
The VLDB Journal (2015) 24:319–343
DOI 10.1007/s00778-015-0379-0

REGULAR PAPER

Top-K structural diversity search in large networks

Xin Huang · Hong Cheng · Rong-Hua Li ·
Lu Qin · Jeffrey Xu Yu

Received: 25 March 2014 / Revised: 6 January 2015 / Accepted: 16 January 2015 / Published online: 13 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract Social contagion depicts a process of informa-
tion (e.g., fads, opinions, news) diffusion in the online social
networks. A recent study reports that in a social contagion
process, the probability of contagion is tightly controlled
by the number of connected components in an individual’s
neighborhood. Such a number is termed structural diversity
of an individual, and it is shown to be a key predictor in the
social contagion process. Based on this, a fundamental issue
in a social network is tofind top-k userswith the highest struc-
tural diversities. In this paper, we, for the first time, study the
top-k structural diversity search problem in a large network.
Specifically, we study two types of structural diversity mea-
sures, namely, component-based structural diversitymeasure
and core-based structural diversity measure. For component-
based structural diversity, we develop an effective upper
bound of structural diversity for pruning the search space.
The upper bound can be incrementally refined in the search

X. Huang · H. Cheng (B) · J. X. Yu
Department of Systems Engineering and Engineering
Management, The Chinese University of Hong Kong,
New Territories, Hong Kong
e-mail: hcheng@se.cuhk.edu.hk

X. Huang
e-mail: xhuang@se.cuhk.edu.hk

J. X. Yu
e-mail: yu@se.cuhk.edu.hk

R.-H. Li
Guangdong Province Key Laboratory of Popular High
Performance Computers, Shenzhen University, Shenzhen, China
e-mail: rhli@se.cuhk.edu.hk

L. Qin
Quantum Computation and Intelligent Systems, Department
of Engineering and Information Technology, University of Technology,
Sydney, Australia
e-mail: lu.qin@uts.edu.au

process. Based on such upper bound, we propose an effi-
cient framework for top-k structural diversity search. To fur-
ther speed up the structural diversity evaluation in the search
process, several carefully devised search strategies are pro-
posed.We also design efficient techniques to handle frequent
updates in dynamic networks and maintain the top-k results.
We further show how the techniques proposed in component-
based structural diversity measure can be extended to handle
the core-based structural diversity measure. Extensive exper-
imental studies are conducted in real-world large networks
and synthetic graphs, and the results demonstrate the effi-
ciency and effectiveness of the proposed methods.

Keywords Structural diversity · Disjoint-set forest ·
A∗ search · Dynamic graph

1 Introduction

Recently, online social networks such as Facebook, Twit-
ter, and LinkedIn have attracted growing attention in both
industry and research communities. Online social networks
are becoming more and more important media for users to
communicate with each other and to spread information in
the real world [17]. In an online social network, the phe-
nomenon of information diffusion, such as diffusion of fads,
political opinions, and the adoption of new techniques, has
been termed social contagion [25], which is a similar process
as epidemic diseases.

Traditionally, the models of social contagion are based
on analogies with biological contagion, where the prob-
ability that a user is influenced by the contagion grows
monotonically with the number of his or her friends who
have been affected already [3,10,26]. However, such models
have recently been challenged [22,25], as the social conta-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-015-0379-0&domain=pdf

320 X. Huang et al.

gion process is typically more complex and the social deci-
sion can depend more subtly on the network structure. Ugan-
der et al. [25] study two social contagion processes in Face-
book: the process that a user joins Facebook in response to
an invitation email from an existing Facebook user (recruit-
ment) and the process that a user becomes an engaged user
after joining (engagement). They find that the probability of
contagion is tightly controlled by the number of connected
components in a user’s neighborhood, rather than by the num-
ber of friends in the neighborhood. A connected component
represents a distinct social context of a user, and the mul-
tiplicity of social contexts is termed structural diversity. A
user is much more likely to join Facebook if he or she has
a larger structural diversity, i.e., a larger number of distinct
social contexts. This finding reveals that the structural diver-
sity of a user is an important factor in the social contagion
process. As suggested in [25], the analysis of structural diver-
sity in a social network can be beneficial to a wide range of
application domains. For example, in a political campaign,
to convince individuals to change their attitude, it is obvi-
ously more important that they receive messages from mul-
tiple directions than that they receive many endorsements
[25]. In the promotion of health practices, we can find such
top users with the highest structural diversity and inject vac-
cine for them for reducing their influenced probability. In the
marketing, to promote a new product, we can find such top
customers as the first priority.

Among all of these applications, a fundamental problem
is to find the individuals in a social network with high struc-
tural diversity [25]. Motivated by this, in this paper, we study
a problem of finding top-k individuals with the highest struc-
tural diversity in a social network. Following the definition in
[25], the structural diversity of a node u is the number of con-
nected components in a subgraph induced by u’s immediate
neighbors. Take the network in Fig. 1a as an example. The
structural diversity of vertex f is 2, as the induced subgraph
by f ’s neighbors shown in Fig. 1b has two connected com-
ponents. This structural diversity definition has been shown
to be a good predictor for the recruitment study on Facebook
in [25]. However, it may fall short in some other scenar-
ios. For example, in the engagement study, the friendship
neighborhoods on Facebook are significantly larger than the
email contact neighborhoods from the recruitment study. In
such a situation, a large number of one-node components, or
“singletons,” is not an accurate reflection of social context
diversity.

To address this problem, [25] proposed two distinct para-
metric generalizations of the component count. First, it mea-
sures diversity simply by counting only components over
a certain size t . This is called component-based structural
diversity. Second, it measures diversity by the component
count of the t-core of the neighborhood graph, where a t-
core is the subgraph formed by repeatedly deleting all ver-

(a) (b)

Fig. 1 An example of component-based structural diversity. aA graph
G, b f’s neighborhood subgraph

tices of degree less than t . This measure is called core-based
structural diversity. We have studied the problem of top-
k component-based structural diversity search in our previ-
ous work [14]. To have a comprehensive investigation of the
structural diversity search problem, we further extend our
study by adopting the core-based structural diversity in this
work. The core-based structural diversity measure has been
proven effective through case studies in [25], as the t-core
notion can exclude small and loose components more effec-
tively.

To solve the top-k structural diversity search problem,
a naive method is to compute the structural diversity for
all the vertices and then return the top-k vertices. Clearly,
such a naive method is too expensive. To efficiently find the
top-k vertices, the idea of traditional top-k query processing
techniques [15] can be used, which finds the top-k answers
according to some search order, and prunes the search space
based on some upper-bound score. Following this frame-
work, in our problem, we have to address two key issues: (1)
how to develop an effective upper bound for the structural
diversity of a vertex and (2) how to devise a good search
order in the computation.

In this paper, we propose several efficient and effective
techniques to address these issues. For the component-based
structural diversitymeasure,wefind that for twovertices con-
nected by an edge, some structural informationof themcanbe
shared. For example, in Fig. 1b, vertex e forms a component
of size 1 in f ’s neighborhood. From this fact, we can infer
that vertex f also forms a component of size 1 in e’s neigh-
borhood. Based on this important observation, the structural
diversity computation for different vertices can also be possi-
bly shared. To achieve this, we design aUnion-Find-Isolate
data structure to keep track of the known structural informa-
tion of a vertex so as to avoid the computation of structural
diversity for every vertex. A novel upper bound of the struc-
tural diversity is developed for pruning unpromising vertices
effectively. Interestingly, the upper bound can be incremen-
tally refined in the search process to become increasingly
tighter. Based on the upper bound and the Union-Find-
Isolate data structure, we propose a novel Top-k-search
framework for top-k structural diversity search.

123

Top-K structural diversity search in large networks 321

Beyond this, we explore how to apply our Top-k-search
framework to support the core-based structural diversitymea-
sure. We find that this definition brings new structural prop-
erties, which are different from those of the component-
based definition. Thus, our proposed Union-Find-Isolate
data structure and upper bound are not applicable to the
core-based structural diversity measure. We study new prop-
erties of this measure and leverage it to design a new upper
bound.We also propose an efficient algorithm for computing
the core-based structural diversity score and finally integrate
these new techniques into our Top-k-search framework.
This study demonstrates that our Top-k-search framework
can be generalized to handle different instantiations of the
structural diversity measure.

The main contributions of our study are summarized as
follows.

– We study top-k structural diversity search for the first
time by adopting twomeasures, i.e., the component-based
and core-based structural diversity. Structural diversity has
been proven to be a positive predictor in social contagion
[25].Wedevelop a novelTop-k-search framework to effi-
ciently identify the individuals that play a key role in social
contagion.

– For the component-based structural diversity measure, we
design a Union-Find-Isolate data structure to keep track
of the known structural information during the computa-
tion and an effective upper bound for pruning. We devise
a useful search order to traverse the components in a ver-
tex’s neighborhood. According to this search order, we
propose a novel A∗ search-based algorithm to compute
the structural diversity of a vertex.

– We also design efficient techniques to handle frequent
updates in dynamic networks and maintain the top-k
results. We use the Union-Find-Isolate structure and a
spanning tree structure to efficiently handle edge inser-
tions and deletions, respectively.

– For the core-based structural diversity measure, a new
upper boundandan efficient search algorithmaredesigned.

– We conduct extensive experimental studies on large real
networks to show the efficiency of our proposed meth-
ods. We also conduct case studies on DBLP and a word
association network, which show that structural diversity
is useful for identifying ambiguous names in DBLP and
finding words with diverse meanings in the word associa-
tion network.

The rest of this paper is organized as follows. We formu-
late the top-k structural diversity search problem in Sect. 2
and then discuss and compare the component-based and
core-based structural diversity measures in Sect. 3. For the
component-based measure, we first present a simple degree-
based algorithm in Sect. 4 and then design a novel and effi-

cient Top-k-search framework in Sect. 5. We design two
useful search strategies in Section 6 and discuss update in
dynamic networks in Sect. 7. For the core-based measure,
we design a new upper bound and an efficient search algo-
rithm in Sect. 8. Extensive experimental results are reported
in Sect. 9. We discuss related work in Sect. 10 and conclude
this paper in Sect. 11.

2 Problem definition

Consider an undirected and unweighted graph G = (V, E)

with n = |V | vertices and m = |E | edges. Denote by N (v)

the set of neighbors of a vertex v, i.e., N (v) = {u ∈ V :
(v, u) ∈ E}, and by d(v) = |N (v)| the degree of v. Let
dmax be the maximum degree of the vertices in G. Given a
subset of vertices S ⊆ V , the induced subgraph of G by
S is defined as GS = (VS, ES), where VS = S and ES =
{(v, u) : v, u ∈ S, (v, u) ∈ E}. The neighborhood-induced
subgraph is defined as follows.

Definition 1 (Neighborhood-induced subgraph) For a ver-
tex v ∈ V , the neighborhood-induced subgraph of v, denoted
by GN (v), is a subgraph of G induced by the vertex set N (v).

Consider the graph in Fig. 1a. For vertex f , the set
of neighbors is N (f) = {a, e, g, i}. The neighborhood-
induced subgraph of f is GN (f) = ({a, e, g, i}, {(a, g),
(g, i)}), as shown in Fig. 1b.Wedefine the structural diversity
of a vertex as follows.

Definition 2 (Component-based structural diversity [25])
Given an integer t where 1 ≤ t ≤ n, the structural diver-
sity of a vertex v ∈ V , denoted by score(v), is the number
of connected components in GN (v) whose size measured by
the number of vertices is larger than or equal to t . t is called
the component size threshold.

GN (f) in Fig. 1b contains a size-1 connected component
{e} and a size-3 connected component {a, g, i}. If t = 1,
then score(f) = 2. Alternatively, if t = 2, score(f) = 1 as
there is only one component {a, g, i} whose size is no less
than 2.

Ugander et al. [25] gave another definition of structural
diversity based on the core subgraph concept [6]. Their study
showed that the core subgraph-based definition suffices to
provide a positive predictor of future long-term engagement
in a social network.

A t-core of a graph is the largest subgraph in which every
vertex is connected to at least t vertices within the sub-
graph. Note that a t-core subgraph may be disconnected and
have several components. For instance, consider a graph G
in Fig. 2a. The entire graph is a 2-core, and the subgraph
inside the dashed circle is a 3-core. As another example, the
neighborhood-induced subgraph GN (e) in Fig. 2b is a 1-core

123

322 X. Huang et al.

(a) (b)

Fig. 2 An example of core-based structural diversity. a G, b GN (e)

containing2 connected components {a, b, c, d} and { f, g, h}.
Based on the t-core subgraph, we define the structural diver-
sity of a vertex as follows.

Definition 3 (Core-based structural diversity [25])Given an
integer t where 1 ≤ t ≤ n, the structural diversity of vertex
v ∈ V , denoted by score∗(v), is measured by the number of
connected components in the t-core of GN (v). t is called the
core value threshold.

Consider GN (e) in Fig. 2b. If t = 1, there are two con-
nected components {a, b, c, d} and { f, g, h} in the 1-core, so
score∗(e) = 2. But if t = 2, there is only one component
{a, b, c, d} in the 2-core of GN (e), so score∗(e) = 1 in this
case.

Based on the two different structural diversity definitions
above, we can formulate our top-k component-based and
core-based structural diversity search problems, which are,
respectively, denoted as CC-TopK and Core-TopK.

Problem 1 (CC-TopK) Given a graph G and two integers k
and t where 1 ≤ k, t ≤ n, top-k structural diversity search
is to find a set of k vertices in G with the highest structural
diversity with respect to the component size threshold t .

