
The VLDB Journal
DOI 10.1007/s00778-017-0464-7

REGULAR PAPER

I/O-efficient algorithms for top-k nearest keyword search
in massive graphs

Qiankun Zhu1 · Hong Cheng1 · Xin Huang2

Received: 20 July 2016 / Revised: 30 March 2017 / Accepted: 11 May 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Networks emerging nowadays usually have labels
or textual content on the nodes. We model such commonly
seen network as an undirected graph G, in which each node
is attached with zero or more keywords, and each edge is
assigned with a length. On such networks, a novel and useful
query is called top-k nearest keyword (k-NK) search. Given
a query node q inG and a keyword λ, a k-NK query searches
k nodes which contain λ and are nearest to q. The k-NK
problem has been studied recently in the literature. But most
existing solutions assume that the graph as well as the con-
structed index can fit entirely in memory. As a result, they
cannot be applied directly to very large-scale networkswhich
are commonly found in practice, but cannot fit in memory.
In this work, we design an I/O-efficient solution, which uses
a compact disk index to answer a k-NK query with constant
I/Os. The key to an accurate k-NK result is a precise shortest
distance estimation in a graph. In our solution, we follow our
previous work Qiao et al. (PVLDB 6:901–912, 2013) which
uses the shortest path tree as an approximate representation
of a graph and uses the tree distance between two nodes
as an accurate estimation of the shortest distance between
them on a graph.With such representation, the original k-NK
query on a graph can be reduced to answering the query
on a set of trees and then assembling the results obtained

B Xin Huang
xhuang@ieee.org

Qiankun Zhu
qkzhu@se.cuhk.edu.hk

Hong Cheng
hcheng@se.cuhk.edu.hk

1 Department of Systems Engineering and Engineering
Management, The Chinese University of Hong Kong,
Sha Tin, Hong Kong

2 School of Data Science, Fudan University, Shanghai, China

from the trees. We exploit a compact tree-based index and
study how to lay out the index to disk. We design a novel
technique which decomposes the index tree into paths and
subtrees and stores them in disk. Our theoretical analysis
shows that the disk-based index is small in size and supports
constant query I/Os. Extensive experimental study on mas-
sive trees and graphs with billions of edges and keywords
verifies our theoretical findings and demonstrates the supe-
riority of our method over the state-of-the-art methods in the
literature.

Keywords I/O-efficient algorithms · Nearest keywords
search · Top-k · Massive graphs

1 Introduction

Many real-world networks nowadays have keywords asso-
ciated with nodes. Such keywords can represent properties
of a node, e.g., profile of a user in a social network, key-
words of a paper in a bibliographic network, and name or
category of a location in a road network. We model such
networks as an undirected weighted graph, in which each
node is attached with zero or more keywords, and each edge
is assigned with a length. We study the problem of top-k
nearest keyword (k-NK) search on such a graph. A k-NK
query is in the form of Q = (q, λ, k), where q is the query
node, λ is a keyword and k is a positive integer. It searches
k nodes that carry λ and are nearest to q. Different from a
large body of research on k-nearest neighbor (k-NN) search
on spatial networks [1–3], we define G as a general graph
without coordinates. Thus, our solution can apply to a wide
range of networks.

123

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-017-0464-7&domain=pdf

Q. Zhu et al.

1.1 Motivation

k-NK is an important and useful query in graphs, as personal-
ized search based on graph structure and textual content has
become increasingly popular. k-NK can be used as a stand-
alone query, as well as a building block for tackling graph
pattern matching problems with both structural and textual
constraints. Below we describe two application scenarios of
the k-NK query.

In a social network, a person looks for 10 people who have
a certain skill, e.g., Java, to complete a task. Intuitively, if the
10 people are close to the person in their social relationship,
they can work together more effectively. Thus, the problem
is to find 10 people who know Java and are nearest to the
person who serves as the coordinator. It can be answered by
a k-NK query.

As another example, in a road network where locations
are associated with keywords, people can use a k-NK query
to search for certain targets, e.g., hotels, restaurants, that
are nearest to their current location as a list of candidates to
choose from.

Real-world applications that are similar to the k-NK query
include Facebook Graph Search1 and keyword search on
Google Maps.2 Facebook Graph Search is a semantic search
engine that gives answers to user natural language queries
from a user’s friends and second degree connections. With
the search scope limited within 2 hops of a user’s neigh-
borhood, the indexing and search mechanisms of Facebook
Graph Search are greatly simplified. In contrast, we do not
impose this restriction on the search scope for the k-NK
query, and we return top-k nearest answers from the whole
graph with the support of our novel index. It is a non-trivial
task for us to design a compact index to index all match-
ing keywords in the whole graph to support efficient query
processing. Furthermore, when there is no matching answer
from a user’s friends and second degree connections, Face-
book Graph Search may fail to return any result, while our
solution may still find answers beyond the 2-hop vicinity of
the query user. Keyword search on Google Maps is formu-
lated as a search problem on spatial networkwith coordinates
(i.e., latitude and longitude), where the location coordinates
are used for distance calculation, and spatial indices (such
as network Voronoi polygons [1], shortest path quadtree [2]
or path-distance oracle [3]) can be leveraged in this setting.
In contrast, we assume the input is a general graph, which
can be weighted or unweighted, but has no coordinates, for
processing a k-NK query. Without coordinates in our setting,
Google Maps cannot be applied to solve the k-NK query.

The k-NK query has been studied recently in the liter-
ature [4–6]. Bahmani and Goel [4] designed a partitioned

1 https://en.wikipedia.org/wiki/Facebook_Graph_Search.
2 https://maps.google.com/.

multi-indexing (PMI) scheme, which uses an inverted index
of keywords to answer k-NK queries approximately. Qiao et
al. [5] proposed a shortest path tree-based index to answer
k-NK queries approximately. Jiang et al. [6] designed a 2-
hop labeling index to find exact answers to the k-NK query.
These methods focus on the memory setting, that is, they
assume that the graph as well as the constructed index can
fit entirely in memory. Although [6] provides a disk-based
solution when the index does not fit in the main memory,
our experiments show that their disk-based solution cannot
really scale to a real-world Twitter network with 41 million
nodes and 1.4 billion edges.

In this paper, we study how to process k-NK queries on
such massive graphs. We use a semi-external memory model
in which the graph nodes can fit in memory, but the edges
andkeywords cannot. In this computationalmodel,wedesign
a disk resident index which can support I/O-efficient query
processing and is compact in size.

Shortest path computation is a key operation in answering
a k-NK query, but also a costly operation in a massive graph.
To speed up the calculation, we follow our previous work
[5] which uses a set of spanning trees as an approximate
representation of a graph and uses the shortest distance in
trees as an approximation of the shortest distance in a graph.
With such representation, the original k-NK query on a graph
can be reduced to answering the query on a set of trees and
then assembling the results obtained from the trees. Thus,
we focus on building the index for k-NK query on a tree and
study how to organize the index to disk that is both query
I/O efficient and space efficient. Specifically, we design a
novel technique which decomposes the index tree into paths
and subtrees and stores them in disk. The disk-based index
is small in size and answers a query in optimal I/O cost.

1.2 Contributions

This work is an extension of [5] to a disk-based index, and
our main contributions are summarized as follows.

1. We study the k-NK search problem on massive graphs
and propose an I/O-efficient solution in a semi-external
memory model.

2. We propose a novel blocking technique which decom-
poses the index tree into paths and subtrees and stores
them in disk. Our disk index is compact and supports con-
stant query I/O costs under a reasonable assumption. For
the case beyond our assumption, we extend our blocking
technique and formally prove that our proposed technique
can still answer a query in optimal I/O cost.We also com-
pare our paths + subtrees blocking technique with other
alternatives analytically in terms of their space complex-
ity and query I/O complexity and show that our technique
is superior.

123

Author's personal copy

https://en.wikipedia.org/wiki/Facebook_Graph_Search
https://maps.google.com/

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

3. We discuss how to incrementally update the index given
frequent keyword insertions. We adopt a batch update
mode and construct a separate incremental index to index
the inserted keywords. To process a k-NK query, we use
both the original index and the incremental index and
consolidate the answers retrieved from both indices. The
effectiveness of the incremental update mechanism is
evaluated and confirmed in the experiment.

4. Experimental results show that our approach is both I/O
efficient and space efficient in processing k-NK query on
trees and graphs. Our method consistently outperforms a
disk implementation of our previous k-NK solution [5]
in terms of query time and I/O, result quality, index size
and index construction time. In addition, our method
is around 10 times faster than the disk-based solution
HLQ [6] in query processing and 13.26 times faster in
index construction, and our index size is 54.90 times
smaller than that of HLQ on a small-scale Twitter net-
work (denoted as SubTwitter). Furthermore when tested
on the large-scale Twitter network with 1.4 billion edges,
HLQ fails to complete the index construction in 100 h
with explosion in index size.

1.3 Roadmap

The rest of the paper is organized as follows. Section2 defines
the k-NK problem and describes the semi-external mem-
ory model. We introduce the compact tree index structure
borrowed from [5] in Sect. 3. Then, we propose how to lay
out the index to disk in Sect. 4. Section5 discusses how to
process k-NK queries on a graph based on the solution on
tree. We study how to maintain the index to support fre-
quent keyword insertions in Sect. 6. Section7 presents the
experimental results on massive trees and graphs. Section8
discusses related work, and Sect. 9 concludes the paper.

2 Problem definition

In this section, we formally define the problem of top-k near-
est keyword (k-NK) search in a massive graph. Then, we
describe the computation model and give an overview of our
solution.

2.1 Preliminary concepts

We model a weighted undirected graph as G(V, E), where
V (G) and E(G) represent the vertex set and edge set of G,
respectively. We use V and E to denote V (G) and E(G) if
the context is obvious. Each edge (u, v) ∈ E has a positive
length, denoted as length(u, v). A path p = (v1, v2, . . . , vl)

is a sequence of nodes in V such that for each vi (1 ≤ i < l),
(vi , vi+1) ∈ E . The length of a path is the total length of all

Fig. 1 A graph G with keywords λ and α

edges on the path. For any two nodes u ∈ V and v ∈ V ,
the distance of u and v on G, dist(u, v), is the minimum
length of all paths from u to v in G. Each node v ∈ V
contains a set of zero or more keywords which is denoted as
doc(v). The union of keywords for all nodes in G is denoted
as doc(V). Note that doc(V) is a multi-set and |doc(V)| =∑

v∈V |doc(v)|. We use Vλ ⊆ V to denote the set of nodes
carrying keyword λ in V . We follow [5] to define the k-NK
query in the same representation.

Definition 1 Given a graph G(V, E), a top-k nearest key-
word (k-NK) query is a triple Q = (q, λ, k), where q ∈ V is
a query node in G, λ is a keyword and k is a positive integer.
Given a query Q, a node v ∈ V is a keyword node w.r.t.
Q if v contains keyword λ, i.e., v ∈ Vλ. The result is a set
of k keyword nodes, denoted as R = {v1, v2, . . . , vk} ⊆
Vλ, and there does not exist a node u ∈ Vλ \ R such
that dist(q, u) < maxv∈R dist(q, v). To further report the
distance in the top-k result, we can use the form R =
{v1:dist(q, v1), v2:dist(q, v2), . . . , vk :dist(q, vk)}.

Example 1 Figure1 shows a graph G with keyword λ and
keyword α. Suppose that the length of each edge is 1. Given
a k-NK query Q = (l, λ, 3), we need to find 3 nodes which
carry keyword λ and are nearest to l. The result is R =
{c: 2, g: 2, h: 2}.

In this paper, we perform exact match of keywords with-
out considering the semantic similarity between them, which
is the same as done by previous studies [4–6]. For the ease
of presentation, we focus on the k-NK query which con-
tains only one keyword. Please note that a query containing
multiple keywords with AND andOR semantics can be eas-
ily handled according to [5]. Without loss of generality, we
assume that the length of each edge is 1 in the rest of the paper
for the ease of presentation, but our method can be applied
to both weighted and unweighted graphs.

