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Community Detection via Autoencoder-Like
Nonnegative Tensor Decomposition
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Abstract— Community detection aims at partitioning a1

network into several densely connected subgraphs. Recently,2

nonnegative matrix factorization (NMF) has been widely adopted3

in many successful community detection applications. How-4

ever, most existing NMF-based community detection algorithms5

neglect the multihop network topology and the extreme spar-6

sity of adjacency matrices. To resolve them, we propose a7

novel conception of adjacency tensor, which extends adjacency8

matrix to multihop cases. Then, we develop a novel ten-9

sor Tucker decomposition-based community detection method—10

autoencoder-like nonnegative tensor decomposition (ANTD),11

leveraging the constructed adjacency tensor. Distinct from simply12

applying tensor decomposition on the constructed adjacency13

tensor, which only works as a decoder, ANTD also introduces14

an encoder component to constitute an autoencoder-like archi-15

tecture, which can further enhance the quality of the detected16

communities. We also develop an efficient alternative updat-17

ing algorithm with convergence guarantee to optimize ANTD,18

and theoretically analyze the algorithm complexity. Moreover,19

we also study a graph regularized variant of ANTD. Extensive20

experiments on real-world benchmark networks by comparing21

27 state-of-the-art methods, validate the effectiveness, efficiency,22

and robustness of our proposed methods.23

Index Terms— Community detection, graph clustering, non-24

negative tensor decomposition, optimization.25

I. INTRODUCTION26

NETWORKS are prevalent on modeling entities and their27

mutual relationships in many scientific areas [1], [2].28

Communities, in which nodes are densely connected but29

between which nodes are sparsely connected, naturally exist30

as functional modules in many real-world networks, such as31

collaboration networks, social networks, biological networks,32

just to name a few [3]. Revealing the community structure33

of a network, namely community detection, which serves as34

a fundamental analysis tool for analyzing and understanding35
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complex networks [4], is an important but difficult problem. 36

Recently, community detection has been widely applied into 37

many real-world applications, such as promoting trust-aware 38

recommender systems [5], analyzing COVID-19 data [6], and 39

so on. 40

Detecting communities in complex networks has been 41

extensively investigated in the last few decades, and numerous 42

methods have been proposed. Since there is no consensus in 43

academia about the strict definition of community detection, 44

traditional community detection algorithms mainly focus on 45

partitioning a graph under different heuristic criteria, such as 46

optimizing modularity [7], minimizing the description length 47

of random walks [8], and iteratively removing edges with max- 48

imum betweenness [3]. However, these methods use heuristic 49

strategies to optimize structural objectives only. Moreover, 50

these methods are unable to detect overlapping communities, 51

which are common and natural in reality. Recently, nonnega- 52

tive matrix factorization (NMF) [9] has been widely adopted 53

for detecting communities due to its good interpretability 54

derived from its nonnegative nature, wide applicability to both 55

disjoint and overlapping community detection tasks, and great 56

versatility to detect any specific number of communities. NMF 57

aims to factorize the adjacency matrix into two nonnegative 58

factor matrices, where one represents the centers of communi- 59

ties and the other represents the soft community assignments 60

of nodes. In view of this, the underlying community structure 61

can be determined in both disjoint and overlapping manner 62

according to the community assignment matrix. 63

Nevertheless, there are two main issues inherently lie in 64

existing NMF-based community detection methods. On the 65

one hand, the adjacency matrix is extremely sparse. Generally, 66

for real-world networks, over 99% elements of the adjacency 67

matrix are zeros. However, although the sparsity of the adja- 68

cency matrix can alleviate data storage burden, such zero 69

elements provide almost no information about the underlying 70

community structure. When this fact has been neglected, 71

as what existing NMF-based methods do, zero entries will 72

dominate the iterative optimization process and eventually 73

cause the detected community structure less reliable. On the 74

other hand, the adjacency matrix only contains one-hop rela- 75

tionships between nodes, lacking explicit higher-order ones. 76

As pointed out in [10] and [11], the higher-order structural 77

information is critical for uncovering the community structure 78

in complex networks. However, most existing NMF-based 79

community detection methods only deal with the adjacency 80

matrix, which restricts the quality of the detected communities. 81
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Fig. 1. Workflow of ANTD-based community detection.