Let us reconsider the example in Fig. 1 for CC-TopK.
Suppose that k = 1 and t = 1. Then, {e} is the answer, as e is
the vertex with the highest structural diversity (score(e) =
3).

Problem 2 (Core-TopK) Given a graph G and two integers
k and t where 1 ≤ k, t ≤ n, top-k structural diversity search
is to find a set of k vertices in G with the highest core-based
structural diversity with respect to the core value threshold t .

It is important to note that although we focus on the top-k
structural diversity search, the proposed techniques can also
be easily extended to process the iceberg query, which finds
all vertices whose structural diversity is greater than or equal
to a pre-specified threshold. Unless otherwise specified, in
the rest of this paper, we assume that a graph is stored in
the adjacency list representation. Each vertex is assigned a
unique ID. In addition, for convenience, we assume thatm ∈
Ω(n), which does not affect the complexity analysis of the
proposed algorithms. Similar assumption has been made in
[18].

3 Problem comparison

In this section, we discuss and compare the problems ofCC-
TopK and Core-TopK in terms of measure definition, com-
putational cost, and result quality.

Measure definition For the core-based structural diversity,
every component of a t-core subgraph has at least t + 1 ver-
tices, i.e., it forms a size-(t+1) connected component.When
t = 0, the core-based structural diversity score is equivalent
to the component-based structural diversity, which is sim-
ply the component count of the original graph; when t = 1,
the core-based structural diversity score is equivalent to the
component-based structural diversity (with a component size
of at least 2) in Definition 2; when t > 1, a component in
a t-core subgraph is more cohesive than a size-(t + 1) con-
nected component in Definition 2, due to the t-core definition
that every vertex is connected to at least t vertices in the t-
core. Thus, all tree-like components will be discarded, and
the remaining components are counted for the core-based
structural diversity score. On the other hand, the tree-shaped
structure may exist and be counted for the component-based
structural diversity for any t .

Computational cost Compared with the component-based
structural diversity, the core-based structural diversity addi-
tionally requires to compute the t-core and remove unqual-
ified components. Thus, computing Core-TopK is more
costly than CC-TopK.

Result quality Compared with the component-based struc-
tural diversity which only imposes a constraint of connec-
tivity, the core-based structural diversity considers both the
size and cohesiveness of each component. Thus, the core-
based definition can help identify densely connected and
more meaningful and distinct social contexts among a user’s
friends. For example, Fig. 3a shows the GN (v) of node v

containing 15 nodes, 11 of which are connected in one com-
ponent. If we apply the component-based structural diversity
on GN (v) with t = 3, the component with the 11 nodes is
counted. However, this large component is loosely connected
through node w. But if we apply the core-based structural

(a) (b)

Fig. 3 Comparison of Core-TopK and CC-TopK. a GN (v), b GN (u)

123

Top-K structural diversity search in large networks 323

diversity on GN (v) with t = 3, two components A and B
in the 3-core of GN (u) can be discovered as shown in the
shadow regions of Fig. 3a. Each node in A and B has at least
three neighbors in the corresponding component, which are
densely connected. Obviously, in such a case, the core-based
structural diversity can capture the two dense social contexts
A and B more precisely than the component-based structural
diversity.

On the other hand, the component-based structural diver-
sity is more suitable for analyzing the social context diver-
sity for nodes whose neighbors are not densely connected,
since very few results can be discovered by the core-based
structural diversity in this case. For example, Fig. 3b shows
the GN (u) of node u containing 8 nodes. If we apply the
component-based structural diversity with t = 2, we can find
three connected components of size no less than 2 in GN (u)

as marked in the shadow regions. However, if we apply the
core-based structural diversity with t = 2, no component can
be found. Therefore, the component-based diversity is better
than the core-based structural diversity in such a case.

In summary, CC-TopK is simpler. However, it does not
consider the closeness ofmembers in each component.Core-
TopK hasmore constraints by considering both cohesiveness
and size. However, it is more difficult to compute and may
lose the information of vertices that do not participate in a
cohesive subgraph. Therefore, both definitions have advan-
tages and disadvantage, and they can be jointly used to dis-
cover more social context diversity information in a large
network. More comparisons and meaningful results for both
CC-TopK andCore-TopK using real-world networks can be
found in the case studies in our experiments.

4 A simple degree-based approach for CC-TopK

In this section, we present a simple degree-based algorithm
for top-k component-based structural diversity search. To
compute the structural diversity score(v) for a vertex v, we
can perform a breadth-first search inGN (v) to find connected
components and return the number of components whose
sizes are no less than t . We call this procedure bfs-search,
the pseudocode of which is omitted for brevity.

Next we introduce a useful lemma, which leads to a prun-
ing strategy in the degree-based algorithm.

Lemma 1 For any vertex v in G, score(v) ≤ � d(v)
t � holds.

We denote � d(v)
t � by bound(v). Equipped with Lemma 1

and the bfs-search procedure, we present the degree-based
approach in Algorithm 1, which computes the structural
diversity of the vertices in descending order of their degree.
After initialization (lines 1–2), Algorithm 1 sorts the vertices
in descending order of their degree (line 3). Then it iteratively
finds the unvisited vertex v∗ with the maximum degree and

calculates bound(v∗) (lines 5–6). If the answer set S has k
vertices and bound(v∗) ≤ minv∈S score(v), the algorithm
terminates (lines 7–8). The rationale is as follows. ByLemma
1, we have score(v∗) ≤ bound(v∗) ≤ minv∈S score(v).
For any vertex w ∈ V with a smaller degree, we have
score(w) ≤ bound(w) ≤ bound(v∗) ≤ minv∈S score(v).
Therefore, we can safely prune the remaining vertices and
terminate. On the other hand, if such conditions are not sat-
isfied, then the algorithm computes score(v∗) by invoking
bfs-search and checks whether v∗ should be added into the
answer set S (lines 10–13). Finally, the algorithm outputs S.

Algorithm 1 degree (G, k, t)
Input: G = (V, E), an integer k, the component size threshold t .
Output: Top-k search result S.

1: S ← ∅;
2: for v ∈ V do score(v) ← −1;
3: sort all vertices in descending order of their degree;
4: while ∃v ∈ V s.t. score(v) = −1
5: v∗ ← argmaxv∈V, score(v)=−1 d(v);

6: bound(v∗) ← � d(v∗)
t �;

7: if |S| = k and bound(v∗) ≤ minv∈S score(v) then
8: break;
9: score(v∗) ← bfs-search (G, t , v∗);
10: if |S| < k then S ← S ∪ {v∗};
11: else if score(v∗) > minv∈S score(v) then
12: u ← argminv∈S score(v);
13: S ← (S − {u}) ∪ {v∗};
14: return S;

The following example illustrates the working of Algo-
rithm 1.

Example 1 Consider the graph in Fig. 1a. Suppose that k = 1
and t = 1. The top-k running process is illustrated in
Fig. 4. The sorted vertex list is c, a, b, f, h, i, d, e, g in
descending order of their degree. The algorithm computes
the structural diversity of these vertices in turn and termi-
nates before computing score(g). This is because we have
minv∈S score(v) = score(e) = 3 and bound(g) = 3 ≤
minv∈S score(v). Therefore,Algorithm1 can save one struc-
tural diversity computation.

Theorem 1 For 1 ≤ k ≤ n and 1 ≤ t ≤ n, Algorithm 1 per-
forms top-k structural diversity search in O(

∑
v∈V (d(v))2)

time and O(m) space.

Fig. 4 Illustration of the degree algorithm

123

324 X. Huang et al.

Proof The algorithm first sorts all vertices in O(n) time
using the bin-sort algorithm [9]. It has to calculate the struc-
tural diversity for every vertex to answer a top-k query
in the worst case. Consider a vertex v. When the algo-
rithm computes score(u) for each neighbor u ∈ N (v),
it has to scan the adjacency list of v in O(d(v)) time.
Since there are |N (v)| = d(v) neighbors, the total cost
for scanning v’s adjacency list is O((d(v))2). Thus, it takes
O(

∑
v∈V (d(v))2) time to calculate the structural diversities

for all vertices. In addition, one canmaintain the top-k results
in O(n) time and O(n) space using a variant of bin-sort
list. Thus, the time complexity of Algorithm 1 is O(

∑
v∈V

(d(v))2).
In terms of the space consumption, the graph storage takes

O(n + m) space, and S takes O(n) space. Thus, the space
complexity of Algorithm 1 is O(n + m) ⊆ O(m).

Remark 1 The worst-case time complexity of Algorithm 1 is
bounded by O(

∑
v∈V d(v) · dmax) = O(mdmax) ⊆ O(mn).

5 A novel top-K search framework for CC-TopK

The degree algorithm is not very efficient for top-k search
because the degree-based upper bound in Lemma 1 is loose.
To improve the efficiency, the key issue is to develop a tighter
upper bound. To this end, in this section, we propose a novel
framework with a tighter pruning bound and a new algo-
rithm called bound-search to compute the structural diver-
sity score. Before introducing the framework, we present two
structural properties in a graph, which are very useful for
developing the new bound.

5.1 Two structural properties

Property 1 For any vertex v ∈ V , if a vertex u ∈ N (v) and
u forms a size-1 component in GN (v), then v also forms a
size-1 component in GN (u).

As an example, in Fig. 1b, vertex e forms a size-1 compo-
nent in GN (f). Symmetrically, vertex f also forms a size-1
component in GN (e).

Property 2 If three vertices u, v, w form a triangle inG, then
we have the sets {u, v}, {v,w}, and {u, w} belong to the same
component in GN (w), GN (u), and GN (v), respectively.

Proof This property can be easily derived by definition; thus,
we omit the proof for brevity.

For instance, in Fig. 1a, vertices a, f, g form a triangle in G.
We can observe that {a, g} belong to a connected component
in GN (f) in Fig. 1b. Similarly, {a, f } ({ f, g}) belong to a
connected component in GN (g) (GN (a)).

Remark 2 Property 2 is based on the structure of a triangle (a
clique of 3 nodes).We can extend the property to k-cliques for
any k ≥ 3. The following property can be similarly obtained:
“In a clique C = {v1, . . . , vk} of k (k ≥ 3) nodes in G, for
each node vi ∈ C , all other nodes in C \ {vi } belong to
the same component in GN (vi).” Based on a k-clique with
k > 3, we can obtain more structural information than using
a triangle. However, computing k-cliques is more costly than
computing triangles. According to [7], the time complex-
ity of listing all k-cliques for a constant k is O(kρk−2m),
where ρ is the arboricity of the graph G. Therefore, listing
all k-cliques for a constant k ≥ 4 is more costly than our
proposed algorithm fast-bound-search, whose time com-
plexity is O(ρm).

In addition, from [9,18], we can obtain the lower bound
for the time complexity of any k-clique listing algorithms as

Θ(m
k
2). This is because for a constant k ≥ 3, there can be

Θ(m
k
2) k-cliques in a graph, since the graph may contain a

clique of
√
m vertices and thus contain

(√
m
k

)

= Θ(m
k
2) k-

cliques. Hence, even the lower bound for the time complexity
of enumerating all 4-cliques as Θ(m2) is higher than the
time complexity of our algorithms shown in Remarks 3 and
4. Therefore, the extra cost taken by computing k-cliques is
much larger than the cost saving obtained by using the new
property based on k-cliques. Based on the above discussion,
in this paper, we only make use of triangles other than larger
cliques in order to guarantee the efficiency of our algorithms.

Based on these two properties, we can save a lot of com-
putational costs in computing the structural diversity scores.
For example, if we find that vertex u forms a size-1 com-
ponent in GN (v), then we know that v also forms a size-1
component in GN (u) by Property 1. Thus, when we com-
pute score(u), we do not need to perform a breadth-first
search from v, because we already know v forms a size-
1 component in GN (u). If we can efficiently record such
structural information of v’s neighbors when we compute
score(v), we can save a lot of computational costs. More
importantly, such structural information can help us to get
a tighter upper bound of the structural diversity. In the fol-
lowing subsection, we shall introduce a modified disjoint-set
forest data structure to maintain such structural information
efficiently.

5.2 Disjoint-set forest data structure

Intuitively, for the vertices in the same component, we can
simply regard them as elements in the same set, while for
the vertices in different components, we can represent them
as elements in different sets. Thus, we modify the classical
disjoint-set forest data structure and the Union-Find algo-
rithm [9] to maintain the structural information for each ver-

123

Top-K structural diversity search in large networks 325

Fig. 5 Disjoint-set forest data
structure g[f]. aMake-Forest(f),
b g[f].Union(a,g), c
g[f].Isolate(e)

(a) (b) (c)

tex efficiently. The modified structure consists of four opera-
tions: Make-Forest, Find-Set, Union, and Isolate. Com-
pared with the classical disjoint-set forest data structure,
the new structure includes an additional operation Isolate
which is used to record the structural information described
in Property 1, i.e., a vertex forms a size-1 component. Thus,
the modified structure is called Union-Find-Isolate. Algo-
rithm 2 describes the four operations.

Make-Forest: For eachvertexv ∈ V ,we create a disjoint-
set forest structure, denoted as g[v], for its neighbors N (v)

using theMake-Forest (v) procedure inAlgorithm2. Specif-
ically, for each u ∈ N (v), we build a single-node tree T [u]
with three fields: parent, rank and count. The parent is ini-
tialized to be u itself, the rank is set to 0 and the count is set
to 1, as there is only one vertex u in the tree. In addition, we
also create a virtual node T [0] which is used to collect all
size-1 components in GN (v). The parent of T [0] is set to 0
and the count is set to 0 because there is no size-1 component
identified yet. For convenience, we refer to the operation of
creating a single-node tree (line 4) or a virtual node (line 5)
as aMake-Set operation.