123

Author's personal copy

Q. Zhu et al.

2.2 Computation model

We study the problem in the semi-external memorymodel [7,
8]. M is the main memory size, and B is the disk block size,
where 1 � B ≤ M

2 . An I/O either reads a block of data
from disk to memory or, conversely, writes a piece of data
of size B in memory to a disk block. In particular, we define
scan(N) = �(NB), where N is the amount of data being read
from or written to disk in sequential order. However, access-
ing N data items at randomcostsO(N) I/Os in theworst case.
For a massive graph G(V, E), the semi-external memory
model [7] assumes that the internal memory can hold c · |V |
data, for a small constant c. However, the internal memory
cannot hold the whole graph as M � min{|E |, |doc(V)|}.

2.3 Solution overview

Shortest path computation is a key operation in answering a
k-NK query, but also a costly operation in a massive graph.
To speed up the calculation, we follow our previous work
[5] which uses a set of spanning trees as an approximate
representation of a graph and uses the shortest distance in
trees as an approximation of the shortest distance in a graph.
Thus, in the following, we first study how to answer a k-NK
query in a spanning tree and then consolidate the answers
from a set of trees as the approximate answers in a graph.

According to the semi-externalmemorymodel,we assume
M � min{|E |, |doc(V)|} and M ≥ c · |V |, where c ≥ 1
is a small constant. For a spanning tree T of graph G, the
tree nodes and edges can fit in main memory. For any key-
word λ, Vλ ⊆ V holds. Thus, tree T carrying keyword λ can
entirely fit in main memory. As different keywords are inde-
pendent, in the following, we tackle with a tree T carrying
one keyword for index construction and query processing at
a time. Note that this separate handling strategy on keywords
will not increase the time or space complexity in index con-
struction and query processing.Wewill study how to design a
compact disk-based indexwhich supports I/O-efficient query
processing to a k-NK query.

Remark Disk-based index and I/O-efficient query process-
ing are a promising approach to handle massive graphs.
Several systems such as GraphChi [9], Grid Graph [10] and
Chaos [11] have demonstrated that it is possible to process
graphs with edges in the order of billions on a single machine
relying on secondary storage.Meanwhile, many I/O-efficient
graph algorithms [7,8,12–15] have been proposed in the lit-
erature.

Another possibility is to leverage a distributed comput-
ing platform with multiple machines and distributed indices.
This can be naturally realized as the keywords are indexed
independently. In the distributed computing platform, our
disk-based index can still be deployed in multiple machines

for two reasons. First, if the index for a single keyword
exceeds the memory limit of a machine, it (or part of it)
needs to be stored on disk. Second, even if the index can fit
in the memory, a disk-based index ensures durability which
is a desirable property.

In the remainder of the paper, we focus on designing a
disk-based index and I/O-efficient query techniques. How to
deploy our index in a distributed computing platform is not
the focus of this paper.

3 An existing in-memory solution

In this section, we introduce an existing in-memory solu-
tion for processing k-NK queries proposed in [5]. Given a
tree T (V, E) carrying a keyword λ, we describe a compact
index to process a k-NK query. We borrow the definitions
and techniques described in this section as the basis for our
solution.

3.1 Compact tree

We first create a compact representation of T for keyword λ,
by adopting the compact tree data structure [16].

Definition 2 (Compact tree [16]) For a tree T and a keyword
λ, a compact tree CT(λ) is a tree that keeps only two types
of nodes in T : the keyword nodes that contain λ, and the
nodes that have at least two direct subtrees containing nodes
carrying λ.

A compact tree CT(λ) has at least |Vλ| nodes and at most
2|Vλ| − 1 nodes [16]. A compact tree CT(λ) can be much
smaller than tree T , especially if |Vλ| � |V |. BuildingCT(λ)

from T takes O(|Vλ| · log |Vλ|) time [16].

Example 2 Figure2a shows a tree T . The nodes that con-
tain λ are marked with bold circles. Figure2b illustrates the
compact tree CT(λ). The keyword nodes containing λ are
b, c, e, f, g, h, i and j , which are marked with bold circles.
Node d is in CT(λ) because d has two direct subtrees with
nodes carrying λ.

For every node v in CT(λ), a candidate list candλ(v)

storing its descendant nodes carrying λ and their distance to
v in T is created. Specifically, candλ(v) takes the form of:

candλ(v) = {v1:distT (v, v1), . . . , v j :distT (v, v j)}

where each of v’s descendants vi , i = 1, . . . , j , carries λ,
and distT (v, vi) denotes the distance between v and vi in
T . The list candλ(v) is sorted in nondecreasing order of the
distance, i.e., distT (v, v1) ≤ · · · ≤ distT (v, v j).

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

Fig. 2 Tree T and its compact
tree CT(λ) with keyword λ, a
tree T , b compact tree CT(λ)

(a) (b)

Fig. 3 Compact tree CT(λ) with candidate lists

Example 3 Figure3 shows the compact tree with candidate
lists. Node d carries a candidate list {i : 1, g: 2, h: 2}, because
i, g, h are the descendants of d carrying λ and their distances
to d are 1, 2, 2, respectively.

3.2 Use compact tree for query processing

Equipped with the compact tree CT(λ) with candidate lists,
we discuss how to process a k-NK query Q = (q, λ, k) on a
tree T . We consider the following two cases: (a) q ∈ CT(λ);
(b) q /∈ CT(λ).

Case (a). For an ancestor node v of q, an entry vi :distT
(v, vi) in candλ(v) records the keyword node vi under v

and the distance distT (v, vi). Consider the path from q to
keyword node vi via their common ancestor v, the corre-
sponding path length is distT (q, v)+distT (v, vi). Based on
this observation, for an ancestor v of q, we add distT (q, v) to
every entry in candλ(v), and we do this operation for every
ancestor of q. Finally, we merge the candidate lists along
the path from q to the root and return the top-k results. This
procedure is shown in Algorithm 1 merge-list merges the
candidate lists of q’s ancestors inCT(λ) using two operators
⊕ and ⊗k . The ⊕ operator adds a distance distT (q, v) to
every distance entry distT (v, vi), 1 ≤ i ≤ j , in candλ(v),
that is, candλ(v) ⊕ distT (q, v) = {v1:distT (v, v1) +

Algorithm 1: merge-list (Q, CT(λ))
Input: A k-NK query Q = (q, λ, k), and a compact tree CT(λ).
Output: Answer for Q on CT(λ).

1 R ← ∅;
2 foreach ancestor v of q in CT(λ) do
3 R ← R ⊗k (candλ(v) ⊕ distT (q, v));

4 return R;

distT (q, v), . . . , v j :distT (v, v j) + distT (q, v)}. The ⊗k

operator merges two lists R1 and R2, and returns the top-
k elements from the merged list.

Example 4 To answer a query Q = (c, λ, 3) using CT(λ)

in Fig. 3, for node c itself we have candλ(c) = {c: 0, f : 1}.
For the ancestor node a, we perform candλ(a)⊕distT (c, a)

and get {b: 3, c: 4, e: 4, i : 4, f : 5, g: 5, h: 5, j : 5}. We merge
these two candidate lists by ⊗k and get top-3 results as R =
{c: 0, f : 1, b: 3}.

Case (b). When q /∈ CT(λ), we need to find out how q
is connected to nodes in CT(λ). For this purpose, we define
the entry node of q. Intuitively, an entry node is a node that
is closest to q in T and belongs to CT(λ) as well. A node
q /∈ CT(λ) has two entry nodes in CT(λ) as defined below.

Definition 3 (Entry nodes pair [5]) Given a tree T (V, E),
keyword λ and its compact treeCT(λ), for a node q ∈ V (T),
the entry nodes pair of q is a pair of nodes (u, u′) in CT(λ),
denoted as ENPλ(q) = (u, u′), where the path from q to
any keyword nodes must pass through u or u′, and there
does not exist another node in CT(λ) that is closer to q in
T . For a keyword node v in CT(λ), distT (q, v) is defined as
min{distT (q, u) + distT (u, v), distT (q, u′) + distT (u′, v)}.
If u and u′ are different, there is an edge between u and u′ in
CT(λ).

In the following, we give a remark that the entry nodes pair
is sufficient to compute the shortest distance for any query
node q to all keyword nodes in CT(λ).

123

Author's personal copy

Q. Zhu et al.

Remark 1 Given a tree T (V, E) with a keyword λ, for any
vertex q ∈ V and the entry nodes pair of q as (u, u′), two
entry nodes u and u′ are sufficient to cover all the shortest
paths between q and other vertices carrying keyword λ.

Proof Consider a tree T (V, E) and its compact tree CT(λ)

for keyword λ. If q ∈ CT(λ), then one of the two entry nodes
must be q, i.e., u = q or u′ = q. Then the entry nodes obvi-
ously cover all the shortest paths between q and other nodes
carrying λ. If q /∈ CT(λ), then by definition q does not carry
keyword λ and has no more than one direct subtree contain-
ing nodes carrying λ. Let u be the nearest ancestor of q in
tree T such that u appears in CT(λ). Then, we consider the
following two cases: (a) q has no direct subtree containing
nodes carrying λ. Obviously, for any vertex v carrying key-
word λ, the shortest path between v and q must pass node
u; (b) q has one direct subtree containing nodes carrying λ.
Let u′ be the nearest descendant of q in tree T such that u′
appears in CT(λ). Thus, for any vertex v carrying keyword
λ, it is easy to know that the shortest path between v and q
must pass nodes u or u′. Thus, this remark holds.

Example 5 Consider tree T in Fig. 2a and compact tree
CT(λ) in Fig. 2b. For node l /∈ CT(λ), ENPλ(l) = (a, c).

3.2.1 ENP construction

Given a tree T (V, E) and its compact treeCT(λ) for keyword
λ, we construct the entry nodes pair index, ENP(λ), which
divides [1, |V |] into several disjoint intervals, such that nodes
in V with preorder in the same interval share the same entry
nodes pair.

For every node v in T , we assign an interval [sv, tv]where
sv is the preorder label of v on T and tv is the maximum
preorder label for all nodes in the subtree rooted at v. Algo-
rithm 2 shows how to build ENP(λ) based on a recursive
procedure partition. Consider an entry nodes pair (u, u′) and
the corresponding interval [s, t]. For each child node u′′ of
u′ in CT(λ), nodes in the subtree of u′′ are under the entry
nodes pair (u′, u′′), rather than (u, u′). Thus, we remove the
intervals of such subtrees from the interval [s, t] which cor-
responds to the entry nodes pair (u, u′). Nodes with preorder
in the remaining intervals have (u, u′) as the entry nodes pair
(line 10, 13–14). For each subtree rooted at u′′, we recur-
sively invoke partition using (u′, u′′) as the entry nodes pair
and [sv, tv] as the corresponding interval for partitioning.
For example, inCT(λ) shown in Fig. 2b, the entry nodes pair
(a, c) corresponds to an interval [6, 11]. Node c has a child
node f in CT(λ) whose interval is [11, 11]. By excluding
[11, 11] from [6, 11], [6, 10] remains. Nodeswith preorder in
[6, 10] have (a, c) as the entry nodes pair, and nodeswith pre-
order in [11, 11] have (c, f) as the entry nodes pair. Table1
shows the preorder label of nodes of tree T in Fig. 2a, and
Table2 shows the entry nodes pair index forCT(λ) in Fig. 2b.

Table 1 Preorder label of nodes in T

Node a b e n j k l o

Preorder 1 2 3 4 5 6 7 8

Node p c f d i m g h

Preorder 9 10 11 12 13 14 15 16

Algorithm 2: ENP-construct (T , CT(λ))
Input: Tree T (V, E) and its compact tree CT(λ).
Output: Entry nodes pair index ENP(λ).