To tackle the above limitations, in this article, we first82

propose a novel concept of adjacency tensor, which uniformly83

resolves the aforementioned two issues in adjacency matrix.84

Then, we propose a novel tensor Tucker decomposition85

[12] based community detection method named86

autoencoder-like nonnegative tensor decomposition (ANTD)87

based on the proposed adjacency tensor, which fully88

considers the higher-order connectivity patterns of a network.89

Specifically, the adjacency tensor is constructed by stacking90

normalized powers of the adjacency matrix in order. Since91

the kth power of the adjacency matrix gives the number of92

k-length paths connecting the vertex pairs in the network [13],93

the higher-order structural information can be integrated into94

the adjacency tensor, which resolves the information95

scarcity issue. Besides, in general, as the power of the96

adjacency matrix gets higher (i.e., the allowed length of97

walks becomes longer), the possibility of two nodes get98

connected becomes larger, and hence the stacked adjacency99

tensor becomes denser, which resolves the zero overload issue.100

For processing the constructed adjacency tensor, we propose101

the ANTD method. Instead of directly applying tensor102

decomposition on the constructed adjacency tensor, which103

only works as a decoder, our proposed ANTD method has an104

autoencoder-like architecture, which is proven to be critical105

for community detection [14], [15]. Specifically, the decoder106

component aims to reconstruct the adjacency tensor by node107

and community representations, in which node-community108

memberships and community–community interactions are109

embedded, respectively. The encoder component is dual with110

the decoder component and is responsible for mapping the111

original adjacency tensor into the community interaction112

space with the aid of node representations. As a result,113

the autoencoder-like architecture of ANTD endows the114

community membership matrix with implicit orthogonality,115

which increases its quality and thereby leads to a better116

community detection performance. Fig. 1 describes the117

schematic workflow of the whole ANTD-based community118

detection process.119

In summary, we highlight our contributions as follows.120

1) We propose a novel concept of adjacency tensor, which121

is an extension of adjacency matrix, to depict multihop122

topological structures in a network. The good side is that123

our proposed adjacency tensor is relatively denser than124

the original adjacency matrix.125

2) We propose a novel community detection method126

ANTD, which is built upon the proposed adjacency127

tensor and thus has the capacity to incorporate multihop128

relational information. Besides, we also study a variant129

of ANTD, namely ANTDg, which imposes a graph 130

regularizer on top of ANTD. 131

3) We derive an efficient iterative optimization algorithm 132

with convergence guarantee to optimize our proposed 133

ANTD method. The computational complexity of our 134

proposed algorithm scales quadratically instead of cubi- 135

cally with the number of nodes in the network, which is 136

the same as many existing NMF-based algorithms and 137

thus guarantees its efficiency. Moreover, we also design 138

and analyze an optimization algorithm for ANTDg. 139

4) We conduct extensive experiments to test the ANTD and 140

ANTDg methods. Specifically, on a variety of real-world 141

benchmark networks, we compare them with the state of 142

the art. Besides, for ANTD, we also validate its conver- 143

gence, test its running time, scalability and robustness. 144

The rest of this article is organized as follows. We review 145

related community detection algorithms in Section II and 146

introduce related preliminaries in Section III. Then, we present 147

our novel conception of adjacency tensor and the ANTD and 148

ANTDg methods in Section IV. Subsequently, we present the 149

optimization algorithms with theoretical analysis for ANTD 150

and ANTDg in Section V. Finally, we report the experimental 151

results in Section VI and conclude this article in Section VII. 152

II. RELATED WORK 153

In this section, we present a brief review of related studies 154

on community detection. 155

A. Heuristic Criteria Based Community Detection 156

Classical community detection algorithms focus on par- 157

titioning a network based on optimizing different heuristic 158

criteria [14], [15], [16]. Clauset et al. [7] proposed to optimize 159

a well-known metric of modularity, which is an indicator of to 160

what extent a network partition is distinct from randomness. 161

Along this line, many other optimization methods are investi- 162

gated, such as taking the leading eigenvector of the modularity 163

matrix as indicator [17] and using greedy-based algorithm to 164

maximize modularity [7]. Other community criteria include 165

permanence [18] and conductance [19]. As these heuristics 166

are not the focus of this article, we refer interested readers 167

to a full survey [16] of them. Most heuristic algorithms can 168

determine the number of communities automatically. However, 169

such criteria-based heuristic algorithms may suffer from the 170

issue of resolution limit [20] and thus affect the quality of the 171

detected communities. 172

B. Learning Model Based Community Detection 173

Learning model-based community detection algorithms try 174

to learn compact node representations to determine the 175

underlying community structure. As a widely adopted learn- 176

ing model, NMF has good interpretability [9] and many 177

applications. Psorakis et al. [21] proposed a Bayesian NMF 178

model (BNMF) to learn node-community memberships in a 179

Bayesian inference manner. Kuang et al. [22] proposed the 180

symmetric NMF model (SymmNMF) to cluster graph nodes, 181

which fully preserves the symmetry of the adjacency matrix. 182
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Zhang and Yeung [23] proposed the bounded nonnegative183

