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Abstract With the rapid development of information

technologies, various big graphs are prevalent in many

real applications (e.g., social media and knowledge bases).

An important component of these graphs is the net-

work community. Essentially, a community is a group

of vertices which are densely connected internally. Com-

munity retrieval can be used in many real application-

s, such as event organization, friend recommendation,

and so on. Consequently, how to efficiently find high-

quality communities from big graphs is an important

research topic in the era of big data. Recently a large

group of research works, called community search, have

been proposed. They aim to provide efficient solutions

for searching high-quality communities from large net-

works in real-time. Nevertheless, these works focus on

different types of graphs and formulate communities in
different manners, and thus it is desirable to have a

comprehensive review of these works.

In this survey, we conduct a thorough review of ex-

isting community search works. Moreover, we analyze
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and compare the quality of communities under their

models, and the performance of different solutions. Fur-

thermore, we point out new research directions. This

survey does not only help researchers to have better

understanding of existing community search solutions,

but also provides practitioners a better judgement on

choosing the proper solutions.

1 Introduction

With the rapid development of information technolo-

gies, various big graphs are prevalent in many real ap-

plications (e.g., social media and knowledge bases). An

important component of these graphs is the network

community. Essentially, a community is a group of ver-

tices which are densely connected internally. For ex-

ample, in Facebook, communities consist of users that

are with strong friendship [3]; on the World Wide Web,

communities contain web sites which share similar top-

ics [22]; in protein-protein interaction networks [151]

and metabolic networks [82], communities correspond

to functionality modules. Retrieving communities from

a network is a fundamental problem in network science,

and it can be applied to many real-life applications.

Here are some typical applications, to name a few:

– Event organization. A social event (e.g., a party or

a conference) often involves a group of users and

its organization can benefit from communities. For

example, to hold a cocktail part, a user can find

his community, i.e., a group of researchers, each of

which is well acquainted.

– Friend recommendation. Many social media plat-

forms (e.g., Facebook) often maintain a friendship

network. To suggest candidate friends to a specific
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user u, intuitively we can recommend u those who

are in u’s community but are not yet u’s friends.

– Protein complex identification. In biology, proteins

interact with each other and a gene is often regulat-

ed by a set of proteins. To study a gene, a biologist

may focus on a set of proteins that highly interact

with each other, which is a community of proteins.

– Advertisement in e-commence. Users of the same

community often share similar interests. To push

advertisements for a user u, we may find her com-

munity first and then select advertisements that are

checked by members of her community.

Owing to the importance of communities, how to

effectively and efficiently find communities from large

graphs is an important research topic in the era of big

data. With a careful observation on these applications,

we identify a list of factors that the community retrieval

solutions should satisfy:

– High efficiency. For many real applications (e.g.,

event organization), the communities often need to

be retrieved in real-time, based on query requests.

Thus, the community retrieval solutions should be

able to respond in real-time.

– High scalability. Nowadays, many real networks con-

tain millions or billions of vertices. As a result, the

solutions should be scalable to real big graphs.

– High personalization. In practice, for large network-

s, people usually are interested in communities of

some specific users, rather than all the users. Thus,

the solutions should allow users to specify query ver-

tices. Moreover, some personalized requirements on

structures (and attributes) could be imposed.

– High quality. The vertices in the communities re-

trieved should be cohesively linked. Moreover, the

communities should be easy for interpretation.

– Support for dynamic graphs. Since real networks of-

ten involve as the time goes on, the solutions should

be able to adapt for the dynamic changes easily.

Towards the goals above, recently a large group of

research works, called community search (CS), have

been proposed [103]. Generally, the goal of CS is to

search high-quality communities in an online manner,

based on a query request. Specifically, given a vertex q

of a graph G, it aims to find a community, or a dense

subgraph, which contains q and satisfies the properties:

(1) connectivity, i.e., vertices in the community are con-

nected; and (2) cohesiveness, i.e., vertices in the com-

munity are intensively linked to each other w.r.t. a par-

ticular goodness metric [175,175,46,15,45]. The metric

is often defined by using some classical subgraph cohe-

siveness metrics such as:

Cohesiveness:

Efficiency:

low high

high low
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Fig. 1 An example of community search.

– k-core. The k-core [170,17] is the largest subgraph of

G, in which each vertex’s degree is at least k within

the subgraph.

– k-truss. The k-truss [41,98] is the largest subgraph

of G in which every edge is contained in at least

(k − 2) triangles within the subgraph.

– k-clique. A k-clique [2] is a set of k vertices of G

such that each pair of vertices has an edge.

– k-ECC. A k-ECC (k-edge connected component) [76]

is a subgraph of G such that after removing any k–1

edges, it is still connected.

Let us illustrate CS by an example. Consider the

graph with ten vertices in Fig. 1, and CS solutions [175,

46,15], which are based on the k-core model. Let q=A.

Then, the induced subgraph of vertices {A, B, C, D}
will be returned as the community. Note that the sub-

graph forms a k-core with k=3, since each vertex’s de-

gree is 3 within the subgraph, and it is also the core

attaining the maximum value of k.

In the literature, there is a highly related group of

research works, called community detection (CD) [158,

44,154,156,110]. Generally, it has similar goals with C-

S, but there are three key differences: (1) The problem

definitions are different. CS aims to search communi-

ties regarding a set of query vertices and some query

parameters, while CD often detects all communities in

the graph. (2) The criteria of defining communities are

different. In CS, the criteria of defining communities

are based on query parameters given by the users. In

other words, communities are retrieved depending on

user-defined parameters. In contrast, CD methods often

use the same global criterion to detect communities by

partitioning the entire graph. For example, in Fig. 1, if

q=A, CS solutions [175,46] will find the community {A,

B, C, D}, and if q=E, they will find the community {A,

B, C, D, E}. In contrast, if using a CD method (e.g.,

the spectral clustering [182]) with setting the number

of communities to 3, we will obtain three communities,

each of which forms a connectivity component, where B

and E are in the same community. (3) The algorithms

are different. As shown in existing studies, CS solutions

can search communities efficiently in an online manner,

while CD solutions are often time consuming and un-

scalable to big graphs. Moreover, CS queries can often

be supported by indexes and handle dynamic graphs
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Table 1 Classification of works of community search (“P.” means Problem).

Metric Simple graphs
Attributed graphs

Keyword Location Temporal Influence (weight) Profile

k-core
[175,46,15,66]

(P. 1, 2, 3, 4, 5)
[61,58]
(P. 6)

[60,65,185,221,221]
(P. 7, 8, 9)

[129]
(P. 10)

[127,128,30,215,21,126]
(P. 12, 13)

[31]
(P. 14)

k-truss
[98,6,101]
(P. 15, 16)

[102]
(P. 17)

— —
[216]

(P. 18)
—

k-clique
[45,205,195,187]

(P. 19, 20, 21, 22)
— —

[125]
(P. 23)

— —

k-ECC
[98,6,101]

(P. 24, 25, 26)
— — — — —

Others local modularity: [40,136] query biased density: [190] pagerank: [9,114] (P. 27) neighbors: [142]

easily. Thus, compared to CD solutions, CS solutions

can better satisfy factors aforementioned.

Although there are many CS solutions, they deal

with different types of graphs and formulate communi-

ties in different manners. Meanwhile, there is a lack of

systematic survey of CS solutions. Thus, it is desirable

to organize these works and understand how well they

perform in terms of efficiency and quality. To this end,

in this paper we will provide a thorough review of these

works. We will also compare different CS solutions so

that readers can better understand the state-of-the-art,

and point out directions for future study.

As shown in Table 1, we classify CS solutions in-

to five categories such that solutions in each category

(except the last category) adopt the same structure co-

hesiveness metric. Moreover, for works in each category,

we further partition them into two groups, where the

first group focuses on simple graphs while the second

group targets attributed graphs. Note that the IDs of

CS problems are also included in the brackets of Ta-

ble 1. For simple graphs, CS solutions search commu-

nities purely based on link information, while for at-

tributed graphs, CS solutions often consider both links

and attributes. We remark that these cohesiveness met-

rics are orthogonal to graph types. This implies that if

a metric has not been studied for a particular type of

graphs, then it is a possible future research direction to

study CS by applying the metric on this type of graphs.

In summary, our main contributions are as follows:

– First, we provide a systematic classification of stud-

ies on CS. Specifically, we classify these studies ac-

cording to the community cohesiveness metrics. For

each class of works, we review the representative s-

tudies on different types of graphs.

– Second, we perform a thorough analysis and com-

parison of different community cohesiveness metrics.

Moreover, we analyze and compare CS solutions on

simple graphs and attributed graphs.

– Third, we offer insightful suggestions for future s-

tudy on CS. This may give researchers new to CS

an understanding of the recent development of CS,

as well as a good starting point to work in this field.

The rest of this paper is organized as follows. In

Section 2, we introduce and discuss community cohe-

siveness metrics. In Sections 3, 4, 5, 6, and 7, we ex-

tensively discuss CS solutions in each category. We also

present two CS systems in Section 8. We review the re-

lated work in Section 10. Finally, we present a list of

future topics in Section 11 and conclude in Section 12.

2 Preliminaries

In this section, we first formally introduce the commonly-

used community cohesiveness metrics, and then com-

pare their cohesiveness and computational efficiency.

2.1 Cohesiveness Metrics

For ease of exposition, we consider a simple undirected

graph G(V,E), with vertex set V and edge set E. Let

n and m be the corresponding sizes of V and E. The

degree of a vertex v of G is denoted by degG(v).