Find-Set: The Find-Set (x) procedure is to find the root
of T [x] using the path compression strategy. The path com-
pression strategy is a way of flattening the structure of the
tree T [x] whenever Find-Set (x) is used on it. Specifically,
the idea is that each node visited on the path to a root node
may as well be attached directly to the root node, because
they are all in the same set and share the same representative.
As a result, the obtained tree is much flatter, which can speed
up future operations not only on these elements but on those
referencing them, directly or indirectly.

Union: The Union(x, y) procedure applies the union by
rank strategy to union two trees T [f x] and T [f y] which
x and y belong to, respectively. The union by rank strategy
is to always attach the smaller tree to the root of the larger
tree. For example, f x and f y are the roots of these two trees
T [f x] and T [f y]. If f x and f y have unequal rank, the one
with a higher rank is set to be the parent of the other with
a lower rank. Otherwise, we arbitrarily choose one of them
as the parent and increase its rank by 1. For both cases, we
update the count of the root of the new tree.

Isolate: Procedure Isolate(x) unions a size-1 tree T [x]
into the virtual tree T [0]. It sets T [x].parent to 0 and
increases T [0].count by 1. Isolate(x) essentially labels x

as a size-1 component if we find x is not connected with any
other node in a neighborhood-induced subgraph.

We can apply the disjoint-set forest structure to maintain
the connected components in GN (v). For any vertex v ∈ V ,
we create a rooted tree for every neighbor u ∈ N (v) initially.
If we find that u and w are connected in GN (v), we process
it by g[v].Union(u, w). If we identify that u forms a size-1
component in GN (v), we process it by g[v].Isolate(u). Take
GN (f) in Fig. 1b as an example again. First, we create g[f]
by Make-Forest (f) as shown in Fig. 5a. Since vertices a
and g are connected, we invoke g[f].Union(a, g) and the
resulted structure is shown in Fig. 5b. The combined tree
is rooted by g and has 2 vertices. Vertex e forms a size-1
component; thus, we invoke g[f].Isolate(e), and the result
is shown in Fig. 5c.

The time complexity of the Union-Find-Isolate algo-
rithm is analyzed in the following lemma.

Lemma 2 A sequence of M Make-Set, Union, Find-Set
and Isolate operations, N of which are Make-Set opera-
tions, can be performed on a disjoint-set forest with “union
by rank” and “path compression” strategies in worst-case
time O(Mα(N)). α(N) is the inverse Ackermann function,
which is incredibly slowly growing and at most 4 in any con-
ceivable application. Thus, the time complexity of theUnion-
Find-Isolate algorithm can be regarded as O(M).

Proof The proof is similar to that in [9], thus is omitted.

In the following, for simplicity,we treatα(N) as a constant
in the complexity analysis.

5.3 A tighter upper bound

With the disjoint-set forest data structure g[v], we can keep
track of the structural information of the connected compo-
nents in GN (v) and derive a tighter upper bound of score(v)

than the degree-based bound in Lemma 1. Before introduc-
ing the upper bound, we give a definition of the identified
size-1 set as follows.

Definition 4 (Identified size-1 set) In the disjoint-set forest
structure g[v], if u ∈ N (v) and T [u].parent = 0, we
denote Su = {u} as an identified size-1 set, and |Su | = 1.
If u ∈ N (v), T [u].parent = u, we denote Su = {w ∈

123

326 X. Huang et al.

Algorithm 2 Union-Find-Isolate

1: procedure Make-Forest (v)
2: g[v] = {T [u] : u ∈ N (v)} ∪ {T [0]};
3: for u ∈ N (v) do
4: T [u].(parent, rank, count) ← (u, 0, 1);
5: T [0].(parent, rank, count) ← (0, 0, 0);

6: procedure Find-Set (x)
7: if x �= T [x].parent then
8: T [x].parent ← Find-Set (T [x].parent);
9: return T [x].parent ;
10: procedure Union (x, y)
11: f x ←Find-Set (x); f y ←Find-Set (y);
12: if f x �= f y then
13: if T [f x].rank > T [f y].rank then
14: T [f y].parent ← f x ;
15: T [f x].count ← T [f x].count + T [f y].count ;
16: else
17: T [f x].parent ← f y;
18: T [f y].count ← T [f x].count + T [f y].count ;
19: if T [f x].rank = T [f y].rank then
20: T [f y].rank ← T [f y].rank + 1;

21: procedure Isolate (x)
22: T [x].parent ← 0;
23: T [0].count ← T [0].count + 1;

N (v) : Find-Set(w) = u} as an unidentified set, and
|Su | = T [u].count .

By Definition 4, we know that each identified size-1 set
is resulted from an Isolate operation, and the total num-
ber of the identified size-1 sets is T [0].count . According
to Property 1, all these sets do not union with other sets.
On the other hand, unidentified sets may further union with
other sets or become an identified size-1 set. Consider the
example in Fig. 5c. Se = {e} is an identified size-1 set and
T [0].count = 1. Both Sg = {a, g} and Si = {i} are uniden-
tified sets.

Let S = {Su : u ∈ N (v), T [u].parent = u or T [u].
parent = 0} denote all disjoint sets in g[v], excluding the
virtual set T [0]. After traversing all the vertices and edges
in GN (v), S contains all actual sets corresponding to the
connected components in GN (v), and we have score(v) =
|{Su : Su ∈ S, |Su | ≥ t}|. However, before traversing the
neighborhood-induced subgraph GN (v), S may not contain
all the actual sets corresponding to the connected compo-
nents, but includes some intermediate results. Evenwith such
intermediate results maintained in S, we can still use them to
derive an upper bound. Specifically, we have the following
lemma.

Lemma 3 Let S = {S1, . . . ,Sl} be the disjoint sets of g[v],
a be the number of identified size-1 sets, b be the number
of sets whose sizes are larger than or equal to t , and c be
the total size of these b sets. Then, we have an upper bound
of score(v) as follows. If t = 1, bound(v) = b; if t > 1,
bound(v) = b + � d(v)−c−a

t �.

Algorithm 3 Top-k-search
Input: G = (V, E), an integer k, the component size threshold t ,
gradient ratio θ ≥ 1.
Output: Top-k search result S.

1: H ← ∅; S ← ∅;
2: for v ∈ V do
3: score(v) ← −1;
4: Make-Forest (v);
5: H.push((v, � d(v)

t �));
6: while H �= ∅
7: (v∗, topbound) ← H.pop();
8: compute bound(v∗) according to Lemma 3;
9: if θ · bound(v∗) < topbound then
10: if |S| < k or bound(v∗) > minv∈S score(v) then
11: H.push((v∗, bound(v∗)));
12: continue;
13: if |S| = k and topbound ≤ minv∈S score(v) then
14: break;
15: score(v∗) ← bound-search (G, t, v∗);
16: if |S| < k then S ← S ∪ {v∗};
17: else if score(v∗) > minv∈S score(v) then
18: u ← argminv∈S score(v);
19: S ← (S − {u}) ∪ {v∗};
20: return S;

Proof First, it is important to note that the current disjoint
sets in S are not final, if we have not traversed all vertices
and edges of GN (v). That is, some of them may be further
combined by the Union operation and the number of sets
may be reduced.

Next, we consider the following two cases.
If t = 1, we have bound(v) = b, as the current num-

ber of sets whose sizes are greater than or equal to 1 is
b and this number can only be reduced with the Union
operation.

If t > 1, the current number of sets whose sizes are greater
than or equal to t is b and this number can only be reduced
with the Union operation. In addition, besides a identified
size-1 sets and c vertices from the above b sets, there are
still d(v) − c − a vertices which may form sets whose sizes
are greater than or equal to t . The maximum number of such
potential sets is � d(v)−c−a

t �. Thus, we have bound(v) = b+
� d(v)−c−a

t �.

For any vertex v ∈ V , at the initialization stage, each
neighbor vertex u ∈ N (v) forms a size-1 component. Thus,
bound(v) = 0+� d(v)−0−0

t � = � d(v)
t �, the same as the bound

in Lemma 1. As the disjoint sets are gradually combined,
bound(v) is refined toward score(v) and becomes tighter.
For example, in Fig. 5c, suppose t = 2, we obtain S =
{Se,Sg,Si } and the three parameters in Lemma 3 are a = 1,
b = 1 and c = 2. It follows that bound(f) = 1+� 4−2−1

2 � =
1, which is equal to score(f) = 1. This bound based on the
disjoint-set forest is obviously tighter than the degree-based
bound � 4

2� = 2 derived in Lemma 1.

123

Top-K structural diversity search in large networks 327

5.4 Top-K search framework

Based on the disjoint-set forest data structure and the tighter
upper bound, we propose an advanced search framework in
Algorithm 3 for top-k structural diversity search.

Advanced top-k framework For each vertex v ∈ V , the algo-
rithm initializes the disjoint-set forest data structure g[v] by
invokingMake-Forest (line 4). It also pushes each vertex v

with the initial bound � d(v)
t � intoH, which is a variant of bin-

sort list. Then the algorithm iteratively finds the top-k results
(lines 6–19). It first pops the vertex with the largest upper-
bound value fromH. Such a vertex and its bound are denoted
as v∗ and topbound, respectively (line 7). The algorithm re-
evaluates bound(v∗) from g[v∗] based on Lemma 3, as the
component information in g[v∗]mayhavebeenupdated.And
then, it compares the refined bound bound(v∗) with the old
bound topbound.

In order to avoid frequently calculating the upper bounds
and updating H, we introduce a new parameter θ ≥ 1, and
compare θ · bound(v∗) with topbound.

If θ ·bound(v∗) < topbound, it suggests that bound(v∗)
is substantially smaller than topbound. That is, the old bound
topbound is too loose. Under this condition, if |S| < k
or bound(v∗) > minv∈S score(v), the algorithm pushes v∗
back to H with the refined bound bound(v∗) (lines 10–
11). Otherwise, the algorithm can safely prune v∗. In both
cases, the algorithm continues to pop the next vertex fromH
(lines 9–12).

If θ ·bound(v∗) ≥ topbound, it means that bound(v∗) is
not substantially smaller than topbound. In other words, the
old bound is a relatively tight estimation. Then the algorithm
moves to lines 13–14 to check the termination condition. If
|S| = k and topbound ≤ minv∈S score(v), the algorithm
can safely prune all the remaining vertices in H and termi-
nate, because the upper bound of those vertices is smaller
than topbound.

If the early termination condition is not satisfied, the algo-
rithm invokes the bound-search algorithm (line 15) to com-
pute score(v∗). bound-search is shown in Algorithm 4 and
will be described later. After computing score(v∗), the algo-
rithm uses the same process to update the set S by v∗ as the
degree algorithm does (lines 16–19).

Bound-search Algorithm 4 shows the bound-search pro-
cedure to compute score(v). Based on the disjoint-set forest
g[v], we know that any vertexu ∈ N (v)with T [u].parent =
0 corresponds to an identified size-1 component resulted from
an Isolate operation. So bound-search does not need to
search them again. It only adds the vertices whose parent �=
0 into an unvisited vertex hashtable R (lines 1–2). This is
an improvement from bfs-search, as bound-search avoids
scanning the identified size-1 components. For each vertex

Algorithm 4 bound-search (G, t, v)
Input: G = (V, E), the component size threshold t , vertex v.
Output: score(v).

1: R ← ∅;
2: for u ∈ N (v) and T [u].parent �= 0 do R ← R ∪ {u};
3: for u ∈ R do bound-bfs (u);
4: return count-components (g[v], t);
5: procedure bound-bfs (u)

6: Q ← ∅; UnionFlag ← false;
7: Q.EnQueue(u); R ← R − {u};
8: while Q �= ∅
9: u ← Q.DeQueue();
10: for w ∈ N (u) do
11: if w ∈ R then
12: Q.EnQueue(w); R ← R − {w};
13: g[v].Union (u, w); UnionFlag ← true;
14: if score(u) = −1 then g[u].Union (v,w);
15: if score(w) = −1 then g[w].Union (v, u);
16: if UnionFlag = false then
17: g[v].Isolate (u);
18: if score(u) = −1 then g[u].Isolate (v);

19: procedure count-components (g[v], t)
20: score ← 0;
21: for u ∈ N (v) do
22: if T [u].parent = u and T [u].count ≥ t then
23: score ← score + 1;
24: if t = 1 then score ← score + T [0].count ;
25: return score;

u ∈ R, the algorithm invokes the procedure bound-bfs
(lines 5–18) to search u’s neighborhood in a breadth-first
search manner. For u’s neighbor vertex w, if w ∈ R, i.e.,
w ∈ N (v), the algorithm unions u andw into one set in g[v].
According to Property 2, we also union v and w into one set
in g[u], and union v and u into one set in g[w] (lines 11–
15). If u does not union with any other vertex, the algorithm
invokes an Isolate operation on u to mark that u forms a
size-1 component in g[v] (lines 16–18). Symmetrically, by
Property 1, the algorithm invokes an Isolate operation on v

to mark that v forms a size-1 component in g[u] too. After
the BFS search, the algorithm can compute score(v) using
the procedure count-components (lines 19–25) to count the
number of sets in g[v] whose sizes are at least t . The follow-
ing example illustrates how the Top-k-search framework
(Algorithm 3) works.