matrix tri-factorization model to tackle the overlapping com-184

munity detection problem. Yang and Leskovec [24] proposed185

a NMF-based method BigClam for overlapping community186

detection, which is very efficient that could handle very187

large networks. Sun et al. [14] proposed a nonnegative sym-188

metric encoder–decoder approach (NNSED) for community189

detection, which was the first to show the importance of an190

autoencoder-like architecture. Ye et al. [15] proposed a novel191

deep autoencoder-like NMF model (DANMF) for commu-192

nity detection, which had extended Sun’s NNSED [14] to a193

deep autoencoder-like architecture. Moreover, Ye et al. [25],194

[26], [27] proposed three more advanced NMF-based models195

for community detection. However, all these algorithms use196

the adjacency matrix only, neglecting higher-order network197

topology, which is proven to be conducive for community198

detection [10], [11]. Even worse, their optimization process199

may be overwhelmed by zero entries in the adjacency matrix,200

leading to a suboptimal community structure.201

As another line of work, network embedding methods202

have also been adopted for community detection, and usu-203

ally they can incorporate higher-order network topology.204

Wang et al. [28] proposed the modularized NMF (MNMF)205

to learn node representations by simultaneously factorizing206

the second-order affinity matrix and optimizing modularity.207

Neural network-based network embedding methods such as208

DeepWalk [29], Node2Vec [30], and GraRep [31] are also209

prevalent. However, all these network embedding methods210

usually perform unsatisfactorily on community detection, since211

they need to conduct post clustering on the learned embed-212

dings to get communities instead of directly learning them.213

Recently, due to the advances of deep learning technologies,214

many neural network-based community detection models have215

been proposed. E.g., as pioneers, Zhang et al. [32], [33], [34],216

[35] proposed the adaptive graph convolution method, the217

spectral embedding network, the GraphNet framework, as well218

as a capsual network-based community detection framework.219

As most of these models target at detecting communities in220

attributed networks, which is beyond the scope of this article,221

we only briefly review them and refer interested readers to a222

recent nice survey article [36] for a comprehensive treatment.223

III. PRELIMINARIES224

In this section, we present basic notations and terminologies225

used throughout this article.226

A. Notations227

We use boldface calligraphic letters to denote tensors,228

boldface capital letters to denote matrices, boldface lowercase229

letters to denote vectors, and italic lowercase letters to denote230

scalar values. An element of a vector x, a matrix X and a231

third-order tensor X is denoted by xi , xi j , and xi jk, respec-232

tively. We use Id to denote an identity matrix in R
d×d , 1d233

to denote a d-dimensional all-one vector, diag(x) to denote234

a diagonal matrix whose diagonal entries are composed of235

x in order, and �·, ·� to denote the inner product between236

two vectors, matrices, or tensors. For a matrix X, xi , and x j237

are used to represent the i th row and the j th column of X. 238

We adopt Tr(X) to denote the trace of X if it is square, XT to 239

denote the transpose of X, and �X�F to denote the Frobenius 240

norm of X. The Kronecker product is denoted as ⊗, and the 241

Hadamard product is denoted by �. For a third-order tensor X , 242

each vector along its i th mode is called the mode-i fiber. X(i) 243

denotes the matricization of X along the i th mode, which 244

can be constructed by arranging the mode-i fibers to be the 245

columns of the resulting matrix. The n-mode (matrix) product 246

of X with U is denoted by X ×n U, and the Frobenius norm 247

of X is denoted by �X�F . Besides, we use X (:, :, i) and X(i)
248

interchangeably to denote the i th frontal slice of X . More 249

details of tensor manipulations can be referred to [12]. 250

In this article, we consider an undirected and unweighted 251

network G = (V, E), where V = {v1, v2, . . . , vn} represents 252

the node set of G and E = {e1, e2, . . . , em} ⊂ V × V denotes 253

the edge set of G respectively. We denote n = |V| and m = |E |. 254

Besides, we use NG(vi ) = {u : �u, vi � ∈ E, u ∈ V} to 255

denote the neighborhood of vi in G and dG(vi ) = |NG(vi )| 256

to denote the degree of vi in G. The diameter of G is the 257

maximum length of the shortest path between two nodes in 258

G, denoted as diam(G). The network G is also represented 259

by a Boolean adjacency matrix A ∈ B
n×n, whose (i, j)th 260

entry ai j = 1 if there is an edge connecting nodes vi and 261

v j , or 0 if not. Assume that we know a priori that there 262

are k communities to be detected in G, then the community 263

detection algorithm can return k detected disjoint communities 264

as C = {ci : ci �= ∅,
⋃k

i=1 ci = V, ci∩c j = ∅,∀i �= j}, where 265

ci denotes the i th community for 1 ≤ i ≤ k. Besides, we use 266

ξ(vi ) to denote the index of the community containing vi , i.e., 267

vi ∈ cξ(vi ). The induced subgraph of G by ci is denoted as 268

Gci = (Vci , Eci ). 269

B. Nonnegative Tucker Decomposition 270

Nonnegative Tucker decomposition (NTD) [37] is a special 271

case of the Tucker decomposition [12], where in the former 272

case all the factors are required to be nonnegative. It works 273

as a building block of our proposed ANTD method. The 274

nonnegative Tucker decomposition decomposes a nonnegative 275

data tensor into a nonnegative core tensor multiplied by a 276

nonnegative factor matrix along each mode. In the three-way 277

case, X ∈ R
n1×n2×n3+ is decomposed by NTD as 278

X ≈ T ×1 F×2 H×3 K = �T ;F, H, K� 279

where F ∈ R
n1×m1+ , H ∈ R

n2×m2+ , K ∈ R
n3×m3+ , T ∈ R

m1×m2×m3+ , 280

and �T ;F, H, K� is a shorthand for T ×1 F×2H×3 K. In most 281

cases, solving the nonnegative Tucker decomposition resorts 282

to the following Frobenius norm approximation: 283

min
F,H,K,T

∥
∥X − �T ;F, H, K�

∥
∥2

F
s.t. F, H, K,T ≥ 0. 284

IV. ANTD AND ITS VARIANT 285

In this section, we first propose a novel concept of adjacency 286

tensor, which uniformly resolves the issues of information 287

shortage and zero overload of adjacency matrices. Based on 288

the constructed adjacency tensor, we then derive the ANTD 289

method and a graph regularized variant of ANTD. 290

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:19:04 UTC from IEEE Xplore.  Restrictions apply. 



4 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

Fig. 2. Construction framework of adjacency tensor A.

A. Adjacency Tensor Construction291

As the social diffusion expresses a dynamic recursive pattern292

to influence nodes in the network, multihop node relations293

provide much more additional conducive information for mod-294

eling the community structure [10], [11]. Nevertheless, most295

existing NMF-based community detection algorithms only296

consider the first-order node connectivity information, which297

is inadequate as it is restricted to only one hop and extremely298

sparse. To this end, we propose the concept of adjacency299

tensor. Due to the fact that the kth power of the adjacency300

matrix gives the number of k-length paths connecting the301

vertex pairs in the network [13], we construct our multihop302

adjacency tensor A as follows.303

1) Exponentiation: Given the adjacency matrix A of304

the network G, we first get a series of matrices305

{A, A2, . . . , Ad0}, where Ai represents the i th exponen-306

tiation of A and contains a different view (i.e., i th hop)307

of node–node connections, and d0 represents the number308

of total hops needed.309

2) Normalization: For each matrix Ai in {A, A2, . . . , Ad0 },310

we normalize it as Âi = D−1/2
i Ai D−1/2

i , where Di =311

diag(Ai 1n) is the degree matrix.312

3) Combination: By stacking Âi in order, we obtain the313

adjacency tensor A ∈ R
n×n×d0+ , where A(:, :, i) = Âi .314

To sum up, Fig. 2 illustrates the construction process of A.315

Our proposed adjacency tensor resolves the aforementioned316

two issues of adjacency matrix from two aspects. On the one317

hand, our proposed adjacency tensor explicitly incorporates318

multihop information into its different frontal slices, which319

provides more conducive information than the adjacency320

matrix. On the other hand, as the allowed path length gets321

longer, the possibility of a node getting touched with other322

nodes based on the walks of that length becomes higher, and323

therefore the higher power of the adjacency matrix becomes324

denser. This directly increases the density of our proposed325

adjacency tensor A.326

Nevertheless, a straightforward but tricky problem is that327

how do we select the value of d0. We expect that the adjacency328

tensor A contains as much information as possible. Thus,329

the number of hops d0 should be set as diam(G) such that330

A contains connectivity patterns of every possible node pair.331

However, in reality, the diameter of a network can be large,332

which brings difficulties in both computing A and storing333

A. Fortunately, thanks to the six degrees of separation [38],334

on average, all people pairs can reach each other in no more 335

than six hops in a social network. Although some large-scale 336

networks have large diameters, the structural information in 337

the first six hops is already considerable, which suggests the 338

parameter setting of d0 = min(diam(G), 6). 339

B. ANTD Method 340

In this section, we derive the optimization problem of 341

our proposed ANTD method. A fundamental assumption 342

in network topology modeling is that, if two nodes share 343

more similar communities, they are more likely to form an 344

edge [26]. Following this assumption, we adopt the symmetric 345

nonnegative matrix tri-factorization [39], which is an extension 346

of the classical NMF, to model the edge generation process of 347

a network. Specifically, suppose we have a nonnegative matrix 348

U ∈ R
n×k
+ which represents the community memberships 349

of nodes. That is, each element ui j in the learned U can 350

be interpreted as the propensity that the i th node belongs 351

to the j th community [23]. Moreover, suppose we have 352

a nonnegative tensor W ∈ R
k×k×d0+ , whose frontal slices 353

represent different interaction patterns (similarities) between 354

communities in terms of different hops. E.g., the correspond- 355

ing elements in the learned W of communities “r/JapanTravel” 356

and “r/IWantOut” would be relatively larger since these two 357

communities are semantically similar, while the corresponding 358

elements of “r/Photography” and “r/ChineseLanguage” would 359

be relatively smaller since they are irrelevant. Then, following 360

the assumption introduced at the beginning of this section, 361

u f pw
(i)
pqugq can be interpreted as the contribution to the 362

expected normalized number of edges between nodes v f and 363

vg in the i th hop from cp and cq .1 Summing over all possible 364

community pairs (p, q), the expected normalized number of 365

edges between nodes v f and vg in the i th hop can be computed 366

as â(i)
f g =

∑k
p,q=1 u f pw

(i)
pqugq = u f W(i)ug T . Obviously, the 367

generated â(i)
f g should be as identical as possible with a(i)