• k-core. We introduce its formal definition as follows.

Definition 1 (k-core [170,17]) Given an integer k

(k ≥ 0), the k-core of G, denoted by Hk, is the largest

subgraph of G, such that ∀v ∈ Hk, degHk
(v) ≥ k.

We say that Hk has an order of k. Notice that Hk

may not be a connected graph [17]. Observe that k-

cores are “nested” [17]: given two positive integers i

and j, if i < j, then Hj ⊆ Hi.

Example 1 In Fig. 2(a), the subgraph of {A,B,C,D}
is the 3-core. The 1-core has vertices {A,B,C,D,E, F ,

G,H, I}, and is composed of two connected compo-

nents: {A,B,C, D,E, F,G} and {H, I}. The number

k in each circle represents the k-core contained in that

ellipse. Clearly, H3 ⊂ H2 ⊂ H1.
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Fig. 2 Illustrating k-core.

Definition 2 (core number) Given a vertex v ∈ V ,

its core number, denoted by coreG[v], is the highest

order of a k-core that contains v.

A list of core numbers and their respective vertices

for Example 1 are shown in Fig. 2(b). Equivalently, the

k-core is the induced subgraph of vertices, whose core

numbers are at least k.

• k-truss. The k-truss is defined based on triangles.

Specifically, a triangle in G is a cycle of length 3. Let

u, v, w ∈ V be the three vertices on the cycle. Then,

we denote this triangle by 4uvw.

Definition 3 (support) Given a graph G(V,E), the

support of an edge (u, v)∈ E, denoted by sup(e,G), is

defined as |{4uvw : u, v, w ∈ V }|.
Definition 4 (k-truss [166,41,212]) Given a graph

G, the k-truss of G, denoted by Jk, is the largest sub-

graph of G, such that ∀e ∈ Jk, sup(e, Jk) ≥ (k − 2).
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Fig. 3 Illustrating k-truss.

Example 2 Let us reconsider the graph G in Fig. 2(a).

The induced subgraph of G by vertex set {A,B,C,D}
is the 4-truss. The 3-truss has vertices {A,B,C,D,E}.
The number k in each circle represents the k-truss con-

tained in that ellipse.

Definition 5 (truss number [184]) Given a graph

G, the truss number (trussness) of an edge e ∈ G, de-

noted by τ(e), is the largest k such that there is a k-

truss containing e.

A list of truss numbers and their respective edges

for Example 2 are shown in Fig. 3(b). Equivalently, the

k-truss is the induced subgraph of edges, whose truss

numbers are at least k. Similar to k-core, a k-truss may

contain multiple connected components.

• k-clique. It is defined as follows.

Definition 6 (k-clique [2,151]) A k-clique is a com-

plete graph with k vertices where there is an edge be-

tween every pair of vertices.

Example 3 In the graph in Fig. 2(a). The subgraph

of {A,B,C,D} is a 4-clique and any three vertices of

them form a 3-clique (i.e., triangle). The subgraph of

{A,B,E} is also a 3-clique. Any edge is a 2-clique.

• k-ECC. We first introduce some related concepts.

Definition 7 (edge connectivity [76,95]) Given a

graph G(V,E) and two vertices u, v ∈ V , the connec-

tivity λ(u, v) between u and v is the minimum number

of edges whose removal disconnects u and v.

Definition 8 (graph connectivity [76,95]) Given a

graph G(V,E), the connectivity of the graph G, λ(G)=

minu,v∈V λ(u, v), is the minimum connectivity between

any two distinct vertices in G, i.e., the minimum num-
ber of edges whose removal disconnects G.

Definition 9 (k-ECC [76,95]) Given a graphG(V,E),

a subgraph G′ of G is a k-edge connected componen-

t, or k-ECC, if λ(G′) ≥ k and the connectivity of any

super-graph of G′ in G is less than k.

Example 4 In the graph in Fig. 2(a). The subgraph of

{A,B,C,D} is the 3-ECC, because for any pair of ver-

tices in it, to disconnect them, we need to remove at

least 3 edges. The 2-ECC has vertices {A,B,C,D,E}.
There are two 1-ECCs, which contain vertices {H, I}
and {A, · · · , G} respectively.

2.2 Cohesiveness and Computational Efficiency

Generally, in terms of structure cohesiveness, k-clique is

the most cohesive one, since each vertex of a k-clique is

linked to all the other (k−1) vertices. For each connect-

ed component of the k-truss, it is more cohesive than

a k-ECC. This is because k-truss is more restrictive as

it is defined based on triangle, which is a local concept,

whereas k-ECC is more global [7].

Obviously, the k-truss is more cohesive than the k-

core, since in a k-truss, each pair of vertices within an

edge must have (k − 2) common neighbors, while in a

k-core, any pair of vertices within an edge may have no

common neighbors. Also, the k-ECC is more cohesive

than k-core, since it is a connected subgraph and re-

quires that each vertex has at least k neighbors, while

a k-core may contain multiple connected components.

We further analyze their inclusion-ship as follows. Let

G(V,E) be a graph and k be an integer (k≥0). We have:

1. a k-clique must be a subgraph of the k-truss;
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Fig. 4 Comparison of cohesiveness models.

2. each connected component of the k-truss must be a

subgraph of a particular k-ECC;

3. the k-truss must be a subgraph of the (k–1)-core;

4. a k-ECC must be a subgraph of the k-core;

In summary, in terms of structure cohesiveness, the

four metrics above can be roughly ranked as: k-core �
k-ECC � k-truss � k-clique.

Next, we discuss their computational efficiency 1.

Note that for each metric, there may exist multiple al-

gorithms for enumerating its subgraphs, but here we

only discuss complexities of the most efficient ones.

In [17], a linear k-core decomposition algorithm, which

computes all the k-cores in the graph G, takes O(m+n)

time and O(m+n) space. In [26], Chang et al. proposed

an algorithm, which computes all the k-ECCs for a spe-

cific k, and it takes O(h · l ·m) time and O(m+n) space,

where h and l are usually bounded by smaller constants

for real graphs [26]. In [184], an efficient algorithm for

computing the k-truss, for all k ≥ 3, takes O(m1.5) time

and O(m+ n) space. In [47], an algorithm, which enu-

merates all the k-cliques for a specific k, completes in

O(c(G) · Σk−1
l=2 N

l + k · Nk) time and O(m + n) space,

where c(G) denotes the maximum core number of ver-

tices in G and N l is the number of l-cliques. Notice that

N l could be exponentially large. As a result, consider-

ing their computational efficiency, we can rank these

metrics as: k-core � k-ECC � k-truss � k-clique.

In summary, there is a trade-off between the struc-

ture cohesiveness and computational efficiency, as shown

in Fig. 4. That is, a more cohesive metric often takes

more computational cost. In addition, we have per-

formed a comparison study of the efficiency for these

metrics on four real graphs 2. namely Email-Enron (|V |=
36.7K, |E|=183.8K), Google (|V |=876K, |E|=5.1M),

Livejournal (|V |=4.8M, |E|=69M), and Wise (|V |=58.6

M, |E|=265.1M), where K= 103 and M= 106. Clearly,

the efficiency results well confirm the analysis above.

Based on the comparison analysis above, we would

like to make some suggestions: (1) For small or moderate-

size graphs, k-clique and k-truss not only achieve high-

er cohesiveness but also reasonable efficiency. (2) For

1 Here, we only consider algorithms that assume the graph
can be kept in the memory of a single machine.
2 Email-Enron, Google, Livejournal are downloaded from

https://snap.stanford.edu/data/index.html, and Wise
is downloaded from http://www.wise2012.cs.ucy.ac.cy/

challenge.html.

Table 2 Efficiency comparison for different metrics.

Datasets k-core k-ECC k-truss k-clique

email-Enron 0.2s 0.8s 5s 201s
Google 8.9s 40.8s 65s >24 hours

Livejournal 85s 854s 1726s >24 hours
Wise 553s 5764s 32221s >24 hours

large graphs, k-core and k-ECC should be better choic-

es since they can be computed more efficiently. (3) For

graphs with higher clustering coefficient which can be

decomposed into more triangles, k-truss is preferable.

(4) For some special graphs (e.g., bipartite graphs),

there may not exist any triangles and thus the k-truss

model may not work.

3 K-Core-Based Community Search

In this section, we review CS works that use the k-

core as structure cohesiveness metric. We classify these

works into several groups according to the types of

graphs, namely undirected graphs, directed graphs, and

attributed graphs including keyword-based, location-

based, temporal, influence value-based, and profile-based

graphs, and then discuss them respectively.

3.1 Undirected Graphs

An undirected graph, denoted by G(V,E), contains a

set V of vertices and a set E of edges. Existing CS works

on simple undirected graphs can be classified as size-

unbounded and size-bounded CS, where the former one

has no constraint on the size of the community and the
latter one imposes constraint on the community size.

3.1.1 Size-Unbounded Community Search

In [175], Sozio et al. proposed and studied the problem

of community search, defined as follows:

Problem 1 Given an undirected simple graphG(V,E),

a set of query vertices Q ⊆ V , and a goodness function

f , return a subgraph H(VH , EH) of G, such that

1. VH contains Q;

2. H is connected;

3. f(H) is maximized among all feasible choices for H.