Example 2 Consider the graph shown in Fig. 1a. Suppose
that t = 1 and k = 1. We apply the Top-k-search algorithm
with θ = 1 and the running steps are depicted in Fig. 6. For
initialization, we push each vertex v with the upper bound
� d(v)

t � intoH, as shown in Fig. 6a.
In the first iteration, as shown in Fig. 6b, we pop vertex

c from H with topbound = 5. We calculate bound(c) = 5
according to Lemma 3. Then, we compute score(c) by
bound-search. In GN (c), there is a single path connecting
all vertices a, b, d, h, i in N (c), so score(c) = 1. When the

123

328 X. Huang et al.

Fig. 6 Illustration of
Top-k-search with
bound-search running on the
graph in Fig. 1a. k = 1, t = 1,
and θ = 1. a Initialization, b
compute score(c), and add c into
S, c update bound(a) into H, d
compute score(f), and update S
by f, e Pop out h, i, d from H, f
compute score(e), and update S
by e

(a)

(b)

(c)

(d)

(e)

(f)

algorithm traverses the edge (a, b), we perform two opera-
tions g[a].Union (c, b) and g[b].Union (c, a) in g[a] and
g[b], respectively, according to Property 2. Then we push
vertex c into S.

In the next iteration, as shown in Fig. 6c, we pop ver-
tex a from H which has topbound = 4. Then we update
bound(a) = 3 as we know that vertices b and c are in
the same set in g[a]. Since θ · bound(a) < topbound and
bound(a) > minv∈S score(v), we push (a, 3) intoH again.

When the algorithm goes to process vertex f in Fig. 6d,
we have θ · bound(f) = topbound = 4 and topbound >

minv∈S score(v). And then we compute score(f) = 2 and
replace vertex c in S with f .

After that, we pop vertices h, i, d fromH in turn, as shown
in Fig. 6e. One can easily check that none of them satisfies
the condition in line 10 of Algorithm 3. Thus, we do not push
h, i, d back intoH again.

Next we pop vertex e, compute score(e) = 3 and
update S by e, as shown in Fig. 6f. Since topbound in
H is no greater than score(e) = 3, we can safely termi-
nate. In this process, we only invoke bound-search three
times to calculate the structural diversity score, while the
previous degree algorithm calculates the structural diver-
sity score of eight vertices, which is clearly more expen-
sive.

5.5 Complexity analysis

Lemma 4 The upper bound bound(v) defined in Lemma
3 for any vertex v ∈ V can be updated in O(1) time in
Algorithm 3.

Proof We need to maintain a, b and c in g[v] to recompute
bound(v).Obviously,a = T [0].count , andb, c canbe easily
maintained in theUnion operation of g[v]without increasing
the time complexity. Thus, bound(v) can be updated in O(1)
time.

Lemma 5 The total time to compute bound for all vertices
in Algorithm 3 is O(mt).

Proof According toLemma4,bound(v) for a vertexv canbe
computed inO(1) time.The initial upper boundofv is � d(v)

t �,
and bound(v) is updated in non-increasing order. In line 9
of Algorithm 3, we compare θ · bound(v) and topbound to
checkwhether v should be pushed intoH. Since topbound ≤
� d(v)

t �, bound(v) can be updated for at most � d(v)
t � times.

Thus, the total time cost is O(
∑

v∈V
d(v)
t) = O(mt).

Lemma 6 InTop-k-search,H can bemaintained in O(mt +
n) time using O(n) space.

Theorem 2 Algorithm 3 takes O (
∑

v∈V (d(v))2) time and
O(m) space.

Proof Since the time to access the adjacency lists in bound-
search is O(

∑
v∈V (d(v))2), and all Union operations

are in the loop of accessing adjacency lists (lines 13–
15 of Algorithm 4), the number of Union operations is
O(

∑
v∈V (d(v))2). The algorithm invokes n Make-Forest

operations (line 4ofAlgorithm3),which includes
∑

v∈V (d(v)

+ 1) = 2m + n Make-Set operations. Next, all Isolate
operations are in the procedure bound-bfs (lines 17–18 of
Algorithm 4). The number is no greater than

∑
v∈V 2d(v) =

4m. No Find-Set operation is directly invoked. Thus,
Union-Find-Isolate includes O(

∑
v∈V (d(v))2) Make-Set,

Union, Find-Set, Isolate operations, 2m + n of which are
Make-Set. By Lemma 2, the time complexity of Union-
Find-Isolate is O(

∑
v∈V (d(v))2).

By Lemma 6, H takes O(mt + n) time. S maintains the
top-k results using O(n) time. By Lemma 5, updating the
upper bounds for all vertices takes O(mt) time. Therefore,
the time complexity of Algorithm 3 is O (

∑
v∈V (d(v))2).

Next, we analyze the space complexity. For v ∈ V , g[v]
contains d(v) + 1 initial disjoint singleton trees, in which
each node takes constant space. Hence, the disjoint-set forest

123

Top-K structural diversity search in large networks 329

Fig. 7 GN (r) has two vertices
p and q with degree 1 and 100

structure takes O(m) space for all vertices. S and H both
consume O(n) space. In summary, the space complexity of
Algorithm 3 is O(m).

Hence, Theorem 2 is established.

6 Fast computation of component-based structural
diversity score

In this section, on top of the Top-k-search framework,
we propose two methods for fast computing the structural
diversity score for a vertex. The first method is fast-bound-
search, which improves bound-search and achieves a bet-
ter time complexity using the same space. The second is an
A∗ search method, which uses a new search order and a new
termination condition.

6.1 Fast bound-search

We present fast-bound-search in Algorithm 5, which is
built on bound-search. The major difference is in pro-
cedure fast-bound-bfs for traversing a connected compo-
nent. When accessing the adjacency list of vertex u having
d(u) > d(v), we will access the adjacency list of v instead
(lines 10–13), i.e., we always select the vertex with a smaller
degree to access. Checking whether (w, u) ∈ E in line 13
can be done efficiently by keeping all edges in a hashtable.
Moreover, R can also be implemented by a hashtable. Thus,
line 13 can be done in expected constant time by hashing.

To show the effectiveness of this improvement, we con-
sider an example GN (r) in Fig. 7. Suppose that r has two
neighbors p and q with degree 1 and 100, respectively. To
compute score(r), bound-search needs to access the adja-
cency lists of p and q and check |N (p)|+|N (q)| = 101 ver-
tices. In contrast, fast-bound-search accesses N (r) instead
of N (q) because d(q) > d(r); thus, the number of visited
vertices is reduced to |N (p)| + |N (r)| = 3.

Complexity analysis Using fast-bound-search to compute
structural diversity scores, we achieve a better time complex-
ity of the Top-k-search framework shown in the following
theorem.

Theorem 3 TheTop-k-search frameworkusing fast-bound-
search takes O(

∑
(u,v)∈E min{d(u), d(v)}) time and O(m)

space.

Proof For a vertex v, the time cost of accessing the adja-
cency lists is

∑
u∈N (v) min{d(u), d(v)} for computing its

Algorithm 5 fast-bound-search (G, t, v)
Input: G = (V, E), the component size threshold t , vertex v.
Output: score(v).

1: R ← ∅;
2: for u ∈ N (v) and T [u].parent �= 0 do R ← R ∪ {u};
3: for u ∈ R do fast-bound-bfs (u);
4: return count-components (g[v], t);
5: procedure fast-bound-bfs (u)

6: Q ← ∅; UnionFlag ← false;
7: Q.EnQueue(u); R ← R − {u};
8: while Q �= ∅
9: u ← Q.DeQueue();
10: if d(u) > d(v) then MinAd j L ← N (v);
11: else MinAd j L ← N (u);
12: for w ∈ MinAd j L do
13: if (w, u) ∈ E and w ∈ R then
14: Q.EnQueue(w); R ← R − {w};
15: g[v].Union (u, w); UnionFlag ← true;
16: if score(u) = −1 then g[u].Union (v,w);
17: if score(w) = −1 then g[w].Union (v, u);
18: if UnionFlag = false then
19: g[v].Isolate (u);
20: if score(u) = −1 then g[u].Isolate (v);

score. To compute scores for all vertices, accessing the adja-
cency lists consumes O(

∑
v∈V

∑
u∈N (v) min{d(u), d(v)})

= O(
∑

(u,v)∈E min{d(u), d(v)}).
Since the number of Union operations is bounded by the

number of accessing adjacency lists, the number of Union
operations isO(

∑
(u,v)∈E min{d(u), d(v)}).Moreover, there

are 2m + n Make-Set operations, O(m) Isolate operations
and no direct Find-Set operation invoked by the algorithm.
By Lemma 2, Union-Find-Isolate takes O(

∑
(u,v)∈E min

{d(u), d(v)}) time in total. The other steps in the loop of
accessing adjacency list take constant time. Therefore, it
takes O(

∑
(u,v)∈E min{d(u), d(v)}) time to calculate all

vertices’ structural diversity scores using the fast-bound-
search algorithm.

By Lemma 5, the total time of estimating upper bound is
O(mt) ⊆ O(m), and by Lemma 6, the total time to maintain
H is O(mt + n) ⊆ O(m).

The remaining steps in Algorithm 3 using fast-bound-
search totally cost O(m) time.

Compared with bound-search, fast-bound-bfs needs
extra O(m) space for storing the edge hashtable. Thus, the
space consumption is still O(m).

Hence, Theorem 3 is established.

Remark 3 According to [7], we have

O

⎛

⎝
∑

(u,v)∈E
min{d(u), d(v)}

⎞

⎠ ⊆ O (ρm) ,

123

330 X. Huang et al.

where ρ is the arboricity of a graph G and ρ ≤ min {�√m �,
dmax} for any graphG. Thus, the worst-case time complexity
of the Top-k-search framework using fast-bound-search
is bounded by

O

⎛

⎝
∑

(u,v)∈E
min{d(u), d(v)}

⎞

⎠ ⊆ O(ρm) ⊆ O
(
m1.5

)
.

6.2 A*-based bound-search

In this subsection,wedesign a newsearchorder and anew ter-
mination condition to compute the structural diversity score
for a vertex.

Take Fig. 8 as an example which shows the neighborhood-
induced subgraph of r . Suppose that before examiningGN (r),
the algorithm has computed the structural diversity scores for
r ’s neighbors p1, . . . , p4. Then, by Property 2, the vertices
p1, . . . , p4 are combined into one component P in GN (r).
There is another component Q in GN (r) with only one ver-
tex q. To compute score(r), the algorithm needs to further
check whether the components P and Q are connected or
not. If the algorithm first checks vertex q in the component
Q, then it will go through q’s adjacency list N (q) to verify
whether q connects with any vertices in p1, . . . , p4. If q is
not connected with any one of them, we can conclude that
Q forms a size-1 component and P forms a size-4 compo-
nent in GN (r). Thus, the algorithm does not need to traverse
the adjacency lists of p1, . . . , p4, and it can terminate early.
In contrast, if the algorithm first checks the component P ,
then it needs to go through the adjacency lists of vertices
p1, . . . , p4 to verify whether they connect with q or not. This
is clearly more expensive than starting from the component
Q. Motivated by this observation, we propose an A∗ search
strategy to efficiently compute the structural diversity in the
neighborhood-induced subgraph of a vertex. Below, we first
give the definition of component cost which is used as a cost
function to determine the component visiting order in the A∗
search process.

Definition 5 (Component cost) Given a component S in a
neighborhood-induced subgraph, the component cost of S is
the sum of degree of the unvisited vertices in S, denoted as
cost (S) = ∑

unvisited v∈S d(v).

Suppose that in Fig. 8 all vertices in N (r) are unvisited.
The component costs are cost (P) = 16 and cost (Q) =

Fig. 8 GN (r) containing two components P and Q

Algorithm 6 A∗-bound-search (G, t, v)
Input: G = (V, E), the component size threshold t , vertex v.
Output: score(v).

1: R ← ∅; T C ← ∅;
2: for u ∈ N (v) do C[u] ← ∅;
3: for u ∈ N (v) do
4: if Find-Set (u) �= 0 then
5: C[T [u].parent].push((u, d(u))); R ← R ∪ {u};
6: if T [u].parent = u then
7: T C.push((u, T [u].cost));
8: while T C �= ∅
9: (x, tcostx) ← T C.pop(); UnionFlag ← false;
10: if x �=Find-Set (x) then continue;
11: if tcostx �= T [x].cost then
12: T C.push((x, T [x].cost)); continue;
13: if |R| = |C[x]| then goto Step 33;
14: while C[x] �= ∅ and UnionFlag = false
15: (u, costu) ← C[x].pop(); R ← R − {u};
16: T [x].cost ← T [x].cost − costu ;
17: w.l.o.g, we assume d(u) < d(v);
18: for w ∈ N (u) do
19: if (w, v) ∈ E and w ∈ R then
20: f u ←Find-Set (u); f w ←Find-Set (w);
21: if f u �= f w then
22: Q ← Heap_Merge(C[f u], C[f w]);
23: g[v].Union (u, w);
24: C[Find-Set (x)] ← Q; UnionFlag ←true;
25: if score(u) = −1 then g[u].Union (v,w);
26: if score(w) = −1 then g[w].Union (v, u);
27: if UnionFlag = true and Find-Set (x) = x then
28: T C.push((x, T [x].cost));
29: if UnionFlag = false and C[x] = ∅ then
30: if T [x].count = 1 then
31: g[v].Isolate (x);
32: if score(x) = −1 then g[x].Isolate (v);
33: return count-components (g[v], t);

1. The component cost measures the cost of accessing the
adjacency lists of a component. If we check the low-cost
components first and the high-cost components later, we can
potentially save more computation. Thus, in A∗ search, we
always pick a component T [x] in GN (v) which has the least
cost to traverse.

To record the cost, we add the component cost as a
field in the Union-Find-Isolate data structure. Specifically,
for a vertex u, when we create a single-node component
T [u], we initialize T [u].cost = d(u). When we union
two components T [u] and T [v], we add up their costs, i.e.,
T [u].cost + T [v].cost .