f g [40], 368

which gives rise to the following objective function and its 369

related optimization problem 370

min
U,W

∥∥A− �W;U, U, Id0�
∥∥2

F
s.t. U,W ≥ 0 371

which is a special case of the nonnegative Tucker decomposi- 372

tion introduced in Section III-B. Essentially, the above prob- 373

lem performs symmetric nonnegative matrix tri-factorization 374

�A(i) − UW(i)UT �2
F slicewisely. Note that the above opti- 375

mization problem aims to reconstruct the original adjacency 376

tensor A by W and U, i.e., it is a decoder. However, 377

as pointed out in [14] and [15], an encoder component which 378

projects the original network into the community interaction 379

space with the aid of node representations is also important. 380

In our case, the encoder component should map the adjacency 381

tensor A to the community interaction tensor W with the 382

aid of the community membership indicator U, therefore the 383

1We assume that the underlying community engagement of nodes is
invariant in different hops, hence we devise only one community membership
matrix U. However, the connection patterns of nodes in different hops are
different, therefore, we devise d0 different community interaction matrices,
stacked to be W ∈ R

k×k×d0+ .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Hong Kong Baptist University. Downloaded on February 20,2023 at 03:19:04 UTC from IEEE Xplore.  Restrictions apply. 



GUAN et al.: COMMUNITY DETECTION VIA ANTD 5

Fig. 3. Architecture of ANTD.