Here, f(H) is a general goodness function for mea-

suring cohesiveness of the community H. Intuitively,

the value of f(H) should be larger, if H is densely con-

nected. There are many possible choices for f , and an

outstanding one is defined based on the minimum de-

gree, i.e., f(H)=min∀v∈H degH(v). The reasons why the

https://snap.stanford.edu/data/index.html
http://www.wise2012.cs.ucy.ac.cy/challenge.html
http://www.wise2012.cs.ucy.ac.cy/challenge.html
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minimum degree is a good metric for the community are

three-fold: First, minimum degree is one of the most

fundamental characteristics of a graph. For instance,

it is adopted for describing the evolution of random

graphs and graph visualization [46]. Second, it is often

used to measure the cohesiveness of user groups in social

media. In [170], Seidman et al. compared the minimum

degree with many other metrics of cohesiveness (e.g.,

connectedness and diameter) and found that the mini-

mum degree is indeed a good metric for social network

analysis. Third, for community search tasks, Sozio et

al. [175] also showed that it is better than some oth-

er metrics, including the average degree and density.

In the following, we assume that the minimum degree

metric is adopted in f .

To solve Problem 1, there are two online algorithm-

s, which are based on global and local search [175,46]

respectively, and one index-based algorithm [15].

• A global search algorithm. Sozio et al. [175] pro-

posed a greedy algorithm, which follows the peeling

framework [27] of computing the densest subgraphs [78]

and removes vertices iteratively. Specifically, let G0=G

and Gt be the graph in t-th iteration (1 ≤ t<n). At

the t-th (1 ≤ t<n) step, it removes the vertex which

has the minimum degree in Gt−1 and obtain an updat-

ed graph Gt. The above operation iterates and stops

at the T -th step, if either (1) at least one of the query

vertices Q has minimum degree in the graph GT−1, or

(2) the query vertices Q are no longer connected. Let

G′t be the connected component containing Q in Gt.

Then, the subgraph GO=arg max{f(G′t)} satisfies all

the constraints in Problem 1.

We denote the algorithm above by Global, as it
finds the community in a global manner. By using some

special optimization techniques [175,27], Global is able

to achieve linear time and space complexities, i.e.,O(n+

m). Note that the function f(H) above can be general-

ized to any monotone function, and the corresponding

problem can also be solved by Global [175].

It is easy to observe that since Global peels all the

vertices with low degrees, the subgraph returned is the

largest connected subgraph, in which each vertex has at

least k neighbors. As a result, the returned subgraph is

a connected k-core containing Q, where k equals to the

minimum core number of vertices in Q.

• A local search algorithm. According to Problem 1,

there may exist some subgraphs of GO, which satisfy

all the constraints and achieve the same value on the

function f , but have smaller sizes. Thus, they can be

considered the communities as well.

Example 5 Let the graph be the one in Fig. 2(a),Q={E}.
Global will return the subgraph of vertices {A,B,C,D,E}

as the community, and the value of function f is 2. How-

ever, there are other three subgraphs, whose vertex sets

are {A,B,C,E}, {A,B,D,E}, and {A,B,E}, also sat-

isfy the constraints of Problem 1, and their values on f

are 2. Thus, they can be considered as communities.

In [46], Cui et al. proposed a local CS method, de-

noted by Local, which works in a local expansion man-

ner and finds a community that may have smaller size

than that of Global. Specifically, it assumes that there

is only one query vertex q (i.e., Q={q}). Local consists

of three steps: First, it expands the search space from

q. Second, it generates a candidate vertex set C in the

search space. Third, it finds the community from C.

The key step is the second step, which works in an

iterative manner. In each iteration, it selects the vertex

that is the local optimal and adds it into the candi-

date set C. To decide the local optimal vertex, some

heuristic criteria are adopted. One typical criterion is

to select the vertex that leads to the largest increment

of the function f ; another one is to select the vertex

which has the largest number of connections to vertices

of the candidate set. The iterations stop when the can-

didate set C theoretically guarantees that it contains a

community satisfying the constraints of Problem 1.

Let H and H ′ denote the communities returned by

Global and Local respectively. Then, we have f(H ′) =

f(H) and H ′ ⊆ H. Besides, since in the worst case the

candidate set C could be the same as vertex set V ,

the time complexity of Local is the same as that of

Global, but in practice for large graphs, the candidate

set is often much smaller than the entire graph, and

thus Local achieves higher efficiency.

• An index-based algorithm. In [15], Barbieri et

al. proposed an index structure, called ShellStruct,

which organizes all the connected k-cores in an offline

manner. Based on ShellStruct, Problem 1 can be an-

swered in optimal time cost, i.e., O(|HV |), where HV is

the set of vertices in the returned community and it is

the same with that of Global.

The index is built based on the key observation that

cores are nested. That is, for any integer 0<k ≤ kmax,

the k-core is contained by the (k–1)-core, where kmax is

the maximum core number. ShellStruct is a tree-like

structure with kmax levels. The root of the tree corre-

sponds to the 1-core, and the k-th level keeps track of

the information about the k-th core. In k-th level, each

tree node, pk, corresponds to a connected component

Ck of the k-core, and it keeps:

1. the set of “children” nodes, each of which corre-

sponds to a connected component that is in the

(k+1)-core and contained by Ck;

2. the set of vertices in Ck but not in (k+1)-core.
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It is easy to observe that in ShellStruct, all the

connected k-cores are well organized. The space cost is

exactly O(n) because each vertex appears only once.

To build the index, Barbieri et al. proposed an index

construction algorithm, which builds the tree level by

level, starting from the root level. As a result, its time

complexity is O(n · kmax +m). We remark that a more

efficient algorithm for building the same index is pro-

posed in [61], which takes O(m ·α(n)) time, where α(n)

is the inverse Ackermann function and it is less than 5

for all remotely practical values of n.

Based on ShellStruct, a query algorithm is pro-

posed. Specifically, it starts from the l-th level where l

is the maximum core number of vertices in Q and checks

its upper levels, until there is a connected component

containing all the query vertices. By using the lowest-

common-ancestor (LCA) data structure [72], the time

cost of the query algorithm can be reduced to O(|HV |).
In Problem 1, the cohesiveness function is required

to be maximized. However, for some applications, such

as infectious disease control discussed in Section 1, this

constraint may need to be relaxed so that vertices which

have less connections with the query vertices can also

be involved. Motivated by this, a variant of Problem 1

is also studied in the literature [46]:

Problem 2 Given an undirected simple graphG(V,E),

a query vertex q ∈ V , and a non-negative integer k, re-

turn a subgraph H(VH , EH) of G, such that

1. VH contains q;

2. H is connected;

3. for each vertex v ∈ H, degH(v) ≥ k.

In Fig. 2(a), let q=A and k=2. Then, the subgraph

of {A,B,C,D,E} satisfies all the constraints, and thus

is a community for Problem 2. Note that if we maxi-

mize the minimum degree as required by Problem 1, we

will return a smaller subgraph, i.e., {A,B,C,D}, since

the minimum degree is 3. The algorithms Global and

Local can be easily adapted for answering the query of

Problem 2. For details, please refer to [46].

3.1.2 Size-Bounded Community Search

One drawback of Problem 1 is that the returned sub-

graph may contain a large number of vertices. Notice

that although Local may find communities which are

smaller than those of Global, it does not have any guar-

antee on the sizes of the returned communities, which

implies that the returned communities may still have

very large sizes.

For many real applications, such as holding a cock-

tail part, they often require the size of the output com-

munity is less than a pre-specified upper bound. Thus,

it is desirable to search communities with bounded-

size. By imposing the size constraint, we obtain another

problem:

Problem 3 Given an undirected simple graphG(V,E),

a set of query vertices Q ⊆ V , a size constraint k, and

a goodness function f , return a subgraph H(VH , EH)

of G, such that

1. VH contains Q;

2. H is connected;

3. |VH | ≤ k (H has at most k vertices);

4. f(H) is maximized among all feasible choices for H.

Unfortunately, due to the size constraint, Problem 3

is NP-hard [175]. This implies that an exact algorithm

for solving Problem 3 will take exponential time cost,

and thus it is impractical for large graphs. To alleviate

the computational issue, some heuristic algorithms are

developed [175], and they are able to achieve reason-

able efficiency, although they do not have any provable

quality guarantee.

To further reduce the size of the returned communi-

ty, Barbieri et al. [15] proposed the minimum commu-

nity search problem, which aims to find a community

that satisfies all the constraints of Problem 1 and has

the minimum number of vertices.

Problem 4 Given an undirected simple graphG(V,E),

a set of query vertices Q ⊆ V , and a minimum degree

based function f , let H∗ be the subgraph returned by

Global. Find a subgraph H of G, such that

1. VH contains Q;

2. H is connected;

3. f(H)=f(H∗);
4. the size of H is the smallest.

Similar to Problem 3, Problem 4 is also NP-hard. It

can be proved by a reduction from the Steiner Tree

problem: given a graph G(V,E) and a set of terminal

vertices T ⊆ V , find a connected subgraph G′ of G such

that it contains all the terminal vertices and has the

minimum number of edges. Note that the most efficient

algorithm [115] of Steiner Tree problem achieves an

approximation ratio of (2-2/|Q|), and takes linear time

cost by the Mehlhorn’s implementation [143].

To answer the query in Problem 4, Barbieri et al. [15]

proposed an algorithm, and it consists of two steps:

First, it reduces the size of H∗ as much as possible using

some local greedy search. Note that after the reduction,

the subgraph H∗ is still a qualified community of Prob-

lem 1, but may have much smaller size. Second, it finds

a subgraph from H∗ by adopting the above approxima-

tion algorithm for the Steiner Tree problem.
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Fig. 5 Two directed graphs [66].