1 ENP(λ) ← ∅;
2 r ← the root of CT(λ);
3 partition(ENP(λ), [1, |V |], (r, r));
4 return ENP(λ);
5 Procedure partition(ENP(λ), interval [s, t], (u, u′))
6 foreach child node u′′ of u′ in CT(λ) in increasing preorder do
7 v ← the child node of u′ in the path from u′ to u′′ in T ;
8 [sv, tv] ← the interval of v in T ;
9 if s < sv then

10 insert ([s, sv − 1], (u, u′)) into ENP(λ);

11 partition(ENP(λ), [sv, tv], (u′, u′′));
12 s ← tv + 1;

13 if s ≤ t then
14 insert ([s, t], (u, u′)) into ENP(λ);

Since there is a one-to-one mapping from ENP(λ) to
edges of CT(λ), the size of ENP(λ) is O(|Vλ|) [16]. Con-
structing ENP(λ) takes O(|Vλ|) time. We will discuss how
to organize the entry nodes pair index for all keywords on
disk in Sect. 4.

3.2.2 Query processing

Algorithm 3 shows how to process a query Q = (q, λ, k)
on a compact tree CT(λ) via the entry nodes pair (u, u′) of
q. We get the top-k answers of Q(u, λ, k) and Q(u′, λ, k)
on CT(λ) by invokingmerge-list in Algorithm 1. When we
get the top-k results for the entry nodes u and u′, we add the
distance distT (q, u) and distT (q, u′) to them, respectively,
and merge the results (line 4–5).

3.2.3 Computing tree distance [5]

For processing a k-NK query on tree T as discussed above,
weneed to compute the tree distancedistT (u, v)between two
nodes u and v. The computation is done as follows.Given tree
T (V, E) with root r , we precompute and store the distance
from r to every node in V (T) using O(|V |) space. For nodes
u and v, we denote LCA(u, v) as their lowest common ances-
tor. The distance of u and v can be computed asdistT (u, v) =
distT (r, u) + distT (r, v) − 2distT (r,LCA(u, v)). Using the
techniques in [17], LCA(u, v) can be found in O(1) time
using an index of size O(|V |). Thus, distT (u, v) can be com-

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

Table 2 Entry nodes pair index
for CT(λ) Range [1, 1] [2, 2] [3, 4] [5, 5] [6, 10] [11, 11]

ENP (a, a) (a, b) (b, e) (e, j) (a, c) (c, f)

Range [12, 12] [13, 13] [14, 14] [15, 15] [16, 16]
ENP (a, d) (d, i) (d,m) (m, g) (m, h)

Algorithm 3: tree-knk (Q, CT(λ))
Input: A k-NK query Q = (q, λ, k), and a compact tree CT(λ).
Output: Answer for Q on CT(λ).

1 lq ← the preorder label of q;
2 (u, u′) ← binary-search(ENP(λ), lq);
3 R ← ∅;
4 R ← R ⊗k (merge-list((u, λ, k),CT(λ)) ⊕ distT (q, u));
5 R ← R ⊗k (merge-list((u′, λ, k),CT(λ)) ⊕ distT (q, u′));
6 return R;

puted in O(1) time using O(|V |) index space. Note that for
tree T (V, E) carrying multiple keywords, one LCA struc-
ture is sufficient, as it is independent of keywords. Since the
memory M ≥ c|V |, the LCA index can fit in memory; thus,
we do not consider the I/O cost of accessing LCA in query
processing.

Example 6 Given a query Q = (l, λ, 3) and CT(λ) in
Fig. 3, we find ENPλ(l) = (a, c). Thus, we process two
queries from l’s entry nodes a and c, i.e., Q(a, λ, 3) and
Q(c, λ, 3). For query Q(a, λ, 3), the top-3 answers are
Ra = {b: 1, c: 2, e: 2}. By adding distT (a, l) = 2 to Ra , we
get Ra⊕2 = {b: 3, c: 4, e: 4}. Similarly, for query Q(c, λ, 3),
the top-3 answers are Rc = {c: 0, f : 1, b: 3}. By adding
distT (c, l) = 2 to Rc, we get Rc ⊕ 2 = {c: 2, f : 3, b: 5}.
We merge these two lists and get the final result R =
{c: 2, b: 3, f : 3}.

3.3 Compact tree balancing

The problem is not perfectly solved using the compact tree
described above, for the following two reasons. First, the
index size for keyword λ is

∑
v∈Vλ

depth(v, CT(λ)), which
can be quite large if depth(v,CT(λ)) is large. Second, when
processing a k-NK query Q = (q, λ, k), we need to traverse
the tree path from the query node q to the root ofCT(λ). This
process may incur high I/O cost if depth(v, CT(λ)) is large.
Hence, reducing the depth of the compact tree is the key to
reduce both index space and query time.

Qiao et al. [5] designed a distance preserving balanced tree
to bound the tree depth, in theirmemory-based solution to the
k-NK query. Different from applying balancing technique on
the original shortest distance tree T (V, E) in [5], we apply
a similar balancing technique to the compact tree CT(λ) to
reduce the tree depth. The compact tree has a smaller number
of nodes than the original distance tree.

Definition 4 (Balanced compact tree) Given a tree T (V, E)

with a length on each edge, and a compact tree CT(λ) for
keyword λ, the balanced compact tree, denoted as BCT(λ),
is an unweighted tree with the following three properties.

P1: V (BCT(λ)) = V (CT(λ)).
P2: depth(BCT(λ)) ≤ log2 |Vλ|.
P3: For any two nodes u and v, let the lowest common ances-

tor of u and v on BCT(λ) be o. The following equation
always holds: distT (u, v) = distT (u, o) + distT (v, o).

We will transform CT(λ) into a balanced compact tree
BCT(λ). It preserves all distance information for any node
pair on CT(λ) and depth(BCT(λ)) ≤ log2 |Vλ|.

Constructing BCT(λ): BCT(λ) is constructed by recur-
sively selecting a node in a subtree to rotate the subtree. We
select a median node in a subtree to be the subtree root for
rotation, which is defined as follows.

Definition 5 (Median node [5]) Given a tree T , the median
node of T is a node r in T such that when using r as the root
of T , for each child node u, Tu is a direct subtree of r and
|V (Tu)| ≤ |V (T)|

2 holds.

According to [5], a median node, denoted as r , uniquely
exists in a tree T such that the subtree rooted at r contains
more than |V (T)|

2 nodes and depth(r, T) is the maximum.
The median node can be found by a traversal on the tree. For
a compact tree CT(λ), the median node r is used to balance
the size of each direct subtree of CT(λ) when using r as the
root, as each direct subtree of r in CT(λ) contains at most
half of the nodes in CT(λ). We recursively do this for each
direct subtree of the root. In this way, we can balance the
compact tree with depth(BCT(λ)) ≤ log2 |Vλ|.

Algorithm 4 shows how to construct BCT(λ) for CT(λ).
First, the median node r of CT(λ) is used as the new root
and CT(λ) is rotated accordingly (line 1–2). For each direct
subtree Ti of r , we recursively create BCTi (λ) and insert
BCTi (λ) as a subtree of BCT(λ) (line 4–6). In this way, we
get the balanced tree BCT(λ).

The second part of Algorithm 4 (line 7–13) computes can-
didate lists for nodes in BCT(λ). For each keyword node v,
we propagate it to all its ancestors in BCT(λ), that is, add an
entry v: distT (p, v) to the candidate list candλ(p) for every
ancestor p of v inBCT(λ). Finally,we sort each candidate list
in nondecreasing order of distances. As depth(BCT(λ)) ≤

123

Author's personal copy

Q. Zhu et al.

Algorithm 4: BCT-construct (CT(λ))
Input: A tree CT(λ).
Output: A balanced compact tree BCT(λ) with candidate lists.

1 r ← the median node of CT(λ) ;
2 rotate CT(λ) with r as the root;
3 BCT(λ) ← a tree with a single node r ;
4 foreach direct subtree Ti of r in CT(λ) do
5 BCTi (λ) ← BCT-construct(Ti);
6 insert BCTi (λ) as a subtree of r in BCT(λ);

7 foreach node v ∈ V (BCT(λ)) do
8 candλ(v) ← ∅;
9 foreach v ∈ V (BCT(λ)) and v carrying λ do

10 foreach ancestor p of v do
11 candλ(p) ← candλ(p)

⋃{v: distT (p, v)};
12 foreach v ∈ V (BCT(λ)) do
13 sort elements in candλ(v) in nondecreasing order of

distances;

14 return BCT(λ);

log2 |Vλ| holds, the time complexity to constructBCT(λ) and
compute all candidate lists is O(|Vλ| · log |Vλ|). For sorting
candidate lists, O(|Vλ| · log2 |Vλ|) time is needed.

Query processing on BCT(λ) is similar to that on CT(λ),
as discussed in Sect. 3.2. That is, wemerge the candidate lists
along the path from the query node (for case (a)) or its entry
nodes pair [for case (b)] to the root of BCT(λ). But we only
need to access atmost log2 |Vλ| nodes inBCT(λ), as opposed
to O(|Vλ|) nodes on CT(λ). The reduction in node access
can lead to reduced I/O costs in our disk-based solution. We
use the following example to illustrate processing a query
Q = (q, λ, k) on BCT(λ).

Example 7 Figure4 shows thebalanced compact treeBCT(λ)

with candidate lists for CT(λ) in Fig. 3. For a query Q =
(b, λ, 4), we first find ENPλ(b) = (a, b). Thus, we need
to process queries Q = (a, λ, 4) and Q = (b, λ, 4).
For query Q = (a, λ, 4), the top-4 answers are Ra =
{b: 1, c: 2, e: 2, i : 2}. By adding distT (a, b), we get Ra ⊕
1 = {b: 2, c: 3, e: 3, i : 3}. For query Q = (b, λ, 4), we first
get candλ(b) = {b: 0}. Then, we visit b’s father node e
and get candλ(e) ⊕ distT (b, e) = {e: 1, b: 2, j : 2}. Then,

Fig. 4 BCT(λ) with candidate lists

we visit b’s ancestor node a and get top-4 answers from
candλ(a) ⊕ distT (b, a) as {b: 2, c: 3, e: 3, i : 3}. We merge
these three lists and get Rb = {b: 0, e: 1, j : 2, c: 3}. Finally,
we merge Ra ⊕ 1 and Rb and get R = {b: 0, e: 1, j : 2, c: 3}.

We have the following theorem to ensure the correctness
of query results computed from the balanced compact tree.

Theorem 1 Given a k-NK query Q = (q, λ, k), the answers
computed from the balanced compact tree BCT(λ) are the
same as the answers computed from the compact treeCT(λ).

Proof First, we prove that a query node q in BCT(λ) can
still reach all keyword nodes in BCT(λ) after tree balancing.
This is because every keyword node is included in the can-
didate lists of all its ancestors (line 10, 11 of Algorithm 4).
For a query node q, by accessing the candidate lists of all
its ancestors, we can retrieve all keyword nodes for query
processing.

Second, we prove that the tree distance between a query
node q and any keyword node v is correctly calculated by
our query processing technique. Let o be the lowest com-
mon ancestor of q and v in BCT(λ), then o must lie on
the path from q to v in the original tree T . In candλ(o),
we have an entry v: distT (o, v). In our query processing,
we add distT (q, o) and distT (o, v) by the ⊕ operation,
which leads to the tree distance distT (q, v), as distT (q, v) =
distT (q, o) + distT (o, v) holds.

Based on the above two points, we prove that the answers
computed from BCT(λ) are the same as the answers com-
puted from CT(λ).

Theorem 2 Given a tree T and keyword λ, constructing
BCT(λ) takes O(|Vλ| · log2 |Vλ|) time, and BCT(λ) takes
O(|Vλ| · log |Vλ|) space. For all keywords, the index con-
struction takes O(|doc(V)| · log2 |V |) time, and the whole
index takes O(|doc(V)| · log |V |) space. Answering a k-NK
query Q = (q, λ, k) takes O(k · log |Vλ|) time.

4 Paths + subtrees blocking index

In this section, we study how to lay out the balanced com-
pact trees on disk, so that we only need a small number of
block accesses to answer a k-NK query, and the index size
on disk is small. We first give a brief overview of commonly
used tree blocking techniques. Then, we propose a novel and
highly efficient algorithm for blocking trees under a reason-
able assumption. We split a balanced compact tree BCT(λ)

into two levels. The top level is stored as paths and the bottom
level is stored as subtrees. In this way, we can answer a query
in constant I/Os and do not increase the index space complex-
ity. We also discuss the case that violates the assumption and
prove that our approach is still optimal in this case. Finally,
we propose a practical technique to reduce the query I/O cost.

