

[48] B. Zhao et al., “Preference-aware task assignment in on-demand taxi
dispatching: An online stable matching approach,” in Proc. AAAI Conf.
Artif. Intell., 2019, pp. 2245–2252.

Yafei Li received the PhD degree in computer sci-
ence from Hong Kong Baptist University, in 2015.
He is currently a professor in the School of Com-
puter and Artificial Intelligence, Zhengzhou Univer-
sity, China. His research interests span mobile and
spatial data management, location-based services,
and urban computing. He has authored more than
20 journal and conference papers in these areas, in-
cluding IEEE Transactions on Knowledge and Data
Engineering, IEEE Transactions on Mobile Com-
puting, IEEE Transactions on Services Computing,

ACM Transactions on the Web, ACM Transactions on Intelligent Systems and
Technology, PVLDB, IEEE ICDE, WWW, etc.

Huiling Li received the BEng degree in software
engineering from Zhengzhou University, in 2021. He
is currently working toward the MEng degree in the
School of Computer and Artificial Intelligence of
Zhengzhou University. His research interests include
multi-agent computing, deep learning, and spatiotem-
poral data processing.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1109/TKDE.2021.3127077
https://dx.doi.org/10.1109/TMC.2022.3232215
https://dx.doi.org/10.1109/TMC.2022.3229112


5400 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 5, MAY 2024

Baolong Mei received the BEng degree in computer
science and technology from Zhengzhou University,
China, in 2022. He is currently working toward the
MEng degree at the School of Computer and Artifi-
cial Intelligence, Zhengzhou University. His research
interests mainly focus on location-based services,
multi-agent computing, and spatiotemporal data
management.

Xin Huang received the PhD degree from the Chinese
University of Hong Kong (CUHK), in 2014. He is
currently an assistant professor with Hong Kong Bap-
tist University. His research interests mainly focus on
graph data management, and mining.

Jianliang Xu (Senior Member, IEEE) received the
BEng degree in computer science and engineering
from Zhejiang University, Hangzhou, China, and the
PhD degree in computer science from the Hong
Kong University of Science and Technology. He is
a professor in the Department of Computer Science,
Hong Kong Baptist University. He held visiting posi-
tions with Pennsylvania State University and Fudan
University. His research interests include Big Data
management, mobile computing, and data security
and privacy. He has published more than 200 technical

papers in these areas. He has served as a program cochair/vice chair for a
number of major international conferences including IEEE ICDCS 2012, IEEE
CPSNA 2015, and APWeb-WAIM 2018. He is an associate editor of IEEE
Transactions on Knowledge and Data Engineering and the Proceedings of the
VLDB Endowment 2018.

Mingliang Xu received the PhD degree from the
State Key Lab of CAD&CG, Zhejiang University,
China. He is a professor in the School of Computer
and Artificial Intelligence of Zhengzhou University,
China. His current research interests include com-
puter graphics, multimedia and artificial intelligence.
He has authored more than 60 journal and conference
papers in these areas, including ACM Transactions
on Graphics, IEEE Transactions on Pattern Analysis
and Machine Intelligence/IEEE Transactions on Im-
age Processing/IEEE Transactions on Circuits and

Systems for Video Technology, ACM SIGGRAPH (Asia)/MM, ICCV, etc.

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on June 26,2024 at 16:46:47 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