corresponding optimization problem can be described as384

min
U,W

∥
∥�A;UT , UT , Id0�−W

∥
∥2

F
s.t. U,W ≥ 0.385

As we will discuss in Section V-C, the encoder component will386

greatly benefit the community detection process. Moreover,387

since the adjacency tensor A is constructed based on the388

sole information source G, A might have strong dependence389

among its frontal slices. Correspondingly, frontal slices of the390

learned community interaction tensor W would also be highly391

correlated. To better capture the dependence that inherently392

exists in W , we further factorize W into two low-rank factors393

B ∈ R
k×k×d
+ and Y ∈ R

d0×d
+ via W = B ×3 Y, where d < d0394

controls the degree of correlation among W’s frontal slices:395

When d = 1, all frontal slices of W are proportional, but when396

d = d0, the dependence in W may degenerate to nothing due397

to the trivial solution Y = Id0 . Based on the above discussions,398

the optimization problem of our proposed ANTD method is399

given as400

min
U,Y,B

∥
∥A− �B;U, U, Y�

∥
∥2

F
401

+ λ
∥
∥�A;UT , UT , Id0�− �B; Ik, Ik, Y�

∥
∥2

F
402

s.t. U, Y,B ≥ 0 (1)403

where λ is used to balance the encoder and decoder. Fig. 3404

illustrates the architecture of our proposed ANTD method.405

C. Graph Regularized ANTD406

Note that our proposed ANTD method is just a backbone,407

which can naturally impose regularizers to further improve408

community detection performance. We here introduce a variant409

of ANTD, namely ANTDg, which imposes a graph reg-410

ularizer [41] on top of ANTD, leading to the following411

optimization problem:412

min
U,Y,B

∥∥A− �B;U, U, Y�
∥∥2

F
+ γ Tr(UT LU)413

+ λ
∥
∥�A;UT , UT , Id0�− �B; Ik, Ik, Y�

∥
∥2

F
414

s.t. U, Y,B ≥ 0415

where γ is a tunable parameter to adjust the importance of416

graph regularization and L = D1−A (recall D1 = diag(A1n)).417

We will report the performance of ANTDg in experiments as418

well.419

V. OPTIMIZATION AND THEORETICAL ANALYSIS 420

In this section, we first present an alternating optimization 421

algorithm to solve (1). Then, we further theoretically analyze 422

the utility of the encoder and the convergence as well as com- 423

putational complexity of the optimization algorithm. Based 424

on the above developments, we finally briefly introduce the 425

optimization of ANTDg with its analysis on the convergence 426

and computaional complexity. 427

A. Problem Reformulation 428

The first term in the objective function of (1) is a quar- 429

tic polynomial function w.r.t. U, which makes itself highly 430

impossible to be convex w.r.t. U [26]. Besides, provided B 431

is a unit super-diagonal tensor, this term also coincides with 432

the objective function of INDSCAL [12], whose best solution 433

is still an open problem. Therefore, (1) is difficult to solve. 434

Alternatively, we introduce an auxiliary variable Z ∈ R
n×k
+ 435

and propose an equivalent problem as 436

min
U,Z,Y,B

∥∥A− �B;U, Z, Y�
∥∥2

F
437

+ λ
∥
∥�A;UT , ZT , Id0�− �B; Ik, Ik, Y�

∥
∥2

F 438

s.t. U, Z, Y,B ≥ 0, U = Z 439

whose objective function is now separately convex to every 440

variable. By defining a penalty function �U− Z�2
F which 441

describes the cost of violating the constraint U = Z and 442

transferring this constraint to the objective function, we arrive 443

at our reformulated optimization problem 444

min
U,Z,Y,B

∥∥A− �B;U, Z, YX�
∥∥2

F
+ η�U − Z�2

F 445

+ λ
∥
∥�A;UT , ZT , Id0�− �B; Ik, Ik, Y�

∥
∥2

F
446

s.t. U, Z, Y,B ≥ 0 (2) 447

where η is another parameter to adjust the weight of the 448

penalty term �U − Z�2
F . In Section V-B, we will derive an 449

efficient solution to the above problem. 450

B. Solution Method 451

Inspired by the optimization of NTD [37], we derive an 452

alternating optimization algorithm for solving (2) as follows. 453

1) Updating U: The corresponding subproblem of updating 454

U is 455

min
U
�PU − UQU�2

F + λ
∥
∥UT RU − SU

∥
∥2

F
+ η�U− Z�2

F 456

s.t. U ≥ 0 457

where PU = A(1), QU = B(1)(Y⊗Z)T , RU = A(1)(Id0⊗ZT )T
458

and SU = IkB(1)(Y ⊗ Ik)
T . By introducing the Lagrangian 459

multiplier �U, and setting the partial derivative of the resulting 460

Lagrangian function w.r.t. U to 0, we get 461

�U = −2PUQT
U + 2UQUQT

U + 2λRURT
UU 462

− 2λRUST
U + 2ηU− 2ηZ. 463

According to the complementary slackness of KKT condi- 464

tions [42], the optimal solution must satisfy U � �U = 0, 465
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from which we can derive the updating rule for U as466

U← U � PUQT
U + λRUST

U + ηZ

UQUQT
U + λRURT

UU+ ηU
. (3)467

2) Updating Z: The corresponding subproblem of updating468

Z is469

min
Z
�PZ − ZQZ�2

F + λ
∥
∥ZT RZ − SZ

∥
∥2

F
+ η�Z− U�2

F470

s.t. Z ≥ 0471

where PZ = A(2), QZ = B(2)(Y ⊗ U)T , RZ = A(2)(Id0 ⊗472

UT )T and SZ = IkB(2)(Y⊗Ik)
T . Similarly, by introducing the473

Lagrange multiplier �Z, and setting the partial derivative of474

the resulting Lagrangian function w.r.t. Z to 0, we get475

�Z = −2PZQT
Z + 2ZQZQT

Z + 2λRZRT
Z Z476

− 2λRZST
Z + 2ηZ− 2ηU.477

According again to the complementary slackness of the KKT478

conditions, the optimal solution must satisfy Z � �Z = 0,479

from which we can derive the updating rule for Z as480

Z← Z � PZQT
Z + λRZST

Z + ηU

ZQZQT
Z + λRZRT

Z Z+ ηZ
. (4)481

3) Updating Y: The corresponding subproblem of updating482

Y is483

min
Y
�PY − YQY�2

F + λ�RY − YSY�2
F s.t. Y ≥ 0484

where PY = A(3), QY = B(3)(Z⊗ U)T , RY = Id0A(3)(ZT ⊗485

UT )T and SY = B(3)(Ik ⊗ Ik)
T . Following the same routine,486

by introducing the Lagrange multiplier �Y, and setting the487

partial derivative of the resulting Lagrangian function w.r.t. Y488

to 0, we get489

�Y = −2PYQT
Y + 2YQYQT

Y − 2λRYST
Y + 2λYSYST

Y.490

According to the complementary slackness of the KKT con-491

ditions, we can derive the updating rule for Y as492

Y← Y � PYQT
Y + λRYST

Y

YQYQT
Y + λYSYST

Y

. (5)493

4) Updating B: The corresponding subproblem of updating494

B is495

min
B

∥
∥A− �B;U, Z, Y�

∥
∥2

F
496

+ λ
∥
∥�A;UT , ZT , Id0�− �B; Ik, Ik, Y�

∥
∥2

F
497

s.t. B ≥ 0.498

Applying the theorem introduced in our supplementary mate-499

rial, we can directly obtain the updating rule for B as500

B← B � (1+ λ)�A;UT , ZT , YT �

�B;UT U, ZT Z, YT Y�+ λ�B; Ik, Ik, YT Y�
. (6)501

Based on the above analysis, we summarize the detailed502

optimization algorithm, which is outlined in Algorithm 1. The503

algorithm first constructs the adjacency tensor A (line 1).504

It then initializes all factors U, Z, Y, B randomly and505

community sets ci = ∅ for 1 ≤ i ≤ k (line 2). Afterward,506

it iteratively updates U, Z, Y and B until the stopping criteria507

are met (lines 3–9). Finally, it partitions the network G by508

assigning each node vi ∈ V into carg max j ui j (lines 10–14).509

Algorithm 1 Optimization Algorithm for ANTD
Input: Network G, parameters λ, η, maximum number of

iterations �, number of communities to be detected k.
Output: The k detected communities C = {c1, c2, . . . , ck} in

the network G.
1: Extract adjacency matrix A from G and construct adjacency

tensor A accordingly, as shown in Section IV-A;
2: Set the number of iterations t = 0 and ci = ∅ for 1 ≤ i ≤

k, and initialize Ut , Zt , Yt and Bt randomly;
3: while t < � and not converged do
4: Update Ut according to (3);
5: Update Zt according to (4);
6: Update Yt according to (5);
7: Update Bt according to (6);
8: t ← t + 1;
9: end while

10: for all vi ∈ V do
11: Community membership: ξ(vi )← arg max j(ut)i j ;
12: Assign node vi into its corresponding community as

cξ(vi )← cξ(vi ) ∪ {vi };
13: end for
14: return The k detected communities C = {c1, c2, . . . , ck}

in the network G.

C. Utility of the Encoder Component 510

We here analyze the utility of the encoder component 511

��A;UT , UT , Id0�− �B; Ik, Ik, Y��2
F . After (1) has been well 512

solved, the following two equations hold approximately: 513

A ≈ B ×1 U×2 U ×3 Y = (B ×3 Y)×1 U×2 U (7) 514

A×1 UT ×2 UT ≈ (B ×3 Y). (8) 515

By substituting (7) into (8), we obtain an important relation 516

(B ×3 Y)×1
(
UT U

)×2
(
UT U

) ≈ (B ×3 Y) 517

which implies that U is implicitly forced to be orthogonal 518

(i.e., this relation provides a necessary condition for U’s 519

orthogonality). According to [43], if U is simultaneously 520

nonnegative and orthogonal, each row of U will contain only 521

one positive element, indicating the community index that 522

the corresponding node belongs to. Therefore, the introduced 523

encoder component greatly benefits the task of community 524

detection, because we expect the node-community member- 525

ships to be very clear. 526

D. Convergence and Complexity Analysis 527

First, we analyze the convergence of Algorithm 1. As our 528

proposed multiplicative updating rules in Algorithm 1 are 529

directly derived from their NMF counterparts, the monotonic 530

convergence analysis in [44] can be applied to our case as 531

well. Therefore, we omit the proof here and conclude that 532

Algorithm 1 converges. 533

Next, we analyze the computational complexity of 534

Algorithm 1 step by step. Recall that n and m denote the 535

number of nodes and edges in the network G respectively, 536

k is the number of communities to be detected, d0 denotes 537
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the number of hops needed, and d represents the number538