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

4.1 Commonly used tree blocking techniques

Our task is to block the balanced compact trees to disk. We
discuss the following commonly used tree blocking tech-
niques.

4.1.1 Blocking nodes

The first method is blocking tree nodes with the associated
candidate lists one by one on disk. To answer a k-NK query,
we have to perform random access to read the blocks contain-
ing the nodes that lie on the path from the query node to the
root of the balanced compact tree. It costs O(log |Vλ|+ |Vλ|

B)

I/Os in the worst case, where |Vλ|
B is the number of blocks

for reading the longest candidate list. Obviously, this node
blocking method causes high I/O cost in query processing.

4.1.2 Blocking paths

The second method is blocking tree paths, that is, for each
leaf node v in BCT(λ), storing the nodes and the associated
candidate lists on the path from v to the root node in sequence
on disk. To answer a k-NK query, we need to find out the path
that the query node lies on and read the sequential blocks that
contain the path. But this method increases the space cost for
storing the index, as the internal nodes and their candidate
lists lie on multiple paths and thus are stored multiple times.
For instance, the root node r and its candidate list is stored in
the paths starting from every leaf node. The size of candλ(r)
is �(|Vλ|). The number of leaf nodes can reach �(|Vλ|) in
the worst case, e.g., a balanced binary tree. As a result, the
total space complexity of this blocking solution is �(|Vλ|2)
in the worst case.

4.1.3 Blocking layered trees

The third method is blocking subtrees with divided layer
[12,13]. The main idea of this approach is described as fol-
lows. Given a height d and a tree T , we partition T into layers
of height d, and the i th layer contains all nodes at the levels
between id and (i +1)d −1, so that each layer can be stored
in a block on disk. To retrieve the path from a node to the root
node, we need to read the blocks containing the tree layers
that this path belongs to, which costs O(Ld) I/Os where L is
the length of this path. This technique can reduce I/O cost
compared to blocking nodes and does not increase the space
complexity. However, this blocking technique is not an ideal
solution to lay out a balanced compact treeBCT(λ). The rea-
sons are twofold. First, the size of a subtree can be bounded
if and only if the maximum degree of BCT(λ) is bounded.
If the maximum degree of BCT(λ) is not known in advance,
we cannot guarantee that every layer can be blocked into a

page [12]. Second, the nodes inBCT(λ) carry candidate lists
of varying lengths. This makes it even more difficult to set
the height d for tree partitioning so that each layer can fit into
a page.

4.2 Paths + subtrees blocking

As discussed above, the three commonly used tree blocking
techniques are not suitable for blocking the balanced compact
trees. To solve this problem, we design a novel strategy by
combining path and subtree blocking, denoted by PathST.
We split BCT(λ) into two levels: the upper level is stored as
paths, and the lower level is stored as subtrees. In this way,
for any node v in BCT(λ), the path from v to the root can
be assembled by merging a path and a subtree. To reduce the
I/O cost, we want to store each of such paths and subtrees
into a block. For this purpose, we first make a reasonable
assumption:

A1: k̄ · log2 |Vλ| ≤ B,

where k̄ is a real large constant and k ≤ k̄ holds for any
k-NK query Q = (q, λ, k). The assumption is reasonable
due to the following reason. If we use a typical block size
of B = 64 KB, and k̄ = 1000 which is large enough for
any k-NK query in practice, k̄ · log2 |Vλ| ≤ B holds even for
|Vλ| = 264, which is an extremely large number for the tree
nodes carrying λ.

According to the assumption, we modify the structure
of BCT(λ) as follows. For each node v ∈ BCT(λ), if
|candλ(v)| > k̄, we keep the first k̄ entries in candλ(v) and

denote the new list by candk̄λ(v). The new balanced compact
tree is denoted as BCTk̄(λ).

Example 8 Figure5a shows a BCTk̄(λ) for the balanced
compact treeBCT(λ)with the parameter k̄ = 2. For nodem,

we keep the candidate list candk̄λ(m) = {g: 1, h: 1}, instead
of candλ(m) = {g: 1, h: 1, i : 2} in Fig. 4. For the following
examples in this section, we set the parameters k̄ = 2 and
B = 5.

Now we start to lay out BCTk̄(λ) by paths and subtrees
blocking into disks in the bottom-up manner.

4.2.1 Subtree blocking in bottom level

In the bottom level, we store a subtree into a block. For
a node v ∈ BCTk̄(λ), the subtree rooted by v, denoted
as ST(v), contains all v’s descendants and itself. We use
|ST(v)| to denote the total size of all candidate lists inST(v).
If |ST(v)| ≤ B, we say that ST(v) can fit into a block. To
make the best use of the block, we define a maximal subtree
bounded by a block as follows.

123

Author's personal copy

Q. Zhu et al.

Fig. 5 Paths + subtrees
blocking, a BCTk̄(λ) with
k̄ = 2, b blocking BCTk̄(λ)

with B = 5

(a) (b)

Definition 6 For v ∈ BCTk̄(λ), ST(v) is a maximal sub-
tree, if there does not exist a node u as the parent of v, s.t.
|ST(u)| ≤ B.

Example 9 Consider Fig. 5b with B = 5. For node d, the
subtree of d as ST(d) contains two nodes d and i with their
candidate lists in BCTk̄(λ). The size of ST(d), |ST(d)| =
|candk̄λ(d)|+|candk̄λ(i)| = 2 ≤ B. Thus,ST(d) can fit into a
block.Moreover, for nodem as a parent of d, |ST(m)| = 6 >

B, thus ST(m) cannot be held into a block. By Definition 6,
ST(d) is a maximal subtree.

So in the bottom level of a balanced compact tree,PathST
method stores a set of maximal subtrees, denoted as S =
{ST(v)| v ∈ BCTk̄(λ), and ST(v) is a maximal subtree},
each of which fits into a block. For the tree in Fig. 5b, the
maximal subtrees are S = {ST(e), ST(c), ST(g), ST(h),
ST(d)}.

4.2.2 Path blocking in top level

Nowwe consider the nodes that are not blocked intomaximal
subtrees. We will store such nodes in the form of paths into
blocks. According to the subtree and path concepts, we first
categorize all nodes into four different types.

Definition 7 For node v ∈ BCTk̄(λ), u and {w1, ..., wl} are
the parent and children of v, respectively. v can be classified
into one of the following four types:

– STnode: |ST(v)| ≤ B, |ST(u)| ≤ B;
– STroot: |ST(v)| ≤ B, |ST(u)| > B;
– Pathleaf: |ST(v)| > B, |ST(wi)| ≤ B for 1 ≤ i ≤ l;
– Pathnode: |ST(v)| > B, ∃i , 1 ≤ i ≤ l, s.t. |ST(wi)| >

B.

Example 10 In Fig. 5b, node e is a STroot, and node j is a
STnode in ST(e), since |ST(e)| < B, |ST(j)| < B and
|ST(a)| > B. Node m is a Pathleaf, since |ST(m)| > B
and all its children {g, h, d} have subtree of size less than B.
Clearly, node a is a Pathnode.

The idea of path blocking is, for each Pathleaf node v

in BCTk̄(λ), we store the path from v to the root and the
associated candidate lists into a block. The path from v to
the root is denoted as rpath(v). All these blocking paths are
denoted by P = {rpath(v) | v is a Pathleaf }. As we store
the paths from everyPathleaf node to the root, it is clear that
all Pathnode nodes are covered by such paths.

The following lemma shows that such a path in P can fit
into a block.

Lemma 1 Under assumption A1, for a Pathleaf v ∈
BCTk̄(λ), the path rpath(v) with the associated candidate
lists can be held into a block.

Proof Since BCTk̄(λ) is a balanced tree with the maxi-
mum height log2 |Vλ|, the length of rpath(v) is no greater
than log2 |Vλ|. Moreover, for any node u ∈ rpath(v),

|candk̄λ(u)| ≤ k̄. As a result, the total size of rpath(v) with
candidate lists is at most k̄ · log2 |Vλ| ≤ B by assumptionA1.

�

It is worth noting that even under assumption A1, for
BCTk̄(λ), the blocking path technique still incurs very high
space cost O(|Vλ|k̄ log |Vλ|). This is because, for each leaf
node v ∈ BCTk̄(λ), storing the nodes and the associated
candidate lists on the path from v to the root node takes
O(k̄ log |Vλ|) space, and there are at most |Vλ| leaf nodes in
BCTk̄(λ). However, after blocking the maximal subtrees in
the bottom level, our PathST technique only needs to store
the paths which cover those nodes not in maximal subtrees.

Algorithm5 shows the procedure of blocking the balanced
compact tree BCTk̄(λ) by PathST method. We first find the
maximal subtrees and store them into blocks (line 2–4). If
the data size of the current tree is greater than B, each of its
direct subtrees will be processed by the block function recur-
sively (line 6–9). If r is a Pathleaf node, the path rpath(r)
and the associated candidate lists will be stored into a block
(line 10, 11).

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

Algorithm 5: block(BCTk̄(λ), B)

Input: A balanced compact tree BCTk̄(λ) and page size B
Output: A boolean value indicating whether BCTk̄(λ) is blocked

1 r ← the root of BCTk̄(λ);
2 if the data size of BCTk̄(λ) ≤ B then
3 Store all data on BCTk̄(λ) into a block sequentially;
4 Return True ;

5 allblock ← True ;
6 foreach direct subtree Ti of r in BCTk̄(λ) do
7 isblock ← block(Ti , B) ;
8 if isblock =False then
9 allblock ← False ;

10 if allblock =True then
11 Store data on the path from r to its ancestors into a block

sequentially ;

12 Return False ;

4.2.3 Complexity analysis

In the following, we first analyze the space of BCTk̄(λ).
Then, we analyze the space complexity of thePathST block-
ing technique and show our blocking technique does not
increase the space complexity of BCTk̄(λ).

Lemma 2 BCTk̄(λ) takes O(|Vλ| ·min(log |Vλ|, k̄)) space.

Proof As there are at most 2|Vλ| − 1 nodes in BCTk̄(λ)

and each candidate list is bounded by k̄ in length, the size
of BCTk̄(λ) is bounded O(|Vλ|k̄). On the other hand, the
size of BCTk̄(λ) is no larger than that of BCT(λ) which
is O(|Vλ| log |Vλ|). Thus, we prove the size of BCTk̄(λ) is
bounded by O(|Vλ| · min(log |Vλ|, k̄)).

Theorem 3 For BCTk̄(λ), the space complexity of PathST
index is O(|Vλ| · min(log |Vλ|, k̄)). For all keywords, the
whole index takes O(|doc(V)| · min(log |V |, k̄)) space on
disk.

Proof The PathST index includes maximal subtrees S and
paths P . Firstly, we prove the size of S, |S| = O(|Vλ| ·
min(log |Vλ|, k̄)). The set of maximal subtrees in S can be
regarded as a non-overlapping forest, which is a subset of
BCTk̄(λ). According to Lemma 2, we have |S| = O(|Vλ| ·
min(log |Vλ|, k̄)).

Secondly, we prove the size of all paths and candidate
lists in P , |P| = O(|Vλ| · min(log |Vλ|, k̄)). The number of
paths in P is the same as the number of Pathleaf nodes,
denoted as |PF |. According to Lemma 1, the size of each
path is no greater than B. Thus, we have |P| ≤ |PF | · B.
For each Pathleaf v, the size of the subtree ST(v) satisfies
|ST(v)| > B. Thus, we have

|P| ≤ |PF | · B ≤
∑

v is a Pathleaf

|ST(v)|.

As the subtrees for all Pathleaf nodes are not overlapping
and form a forest, the size of all these subtrees is bounded
by O(|Vλ| ·min(log |Vλ|, k̄)). Thus, we can prove that |P| =
O(|Vλ| · min(log |Vλ|, k̄)).

We prove that the total size of S and P is O(|Vλ| ·
min(log |Vλ|, k̄)). For all keywords, the space complexity is
O(|doc(V)| · min(log |V |, k̄)). �

4.3 Auxiliary index

Besides the balanced compact trees stored on disks in the
form of paths and subtrees, we need some auxiliary index for
processing a k-NK query. We discuss how to organize such
auxiliary index.