Remark. Some other factors, such as distances among

vertices [175] and local distance dynamics [24,144], have

also been considered for CS on simple graphs. Due to

the space limitation, we skip the details.

3.2 Directed Graphs

A directed graph is a graph G(V,E), which contain-

s a set of vertices V and a set of directed edges E.

The in-degree and out-degree of a vertex v in G, de-

noted by deginG (v) and degoutG (v), are the number of its

in-neighbors and out-neighbors, respectively. The min-

imum in-degree and out-degree of the graph G are de-

noted by δin(G) and δout(G) respectively. Fig. 5(a) de-

picts a directed graph with nine users.

A straightforward method of performing CS on di-

rected graph is to ignore the directions and then use

the method Global in Section 3.1.1 to find the commu-

nity. In Fig. 5(a), if we let q=Jack, then we will find a

community with members {Jack, Jeff, Bob, Tom, Tim,

Jim}. However, Tim has no in-neighbors and Jim has

no out-neighbors in the community, which implies their

interactions with other members are quite weak.

In [66], Fang et al. extended the minimum degree

measure for directed graphs, and study the problem of

Community Search on Directed graph (or CSD prob-

lem), based on the D-core, also called (k, l)-core [75].

Definition 10 ((k, l)-core [75]) Given a directed graph

G(V,E) and two non-negative integers k and l, the

(k, l)-core is the maximum subgraph C of G such that

δin(C) ≥ k and δout(C) ≥ l .

Problem 5 (CSD) Given a directed graph G(V,E),

two positive integers k and l, and a query vertex q,

return a connected subgraph Gq ⊆ G, such that it con-

tains q and ∀v ∈ Gq, δin(Gq) ≥ k and δout(Gq) ≥ l.

Fig. 5(b) shows a directed graph with its D-cores.

Let q=B, k=2, and l=2. Then, the subgraph of {A, B,

C} is the returned community for B.

Similar to Global, a simple solution to the CSD

problem is to peel vertices iteratively until each re-

maining vertex satisfies the in-degree and out-degree

constraints. As a result, its time complexity is O(m +

n), which may be inefficient for large graphs. To im-

prove efficiency, Fang et al. [66] proposed an index-

based method. Specifically, it first performs D-core de-

composition (i.e., computing all the (k, l)-cores), then

organizes these cores in an index with a 2-dimensional

table, and finally answers queries using the index.

To keep all D-cores, a simple method takes O(n3)

space since k, l≤n–1 and each D-core takes O(n) space.

To alleviate this issue, three methods are proposed. For

ease of exposition, let Vi,j denote the set of vertices in

(i, j)-core. The first one exploits the nested property

of D-cores, i.e., for any l ≥ 0, we have (k, l+1)-core ⊆
(k, l)-core, so if (k, l+1)-core has been kept, we only

need to keep vertices Vk,l\Vk,l−1 for the (k, l)-core. As

a result, for any k, it takes O(n) space to keep all (k,

l)-cores (0≤ l≤n), so the overall space cost is O(m).

The second method relies on a key observation that

for any k, l ≥ 0, we have both (k+1, l)-core ⊆ (k, l)-

core and (k, l+1)-core ⊆ (k, l)-core. After keeping (k,

l+1)-core and (k+1, l)-core, for (k, l)-core, if |Vk+1,l| ≥
|Vk,l+1|, we only keep Vk,l\Vk+1,l; otherwise, we keep

Vk,l\Vk,l+1. Thus, it takes less space than the first method.

For the third method, after keeping (k, l+1)-core and

(k+1, l)-core, it only keeps vertices Vk,l\(Vk+1,l∪Vk,l+1)

for the (k, l)-core and takes the least space cost.

In addition, although the community Gq of a CSD

query is a connected subgraph, it may not be a strong-

ly connected component (SCC) [92] (i.e., each vertex

of the SCC is reachable from each other vertex). To

tackle this issue, a variant of the CSD problem is to

find a community, which not only satisfies the mini-

mum degree constraints, but also is an SCC. The CSD

algorithms can be extended for solving this variant [66].

3.3 Keyword-Based Attributed Graphs

A keyword-based attributed graph is an undirected graph

G(V,E), with vertex set V and edge set E. Each ver-

tex v ∈ V is associated with a set of keywords, W (v).

The keyword-based attributed graphs are prevalent in

social media, bibliographical networks, and knowledge

bases. In Fig. 6(a), a keyword-based attributed graph is

depicted. For example, vertex A has a set of keywords

{w, x, y}. In [61,58,57,173], CS on keyword-based at-

tributed graphs has been studied extensively.

Problem 6 (ACQ [61]) Given a keyword-based at-

tributed graph G(V,E), a positive integer k, a vertex

q ∈ V and a set of keywords S ⊆ W (q), return a set

G of subgraphs of G, such that ∀Gq ∈ G, the following

properties hold:

1. Connectivity. Gq is connected and contains q;
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2. Structure cohesiveness. ∀v ∈ Gq, degGq (v) ≥ k;

3. Keyword cohesiveness. The size of L(Gq, S) is

maximal, where L(Gq, S) = ∩v∈Gq
(W (v)∩S) is the

set of keywords shared in S by all vertices of Gq.

For example, in Fig. 6(a), if q=A, k=2 and S={w,

x, y}, then the output of Problem 6 is the subgraph of

{A,C,D}, with a shared keyword set {x, y}, meaning

that these vertices share the keywords x and y.

The subgraph Gq is called an attributed community

(or AC) of q, and L(Gq, S) is the AC-label of Gq. In

Problem 6, the first two properties ensure the struc-

ture cohesiveness. Property 3 enables the retrieval of

communities whose vertices have common keywords in

S. It requires L(Gq, S) to be maximal, because it aim-

s to find the AC(s) only containing the most related

vertices, in terms of the number of common keyword-

s. In Fig. 6(a), if we use the same query (q=A, k=2,

S= {w, x, y}), without the “maximal” requirement, we

can obtain communities such as {A,B,E} (which share

no keywords), {A,B,D}, or {A,B,C} (which share 1

keyword). Note that there does not exist an AC with

AC-label being exactly {w, x, y}.
Two outstanding features of ACQ are as follows: (1)

Ease of interpretation. An AC contains tightly-connected

vertices with similar contexts or backgrounds. Thus, an

ACQ user can focus on the common keywords or fea-

tures of these vertices, i.e., the AC-labels facilitate un-

derstanding of the vertices that form the AC. (2) Per-

sonalization. The user of an ACQ can control the se-

mantics of the AC, by specifying a set of S of keywords.

Intuitively, S decides the meaning of the AC based on

the user’s need.

The ACQ problem is challenging. A simple method

to answer an ACQ runs three steps. First, all non-empty

subsets of S, S1, S2, · · · , S2l−1 (l=|S|), are enumerat-

ed. Then, for each subset Si(1≤ i ≤ 2l−1), it checkes

whether there is a subgraph which satisfies the first t-

wo properties. Finally, it outputs the subgraphs having

the most shared keywords. However, since there are ex-

ponential number of subsets, it is impractical for large

graphs. To alleviate this issue, the authors observed the

anti-monotonicity property, which states that given a

set S of keywords, if it appears in every vertex of an

AC, then for every subset S′ of S, there exists an AC

in which every vertex contains S′. Based on this prop-

erty, many subsets of S can be pruned, and thus faster

online query algorithms can be developed.

An index, called CL-tree, is proposed for organizing

the vertex keyword data in a hierarchical structure. The

CL-tree has the same tree structure as ShellStruct

(see Section 3.1.1), but for each node p, it maintains

an additional inverted list such that for each keyword e

that appears in the vertices of p, a list of IDs of vertices
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Fig. 6 An example for illustrating ACQ [61].

which contain e is stored. Since each graph vertex and

each keyword appear only once, the space cost of keep-

ing such an index is O(l̂ ·n), where l̂ denotes the average

size of W (v) over V . As a result, the space cost is linear

to the size of G. As shown in [61], the CL-tree structure

can be built level by level in a bottom-up manner and

it takes linear time cost, i.e., O(m · α(n)). In addition,

index maintenance algorithms for the CL-tree are de-

veloped [58]. Fig. 6(b) presents the CL-tree index for

the graph in Fig. 6(a).

Based on the CL-tree, two incremental algorithm-

s (from examining smaller candidate keyword sets to

larger ones) and one decremental algorithm (from ex-

amining larger candidate keyword sets to smaller ones)

are developed. For each candidate keyword set, they

check whether there is a connected k-core containing q,

and finally return the one with largest keyword set.

3.4 Location-Based Attributed Graphs

A location-based attributed graph, also called geo-social

network, is an undirected graph G(V,E) with vertex set

V and edge set E. For each vertex v ∈ V , it has a loca-

tion position (v.x, v.y), where v.x and v.y denote its po-

sitions along x- and y-axis in a two-dimensional space.

Geo-social networks widely exist in many location-based

services, including Twitter, Facebook, and Foursquare

[12,68,63]. In Fig. 7(a), a geo-social network with ten

vertices is depicted.

Table 3 CS works on geo-social networks.

CS query Spatial cohesiveness

SAC search [60,65] smallest minimum covering circle
RB-k-core search [185] radius-fixed covering circle

GSGQ [221] rectangle, center-fixed circles

Three kinds of CS queries have been studied on

geo-social networks, namely spatial-aware community

(SAC) search [60], radius-bounded k-core (RB-k-core)

search [185], and geo-social group queries with minimum

acquaintance constraint (GSGQ) [221]. Generally, they

all require that the communities are structurally and
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Fig. 7 Illustrating SAC search [60].

spatially cohesive. For structure cohesiveness, they al-

l adopt the k-core model, but for spatial cohesiveness,

they use different constraints, as outlined in Table 3.