The algorithm A∗-bound-search uses the component cost
for determining a fast search order to traverse the compo-
nents in GN (v) until there is only one unvisited component
left. In traversing a component, the algorithm accesses the
adjacency lists of the unvisited vertices in increasing order
of their degrees until the component is connected with other
components or traversed.

123

Top-K structural diversity search in large networks 331

Fig. 9 A∗-bound-search
example for computing
score(r). a GN (r), b Vertex
degree and parent in T[.], c
initialization, d step 1, estep 1
(termination)

(a) (b)

(c)

(d) (f)

(e)

Algorithm 6 shows A∗-bound-search. For a vertex v,
the algorithm uses a minimum heap T C to maintain all the
unidentified components in GN (v) ordered by their compo-
nent costs. For a component rooted by a vertex u, the algo-
rithm makes use of a minimum heap C[u] to maintain all
vertices in this component ordered by their degree. Initially,
for each vertex uwhose parent is not 0, the algorithmpushes
u with cost d(u) into theminimum heap C[T [u].parent] and
adds u into the hashtable R which stores all the unvisited ver-
tices (line 5). Moreover, if u is the root of T [u], the algorithm
pushes the component of u and its component cost T [u].cost
into the heap T C (lines 6–7).

Let us consider an example. Figure 9a shows the
neighborhood-induced subgraph GN (r), and Fig. 9b shows
the degree and the parent in T [.] for each vertex in N (r).
We know that p1, p2, p3 are in a component rooted by p1,
and q1, q2 are in a component rooted by q1, and s is in a
component rooted by s itself. After initialization, the mini-
mum heaps T C, C[s], C[p1], C[q1] and the hashtable R are
illustrated in Fig. 9c.

The algorithm iteratively pops a component with the min-
imum cost from T C, denoted as x with cost tcostx (line 9). If
the component is rooted by vertex x and tcostx = T [x] .cost ,
the algorithm will examine the vertices in the component of
x . Otherwise, if the component is no longer rooted by x or
tcostx �= T [x].cost , it means that the component of x has
been combined with another component in a previous itera-

tion. Then, the algorithm pops the next component from T C.
If |R| = |C(x)| holds, then all the unvisited nodes in R are
from the same component rooted by x , and this component
is the last to be traversed in GN (v) (line 13). By the early ter-
mination condition, the algorithm does not need to traverse
this component and can directly go to count the number of
components in GN (v) (line 33).

For a popped component rooted by x , the algorithm iter-
atively examines the vertices in the component in increasing
order of their degree (lines 14–26). For such a vertex u, we
will access its adjacency list N (u) to find out those vertices
denoted as w that are also in N (v). Then we will union the
components which contain u and w, respectively, into one.
This process is very similar to the previous algorithms. So
we omit the details for brevity.

Continuing with our example in Fig. 9, after initializa-
tion, we pop the first component (s, 8) from T C, as shown
in step 1 (Fig. 9d). Then, we examine vertex s in this com-
ponent and find that it is not connected with other compo-
nents in GN (r). Next, we move to step 2 (Fig. 9e) to pop
the component (p1, 12). In this component, we first exam-
ine the adjacency list of p1, i.e., N (p1). We find that p1 is
connected with q1, so we union the components rooted by
p1 and q1. Assume that the new component is rooted by
p1. Then we set T [q1].parent = p1 and merge C(q1) into
C(p1). We push the new component (p1, 24) into T C again.
In step 3 (Fig. 9f), we pop the component (q1, 15) and find

123

332 X. Huang et al.

that T [q1].parent �= q1, as the component of q1 has been
combined with that of p1 in step 2. In this step, there is only
one component in T C, which meets the early termination
condition.

Complexity analysis In the component union process (line
22 of Algorithm 6), we need to merge two heaps C[f w] and
C[f u] into one. We can implement C[.] by the mergeable
heap such as leftist heap or binomial heap [9], which support
the merge of two heaps in O(log n) time and a push/pop
operation in O(log n) time for a heap with n elements.

Lemma 7 In Algorithm 6, the operations for T C and all C[.]
take O(d(v) log d(v)) time and O(d(v)) space in total.

Proof Since the number of components inGN (v) is no greater
than d(v), we perform at most d(v) − 1 Union operations
before termination. Hence, there are at most d(v) − 1 new
components to be pushed into T C (lines 12 and 28). In addi-
tion, for initialization |T C| ≤ d(v) holds, which indicates
that |T C| ≤ 2d(v) always holds. As there are at most 2d(v)

push and pop operations, respectively, and each operation
takes O(log d(v)) time, overall T C takes O(d(v) log d(v))

time using O(d(v)) space.
For initialization, all C[.] heaps take d(v) push opera-

tions in total (line 5), and the time cost of each operation
is O(log d(v)) as the size of the largest heap is smaller than
d(v). Hence, the initialization time is O(d(v) log d(v)). As
analyzed above, there are at most d(v) − 1 heap merging
operations and each operation costs O(log d(v)), the total
time cost in line 22 is O(d(v) log d(v)). Moreover, there are
at most d(v) pop operations in line 15, the time cost of which
is O(d(v) log d(v)). All C[.] heaps contain at most d(v) ver-
tices totally costing O(d(v)) space. As a result, all C[.] heaps
take O(d(v) log d(v)) time and O(d(v)) space.

Theorem 4 TheTop-k-search frameworkusingA∗-bound-
search takes O(

∑
(u,v)∈E (min{d(u), d(v)} + (log d(u) +

log d(v)))) time and O(m) space.

Remark 4 Theworst-case time complexity ofTop-k-search
framework using A∗-bound-search is bounded by

O

⎛

⎝
∑

(u,v)∈E
(min{d(u), d(v)} + (log d(u) + log d(v)))

⎞

⎠

⊆ O((ρ + log dmax)m)

⊆ O(m1.5),

where ρ is the arboricity of the graph as mentioned in
Remark 3.

6.3 Complexity comparison

We compare the time complexity of algorithms degree
and Top-k-search, to understand why the proposed Top-
k-search framework is more efficient.

According to Theorem 1, degree takes O(
∑

v∈V (d(v))2)

time, which can be equivalently rewritten as

O

(
∑

v∈V
(d(v))2

)

= O

⎛

⎝
∑

v∈V

∑

u∈N (v)

d(u)

⎞

⎠

= O

⎛

⎝
∑

(u,v)∈E
(d(u) + d(v))

⎞

⎠

= O

⎛

⎝
∑

(u,v)∈E
(max{d(u), d(v)} + min{d(u), d(v)})

⎞

⎠

= O

⎛

⎝
∑

(u,v)∈E
max{d(u), d(v)}

⎞

⎠

For Top-k-search using fast-bound-search, according
to Theorem 3, it takes O(

∑
(u,v)∈E min{d(u), d(v)}) time,

obviously better than O(
∑

(u,v)∈E max{d(u), d(v)}), the
time complexity of degree. The two algorithms have the
same complexity only if all vertices in the graph have the
same degree. In a power-law graph such as a social net-
work, the degrees of vertices have a large variance; thus,
Top-k-search using fast-bound-search is much better than
degree in such networks. For example, on a star graphwith n
nodes, Top-k-search using fast-bound-search takes O(n)

time while degree takes O(n2) time.
For Top-k-search using A∗-bound-search, its time

complexity, which is O(
∑

(u,v)∈E (min{d(u), d(v)}+
(log d(u) + d(v)))), is also better than O(

∑
(u,v)∈E max{d

(u), d(v)}) of degree. This is because the first part
O(

∑
(u,v)∈E min{d(u), d(v)}) is better for the same reason

as stated above, and the second part O(
∑

(u,v)∈E (log d(u)+
log d(v))) is also better since O(log d(u) + log d(v)) ≤
O(max{d(u), d(v)}) holds.

7 Handling update for CC-TopK in dynamic networks

Many real-world networks undergo frequent updates. When
the network is updated, the top-k structural diversity results
also need to be updated. The challenge, however, is that
insertingor deleting a single edge (u, v) can trigger updates in
a series of neighborhood induced subgraphs includingGN (u),
GN (v) and GN (w) where w ∈ N (u) ∩ N (v). This can be a
costly operation because the corresponding structural diver-
sity scores need to be recomputed, and the top-k results need
to be updated too.

In the following, we will show that our Top-k-search
framework can be easily extended to handle updates in

123

Top-K structural diversity search in large networks 333

Fig. 10 Illustration of updates
in a dynamic graph. a G, b
GN (r), c update GN (r) with edge
insertion of (r, q), d spanning
tree of Component P in GN (r) as
Tp , e update GN (r) with edge
deletion of (r, p2), f update Tp
with edge deletion of (r, p2)

(a) (b) (c)

(d) (e) (f)

dynamic graphs. We consider two types of updates: edge
insertion and edge deletion. Vertex insertion/deletion can be
regarded as a sequence of edge insertions/deletions preceded/
followed by the insertion/deletion of an isolated vertex, while
it is trivial to handle the insertion/deletion of an isolated
vertex.

7.1 Handling edge insertion

Consider the insertion of an edge (u, v). Let L = N (u) ∩
N (v) denote the set of common neighbors of u and v. The
insertion of (u, v) causes the insertions of vertex v and a set
of |L| edges {(v,w)|w ∈ L} into u’s neighborhood-induced
subgraph GN (u). For each w ∈ L , we perform a Union
operation g[u].Union(v,w) to update the components and
score(u). For vertex v, GN (v) is updated in a similar way.

The insertion of (u, v) also affectsGN (w) for eachw ∈ L .
We check the disjoint-set forest structure g[w]. If u, v belong
to the same connected component before the edge inser-
tion, then all components remain unchanged and so does
score(w). If u, v are in different components before the
edge insertion, we merge the two components into one with
a Union operation g[w].Union(u, v) and update score(w)

accordingly.
Consider the graph G in Fig. 10a as an example. Suppose

that t = 2 and the inserted edge is (r, q). L = N (r) ∩
N (q) = {s, p1}. Figure 10c shows the updated GN (r) with
the edge insertion. GN (r) has two new edges (p1, q) and
(s, q), but score(r) = 1 remains unchanged. For vertex s ∈
L , vertices r, q are now connected in the same component in
GN (s) with the insertion of (r, q), sowe update score(s) from
0 to 1.

7.2 Handling edge deletion

Consider the deletion of an edge (u, v). To handle the edge
deletion, we maintain a spanning tree for each connected
component in the affected subgraphs GN (u), GN (v) and
GN (w) where w ∈ L . For example, consider the component
P = {p1, . . . , p5} of GN (r) in Fig. 10b and the correspond-
ing spanning tree TP in Fig. 10d. The edges in the spanning
tree are called tree edges, and other edges in the component
are called non-tree edges, e.g., (p1, p2) is a tree edge and
(p1, p5) is a non-tree edge.

For each w ∈ L , we consider updating GN (w) with the
deletion of (u, v). We check whether (u, v) is a tree edge
in the spanning tree of the component. If (u, v) is a non-tree
edge, score(w) remains unchanged because vertices u, v are
still in the same component connected by the corresponding
spanning tree. Continuing with the example above, the dele-
tion of the non-tree edge (p1, p5)will not split the component
P in GN (r), and p1, p5 are still in the same component. If
(u, v) is a tree edge, then the deletion of (u, v) splits the span-
ning tree into two trees denoted as Tu and Tv . We will search
for a replacement edge so as to reconnect Tu and Tv . If a
replacement edge (u′, v′) exists, we insert (u′, v′) to connect
Tu, Tv into a new spanning tree. Then the original component
is still connected, and score(w) remains unchanged. If the
replacement edge does not exist, the deletion of (u, v) splits
the original connected component into two components, and
the corresponding spanning trees are Tu and Tv . Sowe update
score(w) accordingly. Maintaining the spanning tree can be
implemented easily with the Union operation by keeping
track of the bridge edge between two different components.
In the example above, if a tree edge (p1, p2) is deleted, we

123

334 X. Huang et al.

can find a replacement edge (p1, p4) to reconnect the span-
ning tree in Fig. 10d.

The deletion of (u, v) also affects GN (u) and GN (v). Con-
sider u as an example. For all w ∈ L , we remove those non-
tree edges (v,w) from GN (u) and remove those tree edges
(v,w) from the spanning treewhich is then split intomultiple
trees. Then we search for replacement tree edges to recon-
nect the spanning tree. Finally, we remove v from GN (u) and
update score(u). Figure 10e, f shows the updates of GN (r)

and TP with the deletion of (r, p2).
The above techniques apply to updating both the actual

score and the upper bound in our Top-k-search framework
given edge insertions/deletions. In updating an upper bound
bound(v) for vertex v, given an edge deletion as a tree edge,
we only split the original spanning tree into two, but do not
have to search for the replacement edge. This will only relax
bound(v)without affecting the result correctness. This strat-
egy can avoid the cost of finding the replacement edge and
achieve higher efficiency.

Summary Handling edge insertion is trivial usingour disjoint-
set forest structure, while handling deletion is more costly
as it maintains the spanning tree. In the real-world networks,
edge insertions are usually more frequent than deletions. Our
update techniques do not increase the space complexity of
Top-k-search.

8 Top-K core-based structural diversity search

Ugander et al. [25] gave another definition of structural diver-
sity based on the core subgraph concept [6]. Their study
showed that, the core-based structural diversity suffices to
provide a positive predictor of future long-term engagement
in a social network. In this section, we further study top-k
structural diversity search using this definition.