of frontal slices of B. We assume that k � n, d0 � n539

and d < d0, which generally hold in reality. Constructing540

A needs to compute {A1, A2, . . . , Ad0 } and their correspond-541

ing matrix normalization first, which can be computed in542

O(d0mn) time, using the fast Boolean square matrix power543

algorithm [45], and O(d0n2) time, respectively. In addition,544

updating U needs to calculate B(1)(Y⊗Z)T , A(1)(Id0 ⊗ZT )T
545

and IkB(1)(Y ⊗ Ik)
T first. By applying the fast algorithm546

introduced in [46], these three terms can be efficiently com-547

puted in O(d0k2n), O(d0kn2) and O(dd0k2 + dk3) time,548

respectively. Besides, computing the multiplicative updating549

rule in (3) costs O(d0kn2) time, thus the total time complexity550

of updating U is O(d0kn2). Following the same routine,551

updating Z and Y cost O(d0kn2) and O(d0kn2 + d0dn2)552

time, respectively. Moreover, the computational complexity of553

updating B is O(d0kn2). As a result, the time complexity of554

Algorithm 1 is O(d0mn + �0(d0kn2 + d0dn2)), where �0555

is the total number of iterations. It is noted that, the com-556

putational complexity of the iterative optimization process of557

Algorithm 1 still scales quadratically instead of cubically with558

the number of nodes n. This implies that, compared to many559

existing NMF-based methods, like NNSED [14] which takes560

O(n2k) time, although our proposed ANTD method adopts561

nonnegative tensor decomposition to process the higher-order562

adjacency tensor, the order of magnitude of its computational563

complexity has not been increased, which guarantees its564

efficiency.565

E. Optimization and Theoretical Analysis of ANTDg566

Following the derivation routine in Section V-B, all we567

need to modify Algorithm 1 to the optimization of ANTDg568

is adding γ AU and γ D1U to the numerator and denominator569

of the updating rule of U (i.e., (3)), respectively. Moreover,570

the convergence and computational complexity of ANTD are571

easily carried over to ANTDg as the resulting algorithm is572

also Lee-Seung type and the complexity of the additional573

computations is of O(n2k). It is remarked that, other regular-574

izers can also be easily incorporated into ANTD, with minor575

modifications to its updating rules.576

VI. EXPERIMENTS577

In this section, we evaluate our proposed methods on a578

variety of real-world benchmark networks. The source code of579

our proposed methods is implemented in MATLAB 2020b and580

publicly available.2 All experiments run on a Ubuntu server581

with 3.70-GHz i9-10900K CPU, 128-GB main memory.582

A. Comparative Methods583

We compare our methods with three categories of state-of-584

the-art community detection methods as follows.585

• Structural Community Detection Without Ground-Truth586

Communities : Ten community detection methods are587

compared on networks without ground-truth communities,588

2https://github.com/Kwan1997/ANTD

including Betweenness [3], Fast-Greedy [7], InfoMap [8], 589

Label-Prop [47], Leading-EV [17], WalkTrap [48], 590

Watset [49], EdMot [10], SBM [50], and Belief [51]. 591

All these methods can automatically detect an optimal 592

number of communities. 593

• One-Stage Community Detection With Ground-Truth 594

Communities : Eleven one-stage community detection 595

methods are compared on networks with ground-truth 596

communities, including ten NMF-based methods of NMF [9], 597

ONMF [52], BNMF [21], NNSED [14], DANMF [15], 598

HPNMF [26], AANMF [25], SymmNMF [22], SCNMF [53], 599

and PGS [54], and also one tensor-based method of 600

GraphFuse [55]. All these methods can directly get network 601

partition from the learned node representations. 602

• Two-Stage Community Detection With Ground-Truth 603

Communities : Six two-stage community detection methods 604

are compared on networks with ground-truth communities, 605

including two tensor-based multiview clustering methods of 606

WTNNM [56] and CGL [57], and four network embedding 607

methods of MNMF [28], RandNE [58], NodeSketch [59], 608

and BoostNE [60]. All these methods need to conduct 609

clustering on the learned node representations to partition the 610

network. 611

For all tensor-based methods, we take the adjacency tensor 612

A as their inputs. In addition, we implement pruned versions 613

of ANTD and ANTDg, namely ANTDp and ANTDgp, which 614

ignore their encoder components, for ablation study. ANTDg 615

and ANTDgp are only involved in the task of community 616

detection with ground-truth communities. 617

B. Parameter Settings 618

For ANTD and its three variants, we set d = 1 (resp. 619

search d in {1, 2, 3}) on the task of community detection 620

without (resp. with) ground-truth communities, and on all 621

tasks, we tune λ and η (and γ if graph regularized) in 622

the search grid {10−3, 10−2, 10−1, 1, 10}, which is kept the 623

same as in [15]. Besides, we set the maximum number of 624

iterations � = 2000, and stop the optimization process when 625

the change in the loss function is less than the floating-point 626

relative accuracy (i.e., eps in MATLAB). Moreover, we set 627

d0 = min(diam(G), 6) for these four methods as suggested in 628

Section IV-A. 629

For all network embedding methods, we set the dimen- 630

sionality of node representations as 64, which is the default 631

setting in the literature [14], [15], [29]. Besides, since the 632

learned node representations from all these network embed- 633

ding methods cannot be directly used to extract community 634

structure, we conduct post-k-means clustering on the learned 635

embeddings to get a network partition. 636

For the second group of methods of DANMF, HPNMF, 637

SCNMF, PGS, and Graphfuse, we tune each of their para- 638

meters in the search grid {10−3, 10−2, 10−1, 1, 10}. Besides, 639

for PGS, we tune the thresholding parameter (i.e., c in their 640

article) in {eps, 2, 4, 6, 8}, and for DANMF, we set the layer 641

size as n � 256 � 128 � k and the maximum number of 642

pretraining iterations as 1000. 643
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TABLE I