In SAC search, the community is in the smallest min-

imum covering circle (MCC); in RB-k-core search, the

community is in a circle with radius less than an in-

put threshold; in GSGQ, the community is in a given

rectangle or circle centered at the query vertex.

3.4.1 Spatial-Aware Community (SAC) Search

The MCC and SAC search are defined as follows. Note

that the notion of MCC has been widely adopted to

describe a set of spatially compact objects [53,85].

Definition 11 (MCC) Given a set S of vertices with

locations, the MCC of S is the spatial circle, which

contains all the vertices in S with the smallest radius.

Problem 7 (SAC search) Given a geo-social net-

work G(V,E), a positive integer k and a vertex q ∈ V ,

return a subgraph Gq ⊆ G, and the following properties

hold:

1. Connectivity. Gq is connected and contains q;

2. Structure cohesiveness. ∀v ∈ Gq, degGq
(v) ≥ k;

3. Spatial cohesiveness. The MCC of vertices in Gq
satisfying Properties 1 and 2 has the smallest radius.

A subgraph satisfying properties 1 and 2 is a feasible

solution, and the subgraph satisfying all the three prop-

erties is the optimal solution (denoted by Ψ). The ra-

dius of the MCC containing Ψ is denoted by ropt. In Fig.

7(a), the two circles denote the MCCs of C1={Q,C,D}
and C2={Q,A,B}. Let q=Q and k=2. Then, Ψ contain-

s vertex set C1 with ropt=1.5.

The SAC search problem is challenging. A basic ex-

act approach takes O(m × n3) time, which relies on

an observation that a spatial circle can be determined

by three points on its boundary [53]. This implies, we

can enumerate all the three-vertex combinations, and

for each combination we find a connected k-core in it-

s circle, and finally get Ψ . This approach, however, is

impractical for large graphs due to its high complexity.

To improve efficiency, the authors resorted to ap-

proximation algorithms. The first one, called AppInc,

returns the feasible solution in a circle O(q, δ) which

centers at q and has the smallest radius δ, and it has

an approximation ratio of 2. Here, the approximation

ratio is defined as the ratio of the radius of MCC re-

turned over ropt. In Fig. 7(b), let q=Q and k=2. Then,

AppInc returns the subgraph of {A,B,Q}.
The circle O(q, δ) can also be approximated by per-

forming binary search on the radius δ. As a result, we

can get another approximation solution with ratio of

(2+εF ), where εF ≥ 0 is an input parameter. To achieve

an approximation ratio of (1+εA) where 0<εA<1, the

authors developed another algorithm, called AppAcc. It

first locates the area containing the center of the cir-

cle of Ψ , then approximates the center by splitting the

area into small grids, and finally finds an approximation

solution by using these grids. Overall, these approxima-

tion algorithms guarantee that the radius of the MCC

of Ψ has an arbitrary expected approximation ratio.

Based on AppAcc, an advanced exact algorithm is de-

veloped. An interesting observation is that there is a

trade-off between the quality of results and efficiency,

i.e., algorithms with lower approximation ratios tend to

have higher complexities. In addition, the SACs can be

returned in a continuous manner, as shown in [65].

3.4.2 Radius-Bounded k-core Search

Problem 8 defines the radius-bounded k-core search.

Problem 8 (RB-k-core search) Given a geo-social

network G(V,E), a positive integer k, a radius r and a

vertex q ∈ V , return all the subgraphs Gq ⊆ G, and the

following properties hold:

1. Connectivity. Gq is connected and contains q;

2. Structure cohesiveness. ∀v ∈ Gq, degGq (v) ≥ k;

3. Spatial cohesiveness. The MCC of vertices in Gq
has a radius r′ ≤ r;

4. Maximality constraint. There exists no other sub-

graph G′q satisfying properties above and Gq ⊂ G′q.

Similar to SAC search, it adopts the MCC, but im-

poses a constraint on its radius. To solve Problem 8,

Wang et al. proposed three algorithms. The first one,

denoted by TriV, is a triple-vertex-based algorithm,

which is also based on the observation that a spatial

circle can be determined by three points on its bound-

ary [53]. It proposes to generate all the candidate circles

containing q at first and then compute the maximum

k-core for the subgraphs contained in the candidate cir-

cles with radius r′ ≤ r. The time complexity of TriV is

O(mn3), since there are O(n3) candidate circles in the

worst case and each circle needs O(m) time to verify.
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To reduce the number of candidate circles, a binary-

vertex-based algorithm BinV is proposed. In BinV, only

the circles with radius r′=r are generated and for each

candidate circle, its arc passes a pair of vertices in G.

In this manner, for each pair of vertices, at most two

circles are generated. As a result, it reduces the number

of candidate circles from O(n3) to O(n2).

To further improve the efficiency, a rotating-circle-

based algorithm RotC is proposed to reuse the inter-

mediate computation results in the process of finding

RB-k-cores. Fixing each vertex v ∈ V as a pole, RotC

generates the candidate circles in a rotating way so that

the computation cost can be shared among the adjacent

circles. In addition, the authors also proposed several

pruning techniques to early terminate the processing of

invalid candidate circles.

3.4.3 Geo-Social Group Queries with Minimum

Acquaintance Constraint (GSGQs)

The GSGQ is defined formally as follows:

Problem 9 (GSGQ) Given a geo-social networkG(V ,

E), a vertex q ∈ V , a positive integer k and a spatial

constraint Λ, return a subgraph Gq ⊆ G, and the fol-

lowing properties hold:

1. Connectivity. Gq is connected and contains q;

2. Structure cohesiveness. ∀v ∈ Gq, degGq (v) ≥ k;

3. Spatial cohesiveness. Gq satisfies constraint Λ.

4. Maximality constraint. There exists no other sub-

graph G′q satisfying properties above and Gq ⊂ G′q.

In Problem 9, for spatial constraint Λ, Zhu et al.

[221] considered three kinds of constraints:

1. Λ is a spatial rectangle for containing Gq;

2. Λ is a circle centered at q with radius less than the

distance from q to its k-th nearest vertex in Gq (Gq
may contain more than k+1 vertices);

3. Λ is a circle satisfying Constraint 2 and Gq contains

exactly k+1 vertices.

By using an R-tree index [86], a GSGQ with the first

constraint can be answered in O(n+m) time; when the

second constraint is imposed, a GSGQ can be solved in

O(n(n+m)) time; when the third constraint is applied,

a GSGQ takes O(Cn−1k (m+ n)) time.

To improve efficiency, they proposed the social-aware

R-trees (or SaR-tree) index, which incorporates both

vertices’ spatial locations and social relations. It is built

based on the concept of core bounding rectangle (CBR),

which projects the minimum degree constraint on the

spatial layer. Specifically, the CBR of a vertex v is a

rectangle containing v, inside which any vertex group

with v does not satisfy the minimum degree constraint.

Unlink classical R-tree, each entry of an SaR-tree

refers to two pieces of information, i.e., a set of CBRs

and a minimum bounding rectangle (MBR). Perceptu-

ally, a CBR bounds a group of vertices from the so-

cial perspective, while an MBR bounds vertices from

the spatial perspective. As such, SaR-tree gains pow-

er for both social-based and spatial-based pruning. In

addition, they developed a variant of SaR-tree, called

SaR*-tree, which optimizes the group of spatial objects

to minimize the disk I/O cost. Based on these indexes,

they developed efficient algorithms for answering GS-

GQs with different spatial constraints.

3.5 Temporal Graphs

Li et al. [129] studied the persistent community search

problem in a temporal graph. A temporal graph is an

undirected graph G(V,E) with vertex set V and edge

set E. Each edge e ∈ E is a triplet (u, v, t) where u,

v are vertices in V , and t is the interaction time be-

tween u and v. For a temporal graph G, the projected

graph denoted by Gp over the time interval [ts, te] is

defined as Gp = (V,E, [ts, te]), where V = V (G) and

E = {(u, v)|(u, v, t) ∈ E(G), t ∈ [ts, te]}. Fig. 8 (b) il-

lustrates the projected graph of the temporal graph in

Fig. 8 (a) over the interval [1, 8].
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(a) A temporal graph (b) The projected graph

Fig. 8 A temporal graph and the projected graph [129].

Definition 12 (Maximal (θ, k)-persistent-core in-

terval) Given a temporal graphG = (V,E) and param-

eters θ > 0 and k > 0, an interval [ts, te] with te−ts ≥ θ
is called a maximal (θ, k)-persistent-core interval for G

if and only if the following two conditions hold. (1) For

any t ∈ [ts, te − θ], the projected graph of G over the

interval [t, t + θ] is a connected k-core subgraph. (2)

There is no super-interval of [ts, te] such that (1) holds.

Definition 13 (Core persistence) Let T = {[ts1 ,
te1 ], · · · , [tsr , ter ]} be the set of all maximal (θ, k)-

persistent-core intervals of G. Then, the core persis-

tence of G with parameters θ and k, denoted by F (θ,

k, G), is defined as

F (θ, k,G) =





r∑

i=1

(tei − tsi)− (r − 1)θ, if T 6= ∅

0 otherwise



12 Yixiang Fang et al.

Definition 14 ((θ, τ)-persistent k-core) Given a tem-

poral graphG, parameters θ, τ , and k, a (θ, τ)-persistent

k-core is an induced temporal subgraph C = (VC , EC)

that meets the following properties.