Given a k-NK query Q = (q, λ, k), we need to get the
entry nodes pair ENPλ(q) from the index ENP(λ). The size
of the entry nodes pair index for keyword λ is O(|Vλ|) and
that for all keywords is O(|doc(V)|). According to our semi-
external memory model that M � |doc(V)|, theENP index
cannot fit in the memory and needs to be stored on disk. As
|doc(V)|

B < M is reasonable in practice, we use a secondary
index of ENP, called MSI, to store the block addresses of
ENP. Since ENP is sorted by node preorder, we can find the
block address containing ENPλ(q) by binary search. After
that, we will read the corresponding block into memory to
process the k-NK query.

To facilitate query processing, the detailed block layout
for the ENP index is designed as follows. For any node v,
we keep the following 6-tuple:

〈u, u′, addrs(u), addrp(u), addrs(u
′), addrp(u′)〉,

where u, u′ are the entry nodes pair of node v, addrs(u) is
the block address that stores the subtree containing u. It is
null if u is a Pathleaf or Pathnode (i.e., u is not contained
in a maximal subtree). addrp(u) is the block address that
stores the path that u must go through to reach the root of a
balanced compact tree. addrs(u′) and addrp(u′) are the two
block addresses of u′ as defined above.

Given the disk-based index and the secondary indexMSI,
we process a k-NK query Q = (q, λ, k) as follows. We
perform binary search onMSI to find the block address con-
taining ENPλ(q) in O(log |doc(V)|

B) time. Then, we read the
block containing the 6-tuple of q with one I/O. Once we get
the entry nodes pair (u, u′) and their block addresses for the
paths and subtrees, we use at most four I/Os to read the cor-
responding blocks, from which we obtain the path from q to
the root node and the associated candidate lists to answer the
k-NK query.

123

Author's personal copy

Q. Zhu et al.

Table 3 Complexity analysis of
different blocking techniques
under assumption A1

Blocking methods Space complexity Disk size (in blocks) Query I/O cost

PathST O(|Vλ| · min(log |Vλ|, k̄)) O
(|Vλ|·min(log |Vλ|,k̄)

B

)
O(1)

Blocking paths O(|Vλ|k̄ log |Vλ|) O
(|Vλ|k̄ log |Vλ|

B

)
O(1)

Blocking nodes O(|Vλ| · min(log |Vλ|, k̄)) O
(|Vλ|·min(log |Vλ|,k̄)

B

)
O(log |Vλ|)

Blocking layered trees O(|Vλ| · min(log |Vλ|, k̄)) O
(|Vλ|·min(log |Vλ|,k̄)

B

)
O

(
log |Vλ|

d

)

Theorem 4 The answer to any k-NK query Q = (q, λ, k)
can be computed by at most five I/Os under the assumption
A1.

4.4 Complexity comparison of different tree blocking
techniques

For comparison, we list the complexity of different tree
blocking techniques in Table3 under the same assumption
A1: k̄ · log |Vλ| ≤ B. The complexity of PathST is provided
by Theorems 3 and 4.

4.4.1 Blocking paths

For each leaf node v ∈ BCTk̄(λ), storing the nodes and
the associated candidate lists on the path from v to the root
node takes O(k̄ log |Vλ|) space. There are at most |Vλ| leaf
nodes in BCTk̄(λ). Thus, the blocking path technique takes

O(|Vλ|k̄ log |Vλ|) space and occupies O(
|Vλ|k̄ log |Vλ|

B) blocks.
It costs constant query I/O under assumption A1.

4.4.2 Blocking nodes

Blocking nodes has the same space complexity as the bal-
anced compact tree BCTk̄(λ), as it stores BCTk̄(λ) to disk
without any duplicate. So the space complexity is O(|Vλ| ·
min(log |Vλ|, k̄)) and it occupiesO(

|Vλ|·min(log |Vλ|,k̄)
B)blocks.

It costs O(log |Vλ|) query I/O in the worst case if the path is
of length O(log |Vλ|) and the nodes on the path are stored in
non-consecutive blocks.

4.4.3 Blocking layered trees

Blocking layered trees has the same space complexity as
blocking nodes. The query I/O is O(

log |Vλ|
d) where d is the

height of a layer.
In summary, PathST takes less space than blocking paths

and uses lower query I/O cost than the methods of block-
ing nodes and blocking layered trees. Overall, our approach
PathST achieves a good balance of space cost and query
efficiency among all competitive methods.

4.5 Extend paths + subtrees blocking index

Our PathST blocking technique is under the assumption A1

with the condition k ≤ k̄. Now we discuss how to extend the
blocking technique to support k-NK queries with an arbitrary
k by removing the assumptionA1. In the extension, we block
BCT(λ) in two steps.

Step 1: For any node v with |candλ(v)| ≤ B
2 and its

parent w with |candλ(w)| > B
2 , we apply our PathST

method (Algorithm 5) to block the subtreeST(v) to disk.
Specifically, the upper level of ST(v) is stored as paths,
and the lower level of ST(v) is stored as subtrees;
Step 2: For any node v with |candλ(v)| > B

2 , we store
node v with candλ(v) into blocks sequentially. This
blocking technique is called node blocking.

As we can see, our new blocking strategy combines
PathST method and node blocking. Particularly, we split
BCT(λ) into three levels: the upper level is stored as nodes,
the middle level is stored as paths, and the lower level is
stored as subtrees.

Lemma 3 shows that thePathST algorithm can be applied
in Step 1 for blocking the subtree ST(v).

Lemma 3 For a node v with |candλ(v)| ≤ B
2 in BCT(λ),

for any node u ∈ ST(v), the candidate lists on the path from
u to v can fit into a block.

Proof According to the median node definition, we know
that for a node v′ and its parent v in BCT(λ), |candλ(v

′)| ≤
|candλ(v)|

2 holds. Then the total size of the candidate lists on

the path from u to v is bounded by |candλ(v)| + | candλ(v)
2 | +

| candλ(v)

22
|+· · ·+1 ≤ 2|candλ(v)| ≤ B. Thus, the candidate

lists on the path from u to v can fit into a block.

Thus, we can always find this type of node u∗ ∈ ST(v)

such that, (1) the path from u∗ to v can fit into one block by
Lemma 3, and (2) the subtree ST(u∗) rooted by u∗ can fit
into one block. This means the subtreeST(v) can be blocked
by PathST into paths and subtrees in Step 1.

Step 1 blocks the subtree ST(v) if |candλ(v)| ≤ B
2 and

|candλ(u)| > B
2 hold where u is v’s parent. Step 2 stores the

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

remaining nodes to disk. Both steps do not increase the space
complexity. Thus, the extension blocking technique creates
index of O(|Vλ| · log |Vλ|) space which is the same as the
space of BCT(λ) according to Theorem 2. The whole index
takes O(|doc(V)| · log |V |) space for storing all balanced
compact trees for all keywords.

Based on the index, we can answer a k-NK query Q =
(q, λ, k) for an arbitrary k as follows. We need to retrieve
the candidate lists of the nodes in rpath(q). rpath(q) can be
obtained by merging a path and a subtree blocked in Step 1,
and a series of nodes blocked in Step 2. Since each path or
subtree in Step 1 can fit into one block, we only need two I/Os
to read them. In addition, we need to read a series of nodes
with candidate lists of size no less than B

2 . The I/O cost of
reading these nodeswith candidate lists is denotedbyC. Since
the longest candidate list occupies at most � |Vλ|

B � blocks, and
the candidate list size of a child node is at most half of the
candidate list size of its parent, we have the following bound:
C ≤ �|Vλ|

B � + � |Vλ|
2B � + · · · + � |Vλ|

2i B
� ≤ 2 · (|Vλ|

B + |Vλ|
2B + · · · +

|Vλ|
2i B

) ≤ 4|Vλ|
B , where |Vλ|

2i
> B

2 holds according to Step 2. As a

result, we can answer a k-NK query for arbitrary k in O(
|Vλ|
B)

I/Os, which is optimal in the worst case, because outputting
the results for a query Q = (q, λ, k) with k = |Vλ| takes
scan(|Vλ|) = �(

|Vλ|
B) I/Os.

Theorem 5 The answer to any k-NK query Q = (q, λ, k)
for an arbitrary k can be computed by O(

|Vλ|
B) I/Os, which

is optimal in the worst case.

4.6 Further optimization heuristic

Since different keywords are independent of each other, we
use one compact tree as a compact representation of a key-
word. In real data, we observe that the size of compact trees
for different keywordsmay vary greatly. Thus, we propose an
optimization heuristic to handle those compact trees which
are small enough to fit into memory.

For a keyword λ, if its compact tree CT(λ) fits into mem-
ory, our heuristic just storesCT(λ) inmemory instead of disk
and uses the following simple method to process a k-NK
query Q = (q, λ, k) on CT(λ). We compute the distance
from q to all the other nodes in CT(λ) in O(|Vλ|) time. We
then do a partial sort and return top-k nodes as the answer.
This can be done in O(k log k + |Vλ|) time. If |Vλ| is small,
we can storeCT(λ) inmemory and answer a query efficiently.
This heuristic can avoid I/O costs for small compact trees.
To implement this heuristic, we can set a threshold Vλ. For
a keyword λ, if |Vλ| < Vλ, queries on λ will be processed in
memory; otherwise, queries will be handled by disk-based
index.

Theorem 6 Given a k-NK query Q = (q, λ, k) and CT(λ)

inmemory, the optimization heuristic computes the answer in
O(k log k + |Vλ|) time and takes O(|Vλ|) space in memory.

5 k-NK query on a graph

In this section, we discuss how to answer a k-NK query
Q = (q, λ, k) on a massive graph G(V, E) based on our
previous solution on trees. The main idea is that we use a
set of spanning trees as an approximate representation of a
graph. We process query Q on the set of trees and then con-
solidate the exact answers on trees as the approximate answer
on graph G.

5.1 Index construction

We select L nodes v1, v2, . . . , vL from V randomly as land-
marks, from each of which we build a shortest path tree
of G. Other landmark selection strategies [18–20] can be
applied as well, but it is not the focus of this paper. A short-
est path tree of G is a spanning tree where the path from the
root to any node is a shortest path between the two nodes
in G. We use Dijkstra’s algorithm [21] to build a shortest
path tree from a node vi , 1 ≤ i ≤ L . Dijkstra’s algo-
rithm takes O(|E | + |V | log |V |) time and O(|V |) space.
In the semi-external model, as M ≥ c · |V |, we can read
the adjacency list of a node in memory in O(scan(|V |))
I/Os and traverse G(V, E) in O(|V | + scan(|E |)) I/Os.
Given L tree roots, we need O(L · (|E | + |V | log |V |)) time
and O(L · |V |) memory to construct shortest path trees. In
addition, according to Theorem 2, constructing the balanced
compact trees of all keywords on one shortest path tree takes
O(|doc(V)| · log2 |V |) time. Thus, the total index construc-
tion time for a graph is O(L · (|E | + |doc(V)| · log2 |V |)).
Compared with the CPU cost, the I/O cost for traversing the
graph is not significant and not considered as the bottleneck
of index construction.

Theorem 7 For a graph G(V, E), our method constructs
the index using O(L · |doc(V)| · log2 |V |) time, O(L · |V |)
memory space and O(L · |doc(V)| · log |V |) disk space.

5.2 Query processing

Given a k-NK query Q, we process Q on the L short-
est path trees using the tree-based solution. We merge the
results from the trees by the ⊗k operator and return the top-k
results as the approximate answer. The efficiency and accu-
racy of our method depend on the parameter L . Increasing
L will improve the accuracy of results, but also increases

123

Author's personal copy

Q. Zhu et al.

the query processing I/Os linearly, as the query I/O cost is
O(L).