Due to the different definition of structural diversity, the
structural properties for the component-basedmeasure (Defi-
nition 2) may not hold for the core-basedmeasure. For exam-
ple, in Fig. 2a, vertices e, b and d form a triangle, and b, d
belong to the same component in the 2-core of GN (e), as
depicted in Fig. 2b. But vertices e and d do not belong to
the same component in the 2-core of GN (b), neither do ver-
tices e and b belong to the same component in the 2-core of
GN (d). This shows that Property 2 does not hold for the core-
based definition. In addition, the Union-Find-Isolate data
structure is designed for keeping the information of com-
ponents that vertices belong to; however, we can not know
whether two vertices belong to the same component in a t-
core beforehand. Hence, our proposed Union-Find-Isolate
structure and the upper bound which leverage such property
can not be directly applied to the top-k core-based structural
diversity search. In the following, we will derive a new upper

bound and a new algorithm for computing the core-based
structural diversity score.

8.1 Upper bound of core-based structural diversity

Similar to Lemma 1, a simple upper bound of the core-based
structural diversity can be derived based on the vertex degree
and the parameter t .

Lemma 8 For any vertex v ∈ V , score∗(v) ≤ � d(v)
t+1 � holds.

However, this upper bound can be too loose for efficient
pruning. In the following, we introduce an important struc-
tural property, which is useful for designing a tighter upper
bound. First we give a definition of core value.

Definition 6 (Core value) The core value of a vertex v ∈ V
in a graphG, denoted by ϕ(v), is themaximum integer t such
that there exists a t-core subgraph of G that contains v.

Continuewith the above example. For the graph in Fig. 2a,
vertex f has a core value of 2, and the other vertices have
a core value of 3. Based on the core value, we can derive a
new structural property as follows.

Property 3 If a vertex v ∈ V has ϕ(v) ≤ t , then for each
vertex u ∈ N (v), v is not in the t-core of GN (u).

A tighter upper bound is derived in Lemma 9 based on
Property 3.

Lemma 9 For any vertex v ∈ V , we have an upper bound
of score∗(v) as

bound(v) =
⌊
d(v) − w(v) − q(v)

t + 1

⌋

,

where w(v) and q(v) are defined as follows:

w(v) = |{u : u ∈ N (v), ϕ(u) ≤ t}|,
q(v) = |{u : u ∈ N (v), ϕ(u) > t, |N (v) ∩ N (u)| < t}|.
Proof First, according to Property 3, thesew(v)verticeswith
ϕ(u) ≤ t is not in the t-core of GN (v).

Next, we prove that any vertex u ∈ N (v) with ϕ(u) > t
and |N (v)∩ N (u)| < t is not in the t-core of GN (v), because
u has less than t neighbors in GN (v). Therefore, these q(v)

vertices are not in the t-core of GN (v).
Therefore, the maximum possible number of vertices in

the t-core is d(v) − w(v) − q(v). Similar to the proof of
Lemma 8, we can derive bound(v) = � d(v)−w(v)−q(v)

t+1 � as an
upper bound of score∗(v).

For example, in Fig. 2b, let t = 2. We have w(e) = 1
because there is one vertex, f , with ϕ(f) = 2 ≤ t . We also
have q(e) = 1 because there is one vertex, h, with ϕ(h) =
3 > t and |N (e)∩N (h)| = 1 < t . It follows that bound(e) =

123

Top-K structural diversity search in large networks 335

� 7−1−1
2+1 � = 1, which is equal to score∗(e) = 1. This bound

is tighter than the degree-based bound � 7
2+1� = 2.

8.2 Core-based structural diversity computation

8.2.1 Top-K search framework

For top-k core-based structural diversity search, we adopt
the Top-k-search framework in Sect. 5 with the new upper
bound in Lemma 9. To assign an initial upper bound to every
vertex, we apply core decomposition [4] onG to compute the
core value of every vertex in G. For the self-completeness of
this paper, the core decomposition algorithm [4] is outlined
in Algorithm 7. The algorithm first sorts the vertices in G
in ascending order of their degree. Then the algorithm itera-
tively removes from G a vertex v with the minimum degree,
together with all the edges incident to it, and assigns d, the
current minimum degree in G, as its core value ϕ(v). Upon
the removal of v, we also update the degree of the remaining
vertices and reorder them according to their new degree. The
algorithm terminates when all vertices are removed from G.
In this way, we compute the core value of all vertices in G.

Next we initialize the upper bound of each vertex v ∈
V as bound(v) = � d(v)−w(v)

t+1 � = � |{u:u∈N (v),ϕ(u)>t}|
t+1 � by

Lemma 9, where we set the parameter q(v) = 0 at this
stage. Note that bound(v) can be incrementally refined dur-
ing the top-k search process, because the vertex u ∈ N (v)

with ϕ(u) > t and |N (v)∩N (u)| < t can be identified when
computing score∗(u).

In summary, we make the following modifications in the
Top-k-search framework (Algorithm 3) to adapt it to the
core-based structural diversity search.

1. For initialization, we compute the core value ϕ(v) for
every v ∈ V using Algorithm 7.

2. We initialize the upper bound in line 5 using bound(v) =
� d(v)−w(v)

t+1 �.
3. We compute bound(v∗) according to Lemma 9 in line 8.
4. In line 15, a new A∗-core-search algorithm is invoked,

which will be introduced in details in Sect. 8.2.2.

Algorithm 7 Core Decomposition
Input: G = (V, E)

Output: ϕ(v) for each v ∈ V

1: Sort the vertices in G in ascending order of their degree;
2: while (G is not empty)
3: let d be the minimum vertex degree in G;
4: while (there exists a vertex v with degree of at most d)
5: ϕ(v) ← d;
6: remove v and all edges incident to v from G;
7: reorder the remaining vertices in ascending order

of their degree;
8: return ϕ(v) for each v ∈ V ;

8.2.2 A∗-based search algorithm

Next we propose an efficient method for computing the core-
based structural diversity score for a vertex.This newmethod,
called A∗-core-search, is shown in Algorithm 8. It has two
main steps: (1) for a vertex v, it first applies core decompo-
sition on GN (v) and computes the t-core of GN (v); and (2) it
then invokes A∗-bound-search (Algorithm 6) to efficiently
compute the number of components in the t-core and returns
score∗(v).

In the first step for computing the t-core, a graph H is
initialized to be GN (v). Since any vertex u ∈ N (v) with
ϕ(u) ≤ t is not in the t-core of GN (v) by Lemma 3, u is
removed from the graph H , together with all the incident
edges (lines 1–3). Then, for each vertex u in H , we com-
pute the degree d(u). If d(u) < t , the algorithm inserts
u into the queue Q, which keeps the candidate vertices
for removal from H and updates bound(u) according to
Lemma 9 (lines 4–13). Next, it performs core decomposition
by iteratively removing vertex u in Q from H , and inserting
new vertices with degree less than t into Q. This process
terminates when Q is empty (lines 14–21). The remaining
graph H is the t-core of GN (v).

In the second step, the algorithm applies the A∗ strate-
gies in Algorithm 6 for computing the number of connected
components in the t-core of H as score∗(v) and returns
it. Specifically, we modify Algorithm 6 by removing lines
25–26 (designed according to Property 2) and lines 29–32

Algorithm 8 A∗-core-search (G, t, v)
Input: G = (V, E), the core value threshold t , vertex v.
Output: score∗(v).

1: Q ← ∅; H ← GN (v);
2: for u ∈ N (v) do
3: if ϕ(u) ≤ t then H.delete(u);
4: for u ∈ VH do
5: d(u) ← 0;
6: if d(u) > d(v) then MinAd j L ← N (v);
7: else MinAd j L ← N (u);
8: for w ∈ MinAd j L do
9: if (w, u) ∈ E and w ∈ VH then
10: d(u) ← d(u) + 1;
11: if d(u) < t then
12: Q.push(u);
13: Update bound(u) by Lemma 9;
14: while Q �= ∅
15: u ← Q.DeQueue(); H.delete(u);
16: if d(u) > d(v) then MinAd j L ← N (v);
17: else MinAd j L ← N (u);
18: for w ∈ MinAd j L do
19: if (w, u) ∈ E and d(w) ≥ t then
20: d(w) ← d(w) − 1;
21: if d(w) < t then Q.push(w);
22: Invoke Algorithm 6 to compute score∗(v) from H ;
23: return score∗(v);

123

336 X. Huang et al.

(designed according to Property 1), since neither property
is applicable for core-based structural diversity search. The
other parts of Algorithm 6 remain unchanged.

8.2.3 Complexity analysis

We analyze the time and space complexity of the core-based
Top-k-search framework as follows.

Theorem 5 The core-basedTop-k-search framework using
A∗-core-search takes O(

∑
(u,v)∈E (min{d(u), d(v)}+ (log

d(u) + log d(v)))) time and O(m) space.

Proof First, in the initialization step, the algorithm applies
core decomposition (Algorithm 7) on the whole graph G,
which can be done in O(m) time [4]. The total time cost of
estimating the upper bound for all vertices is O(m).

Second, for a vertex v, we consider the time cost of
computing score∗(v). Compared with A∗-bound-search,
it takes extra O(

∑
u∈N (v) min{d(u), d(v)}) time for com-

puting the degree of vertices in N (v). Moreover, performing
core decomposition on GN (v)(lines 14–21) also takes extra
O(

∑
u∈N (v) min{ d(u), d(v)}) time. Finally, it invokesAlgo-

rithm 6 for computing the number of components in the t-
core of GN (v). By Theorem 4, the top-k search process takes
O(

∑
(u,v)∈E (min{d(u), d(v)} +(log d(u) + log d(v))))

time.
Compared with A∗-bound-search, A∗-core-search

needs extra O(n) space for storing the core value for all
vertices. Thus, the space complexity is still O(m).

Hence, Theorem 5 is established.

8.3 Network structural properties analysis

In this subsection, we discuss the impact of real-world net-
work properties on the performance of the proposed algo-
rithms for CC-TopK and Core-TopK. We consider three
well-known structural properties, namely, power-law degree
distribution, average path length, and clustering coefficient.

Power-law degree distribution Social networks usually fol-
low a power-law degree distribution, that is, a small percent-
age of nodes are high-degree ones and the vast majority of
nodes are low-degree ones. According to our upper-bound
definition which depends on the node degree, those high-
degree nodeswill be examined first in the top-k search frame-
work. As the degree difference between the high-degree
and low-degree nodes can be quite large, we can easily
find that many low-degree nodes are impossible to be the
top-k answers simply based on their upper-bound estimate;
thus, they can be pruned at an early stage. Therefore, our
algorithms are expected to work more efficiently on graphs
with power-law degree distribution than those with uniform
degree distribution.

Average path length Social networks usually have a small
average path length, that is, the small-world effect. For a node
in such a network, the neighbors of the node aremore likely to
be closely connected, leading to few large components. As a
result, the node tends to have a low structural diversity score.
In contrast, for a node in a network with a large average path
length, the neighbors of the node are loosely connected or
even scattered far apart, leading to many components. Thus,
the node tends to have a high structural diversity score. In the
latter case, the upper-bound estimate of the nodes tends to
be tighter and thus provides more effective pruning for top-k
search.

Clustering coefficient Social networks often have a high
clustering coefficient, in which nodes tend to cluster together
with high density of ties. Obviously, in a graph with a larger
clustering coefficient, the probability of a triplet to form a tri-
angle is higher. As a result, for the component-based struc-
tural diversity, Property 2 is easier to be satisfied and thus
will be more frequently used for upper-bound refinement to
reduce the overall computational cost. The clustering coeffi-
cient has no obvious impact on the algorithms for the core-
based structural diversity since it does not make use of trian-
gles for upper-bound refinement.

9 Experiments

We conduct extensive performance study to evaluate the
algorithms proposed in this paper. All algorithms are imple-
mented in C++, and all the experiments are conducted on
the Linux operating system with 2.67GHz six-core CPU and
50GB main memory.
Evaluation metricsWe use the running time and the number
of vertices whose structural diversity scores are computed in
the search process as two metrics. The latter evaluates the
number of vertices that are pruned by the algorithm.
Datasets We use 13 real-world networks covering social,
communication, collaboration, location-based networks, and
webgraphs. The network statistics are shown in Table 1.
Except for Epinions, Digg and KDDTrack11 which are
from their respective websites, the other 10 networks are
downloaded from the Stanford Network Analysis Project
(snap.stanford.edu). We treat all the networks as undi-
rected.

9.1 Connected component-based structural diversity

Comparison methods To the best of our knowledge, we are
the first to study top-k structural diversity search. In the lit-
erature, no algorithms have been proposed to address this
problem yet. Thus, we compare our algorithms with the

1 https://www.kddcup2012.org.

123

http://snap.stanford.edu
https://www.kddcup2012.org

Top-K structural diversity search in large networks 337

Table 1 Network statistics (K = 103 and M = 106)

Name |VG | |EG | dmax Description

WikiVote 5K 104K 1,065 Social networks

Epinions 76K 509K 3,044

Slashdot 82K 948K 2,552

Gowalla 196K 1.9M 14,730

Digg 771K 7.3M 17,643

KDDTrack1 1.9M 100.2M 456,907

EmailEnron 37K 368K 1,383 Communication
networks

EmailEuAll 265K 420K 7,636

WikiTalk 2.4M 5.0M 100,029

HepPh 12K 237K 491 Collaboration
networks

AstroPh 19K 396K 504

NotreDame 326K 1.5M 10,721 Web graph

Flickr 80K 11.8M 5,706 Flickr

degree-based approach (Algorithm 1)which serves as a base-
line. Comparedwith the baselinemethod, our proposed algo-
rithms produce exactly the same true top-k results. We eval-
uate four algorithms.