1. Persistent core property. F (θ, k, C) ≥ τ ;

2. Maximal property. There does not exist an in-

duced temporal subgraph C ′ that contains C and

also satisfies the persistent core property.

Problem 10 (The persistent community search

problem) Given a temporal graph G, parameters θ, τ

and k, the persistent community search problem aims

to find the largest (θ, τ)-persistent k-core in G.

Consider the temporal graph G in Fig. 8(a). Assume

that θ=3 and k=2. We can see that there is no maximal

(3, 2)-persistent-core interval for the entire graph G.

There is a maximal (3, 2)-persistent-core interval [1, 5]

for the subgraph C induced by vertices {v1, v2, v3}. This

is because [1, 5] is the maximal interval such that in any

3-length subinterval of [1, 5], the vertices {v1, v2, v3} for-

m a connected 2-core. Let τ = 4, we can see that the

subgraph C induced by vertices {v1, v2, v3} is a (3, 4)-

persistent 2-core. Because F (3, 2, C)=4, which is no less

than τ ; and C is the maximal subgraph that meets such

a persistent core property.

As shown in [129], the persistent community search

problem is NP-hard. Therefore, a prune-and-search ap-

proach is proposed in [129]. In the pruning phase, a tem-

poral graph reduction algorithm is designed by decom-

posing the whole time span of the temporal graph into

several meta-intervals, each of which has some prop-

erties to prune vertices. In the search phase, a branch

and bound algorithm with several pruning rules are pro-

posed to find the maximum (θ, τ)-persistent k-core.

3.6 Influence Value-Based Attributed Graphs

3.6.1 Single-dimensional Influential CS

Li et al. [127] proposed the influential CS problem. They

considered an undirected graph G(V,E) with vertex set

V and edge set E. Each vertex v ∈ V is associated with

a weight wu indicating the influence (or importance)

of u. Without loss of generality, they assumed that the

weight vector W = (w1, w2, · · · , wn) forms a total or-

der, i.e., for any two vertices vi and vj , if i 6= j, then

wi 6= wj .

Definition 15 (Influence value of a subgraph)

Given an undirected graphG(V,E) and an induced sub-

graph H(VH , EH) of G, the influence value of H denot-

ed by f(H) is defined as the minimum weight of the

vertices in H, i.e., f(H) = minu∈VH
{wu}.
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Fig. 9 An example of influential CS (the numbers denote
the weights) [127].

Definition 16 (k-influential community) Given an

undirected graph G = (V,E) and an integer k. A k-

influential community is an induced subgraph Hk =

(V kH , E
k
H) of G that meets all the following constraints.

1. Connectivity. Hk is connected;

2. Cohesiveness. Each vertex u in Hk has degree at

least k;

3. Maximal structure. There is no other induced

subgraph H̃ such that (1) H̃ satisfies connectivi-

ty and cohesiveness constraints, (2) H̃ contains Hk,

and (3) f(H̃) = f(Hk).

Consider the graph shown in Fig. 9. Suppose, for in-

stance, that k = 2, then by definition the subgraph in-

duced by vertex set {v12, v13, v14, v15} is a 2-influential

community with influence value 12, as it meets all the

constraints in Definition 16. Note that the subgraph in-

duced by vertex set {v12, v14, v15} is not a 2-influential

community. This is because it is contained in a 2-influential

community induced by vertex set {v12, v13, v14, v15} whose

influence value equals its influence value, thus fail to

satisfy the maximal structure constraint.

Problem 11 (Top-r k-influential CS problem

(TIC)) Given a graph G(V,E) and two parameters

k and r, the problem is to find the top-r k-influential

communities with the highest influence value.

Definition 17 (Non-contained k-influential com-

munity) Given a graph G(V,E) and an integer k. A

non-contained k-influential community Hk = (V kH , E
k
H)

is a k-influential community that meets the following

constraint.

– Non-containment.Hk cannot contain a k-influential

community H̄k such that f(H̄k) > f(Hk).

Consider the graph shown in Fig. 9. Assume that

k = 2. By Definition 17, we can see that the subgraphs

induced by {v3, v4, v5}, {v8, v9, v11} and {v13, v14, v15}
are non-contained 2-influential communities. However,

the subgraph induced by {v12, v13, v14, v15} is not a non-

contained 2-influential community, because it includes a

2-influential community (the subgraph induced by {v13,
v14, v15}) with a larger influence value.
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Problem 12 (Top-r non-contained k-influential

CS problem) Given a graph G(V,E) and parameters

k and r, find the top-r non-contained k-influential com-

munities with the highest influence value.

• Online search algorithms. An online search algo-

rithm is proposed in [127] to compute the top-r (non-

contained) k-influential communities given graph G and

parameters r and k. The algorithm first computes the

k-core C of G, and then iteratively updates C by re-

moving vertices from C until C becomes empty. In each

iteration, a vertex u with the smallest influence value

is removed from C. After u is removed, the algorithm

further removes those vertices that do not belong to

the k-core from C by invoking a DFS procedure. For

each iteration, the connected component that vertex

u belongs to forms a k-influential community. The k-

influential communities obtained by the last r iterations

are the top-r k-influential communities. If after deleting

a certain u, the vertices in the whole connected compo-

nent that u belongs to are removed in the DFS proce-

dure, then the corresponding connected component is a

non-contained k-influential community. In this way, we

can obtain the top-r non-contained k-influential com-

munities. The algorithm runs in O(m + n) time using

O(m+ n) space.

The above algorithm needs to compute all (non-

contained) k-influential communities before obtaining

the top-r (non-contained) k-influential communities which

is costly when the graph is large and r is small. There-

fore, Chen et al. [30] proposed a backward search algo-

rithm to obtain the top-r (non-contained) k-influential

communities. The general idea is as follows. Instead of

deleting the vertex with the smallest influence value

each time, the backward search algorithm initializes an

empty vertex set C and inserts into C the vertex with

the largest influence value in each iteration. After a

vertex u with the largest influence value is inserted, if

the core number of u in the subgraph induced by C

is no smaller than k, the connected component con-

taining u in the subgraph induced by C represents a

k-influential community. The algorithm can terminate

once r k-influential communities are reported. The top

r non-contained k-influential communities can be com-

puted in a similar way by checking whether each k-

influential community is a non-contained k-influential

community before reporting the community.

The online search algorithms in [127] and [30] need

to access the whole graph to obtain the top-r (non-

contained) k-influential communities. To solve this is-

sue, Bi et al. [21] proposed a local search algorithm. Let

G≥τ be the subgraph of G induced by all vertices with

weights at least τ , the authors proved that if the sub-

graph G≥τ of G contains at least r k-influential com-

munities, then the top-r k-influential communities in

G≥τ is the query result. The goal is to find the smallest

subgraph G≥τ∗ of G containing at least r k-influential

communities. The general idea is as follows. The algo-

rithm starts with a large τ , and iteratively decreases the

value of τ until reaching the target value. For each τ ,

only the vertices with weights no smaller than τ need to

be accessed. The authors proved that the time complex-

ity of the algorithm is linear to the size of the smallest

subgraph G≥τ∗ that an online search algorithm with-

out indexes needs to access to correctly compute the

top-r k-influential communities. Thus the algorithm is

instance-optimal. Their algorithm can be easily extend-

ed to solve Problem 12.

• An index-based algorithm. In [127], an index,

called ICP-Index, is presented for solving Problem 12.

The index is designed based on the observation that for

each k, the k-influential communities form an inclu-

sion relationship. Based on such an inclusion relation-

ship, all the k-influential communities can be organized

by a tree-shape structure. The index includes such tree

structures for all possible k values. In addition, instead

of keeping the whole community for each tree node, a

compression method is proposed to make the ICP-Index

compact. Specifically, for each non-leaf node in the tree

which corresponds to a k-influential community, the in-

dex only stores the vertices of the k-influential commu-

nities that are not included in their sub-k-influential

communities. The same idea is recursively applied to

all the non-leaf nodes of the tree following a top-down

manner. For each leaf node which corresponds to a non-

contained k-influential community, the index stores all

the vertices of that non-contained k-influential commu-

nity. Using the ICP-Index, the query can be answered

efficiently because each node in the tree corresponds to

a k-influential community and each leaf-node in the tree

corresponds to a non-contained k-influential communi-

ty. In [127], the authors proved that the ICP-Index can

be constructed in O(m1.5) time using O(m+ n) space.

Consider the graph shown in Fig. 9. Let us con-

sider the case of k = 2. Clearly, the entire graph is

a connected 2-core, so it is a 2-influential community.

Therefore, the root node of the tree corresponds to the

entire graph. After deleting the smallest-weight vertex

v1, we get three 2-influential communities which are

the subgraphs induced by the vertex sets {v3, v4, v5},
{v6, · · · , v11}, and {v12, · · · , v15} respectively. Thus, we

create three child nodes for the root node which cor-

respond to the three 2-influential communities respec-

tively. Since v1 and v2 are not included in these three

2-influential communities, we store them in the root

node. The same idea is recursively applied in all the
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Fig. 10 Tree organization of all the k-influential communi-
ties (the ICP-Index) [127].

three 2-influential communities. Fig. 10 shows the tree

organization for all k for the graph shown in Fig. 9.

• An I/O efficient algorithm. An I/O efficient algo-

rithm to compute the top-r (non-contained) k-influential

communities is presented in [128]. It assumes that all

vertices of the graph can be stored in the main memory.