To further reduce the query I/O cost, we propose a heuris-
tic, called nearest landmarks. The idea is, given a query node
q, we select kl nearest landmarks to q out of L landmarks
according to their distance and process the k-NK query on
the corresponding kl trees, instead of L trees. The rationale
is, if q is closer to a landmark vi , the approximate graph
distance provided by the shortest path tree rooted at vi may
be more accurate. This heuristic can effectively reduce the
query I/O cost from O(L) to O(kl), while still achieving
good precision on distance estimation.

Algorithm 6 shows how to process a k-NK query on graph
G. The algorithm first selects kl nearest landmarks to q
(line 2). Since a tree distance can be computed by the LCA
index in O(1) time, the selection step can be implemented
by top-k partial sort in O(kl · log kl + L) time. For a selected
landmark vi , Q is processed on the corresponding tree- based
index Ti . The answers from kl trees aremerged to get the final
result R (line 3–5).

Algorithm 6: graph-knk (G,Q)
Input: A graph G(V, E) and a k-NK query Q = (q, λ, k).
Output: The answer for Q on G.

1 R ← ∅;
2 Sk ← kl nearest landmarks to q ;
3 foreach landmark vi in Sk do
4 Ti ← shortest path tree rooted by vi ;
5 R ← R ⊗k tree-knk(Ti , Q);

6 return R;

5.3 Complexity summary

Table4 summarizes the indexing and query processing com-
plexities on tree and graph, respectively. The index time and
space costs on graph are L times those on tree, while the
query time and I/O costs on graph are kl times those on tree.

6 k-NK query on dynamic graphs

In practice, keywords may be inserted to the graph vertices at
a high frequency, e.g., new tweets in Twitter. In this section,
we study how to incrementally maintain the index given fre-
quent keyword insertions.Weadopt a batch updatemode, i.e.,
we process keyword insertions accumulated over a period of
time in a batch. Batch update (instead of real-time update)
is acceptable in principle, as our query algorithm returns
approximate (instead of exact) k-NK answers anyway. We
validate this claim in our experiments.

We denote a keyword insertion as 〈v, λ〉 indicating that
keyword λ is inserted to vertex v. We use �doc(V) to
denote a batch of inserted keywords over a period of time.
When the number of insertions reaches a certain level, i.e.,
|�doc(V)| ≥ δ · |doc(V)| where δ > 0 is a batch size
parameter, we start to process the insertions in�doc(V). As
the keywords are processed separately, we focus on a single
keyword at a time. Denote the insertions of keyword λ as
�Vλ = {〈v, λ〉 : v ∈ V } and �Vλ ⊆ �doc(V).

Given �Vλ, updating the existing index structure is non-
trivial. The challenge is that the insertions can trigger a series
of changes in the compact tree structure CT(λ), the entry
node pair index ENP(λ), the balanced compact tree BCT(λ)

and the block layout on disk. Updating all the intermediate
data structures and final index can be very complicated and
expensive. Instead of updating the existing index for λ, we
propose to construct a separate index, denoted asBCT�Vλ(λ)

for the affected vertices in �Vλ. Given a query (q, λ, k),
we will retrieve top-k results from both indices BCT(λ) and
BCT�Vλ(λ) and then merge the two answer lists and return
the top-k answers from the merged list. For a small amount
of batch update, the newly constructed index BCT�Vλ(λ) is
often small enough to reside in memory. In case it is large,
BCT�Vλ(λ) can be stored on disk. It is not hard to verify that
the query result will be identical, be it obtained by a single
updated index, or the combination of the old index and the
incremental one. The reason is that the distance for each
keyword node is estimated to be the same value no matter
the keyword nodes carrying λ are organized in one or two
indices.

The time complexity of the incremental index construction
on a graph is O(L ·|�doc(V)|·log2 |V |), and the incremental
index size is O(L · |�doc(V)| · log |V |). To process a query,
the time complexity is O(kl · k · (log |Vλ| + log |�Vλ|)) as
we will access both the original and incremental indices.

7 Experiments

In this section, we evaluate the performance of our I/O-
efficient method for processing k-NK queries on tree and
graph.

7.1 Experimental setting

We test our method on a large graph extracted from social
network Twitter and several synthetic trees. On the graph, we
compare our method with three baseline methods.

– pivot-gs [5]. As pivot-gs is an in-memory algorithm,
we adapt it to a disk-based solution by simply laying out
the tree nodes one by one to disk. It takes O(log |V |)
I/Os to access the disk index of pivot-gs to process a

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

Table 4 Algorithm
complexities on tree (T) and
graph (G)

Tree Graph

Index time O(|doc(V)| · log2 |V |) O(L · |doc(V)| · log2 |V |)
Index size O(|doc(V)| · log |V |) O(L · |doc(V)| · log |V |)
Query time O(k · log |Vλ|) O(kl · k · log |Vλ|)
Query I/Os O(1) O(kl)

Table 5 Data set statistics

Data set |V | |E | |doc(V)| # Distinct keywords Data size Avg. # nodes
associated with
query keyword

T1 104,466 104,465 2, 084,375 334,522 12.6 MB 11,141

T2 314,983 314,982 6,276,967 758,771 39.4 MB 34,605

T3 3,148,149 3,148,148 62,796,424 3,663,316 416.7 MB 367,171

T4 10,494,505 10,494,504 209,360,819 5,636,193 1.4 GB 1,404,811

SubTwitter 100,059 624,056 3,210,413 385,778 26.2 MB 17,378

Twitter 41,652,230 1,468,365,182 1,886,241,342 42,191,496 69.8 GB 13,621,114

k-NK query on a tree T (V, E), and O(log2 |V |) I/Os to
process a query on a graphG(V, E), as the graph distance
is estimated from a distance oracle [22] of size log2 |V |
according to [5].

– HLQ [6]. We use the disk-based solution provided by the
authors of [6] to process k-NK queries on graph.

– scan. scan processes k-NK queries on graph simply by
Dijkstra’s algorithm without any index.

On the synthetic trees, we compare our method with
pivot-gs and the blocking layered tree technique, denoted
as layer, mentioned in Sect. 4.1. In layered tree blocking, we
block consecutive levels of the tree that maximally fit into
one block to disk.

Our method is denoted as knk-io-mp, which stands
for I/O-efficient k-NK solution with memory optimization
heuristic. All methods are implemented in GNU C++ and
tested on a Windows machine with an Intel Xeon 2.7 GHz
CPU. Main indices are stored in disk. The disk block size is
set to 64 KB. A 32 GB memory limit is set for index con-
struction.

7.1.1 Data sets and queries

We use a large Twitter graph3 with 41 million nodes, 1.4 bil-
lion edges and 1.8 billion keywords on nodes. In the Twitter
graph, each node represents a Twitter user. For each node
v, each discriminative word in v’s tweets is regarded as a
keyword and added into doc(v). An edge (u, v) between
nodes u and v means that u follows v or vice versa. A weight

3 https://snap.stanford.edu/data/twitter7.html.

(log2 deg(u) + log2 deg(v)) is assigned to edge (u, v) as a
conceptual length, where deg(u) denotes the degree of node
u. Compared with the unit edge weight setting, the numeri-
cal edge weight can effectively differentiate the length of all
edges in a graph. Thus for any k-NK query, this helps pro-
duce a ranking of top-k answer nodes with less ties in their
distances as the ground truth, which is important for fair and
unambiguous ranking quality evaluation. We also sampled
a subnetwork of the Twitter graph, called SubTwitter, with
100K nodes, 624K edges and 3.2million keywords. For both
graphs, we set the number of landmarks to be L = 15 as a
default setting. We have tested L in [5, 40] and finally set
L = 15 as it achieves a good balance between answer qual-
ity and efficiency.

In addition, we generate four synthetic unweighted trees,
denoted T1, T2, T3 and T4, to test the performance on trees.
The number of tree nodes ranges from 100K to 10M, and
the number of keywords |doc(V)| ranges from 2 to 200M.
The synthetic trees are generated randomly with a maxi-
mum degree of 20. Keywords assigned to the tree nodes
are extracted from DBLP.4 We view the XML document
of DBLP as a tree TD with keywords. For each node vi in a
synthetic tree, we randomly choose a node of TD and copy
its keywords to vi . The statistics of the network and trees are
shown in Table 5.

For each data set,wegenerated 10,000 k-NK queries in the
form of Q = (q, λ, k), where q ∈ V is a randomly selected
query node, and λ is a keyword randomly selected by fol-
lowing the keyword frequency distribution in the document
collection. The reason is that frequent keywords are more

4 http://www.informatik.uni-trier.de/~ley/db.

123

Author's personal copy

https://snap.stanford.edu/data/twitter7.html
http://www.informatik.uni-trier.de/~ley/db

Q. Zhu et al.

likely to be asked in real-life queries. The average number
of nodes associated with query keyword for each data set is
listed in the last columnofTable5.We test k = 1, 2, . . . , 128.

7.1.2 Evaluation metrics.

We evaluate the algorithm performance in terms of efficiency
and effectiveness. The efficiency performance is measured
by query time and query I/Os. We also evaluate index con-
struction time and index size. The effectiveness performance
evaluates the answer quality and is measured by three met-
rics: hit rate, Spearman’s rho [23] and error. Spearman’s
rho measures the rank correlation between an approximate
rank result and the ground truth. Hit rate and error, defined
below, measure the quality of an approximate result. For
a query Q = (q, λ, k), denote the exact result as R =
{u1:d1, . . . , uk :dk} in nondecreasing order of their distances,
and d = dk as the upper bound distance of the result R.
Denote an approximate result set as R′ = {u′

1:d ′
1, . . . , u

′
k :d ′

k}
in nondecreasing order of their distances. The hit rate is
defined as:

hit(R′) = ∣
∣
{
i ∈ [1, k]|dist (u′

i , q
) ≤ d

}∣
∣ /k

and the error is the average relative error of the estimated
distances w.r.t. the ground truth:

err(R′) =
∑

1≤i≤k

|d ′
i/di − 1|/k

Note that the k-NK answers on a tree are exact. So we do not
report or compare the effectiveness performance on synthetic
trees.

7.2 Experimental results

7.2.1 Query time and I/Os on trees

We compare pivot-gs, layer and knk-io-mp on synthetic
trees by varying the parameter k and report the query pro-
cessing time (in microseconds) in Fig. 6a–d and the average
query I/O cost in Table6. Fig. 6a–d shows that knk-io-mp
uses the least query time, in the range of a few hundred to
one thousand microseconds to process a k-NK query. This
can be explained by the constant query I/O complexity of
knk-io-mp. The query time of pivot-gs is one order of mag-
nitude longer than that of knk-io-mp, and the query time of
layer is 1.5–2.6 times longer than that of knk-io-mp. The
average query I/O costs by these three methods in Table6
follow the same trend, and our method knk-io-mp uses the
least I/Os for query processing. The average query I/O costs
of pivot-gs are 4.5–7.8 times that of knk-io-mp. This result
also explains the difference of the query time by the three

Table 6 Average query I/Os on synthetic trees and Twitter graphs

Data set pivot-gs layer knk-io-mp

T1 14.086 2.782 1.818

T2 15.102 3.614 2.031

T3 18.176 5.873 2.993

T4 – 7.106 2.774

SubTwitter 127.856 – 28.187

Twitter – – 36.413

methods. Note that pivot-gs cannot finish index construc-
tion on the largest tree T4 due to the memory limit of 32GB.

7.2.2 Query time and I/Os on graphs

We compare pivot-gs,HLQ, scan and knk-io-mp on graphs
by varying the parameter k. Figure6e reports the query
processing time (in microseconds) of the four methods on
SubTwitter. knk-io-mp uses the least query time, around
1,000microseconds to process a k-NK query. The query time
of pivot-gs andHLQ is 5–10 times that of knk-io-mp, while
the query time of scan is the longest, and it shows an increas-
ing trend with k. On the large Twitter graph, pivot-gs cannot
finish index construction due to the memory limit, and HLQ
cannot finish it in a given 100 h time limit. So we only report
the query time of knk-io-mp and scan. While the query
time of knk-io-mp remains stable, that of scan increases
with k. scan is two to three orders of magnitude slower
than knk-io-mp. Table6 shows the average query I/Os by
pivot-gs and knk-io-mp on SubTwitter, and the query I/Os
by knk-io-mp on Twitter. The HLQ program provided by
their authors does not report the query I/O costs.