– Deg: The degree-based approach in Algorithm 1.
– Bou:Top-k-search equippedwithbound-search (Algo-

rithm 4) and θ = 1.
– FB: Top-k-search equipped with fast-bound-search

(Algorithm 5) and θ = (nt)
1√
m .

– A∗-B: Top-k-search equipped with A∗-bound-search
(Algorithm 6) and θ = (nt)

1√
m .

In our experiments, we find that θ = (nt)
1√
m which is close

to 1 always yields a good performance in the Top-k-search
framework. For FB and A∗-B, their performances are not
very sensitive to the value of θ as long as θ ∈ (1.001, 1.05)
on all datasets.

9.1.1 Efficiency comparison

In this experiment, we compare the efficiency of different
methods over all networks. We set k = 100 and t = 2. Sim-
ilar results can be observed for other k and t values. Table 2
reports the results. We can see thatA∗-B is the most efficient,
followed by FB, Bou, andDeg. Notice that the performance
ofA∗-B,FB, andBouwhich adopt theTop-k-search frame-
work is substantially better than that of the degree-based
algorithm Deg. The speedup ratio between Deg and A∗-B
defined as Rs = tDeg/tA�−B is between 2.1 and 69.1 (col-
umn 6 in Table 2). The result conforms with the complexity
analysis in Sect. 6. In addition, we define the pruning ratio
between Deg and A∗-B as Rp = SDeg/SA�−B, where SDeg
and SA�−B denote the number of vertices whose structural
diversity scores are computed by the respectivemethods. The
pruning ratio is between 2.1 and 11.1 over all networks (col-
umn 11 in Table 2). This result suggests that the upper bound
derived in Lemma 3 is indeed tighter than the degree-based
upper bound in Lemma 1.

Table 2 Comparison of running time (wall-clock time in seconds) and search space (the number of vertices whose structural diversity score are
computed in search process) of different algorithms

Network Running time Number of computed vertices θ = (nt)
1√
m

Deg Bou FB A∗-B Rs Deg Bou FB A∗-B Rp

WikiVote 9.3 8.7 6.6 3.1 3.0 3,362 2,110 2,111 1,612 2.1 1.027

Epinions 37.6 35.9 24.9 10.4 3.6 11,546 6,349 6,314 4,875 2.4 1.017

Slashdot 31.4 26.9 19.7 11.5 2.7 12,278 6,459 6,459 5,968 2.1 1.015

Gowalla 83.8 60.3 28.3 17.3 4.9 36,192 17,883 17,883 12,777 2.8 1.012

Digg 2,090.6 1,670.1 1,075.9 253.0 8.3 66,403 30,221 31,866 23,465 2.8 1.005

KDDTrack1 155,087.0 7,661.3 4,370.0 2,244.1 69.1 59,163 7,689 7,668 5,333 11.1 1.002

EmailEnron 10.6 10.1 6.9 3.6 3.0 6,365 3,031 3,032 1,545 4.1 1.023

EmailEuAll 12.5 11.1 7.9 5.9 2.1 4,426 2,045 2,045 1,774 2.5 1.020

WikiTalk 1,153.7 642.1 331.0 102.1 11.3 44,476 16,156 16,064 14,592 3.0 1.007

HepPh 14.4 13.9 12.5 2.3 6.3 3,988 2,480 2,480 1,394 2.9 1.026

AstroPh 9.1 8.2 7.2 3.9 2.4 8,439 4,613 4,613 2,352 3.6 1.021

NotreDame 86.6 66.9 34.9 16.0 5.4 28,347 16,421 16,417 8,976 3.2 1.012

Flickr 3,254.6 3,136.9 2,451.6 270.1 12.0 62,814 38,475 38,460 21,544 2.9 1.004

Here k = 100 and t = 2

123

338 X. Huang et al.

(a) (b) (c) (d) (e) (f)

Fig. 11 Running time (in second) of different algorithms versus parameter k. a Digg, bWikiTalk, c AstroPh, d Gowalla, e NotreDame, f Flickr

(a) (b) (c) (d) (e) (f)

Fig. 12 Number of vertices whose structural diversity scores are computed versus parameter k. a Digg, b WikiTalk, c AstroPh, d Gowalla, e
NotreDame, f Flickr

(a) (b) (c) (d) (e) (f)

Fig. 13 Running time (in second) of different algorithms versus parameter t . a Digg, bWikiTalk, c AstroPh, d Gowalla, e NotreDame, f Flickr

Whenwe compareBou andDeg, the reduction of running
time and search space byBou demonstrates the effectiveness
of the tighter upper bound in Lemma 3 and the Union-Find-
Isolate data structure. When we compare Bou and FB, the
reduction of running time by FB shows the effectiveness of
the fast-bound-searchmethod. Finally we observe thatA∗-
B is more efficient than FB, which proves the effectiveness
of the A∗ search order.

9.1.2 Performance evaluation by varying k

In this experiment, we evaluate the performance of all the
methods by varying the parameter k. We set t = 2 and
focus on six networks Digg, WikiTalk, AstroPh, Gowalla,
NotreDame and Flickr. Similar results can be observed for
other t values and on other networks. Figure 11a–f depicts
the running time of different algorithms. Again, we can see
that A∗-B is the most efficient and Deg is the least efficient
in most networks. The running time of A∗-B is very stable
as k increases.

Figure 12a–f shows the number of vertices whose struc-
tural diversity scores are computed by different methods on
the six networks. A∗-B is the clear winner by pruning the
largest number of vertices, andDeg performs worst. In addi-

tion, we find that FB and Bou achieve very similar perfor-
mance in terms of the number of vertices that are pruned.

This is because θ = (nt)
1√
m in FB is very close to 1 (as listed

in the last column of Table 2), and θ in Bou is set to 1 in
our experiment. Thus, the pruning condition in FB and Bou
is very similar. But on the other hand, FB runs much faster
than Bou as shown in Fig. 11, which conforms with the time
complexity analysis in Theorems 2 and 3.

9.1.3 Performance evaluation by varying t

We evaluate the performance of all methods by varying the
parameter t . In this experiment, we set k = 100 and similar
results can be observed for other k values. Figure 13a–f shows
the running time of different algorithms. Once again, A∗-B
is the most efficient algorithm, and Deg is the least efficient
one. We also observe that in many cases, the running time
of all methods increases with increasing t at first, but it may
drop slightly when t further increases. A possible reason is
that when t is large, the number of the qualified components
(i.e., the components whose sizes are no less than t) reduces.
Thus, by the estimated upper bound, the search space can be
quickly pruned.

123

Top-K structural diversity search in large networks 339

(a) (b) (c) (d) (e) (f)

Fig. 14 Number of vertices whose structural diversity scores are computed versus parameter t . a Digg, b WikiTalk, c AstroPh, d Gowalla, e
NotreDame, f Flickr

Figure 14a–f shows the number of vertices whose struc-
tural diversity scores are computed in different networks by
varying t . We observe that A∗-B prunes the most number of
vertices, and Deg prunes the least number of vertices.

9.1.4 Handling update in dynamic networks

In this experiment, we evaluate the time for incremen-
tally maintaining the top-k results when the input network
is updated. For each network, we randomly insert/delete
1K edges and update the top-k results after every edge
insertion/deletion. The average update time per edge inser-
tion/deletion is reported in Table 3. In addition, we report the
batch update time for the 1K edge insertions/deletions. We
repeat this experiment for 50 times and report the average
performance. For comparison, we also report the time for
computing the top-k results from scratch when the network
is updated with an edge insertion/deletion.

The result in Table 3 shows that handling edge insertions is
highly efficient. The update time per edge insertion is 0.01 or
0.02ms on most networks, and the batch update time for 1K
edge insertions is within 10ms on most networks. Handling
edge deletions is more costly, because an edge deletion may
trigger to check whether the two endpoints of the deleted
edge are still in the same component or not in a number
of neighborhood-induced subgraphs. The update time per
edge deletion is within 1ms on most networks, and the batch
update time for 1K edge deletions is <1s on most networks.
Finally we can see the incremental update (per edge as well
as batch update of 1K edges) is several orders of magnitude
faster than recomputing the top-k results from scratch.

9.2 Core-based structural diversity

Comparison methods In this experiment, we focus on eval-
uating the top-k core-based structural diversity search, and
compare two proposed algorithms.

– Core-Deg: a simple degree method with the degree-
based upper bound in Lemma 8. Specifically, we adapt
Algorithm 1 with the following changes: (1) in line 6,
the upper bound is changed using the new upper bound

Table 3 Update Time (wall-clock time in milliseconds)

Network Insertion
per edge

Insertion
1K edges

Deletion
per edge

Deletion
1K edges

Computing
from scratch

WikiVote 0.02 11.5 0.77 576 3,100

Epinions 0.01 9.2 0.49 347 10,400

Slashdot 0.01 7.3 0.35 317 11,500

Gowalla 0.01 7.3 1.51 1,179 17,300

Digg 0.01 7.2 1.47 1,404 253,000

KDD
Track1

0.05 44.8 800 660,139 2,244,100

Email
Enron

0.01 6.9 0.59 440 3,600

Email
EuAll

0.01 5.2 0.16 162 5,900

WikiTalk 0.01 6.6 1.52 1,513 102,100

HepPh 0.02 8.2 0.45 292 2,300

AstroPh 0.02 10.7 0.38 326 3,900

Notre
Dame

0.01 6.2 0.85 696 16,000

Flickr 0.08 61.5 7.81 4,943 270,100

Here k = 100 and t = 2

in Lemma 8; and (2) in line 9, we compute the t-core of
GN (v∗) and count the number of connected components
in the t-core as score∗(v∗).

– Core-A∗: the core-based Top-k-search framework intr-
oduced in Sect. 8.2.1 equipped with A∗-core-search
(Algorithm 8) and θ = (nt)

1√
m .

Compared with the baseline Core-Deg, Core-A∗ pro-
duces exactly the same true top-k results. For all datasets, we

also find that θ = (nt)
1√
m which is close to 1 always yields

a good performance in the core-based Top-k-search frame-
work. For Core-A∗, its performances is not very sensitive to
the value of θ as long as θ ∈ (1.001, 1.05).

9.2.1 Performance evaluation by varying k

In this experiment, we evaluate the performance of Core-
Deg and Core-A∗ by varying the parameter k. We set the
parameter t = 2 by default and test on six networks Digg,

123

340 X. Huang et al.

(a) (b) (c) (d) (e) (f)

Fig. 15 Running time (in second) of different algorithms versus parameter k. a Digg, bWikiTalk, c AstroPh, d Gowalla, e NotreDame, f Flickr

(a) (b) (c) (d) (e) (f)

Fig. 16 Number of vertices whose structural diversity scores are computed versus parameter k. a Digg, b WikiTalk, c AstroPh, d Gowalla, e
NotreDame, f Flickr

(a) (b) (c) (d) (e) (f)

Fig. 17 Running time (in second) of different algorithms versus parameter t . a Digg, bWikiTalk, c AstroPh, d Gowalla, e NotreDame, f Flickr

WikiTalk, AstroPh, Gowalla, NotreDame and Flickr. Simi-
lar results can be observed for other t values and on other
networks. Figure 15a–f shows the running time of different
algorithms on the six networks. We can see that Core-A∗ is
the clear winner by running much faster than Core-Deg on
all networks, which demonstrates the advantage of the core-
based Top-k-search framework and the A∗-core-search
method.

Figure 16a–f shows the number of vertices whose struc-
tural diversity scores are computed by different methods on
the six networks. Core-A∗ prunes many more vertices than
Core-Deg. This result shows that the upper bound derived
in Lemma 9 is indeed much tighter than the degree-based
upper bound in Lemma 8.

9.2.2 Performance evaluation by varying t

In this experiment, we evaluate the performance of all meth-
ods by varying the core number t on the six networks above.
In this experiment, we set k = 100 and similar results can be
observed for other k values. Figure 17a–f shows the running
time of different algorithms. The running time of Core-A∗
is 2–4 times shorter than that of Core-Deg on all networks.
In addition, the performance ofCore-A∗ remains very stable
as t increases.

Figure 18a–f shows the number of vertices whose struc-
tural diversity scores are computed in different networks by
varying t . Again Core-A∗ prunes many more vertices than
Core-Deg.

(a) (b) (c) (d) (e) (f)

Fig. 18 Number of vertices whose structural diversity scores are computed versus parameter t . a Digg, b WikiTalk, c AstroPh, d Gowalla, e
NotreDame, f Flickr

123

Top-K structural diversity search in large networks 341

Table 4 Ambiguous names (Top-5 structural diversity result based on
size-2 connected component) and selected famous authors in DBLP
network

Ambiguous name Famous authors

Name Degree Score Name Degree Score

Yang Liu 126 33 Christos Faloutsos 97 10

Xin Li 150 31 Philip S. Yu 140 5

Yan Zhang 157 29 Jiawei Han 132 4

Wei Wang 117 29 H. V. Jagadish 62 4

Wei Liu 151 28 Gerhard Weikum 103 2

Ambiguous names obviously have much higher structural diversity
scores than famous authors

9.3 Case study

9.3.1 Identifying ambiguous names

Name ambiguity has long been viewed as a challenging prob-
lem in social network analysis. For example, when we search
a person named “Wei Wang” from the DBLP website, there
are at least 52 distinct persons with the same name. Our top-k
structural diversity search method provides a novel approach
for identifying ambiguous names in a soci al network, which
is the first and important step for name disambiguation. In
this case study, we build a collaboration network from the
DBLP dataset.2 A vertex represents an author name and an
edge is added between two authors if they have co-authored
3 times or more. The network contains 234,879 vertices and
541,814 edges.