The key idea of the algorithm is that it computes the k-

influential communities following the decreasing order

of their weights, and the communities (as well as the

edges in community) with large weights can be safely

deleted without affecting the correctness of the algo-

rithm to compute the tree vertices with small weights.

Specifically, let w(e) = min{wu, wv} be the weight of

an edge e = (u, v). The algorithm first sorts the edges

in a non-increasing order of their weights using the s-

tandard external-memory sort algorithm (we can use

the vertex ID to break ties). Then, following this order,

the algorithm loads the edges into the main memory

up to the memory limit. Subsequently, the algorithm

invokes an in-memory algorithm to compute the influ-

ential communities in the main memory. After that, the

algorithm deletes the computed influential communities

as well as the associated edges from the main memory,

and then sequentially loads new edges into the main

memory until reaches the memory limit. The algorithm

iteratively performs this procedure until all the edges

are scanned. Note that in each iteration, the algorithm

only works on a partial graph, which is loaded in the

main memory.

As an example, consider the graph shown in Fig. 9.

Suppose k = 2 and the memory can hold at most 10

edges. The partial graph loaded into memory in the first

three iterations for the algorithm is shown in Fig. 11

• Center-core CS. Another model to capture the in-

fluence of vertices is called the centre-core community

search, which is studied by Ding et al. [50]. The mod-

el uses k-core to qualify the dense structure for the

community and uses coreness to evaluate the vertex in-

fluence. Given a query vertex q and an integer k, the

center-core community is a connected component of the
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Fig. 11 Partial graphs in the memory (k = 2, memory can
hold at most 10 edges) [128].

maximal k-core containing the query vertex q and the

coreness of vertices in the community is no less than

q. In addition, the community excludes those vertices

with coreness equal to q but cannot be reached from

q via vertices with the same coreness with q. An on-

line search algorithm and an index based algorithm are

proposed in [50] to compute the center-core community.

3.6.2 Multi-dimensional Influential CS

In [126], Li et al. studied the multi-dimensional influen-

tial CS. It deals with a multi-valued graph G(V,E,X)

where V and E denote the set of vertices and edges

respectively, and X (|X| = n) is a set of d-dimensional

vectors. In a multi-valued graph, each vertex v ∈ V

is associated with a d-dimensional real-valued vector

denoted by Xv = (xv1, · · · , xvd), where Xv ∈ X and

xvi ∈ R. Suppose without loss of generality that on the

xi dimension, xvi for all v ∈ V form a strict total or-

der, i.e., xvi 6= xui for any u 6= v. It is important to note

that if this assumption does not hold, we can easily con-

struct a strict total order by using the vertex identity

to break ties for any xvi = xui . The d-dimensional vector

Xv represents the values of the vertex v w.r.t. d differ-

ent numerical attributes. The model studied in [126],

called the skyline community search, is based on the

one-dimensional influential community model proposed

in [127]. The authors defined the value ofH on the xi di-

mension (for i=1, 2, · · · , d) as fi(H) , minv∈V (H){xvi }.

Definition 18 Let H(VH , EH) and H ′(VH′ , EH′) be t-

wo subgraphs of a multi-valued graph G. If fi(H) ≤
fi(H

′) for all i = 1, · · · , d, and there exists fi(H) <

fi(H
′) for a certain i, we call that H ′ dominates H,

denoted by H ≺ H ′.

Definition 19 Given a multi-valued graph G(V,E,X)

and an integer k. A skyline community with a parame-

ter k is an induced subgraph H(VH , EH , XH) of G such

that it satisfies the following properties.

1. Cohesive property. H is a connected k-core;

2. Skyline property. There does not exist an induced

subgraph H ′ of G such that H ′ is a connected k-core

subgraph and H ≺ H ′;
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Fig. 12 An example of a multi-valued graph [126].

3. Maximal property. There does not exist an in-

duced subgraph H ′ of G such that (1) H ′ is a con-

nected k-core subgraph, (2) H ′ contains H, and (3)

fi(H
′) = fi(H) for all i = 1, · · · , d.

Problem 13 (Skyline CS problem) Given a multi-

valued graph G(V,E,X) and an integer k, the problem

is to find all the skyline communities from G with the

parameter k. More formally, let H be the set of all con-

nected k-core subgraphs in G. We aim to compute a

subset R of H which is defined as:

R , {H ∈ H|¬∃H′, H′′ ∈ H : H ≺ H′, H ⊂ H′′ ∧ f(H) = f(H
′′
)},

where H ⊂ H ′′ denotes that H is a subgraph of H ′′

and H 6= H ′′, and f(H) = f(H ′′) means that fi(H) =

fi(H
′′) for i = 1, · · · , d.

Consider the graph shown in Fig. 12. The left panel

is a graph with 6 vertices, and the right panel shows

the values of these vertices in three different dimen-

sions. Suppose for instance that k = 2. Then, by Defi-

nition 19, H1 = {v1, v2, v3} is a skyline community with

values f(H1) = (8, 14, 3), because there does not exist a

connected 2-core subgraph that can dominate it, and it
is also the maximal subgraph that satisfies the cohesive

and skyline properties. Similarly, H2 = {v2, v4, v5, v6} is

a skyline community with f(H2) = (6, 8, 4). The sub-

graph H3 = {v4, v5, v6} is not a skyline community,

because it is contained in H2 = {v2, v4, v5, v6} which

has the same f values as H3. The subgraph H4 =

{v2, v3, v4, v5, v6} is not a skyline community, as f(H4) =

(6, 8, 3) is dominated by H1 and H2.

In [126], the authors first developed an efficient al-

gorithm, called SkylineComm2D, to find all the skyline

communities in the 2D case, i.e., d = 2. The time com-

plexity of SkylineComm2D is O(s(m+ n)) where s de-

notes the number of 2D skyline communities (i.e., the

answer size), and the space complexity of SkylineCom-

m2D is O(m+n+s), which is linear w.r.t. the graph and

answer size. To handle the high-dimensional case (i.e.,

d ≥ 3), the authors proposed a space-partition algorith-

m to find the skyline communities efficiently. Two novel

features of the space-partition algorithm are that (1) its

worst-case time complexity is dependent mainly on the
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Fig. 4 A spatial-based attributed graph and algorithms illustration [55].

cost, the space cost of keeping such an index is O(l̂ ·n),
where l̂ denotes the average size of W (v) over V . As
a result, the space cost is linear to the size of G. As
shown in [56], the CL-tree structure can be built level

by level in a bottom-up manner and it takes linear time
cost, i.e., O(mα(n)). In addition, the CL-tree can be
easily maintained for dynamic graphs, where edges and

keywords are update frequently, and the detailed algo-
rithms are discussed in [53]. Figure 3(b) presents the
CL-tree index for the graph in Figure 3(a).

Based on the CL-tree, efficient query algorithms
are developed. Based on how the candidate keyword

sets are verified, the algorithms can be classified as
incremental algorithms (from examining smaller can-
didate sets to larger ones) and decremental algorithm

(from examining larger candidate sets to smaller ones).
For the incremental algorithms, the authors proposed
two specific algorithms to trade off between the mem-

ory consumption and the computational overhead, i.e.,
one is time-efficient and other one is space-efficient.
The decremental algorithm first generates all the can-
didate keyword set by using frequent pattern mining

algorithms [77,65], and then examine larger candidate
sets to smaller ones. While the decremental algorithm
seems not intuitive, it ranks as the most efficient one.

3.3 Profile-Based Attributed Graphs

A profiled-based attributed graph, also named as pro-

filed graph, is an undirected graph G(V,E) with vertex
set V and edge set E. To capture the semantic mean-
ings and relations among keywords, each vertex v ∈ V
is associated with a set of keywords T (v), which is ar-

ranged in a hierarchical manner. Profiled graphs are
informative and T (v) systematically organizes the at-
tribute related to vertex v (e.g. hierarchical and interre-

lated knowledge in knowledge bases, affiliation, exper-
tise, and locations in social and collaboration network-
s). Figure 5(a) shows a profiled graph. For instance,

vertex D has a hierarchically organized attribute that
describes his expertise in Computer Science (e.g., ab-