7.2.3 Index time and index size on trees

In this experiment,we comparepivot-gs, layer andknk-io-mp
on synthetic trees and report the index size and index con-
struction time in Table7. The index time of layer and
knk-io-mp is close, which means different tree blocking
techniques do not affect the index construction time much.
The index construction time of pivot-gs is slightly longer
than that of layer and knk-io-mp. The index size of layer
is the smallest as it causes no duplicate of the tree nodes in
blocking. The index size of knk-io-mp is slightly larger than
that of layer, and the index size of pivot-gs is three to four
times larger than that of knk-io-mp.

7.2.4 Index time and index size on graphs

In this experiment,we comparepivot-gs,HLQ andknk-io-mp
on graphs and report the index size and index construction

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

102

103

104

1 2 4 8 16 32 64 128Q
ue

ry
 T

im
e(

in
 M

ic
ro

se
co

nd
s)

Value of k

pivot-gs
knk-io-mp

layer

102

103

104

105

1 2 4 8 16 32 64 128Q
ue

ry
 T

im
e(

in
 M

ic
ro

se
co

nd
s)

Value of k

pivot-gs
knk-io-mp

layer

102

103

104

105

1 2 4 8 16 32 64 128Q
ue

ry
 T

im
e(

in
 M

ic
ro

se
co

nd
s)

Value of k

pivot-gs
knk-io-mp

layer

102

103

104

105

1 2 4 8 16 32 64 128Q
ue

ry
 T

im
e(

in
 M

ic
ro

se
co

nd
s)

Value of k

knk-io-mp
layer

103

104

105

1 2 4 8 16 32 64 128Q
ue

ry
 T

im
e(

in
 M

ic
ro

se
co

nd
s)

Value of k

pivot-gs
knk-io-mp

scan
HLQ

104

105

106

107

108

1 2 4 8 16 32 64 128Q
ue

ry
 T

im
e(

in
 M

ic
ro

se
co

nd
s)

Value of k

scan
knk-io-mp

(a) (b) (c)

(d) (e) (f)

Fig. 6 Query time in microseconds by varying k, a T1, b T2, c T3, d T4, e SubTwitter, f Twitter

Table 7 Index time and index
size on synthetic trees

Data set Index time Index size

pivot-gs (s) layer (s) knk-io-mp (s) pivot-gs (MB) layer knk-io-mp

T1 9.392 7.416 7.169 416.9 92.4 MB 116.7 MB

T2 31.596 20.860 23.712 1318.2 335.9 MB 374.1 MB

T3 539.783 362.259 348.76 15223.3 5098.1 MB 5671.2 MB

T4 – 1539.372 1427.332 – 15.3 GB 16.4 GB

Table 8 Index time and index
size on graphs

Data set Index time Index size

pivot-gs HLQ knk-io-mp pivot-gs HLQ knk-io-mp

SubTwitter 334.629 s 1605.871 s 121.239 s 3342.7 MB 66.1 GB 1204.4 MB

Twitter – – 57.993 h – – 2.307 TB

time in Table8. On SubTwitter graph, the index time ofHLQ
is 13.26 times longer than that of knk-io-mp, and the index
time of pivot-gs is 2.76 times longer than that of knk-io-mp.
The index size of HLQ is 54.90 times larger than that of
knk-io-mp, and the index size of pivot-gs is 2.78 times
larger than that of knk-io-mp. HLQ and pivot-gs cannot
finish index construction on Twitter. Another observation we
make is the index size we report is much larger than the orig-
inal graph size in Table5. This shows that disk-based index
is very essential even in some cases the graph itself can be
stored in memory.

7.2.5 Answer quality on graphs

Weevaluate the answer quality of pivot-gs and knk-io-mp in
terms of hit rate, Spearman’s rho and error. As HLQ returns
exact answers to a k-NK query, we do not need to evalu-
ate its answer quality. We set the parameters of pivot-gs
according to [5] and set the landmark number kl = K = 15
for knk-io-mp. Figure7 shows the results on SubTwitter by
varying k. We observe that knk-io-mp outperforms pivot-gs
in terms of all three metrics and for all k values. The answer
quality difference is due to the different graph embedding

123

Author's personal copy

Q. Zhu et al.

1 2 4 8 16 32 64 128

0.4

0.6

0.8

1

Value of k

H
it

R
at

e

pivot−gs
knk−io−mp

1 2 4 8 16 32 64 128

0.2

0.4

0.6

0.8

1

Value of k

S
pe

ar
m

an
’s

 R
ho

pivot−gs
knk−io−mp

1 2 4 8 16 32 64 128
0

0.1

0.2

0.3

Value of k

E
rr

or

pivot−gs
knk−io−mp

(a) (b) (c)

Fig. 7 Answer quality evaluation on SubTwitter by varying k, a hit rate, b Spearman’s rho, c error

1 2 4 8 16 32 64 128
0.2

0.4

0.6

0.8

Value of k

H
it

R
at

e

L=15
L=30
L=45
KNL(15,45)

1 2 4 8 16 32 64 128

0.8

0.9

1

Value of k

S
pe

ar
m

an
’s

 R
ho

L=15
L=30
L=45
KNL(15,45)

1 2 4 8 16 32 64 128
0.1

0.2

0.3

Value of k

E
rr

or

L=15
L=30
L=45
KNL(15,45)

(a) (b) (c)

Fig. 8 Answer quality evaluation on Twitter network by varying k, a hit rate, b Spearman’s rho, c error

techniques adopted: pivot-gs uses distance oracle [22] for
shortest distance approximation, while knk-io-mp uses land-
mark embedding for shortest distance approximation. We
believe the estimated shortest distance by distance oracle in
pivot-gs is less precise, which explains the worse answer
quality of pivot-gs.

For the large Twitter graph, pivot-gs cannot handle it due
to thememory limit for index construction. Sowe only tested
knk-io-mp on Twitter. In this experiment, we evaluate the
performance by varying the number of landmarks L and test-
ing our nearest landmarks heuristic (denoted as KNL(kl , L))
and report the answer quality results in Fig. 8.We can see that
when L increases, the answer quality improves as it gives
more accurate distance estimation. When we use the near-
est landmarks heuristic, we find that the answer quality by
choosing kl = 15 out of 45 landmarks is close to that by
using 30 landmarks without the heuristic. But using 15 near-
est landmarks can effectively reduce the query I/O cost by
half comparedwith using 30 landmarkswithout the heuristic.
This result proves the effectiveness of the nearest landmarks
technique.

7.2.6 Memory optimization technique

We evaluate the memory optimization technique proposed
in Sect. 4.6 on T2 with k = 128. The results are reported
in Table9 by varying the threshold Vλ. Given a k-NK query

Q = (q, λ, k), if |Vλ| < Vλ, Q will be processed by a mem-
ory index rather than disk index. In the first row of the table,
Vλ = 0 shows the performance without the memory opti-
mization technique. As Vλ grows, query I/Os, index time and
size are greatly reduced. But the query time first decreases
till Vλ = 3000 and then increases again. This is because the
optimization technique reduces query time by reducing the
I/O cost when Vλ is small. When Vλ is large, the query time
is dominated by CPU cost and increases as query time com-
plexity is O(k · log k + |Vλ|) instead of O(k · log |Vλ|) in
memory. These results demonstrate the effectiveness of the
memory optimization technique. If we want to minimize the
query time, we can set Vλ = 3000. If our goal is to reduce
the query I/O or disk index size, we can set Vλ = 10,000.

7.2.7 Performance evaluation on keyword insertions

In this experiment, we evaluate the performance of our pro-
posed approach in Sect. 6 for answering k-NK queries on
dynamic graphs with keyword insertions. When the number
of insertions |�doc(V)| ≥ δ · |doc(V)| where δ > 0 is
a batch size parameter, we start to process the insertions in
�doc(V). The keyword frequency distribution in �doc(V)

is the same as that in the original set doc(V). We denote our
approach by incremental and use a baselinemethod denoted
by scratch which recomputes the index from scratch for

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

Table 9 Evaluation of memory
optimization heuristic on tree T2

Vλ Query time (μs) Query I/Os Index time (s) Index size (MB)

0 535 4.116 72.3 865.6

1000 447 2.329 39.7 431.2

3000 415 1.957 33.1 352.0

10,000 470 1.457 31.2 264.7

30,000 568 1.085 25.8 202.6

100,000 658 0.677 14.9 127.7

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

0.05 0.10 0.15 0.20 0.25 0.30

In
de

x
Si

ze
(in

 M
eg

ab
yt

es
)

δ

incremental
scratch
original

 0

 50

 100

 150

 200

0.05 0.1 0.15 0.2 0.25 0.3

In
de

x
Ti

m
e(

in
 S

ec
on

ds
)

δ

incremental
scratch

 0

 500

 1000

 1500

 2000

0.05 0.1 0.15 0.2 0.25 0.3

Q
ue

ry
 T

im
e(

in
 M

ic
ro

se
co

nd
s)

δ

incremental
scratch

 0

 10

 20

 30

 40

 50

0.05 0.1 0.15 0.2 0.25 0.3

Q
ue

ry
 I/

O

δ

incremental
scratch

(a) (b) (c) (d)

Fig. 9 Indexing and query performance on SubTwitter network with keyword insertions by varying δ, a index size, b index time, c query time, d
query I/O

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.05 0.10 0.15 0.20 0.25 0.30

H
it

R
at

e

δ

original index
updated index

 0

 0.2

 0.4

 0.6

 0.8

 1

0 0.05 0.10 0.15 0.20 0.25 0.30

Sp
ea

rm
an

’s
 R

ho

δ

original index
updated index

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

0 0.05 0.10 0.15 0.20 0.25 0.30

Er
ro

r

δ

original index
updated index

(a) (b) (c)

Fig. 10 Answer quality evaluation on SubTwitter network with keyword insertions by varying δ, a hit rate, b Spearman’s rho, c error

comparison. We test 10,000 queries on SubTwitter network
with k fixed as 128.
Index size and construction time We vary the number of
keyword insertions by increasing δ and report the index
size (in megabytes) and construction time (in seconds) by
incremental and scratch. The results are shown in Fig. 9a,
b. We observe the size of the incremental index is very small,
e.g., 1/6 of the original index size when there are 30% key-
word insertions (δ = 0.3). The total size of the original index
and the incremental one is slightly smaller than the size of the
recomputed index from scratch. A possible reason is that, if
we organize all keyword nodes carrying a keyword in a sin-
gle compact tree (as done by scratch), some extra auxiliary
nodes are needed to connect them according to the definition
of compact tree. But if the newly inserted keyword nodes are
organized in a separate tree (as done by incremental), they
do not need to be connected to the original keyword nodes,
thus reducing the number of such auxiliary nodes. In terms

of the construction time in Fig. 9b, the incremental update is
5–10 times faster than recomputing from scratch.
Query time and I/O cost We report the query time (in
microseconds) and I/O cost by incremental and scratch
in Fig. 9c, d when we vary the parameter δ. The query time
of incremental is at most 3% higher than that of scratch
and the query I/O cost of incremental is at most 8% higher.
This is because incremental needs to check both the original
index and the incremental index to consolidate the results.
Answer quality We evaluate the answer quality when we
vary the number of keyword insertions. As incremental and
scratch return identical results, we just report the answer
qualitymeasures by incremental. For comparison, we report
the answer quality results by using the original index (which
is outdated given the keyword insertions). Figure10a–c show
the hit rate, Spearman’s rho and error, respectively. We
observe that all three answer quality measures remain sta-
ble when the incremental index is maintained and used for

123

Author's personal copy

Q. Zhu et al.

query processing. In contrast, the answer quality deteriorates
as more keywords are inserted, but the index is not updated.

7.2.8 Summary

In this section, we evaluate the performance of knk-io-mp
and other baseline methods. The main conclusions are as
follows.

1. On synthetic trees, knk-io-mp is 1.5–2.6 times faster than
layer and one order of magnitude faster than pivot-gs in
query processing time. Its index size is slightly larger
than that of layer, but is around 1/3 of the index size of
pivot-gs.