We first apply the component-based structural diversity
measure on the DBLP network for finding top-5 authors
with the highest number of connected components of size
over 2. The result is shown in Table 4. As we can see,
these five names are indeed popular but ambiguous ones
which can correspond to different distinct persons in the
real world. For comparison, we select five famous authors
who have a large degree, i.e., a large number of collabora-
tors and report their structural diversity score. Despite the
large degree, their structural diversity score is far smaller
than that of the ambiguous names. Intuitively, we can imag-
ine that an ambiguous name corresponds to different distinct
persons, each of who has his/her own research communities.
This leads to a large number of non-overlapping research
communities associated with an ambiguous name. In addi-
tion, we also observe that many of such communities are tiny
and loosely connected. This is because the component-based
structural diversity does not enforce a cohesive structure in
the components.

2 http://dblp.uni-trier.de/xml/.

Table 5 Ambiguous names (Top-5 structural diversity result based on
2-core) and selected famous authors in DBLP network

Ambiguous Name Famous Authors

Name Degree Score Name Degree Score

Yang Yang 107 15 Christos Faloutsos 97 6

Yu Zhang 105 15 Philip S. Yu 140 3

Ming Li 149 15 H. V. Jagadish 62 3

Peng Wang 80 14 Jiawei Han 132 2

Xin Li 150 13 Gerhard Weikum 103 2

Ambiguous names obviously have much higher structural diversity
scores than famous authors

We also apply the core-based structural diversity measure
on the DBLP network for finding top-5 authors using 2-core
subgraphs and report the result in Table 5. By definition, the
2-core-based measure discards all tree-shaped components
and counts the remaining cohesive components into the score.
As a result, the obtained scores in Table 5 are smaller than the
component-based scores in Table 4. Moreover, we observe
that the core-based top-5 ambiguous names are different from
the component-based top-5 names in Table 4. This suggests
that these two diversitymeasures can complement each other.

This case study shows that our top-k structural diversity
search provides an effective mechanism for finding ambigu-
ous names in a social network.

9.3.2 Words with diverse meanings

In this case study, we apply the two structural diversity mea-
sures on a word association network.3 The expected result is
to find words with the most diverse meanings, and to analyze
and understand the different meanings of these words in dif-
ferent contexts. In this network, a vertex represents a word,
and an edge between two words indicates that they are mean-
ingfully related or strongly associated. The network contains
7,207 vertices and 31,784 edges.

We first query top-1 vertex in the word association net-
work by counting the number of connected components of
size over 2. The result is depicted in Fig. 19. The word
“black” has the highest structural diversity score as 9, indi-
cating 9 distinct connected components in the neighborhood-
induced subgraph of “black,” and each distinct component
represents a certain meaning of “black.” The largest con-
nected component (depicted in red) contains 22 words, and
most of those words can be roughly summarized by three
words as “color,” “race” and “dark.” For example, “black”
is a “color,” and “black” is related to other colors such as
“white,” “red,” “blue,” and “yellow.” For the other 8 con-
nected components, each contains 2–3 words, and represents
a distinct context of words associated with “black,” such

3 http://www.netcom-analyzer.org/datasets/166.

123

http://dblp.uni-trier.de/xml/
http://www.netcom-analyzer.org/datasets/166

342 X. Huang et al.

Fig. 19 Top-1 structural
diversity based on size-2
connected component in word
association network. Here
“black” has the highest
structural diversity score as 9

Fig. 20 Top-2 structural
diversity based on 2-core in
word association network. Here
“word” and “Christmas,”
respectively, has the top-2
highest structural diversity score
as 4 and 3. aWord, b Christmas

(a) (b)

as, {“penguin,” “tuxedo”}, {“panther,” “cat”}, {“death,”
“widow,” “funeral”}, and so on.

Next, we query top-2 vertices in the word association
network using 2-core subgraphs. Two words “word” and
“Christmas” have the highest two structural diversity scores
of 4 and 3, which are shown in Fig. 20. As we can see, each
vertex in the 2-core component in Fig. 20 has at least two
neighbor words. Specifically, the word “word” in Fig. 20a
has four distinct contexts of associated words with different
meanings. For example, {“swear,” “oath,” “promise”} rep-
resent the synonym of “words” as “promise,” and {“verb,”
“noun,” “pronoun”} are different types of “word.”Theword
“Christmas” has three distinct contexts of associated words,
as shown in Fig. 20b, {“reindeer,” “sleigh,” “Santa”}
describe the “Santa,” {“present,” “gift,” “package”} rep-
resent the “Christmas gifts” and {“tree,” “ornament,”
“decoration”} are related to the “Christmas tree.”

When we compare Figs. 19 and 20, using the component-
based structural diversity, we can find words with many dif-
ferent meanings. However, the terms in a certain context may
be loosely related to each other (e.g., “hair” and “blue” in the
same connected component in Fig. 19). On the other hand,
using the core-based structural diversity, the terms in each

component are highly related to each other. But the core-
based measure may discard some loosely connected compo-
nents, thus fail to extract the corresponding meanings of a
word.

This case study shows that our top-k structural diversity
search can be applied for finding different meanings of a
word, which is a fundamental problem in natural language
understanding.

10 Related work

To the best of our knowledge, top-k structural diversity search
has not been studied before. In the following, we briefly
review the existing work that are related to ours.

First, our work is closely related to the work on top-
k query processing. The goal of top-k query processing is
to find k objects with the highest rank based on some pre-
defined ranking function. A commonly used framework for
this problem is to examine the candidates in a heuristic order
and prune the search space using an upper bound. After the
seminal work by Fagin et al. [12,13], a large number of
studies on top-k query processing have been done for dif-
ferent application scenarios, such as processing distributed

123

Top-K structural diversity search in large networks 343

preference queries [5], keyword queries [20], set similar-
ity join queries [27]. Recently, many studies take the diver-
sity into consideration in top-k query processing, in order to
return diversified ranking results [1,2,19,21,28,29]. A com-
prehensive survey of top-k query processing can be found in
[15].

Second, our proposed techniques are related to the algo-
rithms for the triangle listing problem, which is to find all
triangles in a graph. Itai and Rodeh [16] first proposed an
O(m1.5) algorithm for the triangle listing problem. Latapy
[18] proved that the time complexity O(m1.5) is optimal.
Subsequently, Schank and Wagner [23,24] proposed a sim-
pler and particularly fast solution with the optimal complex-
ity based on the vertex ordering and efficient lookup of the
adjacency lists for neighborhood testing. Recently, Chu and
Cheng [8] proposed an I/O-efficient algorithm for triangle
listing in a massive graph, which cannot fit into the main
memory. In this paper, we study the top-k structural diversity
search problem. The complexity of our algorithm is proved
to be O(m1.5).

11 Conclusions

In this paper, we study the top-k structural diversity search
problemmotivated by a number of network analysis applica-
tions.We develop a novelTop-k-search framework to tackle
this issue. Specifically, we design aUnion-Find-Isolate data
structure to keep track of the known structural information
of each vertex, and an effective upper bound for pruning.
For further speeding up the structural diversity evaluation,
several well-designed search strategies are proposed. Our
Top-k-search framework can be generalized to handle both
the connected component-based measure and the core-based
measure for structural diversity search. We evaluate the pro-
posed algorithms on real-world large networks and synthetic
graphs, and the results demonstrate the effectiveness and effi-
ciency of the proposed algorithms.

Acknowledgments This work is supported by the Hong Kong
Research Grants Council (RGC) General Research Fund (GRF) Project
Nos. CUHK 411211, 418512, 14209314, the Chinese University of
Hong Kong Direct Grant Nos. 4055015, 4055048, NSFC Grants No.
61402292, and Natural Science Foundation of SZU Grant No. 201438.
Lu Qin is supported by ARC DE140100999.

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying
search results. In: WSDM, pp. 5–14 (2009)

2. Angel, A., Koudas, N.: Efficient diversity-aware search. In: SIG-
MOD, pp. 781–792 (2011)

3. Backstrom, L., Huttenlocher, D.P., Kleinberg, J.M., Lan, X.: Group
formation in large social networks: membership, growth, and evo-
lution. In: KDD, pp. 44–54 (2006)

4. Batagelj, V., Zaversnik, M.: An o (m) algorithm for cores decom-
position of networks (2003). arXiv preprint cs/0310049

5. Chang, K., Hwang, S.: Minimal probing: supporting expensive
predicates for top-k queries. In: SIGMOD, pp. 346–357 (2002)

6. Cheng, J., Ke,Y., Chu, S., Özsu,M.T.: Efficient core decomposition
in massive networks. In: ICDE, pp. 51–62 (2011)

7. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algo-
rithms. SIAM J. Comput. 14(1), 210–223 (1985)

8. Chu, S., Cheng, J.: Triangle listing in massive networks and its
applications. In: KDD, pp. 672–680 (2011)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction
to Algorithms. MIT Press, Cambridge (2009)

10. Dodds, P.S.,Watts, D.J.: Universal behavior in a generalizedmodel
of contagion. Phys. Rev. Lett. 92, 218701 (2004)

11. Dorogovtsev, S.N., Mendes, J.F.F., Samukhin, A.N.: Structure of
growingnetworkswith preferential linking. Phys.Rev.Lett.85(21),
4633 (2000)

12. Fagin, R.: Combining fuzzy information from multiple systems. J.
Comput. Syst. Sci. 58(1), 83–99 (1999)

13. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms
for middleware. In: PODS, pp. 102–113 (2001)

14. Huang, X., Cheng, H., Li, R.-H., Qin, L., Yu, J.X.: Top-k struc-
tural diversity search in large networks. PVLDB 6(13), 1618–1629
(2013)

15. Ilyas, I., Beskales, G., Soliman, M.: A survey of top-k query
processing techniques in relational database systems. ACM Com-
put. Surv. (CSUR) 40(4), 11 (2008)

16. Itai, A., Rodeh, M.: Finding a minimum circuit in a graph. SIAM
J. Comput. 7(4), 413–423 (1978)

17. Kwak, H., Lee, C., Park, H., Moon, S.B.: What is twitter, a social
network or a news media? In: WWW, pp. 591–600 (2010)

18. Latapy, M.: Main-memory triangle computations for very large
(sparse (power-law)) graphs. Theor. Comput. Sci. 407(1–3), 458–
473 (2008)

19. Li, R.-H., Yu, J.X.: Scalable diversified ranking on large graphs.
In: ICDM, pp. 1152–1157 (2011)

20. Luo, Y., Lin, X., Wang, W., Zhou, X.: Spark: top-k keyword query
in relational databases. In: SIGMOD, pp. 115–126 (2007)

21. Qin, L., Yu, J.X., Chang, L.: Diversifying top-k results. PVLDB
5(11), 1124–1135 (2012)

22. Romero, D.M., Meeder, B., Kleinberg, J.M.: Differences in the
mechanics of information diffusion across topics: idioms, political
hashtags, and complex contagion on twitter. In: WWW, pp. 695–
704 (2011)

23. Schank,T.:Algorithmic aspects of triangle-based network analysis.
Ph.D. Dissertation, University Karlsruhe (2007)

24. Schank, T.,Wagner,D.: Finding, counting and listing all triangles in
large graphs, an experimental study. In: WEA, pp. 606–609 (2005)

25. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.: Structural
diversity in social contagion. Proc. Natl. Acad. Sci. 109(16), 5962–
5966 (2012)

26. Watts, D.J., Dodds, P.S.: Influentials, networks, and public opinion
formation. J. Consum. Res. 34, 441–458 (2007)

27. Xiao, C., Wang, W., Lin, X., Shang, H.: Top-k set similarity joins.
In: ICDE, pp. 916–927 (2009)

28. Zhang, Y., Callan, J., Minka, T.: Novelty and redundancy detection
in adaptive filtering. In: SIGIR, pp. 81–88 (2002)

29. Zhu, X., Guo, J., Cheng, X., Du, P., Shen, H.: A unified framework
for recommending diverse and relevant queries. In: WWW, pp.
37–46 (2011)

123

http://arxiv.org/abs/cs/0310049

	Top-K structural diversity search in large networks
	Abstract
	1 Introduction
	2 Problem definition
	3 Problem comparison
	4 A simple degree-based approach for CC-TopK
	5 A novel top-K search framework for CC-TopK
	5.1 Two structural properties
	5.2 Disjoint-set forest data structure
	5.3 A tighter upper bound
	5.4 Top-K search framework
	5.5 Complexity analysis

	6 Fast computation of component-based structural diversity score
	6.1 Fast bound-search
	6.2 A*-based bound-search
	6.3 Complexity comparison

	7 Handling update for CC-TopK in dynamic networks
	7.1 Handling edge insertion
	7.2 Handling edge deletion

	8 Top-K core-based structural diversity search
	8.1 Upper bound of core-based structural diversity
	8.2 Core-based structural diversity computation
	8.2.1 Top-K search framework
	8.2.2 A*-based search algorithm
	8.2.3 Complexity analysis

	8.3 Network structural properties analysis

	9 Experiments
	9.1 Connected component-based structural diversity
	9.1.1 Efficiency comparison
	9.1.2 Performance evaluation by varying k
	9.1.3 Performance evaluation by varying t
	9.1.4 Handling update in dynamic networks

	9.2 Core-based structural diversity
	9.2.1 Performance evaluation by varying k
	9.2.2 Performance evaluation by varying t

	9.3 Case study
	9.3.1 Identifying ambiguous names
	9.3.2 Words with diverse meanings

	10 Related work
	11 Conclusions
	Acknowledgments
	References