STATISTICS OF DOLPHINS, NET-SCIENCE, AND WIKI-VOTE

TABLE II

DEFINITIONS OF MODULARITY, PERMANENCE, AND COVERAGE

For the two tensor-based multiview clustering methods644

of WTNNM and CGL, we tune each of their parameters645

in the search grid {10−3, 10−2, 10−1, 1, 10}. Besides, sim-646

ilarly, we conduct post spectral clustering on the learned647

similarity graphs of these two methods for a network648

partition.649

For all the other methods, they either do not have any para-650

meter to be tuned, or the number of their tunable parameters651

is larger than four. For the latter ones, we set their parameters652

as their original authors or other researchers suggested.653

C. Community Detection without Ground-Truth Communities654

Datasets: We use three real-world networks,3 i.e., Dolphins,655

Net-Science, and Wiki-Vote, whose statistics are summarized656

in Table I. These networks do not have ground-truth com-657

munities, but are very classical benchmarks which are widely658

evaluated in the literature [26], [27], [61].659

Evaluation Metrics: Given no ground-truth communities,660

we measure the community quality using structural informa-661

tion. We employ three widely used “unsupervised” community662

quality metrics, namely modularity [7], permanence [18], and663

coverage [62], as defined in Table II. In Table II, the indicator664

function δ(cξ(vi ), cξ(v j )) = 1 if and only if cξ(vi ) = cξ(v j ),665

or 0 otherwise. The larger these values, the better community666

results. Note that modularity and permanence can be negative,667

while coverage is always positive. As comparative methods668

can automatically determine the best number of communities,669

we vary k for ANTD and ANTDp from 2 to 30 with step670

size 1 for fairness. For all methods, we report the best results671

under all possible parameter combinations.672

Exp-1: Community Quality Evaluations Without673

Ground-Truth Communities in Terms of Modularity,674

Permanence, and Coverage: We evaluate the quality of675

different community detection algorithms over three networks676

without ground-truth communities. Based on the results in677

Figs. 4–6, we have the following experimental observations.678

3http://networkrepository.com

Fig. 4. Modularity evaluations on three datasets.

Fig. 5. Permanence evaluations on three datasets.

Fig. 6. Coverage evaluations on three datasets.

• ANTD Is Effective : In terms of modularity, our proposed 679

ANTD method achieves a relatively high performance, ranking 680

in the top four among 12 methods. In terms of permanence and 681

coverage, our proposed ANTD method consistently outper- 682

forms all the other methods. Moreover, in terms of coverage, 683

our ANTD method consistently achieves full marks on all 684

the networks. These evidences significantly demonstrate the 685

effectiveness of ANTD. 686

• Encoder Makes Sense : For all the three metrics, ANTD 687

consistently outperforms its pruned version ANTDp on all the 688

networks. This phenomenon shows that the autoencoder-like 689

architecture is indeed beneficial for improving community 690

detection performance. 691

Exp-2: Sensitivity Analysis on k: We analyze the sensitivity 692

of ANTD in terms of its modularity performance w.r.t. k. 693

The experimental result on the Dolphins dataset is shown in 694

Fig. 7(a). As observed, with k increases, the modularity shows 695

an overall trend of first increasing and then decreasing, which 696

is in accord with our expectation. It is thus suggested to set k 697

to a medium value when k is not known a priori. 698

D. Community Detection with Ground-Truth Communities 699

Datasets: We use 12 widely used datasets of real-world 700

networks with ground-truth communities.4 Table III reports 701

4https://snap.stanford.edu/data/index.html, https://linqs.soe.ucsc.edu/data
and http://mlg.ucd.ie/aggregation/index.html
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Fig. 7. Sensitivity, convergence, running time, and scalability analysis of ANTD. (a) Sensitivity of k on Dolphins. (b) Objective function value on Cornell.
(c) Running time on LFR-1k. (d) Scalability on five networks. (e) Sensitivity of η, λ on Cornell.

TABLE III

STATISTICS OF 12 REAL-WORLD NETWORKS WITH GROUND-TRUTH COMMUNITIES

TABLE IV

STATISTICS OF FIVE SYNTHETIC NETWORKS

graph statistics of these real-world datasets, where the density702

is computed by m/
(n

2

)
. Besides, we also generate five synthetic703

networks with ground-truth communities for efficiency and704

scalability evaluations. Specifically, we use the LFR bench-705

mark toolkit [63] to generate five synthetic networks with706

different number of nodes varied in 100, 500, 1000, 5000,707

and 10 000, and we set mixing parameter as 0.2, average708

degree as 5, maximum degree as 25, degree distribution709

exponent as 2, community size distribution exponent as 1,710

and community size bounds as #nodes/50 and #nodes/20.711

Table IV shows the statistics of these generated synthetic712

networks.713

Evaluation Metrics: We employ three evaluation met-714

rics of purity, F-score, and NMI [16], as defined in715

Table V. In Table V, S = {s1, s2, . . . , sl} denotes716

the set of l ground-truth communities, I (C,S) =717 ∑k
i=1

∑l
j=1(|ci ∩ s j |/n) log(n|ci ∩ s j |/|ci ||s j |) is the mutual718

information between C and S, H (C) = −∑k
i=1(|ck |/n)719

log(|ck |/n) denotes the entropy of C (and similar applies720

to H (S)), and t p, f p, f n denote the number of true721

positive, false positive and false negative hits obtained722

by the pair confusion matrix of {κ(v1), κ(v2), . . . , κ(vn)}723

and {ξ(v1), ξ(v2), . . . , ξ(vn)}, respectively, where κ(v) ∈724

{1, 2, . . . , l} denotes the index of the ground-truth community725

TABLE V

DEFINITIONS OF PURITY, F-SCORE, AND NMI

containing v. For both metrics, the larger values, the better 726

community results. For all the networks in Table III, we set 727

the number of communities to be detected k as the same as 728

the number of ground-truths l. We report the average results 729

of different algorithms on ten runs under the best parameter 730

combination. 731

Exp-3: Community Quality Evaluations With 732

Ground-Truth Communities in Terms of Purity, F- 733

Score and NMI: We evaluate the community quality of 734

different algorithms over 12 networks with ground-truth 735

communities. Based on the results in Tables VI–VIII, where 736

the shaded (resp. boldface) number represents the top-three 737

(resp. best) performance value respectively, we have the 738

following observations. 739

• Our Proposed Methods Are Effective : In terms of these 740

three metrics, we can observe that in most cases, at least 741

one of the four versions of ANTD can achieve top-three 742

performance, under comparisons with 17 state-of-the-art com- 743

petitors. Besides, ANTDg strikes the best performance the 744

most times. These evidences fully show the effectiveness of 745

our proposed methods. Moreover, we can find that except 746

on the Cora, Citeseer, Washington, and Wisconsin networks, 747

ANTDg consistently performs better than other tensor-based 748

methods with our adjacency tensor as inputs, indicating that in 749
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TABLE VI