2. On SubTwitter graph, knk-io-mp again has the least
query processing time, which is about one order of mag-
nitude faster than HLQ, pivot-gs, and one to two orders
of magnitude faster than scan. The index size of HLQ is
54.90 times larger than that of knk-io-mp, and the index
construction time ofHLQ is 13.26 times longer than that
of knk-io-mp.

3. On the large Twitter graph with 41 million nodes and
1.4 billion edges, pivot-gs and HLQ fail to finish index
constructiondue to thememory limit and100h time limit,
respectively. But our method knk-io-mp can process a
k-NK query in 36.4 I/Os on average (or 100 ms) on the
Twitter graph.

4. In terms of the answer quality, knk-io-mp finds more
accurate answers thanpivot-gs, due to the different graph
embedding techniques adopted, whileHLQ returns exact
answers.

5. We demonstrate the effectiveness of our incremental
index update mechanism. The incremental index is very
compact in size and can be constructed 5–10 times faster
than recomputing from scratch. The incurred overhead
in query time or I/O cost is very minor, and the query
answer quality is the same as the answer quality by using
a recomputed index.

8 Related work

The related work to our study includes keyword search, k
nearest neighbors and I/O-efficient algorithms.

8.1 Keyword search

The problem of keyword search in a graph is to find a sub-
structure of the graph containing the query keywords. The
answer substructure can be a tree [24–26], a subgraph [27,28]
or a r -clique [29]. Yu et al. [30] gives a survey on keyword
search in databases and graphs. Keyword search has sub-
stantial differences from the k-NK query in our paper. A

k-NK query looks for k nearest answer nodes, each one of
which contains all the query keywords, but does not concern
about the joint structure of these nodes as keyword search
does. Yao et al. [31] and Cao et al. [32] study the prob-
lem of keyword routing on a road network. Recently, Qiao et
al. [5] proposed memory algorithms for k-NK queries on a
graph. But a straightforward adaptation of their algorithm to
a disk-based solution yields poor performance, as shown in
our experiments. Jiang et al. [6] proposed both memory and
disk-based approaches, calledHLQ, to find exact answers of
top-k nearest keyword search inmassive graphs. They use the
2-hop labeling index for exact distance computation, which
is different from our balanced compact trees for approxi-
mate distance computation, and is more expensive in nature
in terms of both query cost and indexing cost.We empirically
compared ourmethodwithHLQ and observed the substantial
differences in performance.

8.2 K nearest neighbors

(k-NN) search has been extensively studied in spatial net-
works [1–3]. Kolahdouzan and Shahabi [1] proposes to use
network Voronoi polygons to divide a graph into disjointed
subsets for k-NN search. Samet et al. [2] uses a shortest path
quadtree to answer k-NN queries. Sankaranarayanan and
Samet [3] proposes a path-distance oracle index to estimate
ε-approximated distance for k-NN query answers. Neverthe-
less, all above approaches are designed for spatial networks
with coordinates, which cannot be applied to graphs.

8.3 I/O-efficient algorithms

Recently, there have been studies on different fundamental
algorithmic problems on databases and graphs with I/O-
efficient solutions, such as triangle listing [14,15], strong
connected components computing [8], depth first search [7]
and top-k range query [33]. A survey of several elementary
techniques used for designing I/O-efficient algorithms can
be found in [12]. It is noted that [13] describes a blocking
index for rooted trees to efficiently report the path from a
node to the root in O(L/B) I/Os, where L is the length of
the traversed path. However, in this paper, we face a differ-
ent problem of bottom-up path traversal in a weighted rooted
tree, in which each node carries a candidate list of different
size.

9 Conclusions

In this work, we investigate top-k nearest keyword (k-NK)
search on massive networks and design an I/O-efficient solu-
tion.We borrow the key concepts including compact tree and
its balancing technique from our previous work [5] to form

123

Author's personal copy

I/O-efficient algorithms for top-k nearest keyword search in massive graphs

the basis of our solution. Then, we design novel tree blocking
techniques to lay out the compact tree on disk in the form
of paths and subtrees, which is compact and supports con-
stant query I/Os. We also propose some heuristics to further
optimize our solution. We experimentally test our proposed
approach on a large-scale real-world graph and demonstrate
its superior performance over the state-of-the-art approaches
in terms of query I/O costs, index size and index construction
time. Specifically, our method uses 36 I/Os on average (or
100 ms) to process one k-NK query on a Twitter graph with
41.6 million nodes and 1.4 billion edges. This shows that
our solution is very promising to be practically applied on
real-world networks, with the strong theoretical guarantee of
optimal query I/O complexity.

Acknowledgements The work was supported by The Chinese Univer-
sity of Hong Kong Direct Grant No. 4055048.

References

1. Kolahdouzan, M.R., Shahabi, C.: Voronoi-based k nearest neigh-
bor search for spatial network databases. In: VLDB, pp. 840–851
(2004)

2. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network
distance browsing in spatial databases. In: SIGMOD, pp. 43–54
(2008)

3. Sankaranarayanan, J., Samet, H.: Query processing using distance
oracles for spatial networks. IEEE Trans. Knowl. Data Eng. 22(8),
1158–1175 (2010)

4. Bahmani, B., Goel, A.: Partitioned multi-indexing: bringing order
to social search. In: WWW, pp. 399–408 (2012)

5. Qiao, M., Qin, L., Cheng, H., Yu, J.X., Tian, W.: Top-k nearest
keyword search on large graphs. PVLDB 6(10), 901–912 (2013)

6. Jiang, M., Fu, A., Wong, R.: Exact top-k nearest keyword search
in large networks. In: SIGMOD, pp. 393–404 (2015)

7. Sibeyn, J.F., Abello, J., Meyer, U.: Heuristics for semi-external
depth first search on directed graphs. In: SPAA, pp. 282–292 (2002)

8. Zhang, Z., Qin, L., Yu, J.X.: Contract & expand: I/O efficient sccs
computing. In: ICDE, pp. 208–219 (2014)

9. Kyrola, A., Blelloch, G., Guestrin, C.: GraphChi: large-scale graph
computation on just a PC. OSDI 12, 31–46 (2012)

10. Zhu, X., Han,W., Chen,W.: GridGraph: large-scale graph process-
ing on a single machine using 2-level hierarchical partitioning. In:
USENIX Annual Technical Conference, pp. 375–386 (2015)

11. Roy, A., Bindschaedler, L., Malicevic, J., Zwaenepoel, W.: Chaos:
Scale-out graph processing from secondary storage. In: SOSP, pp.
410–424 (2015)

12. Maheshwari, A., Zeh, N.: A survey of techniques for designing
I/O-efficient algorithms. In: Algorithms for Memory Hierarchies,
pp. 36–61. Springer, Berlin (2003)

13. Hutchinson, D.A., Maheshwari, A., Zeh, N.: An external memory
data structure for shortest path queries. In: COCOON, pp. 51–60
(1999)

14. Hu, X., Tao, Y., Chung, C.: Massive graph triangulation. In: SIG-
MOD, pp. 325–336 (2013)

15. Chu, S., Cheng, J.: Triangle listing in massive networks and its
applications. In: Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San
Diego, CA, USA, 21–24 August 2011, pp. 672–680 (2011)

16. Tao, Y., Papadopoulos, S., Sheng, C., Stefanidis, K.: Nearest key-
word search in xml documents. In: SIGMOD, pp. 589–600 (2011)

17. Bender, M.A., Farach-colton, M.: The LCA problem revisited. In:
Gonnet, G.H., Viola, A. (eds.) In LatinAmerican Theoretical Infor-
matics, pp. 88–94. Springer, Berlin (2000)

18. Michalis, P., Bonchi, F., Castillo, C., Gionis, A.: Fast shortest path
distance estimation in large networks. In: CIKM, pp. 867–876
(2009)

19. Jon, K., Slivkins, A., Wexler, T.: Triangulation and embedding
using small sets of beacons. In: IEEE Symposium on Foundations
of Computer Science, pp. 444–453 (2004)

20. Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., Reis,
D.D.C., Ribeiro-Neto, B.: Efficient search ranking in social net-
works. In: CIKM, pp. 563–572 (2007)

21. Dijkstra, E.W.: A note on two problems in connexion with graphs.
Numer. Math. 1(1), 269–271 (1959)

22. Sarma, A.D., Gollapudi, S., Najork, M., Panigrahy, R.: A sketch-
based distance oracle for web-scale graphs. In: WSDM, pp. 401–
410 (2010)

23. Spearman, C.: The proof and measurement of association between
two things. Am. J. Psychol. 15(1), 72–101 (1904)

24. Hristidis, V., Papakonstantinou, Y.: Discover: keyword search in
relational databases. In: VLDB, pp. 670–681 (2002)

25. Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabarti, S., Sudarshan,
S.: Keyword searching and browsing in databases using banks. In:
ICDE, pp. 431–440 (2002)

26. Golenberg, K., Kimelfeld, B., Sagiv, Y.: Keyword proximity search
in complex data graphs. In: SIGMOD, pp. 927–940 (2008)

27. Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L.: Ease: efficient
and adaptive keyword search on unstructured, semi-structured and
structured data. In: SIGMOD, pp. 903–914 (2008)

28. Qin, L., Yu, J.X., Chang, L., Tao, Y.: Querying communities in
relational databases. In: ICDE, pp. 724–735 (2009)

29. Kargar, M., An, A.: Keyword search in graphs: finding r-cliques.
PVLDB 4(10), 681–692 (2011)

30. Yu, J.X., Qin, L., Chang, L.: Keyword search in relational
databases: a survey. IEEE Data Eng. Bull. 33(1), 67–78 (2010)

31. Yao, B., Tang, M., Li, F.: Multi-approximate-keyword routing in
gis data. In: GIS, pp. 201–210 (2011)

32. Cao, X., Chen, L., Cong, G., Xiao, X.: Keyword-aware optimal
route search. PVLDB 5(11), 1136–1147 (2012)

33. Tao, Y.: A dynamic I/O-efficient structure for one-dimensional top-
k range reporting. In: Proceedings of the 33rd ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems,
PODS’14, Snowbird, UT, USA, 22–27 June 2014, pp. 256–265
(2014)

123

Author's personal copy

	I/O-efficient algorithms for top-k nearest keyword search in massive graphs
	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Roadmap

	2 Problem definition
	2.1 Preliminary concepts
	2.2 Computation model
	2.3 Solution overview

	3 An existing in-memory solution
	3.1 Compact tree
	3.2 Use compact tree for query processing
	3.2.1 ENP construction
	3.2.2 Query processing
	3.2.3 Computing tree distance QiaoQCYT13

	3.3 Compact tree balancing

	4 Paths + subtrees blocking index
	4.1 Commonly used tree blocking techniques
	4.1.1 Blocking nodes
	4.1.2 Blocking paths
	4.1.3 Blocking layered trees

	4.2 Paths + subtrees blocking
	4.2.1 Subtree blocking in bottom level
	4.2.2 Path blocking in top level
	4.2.3 Complexity analysis

	4.3 Auxiliary index
	4.4 Complexity comparison of different tree blocking techniques
	4.4.1 Blocking paths
	4.4.2 Blocking nodes
	4.4.3 Blocking layered trees

	4.5 Extend paths + subtrees blocking index
	4.6 Further optimization heuristic

	5 k-NK query on a graph
	5.1 Index construction
	5.2 Query processing
	5.3 Complexity summary

	6 k-NK query on dynamic graphs
	7 Experiments
	7.1 Experimental setting
	7.1.1 Data sets and queries
	7.1.2 Evaluation metrics.

	7.2 Experimental results
	7.2.1 Query time and I/Os on trees
	7.2.2 Query time and I/Os on graphs
	7.2.3 Index time and index size on trees
	7.2.4 Index time and index size on graphs
	7.2.5 Answer quality on graphs
	7.2.6 Memory optimization technique
	7.2.7 Performance evaluation on keyword insertions
	7.2.8 Summary

	8 Related work
	8.1 Keyword search
	8.2 K nearest neighbors
	8.3 I/O-efficient algorithms

	9 Conclusions
	Acknowledgements
	References