PURITY EVALUATIONS ON 12 REAL-WORLD DATASETS

TABLE VII

F-SCORE EVALUATIONS ON 12 REAL-WORLD DATASETS

our scheme the adjacency tensor is utilized in a more effective750

way.751

• Encoder Is Not Omnipotent : Occasionally, the pruned ver-752

sions of ANTD and ANTDg perform better than their orig-753

inals. This suggests that the autoencoder-like architecture is754

not always conducive, although it gives better performance in755

most cases.756

• Graph Regularizer Makes Sense : We can find that the per-757

formance of ANTDg is better than ANTD in nearly all758

cases, reflecting that the performance of ANTD can be further759

improved by incorporating a graph regularizer.760

• Network Embedding Methods Are Not Effective : As obs-761

erved, in terms of NMI, three network embedding methods762

RandNE, NodeSketch, and BoostNE perform not as good763

as expected on the first seven networks. The reason is that764

they are not community detection oriented, although they can765

encode higher-order node relations into embeddings. Besides,766

these methods have to conduct a post k-means clustering to 767

partition the network. This two-stage methodology may also 768

affect the performance of community detection. 769

• There Is No Free Lunch [64] : Although our proposed 770

methods perform fairly well in most cases, their performance 771

deteriorates on the Cora and Citeseer networks, which may 772

be partly due to the extreme sparsity of these networks as 773

shown in Table III. This shows that different methods may 774

be suitable for different scenarios, and we suggest to use our 775

proposed methods in relatively dense networks. 776

Exp-4: Convergence Evaluations: We conduct convergence 777

evaluations for ANTD. Fig. 7(b) reports the objective function 778

value curve of ANTD on the Cornell network with η = 779

λ = 0.1 and d = 2. As observed, the objective function 780

value monotonically decreases, which validates our theoretical 781

analysis. Besides, the convergence speed of ANTD is not very 782

fast: The objective function value first decreases slowly, but 783
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TABLE VIII

NMI EVALUATIONS ON 12 REAL-WORLD DATASETS

then drops rapidly, and finally steadily converges to a local784

optimum. It is also noted that the objective function value of785

ANTD is relatively small (i.e., dozens), which is due to the786

fact that the frontal slices of A are all normalized adjacency787

matrices. This suggests that we should not set large values for788

the parameters of ANTD.789

Exp-5: Efficiency and Scalability Evaluations: We conduct790

efficiency and scalability evaluations for ANTD. For all791

experiments here, we set the number of iterations as 2000 and792

all tunable parameters as 0.1 (except d = 2 for ANTD) for793

all adopted methods.794

First, we evaluate the running time (i.e., the time of the795

whole community detection process) of ANTD. Fig. 7(c)796

reports the running time of WTNNM, CGL, AANMF, and797

ANTD on the LFR-1k network. As observed, ANTD runs798

much faster than WTNNM and AANMF, demonstrating the799

efficiency of ANTD to some extent. Besides, ANTD consumes800

nearly the same time with CGL.801

Next, we test the scalability of ANTD over five synthetic802

networks as shown in Fig. 7(d). As observed, with the grown803

size of networks, ANTD needs exponentially more time804

to detect all communities, reflecting a challenging task for805

tensor-based community detection over large-scale networks.806

Fortunately, our ANTD method takes around 8 h to detect807

all communities on the LFR-5k network, which is not slow.808

Note that for networks with more than 10 000 nodes, build-809

ing the corresponding adjacency tensor will cause memory810

overflow. This is due to the limited memory of our local811

machine, therefore we here only consider networks with fewer812

than 10 000 nodes. Distributed optimization methods can be813

adopted to solve this problem, and we leave it as our future814

work.815

Exp-6: Sensitivity Evaluations: We conduct sensitivity eval-816

uations for ANTD. Specifically, we turn λ and η in the search817

grid {10−3, 10−2, 10−1, 1, 10}, while fixing d = 2, and report818

the community detection performance of ANTD under all819

possible parameter combinations on the Cornell network in820

terms of NMI in Fig. 7(e). As observed, in general, smaller821

λ tends to give better NMI. This is because the objective 822

function of ANTD is of small order of magnitude, as we 823

analyzed in Exp-4, and larger λ would therefore cause the 824

Tucker decomposition under-fitting to A and eventually sacri- 825

fice the quality performance. In addition, ANTD is relatively 826

nonsensitive to these parameters in the search grid (λ, η) ∈ 827

{10−3, 10−2, 10−1} × {10−3, 10−2, 10−1, 1, 10}, indicating a 828

very stable performance in terms of NMI. 829

VII. CONCLUSION 830

In this article, we proposed a novel concept of adjacency 831

tensor, which contains multihop topological information, and 832

a novel tensor Tucker decomposition-based community detec- 833

tion method ANTD, which can effectively process the adja- 834

cency tensor, as well as a graph regularized version of 835

ANTD namely ANTDg. To optimize ANTD, we derived an 836

efficient iterative optimization algorithm. Our proposed opti- 837

mization algorithm scales only quadratically with the number 838

of nodes, which is the same as many existing NMF-based 839

methods, although ANTD is a tensor decomposition-based 840

method. Moreover, with minor modifications, the developed 841

optimization algorithm for ANTD can be easily adapted to 842

optimize ANTDg, with convergence and computational com- 843

plexity carried over. To comprehensively test our proposed 844

methods, we conducted extensive experiments on a variety 845

of real-world benchmark networks. Comparative experimental 846

results showed that our proposed methods manifested out- 847

standing performance and outperformed the state-of-the-art 848

community detection algorithms. For future work, we plan to 849

investigate how to utilize multihop local manifold structure to 850

regularize the detected communities, and how to adapt our 851

method to large-scale networks by distributed optimization 852

techniques. 853
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