Object

Person

Leader

USPresident Writer USFirstLady

Party

USPoliticalParty Country

A

D

C

B

r

pp

{A, B, C}

r

p q s

r

p sr

p q

r

p q

r

{A, B, C, D}
q

P-tree :

a

r

b

search space:

r

r

a

r

b

a

r

b

Level 1

Level 2

Level 3

Jim Gray 

M. Balazinska

A.Deshpande

M. J. FranklinP� B. Gibbons

M.Hansen

M. Liebhold

S. NathA. Szalay

V. Tao

Jim Gray

R. Burns

S. Ozer

R. Musaloiu-E

A. Szalay

K. Szlavecz

A. Terzis

J. Cogan r

Software & 
Engineering

r
Information Systems

Information Retrieval
Retrieval Task & Goals

Information Extraction Document Filtering

Computer System 
Organization

Information 
Systems

Hardware

r

a b

r

a b

m n

P-tree 1 P-tree 2

A
E F

DC

B
G

H

r

CM

ML AI

r

IS

{B, C, D} {A, D, E}
DMS

(b) 2 PC’s (c) maximal common subtrees

r

r

CM

ML AI

CM

ML AI
IS

A
E F

DC

B G
H

r

r

DMS

HW IS

CM
HW IS

AIML DMS

r r

IS

HW

r

CM HWDMS

r

HW IS

A
E

F
DC

B

rr

r r r

r

CM

ML AI

DMS

IS

HW IS

HW

CM
HW IS
AIML

CM

ML AI
IS

G

H

r

CM HW

r

HW IS

DMS

DMS

(a) a profiled graph

Object

Person

Leader

USPresident Writer USFirstLady

Party

USPoliticalParty Country

A

D

C

B

r

pp

{A, B, C}

r

p q s

r

p sr

p q

r

p q

r

{A, B, C, D}
q

P-tree :

a

r

b

search space:

r

r

a

r

b

a

r

b

Level 1

Level 2

Level 3

Jim Gray 

M. Balazinska

A.Deshpande

M. J. FranklinP� B. Gibbons

M.Hansen

M. Liebhold

S. NathA. Szalay

V. Tao

Jim Gray

R. Burns

S. Ozer

R. Musaloiu-E

A. Szalay

K. Szlavecz

A. Terzis

J. Cogan r

Software & 
Engineering

r
Information Systems

Information Retrieval
Retrieval Task & Goals

Information Extraction Document Filtering

Computer System 
Organization

Information 
Systems

Hardware

r

a b

r

a b

m n

P-tree 1 P-tree 2

A
E F

DC

B
G

H

r

CM

ML AI

r

IS

{B, C, D} {A, D, E}
DMS

(b) 2 PC’s (c) maximal common subtrees

r

r

CM

ML AI

CM

ML AI
IS

A
E F

DC

B G
H

r

r

DMS

HW IS

CM
HW IS

AIML DMS

r r

IS

HW

r

CM HWDMS

r

HW IS

A
E

F
DC

B

rr

r r r

r

CM

ML AI

DMS

IS

HW IS

HW

CM
HW IS
AIML

CM

ML AI
IS

G

H

r

CM HW

r

HW IS

DMS

DMS

Fig. 5 A profiled graph and two PC’s.

breviation AI means Artificial Intelligence) by following
the ACM Computing Classification System (CCS) 2.

To study the CS problem on profiled graphs, Chen
et.al [31] defined T (v) as a profiled tree (or P-tree) and
investigated the problem of profiled community search

(or PCS). To sufficiently decipt the commonality of ver-
tices in the community, they define the “maximal com-
mon subtree” to present the overlap of P-trees. PCS

problem is define as follows.

Definition 10 (maximal common subtree) Given
a profiled graph G, the maximal common subtree of
G, denoted by M(G), holds the properties: (1) ∀v ∈
G, M(G) ⊆ T (v); (2) there exists no other common

subtree M′(G) such that M(G) ⊆M′(G).

Problem 6 (PCS) Given a profiled graph G(V,E), a

positive integer k, a query node q ∈ G, find a set G of
graphs, such that ∀Gq ∈ G, following properties hold:

1. Connectivity. Gq is connected and contains q;
2. Structure cohesiveness. ∀v ∈ Gq, degGq

(v) ≥ k,

where degGq (v) denotes the degree of v in Gq;
3. Profile cohesiveness. There exists no other G′q ⊆
G satisfying the above two constraints, such that

M(Gq) ⊆M(G′q).

2 ACM CCS: http://www.acm.org/publications/class-2012
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Fig. 13 A profiled graph and two PC’s [31].

answer size, thus it is very efficient when the answer

size is not very large; and (2) it is able to progressively

output the skyline communities during the execution of

the algorithm, and thus it is useful for applications that

only require part of skyline communities.

3.7 Profile-Based Attributed Graphs

A profiled-based attributed graph, or profiled graph,

is an undirected graph G(V,E) with vertex set V and

edge set E, in which each vertex is associated with pro-

file. The profile of a vertex v ∈ V is a set of keywords

T (v) that are arranged in a hierarchical manner, called

a P-tree. Typical such attributes are users’ affiliation,

expertise, locations, etc. Profiled graphs are prevalent

in knowledge bases, and social media.

Fig. 13(a) depicts a profiled graph. For instance,

vertex D has a hierarchically organized profile that de-

scribes his expertise in Computer Science (e.g., abbrevi-

ation AI means Artificial Intelligence) by following the

ACM Computing Classification System (CCS) 3.

Chen et al. [31] investigated the problem of profiled

community search (or PCS) on profiled graphs. To cap-

ture the profile-based cohesiveness, they introduced the

concept of “maximal common subtree”, which describes

the commonality of vertices’ profile.

Definition 20 (Maximal common subtree) Given

a profiled graph G, the maximal common subtree of

G, denoted by M(G), holds the properties: (1) ∀v ∈
G, M(G) ⊆ T (v); (2) there exists no other common

subtree M′(G) such that M(G) ⊆M′(G).

Problem 14 (PCS) Given a profiled graph G(V,E),

a positive integer k, a query node q ∈ G, find a set G of

graphs, such that ∀Gq ∈ G, following properties hold:

3 ACM CCS: http://www.acm.org/publications/class-2012
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1. Connectivity. Gq is connected and contains q;

2. Structure cohesiveness. ∀v ∈ Gq, degGq
(v) ≥ k;

3. Profile cohesiveness. There exists no other G′q ⊆
G satisfying the above two constraints, such that

M(Gq) ⊆M(G′q).
4. Maximal structure. There exists no other sub-

graph G′q satisfying the above properties, such that

Gq ⊂ G′q and M(Gq) = M(G′q);

The subgraph Gq is called a profiled community (or

PC). In Problem 14, the first two properties guaran-

tee the structure cohesiveness. The profile cohesiveness

captures the maximal shared profile among all vertices

in Gq. The maximal structure property aims to retrieve

all qualified vertices in the community. For instance, in

Fig. 13(a), if q=D, k=2, then two PC’s and their max-

imal common subtrees are respectively shown in Fig.

13(b) and (c). These two common subtree sufficiently

reflects the “theme” of the community. For example,

in the PC grouped by vertices {B, C, D}, all the re-

searchers involved share interest in ML (i.e., Machine

Learning) and Artificial Intelligence, whereas for the

other PC, the researchers are all interested in other re-

search domains.

The PCS problem is technically challenging, because

the number of subtrees of a P-tree could be exponen-

tially large, and thus enumerating all of them is im-

practical. To answer the PCS query efficiently, Chen

et al. [31] introduced the anti-monotonicity property,

based on which the query can be performed much faster.

To further improve efficiency, they developed the CP-

tree index, which systematically organizes all the graph

vertices and their P-trees into a compact tree structure.

The CP-tree index enables the development of two fast

PC discovery algorithms.

3.8 Discussions

In this section, we review CS studies that use the k-

core model. For simple graphs, we can divide them into

two groups, where the first group [175,46,15] focuses

on undirected graphs while the second group [66] only

considers directed graphs. In particular, for the first

group, the first work [175] returns the maximal k-core

containing the query vertex, while communities of the

other two studies [46,15] may not be the maximal k-

core or with size constraints.

For attributed graphs, all the corresponding CS s-

tudies take both link relationship and attributes into

consideration, because the attributes often make com-

munities more meaningful and easy for interpretation.

As a result, the solutions for different attributed graph-

s are different. Generally, both online and index-based

p1
p3 p4

t r1

r2 r3

q

s1 s2

s4x1 s3

p2

x2
4-truss

Fig. 14 Example of 4-truss with 2 disconnected components.

algorithms are developed for CS on these graphs. The

index-based algorithms run faster, but incur an offline

computational cost.

In practice, the query users can select the CS solu-

tions based on the graph models since the community

models are formulated based on the graph models. For

example, for keyword-based attributed graphs, ACQ

can be considered. Meanwhile, if the CS queries are ex-

ecuted with high frequency, the index-based algorithms

should be better choices as they are faster, although

they have to build the index in an offline manner.

4 K-Truss-Based Community Search

In this section, we review CS works that use the k-truss

as structure cohesiveness metrics, including triangle-

connected truss community [98,6], closest truss com-

munity [101], attribute-driven truss community [102],

and weighted truss community [216]. In the following,

we will introduce the community models, and compare

their algorithms and applications.

4.1 Simple Graphs

In a simple and undirected graph G(V,E), triangle-

connected k-truss community model proposed by Huang

et al. [98], finds all communities containing a query ver-

tex. We first introduce the definitions of k-truss and tri-

angle connectivity, and then present the model below.

A k-truss is the largest subgraph H of G such that

every edge is contained in at least k − 2 triangles in

H, i.e., ∀e ∈ E, its support sup(e,H) ≥ k − 2 by Def-

inition 4. However, k-truss may be disconnected with

several components in a graph, which is similar with

k-core. Consider the graph G in Fig. 14. There exist

two components in the shaded regions to form the 4-

truss of G, which are obviously disconnected. Discon-

nected subgraphs are insufficient to define a cohesive

and meaningful community.

To address the disconnectivity problem of k-truss,

triangle connectivity is imposed on top of the k-truss in

[98]. Given two triangles 41 and 42 in G, 41 and 42

are said to be adjacent if they share a common edge.

Then, for two edges e1, e2 ∈ E, e1 and e2 are triangle



A Survey of Community Search Over Big Graphs 17

5-truss edge

4-truss edge

3-truss edgep
r1 r2

x4

x3x2

x1
s4s3

s2s1

q

(a) Graph G

s1 s2

s3

s4
q

q

x1

x2

x4

x3

C1

C2

(b) TTCs

Fig. 15 An example of TTC search. Here, k = 5.

connected if they either belong to the same triangle,

or are reachable from each other through a series of

adjacent triangles. In other words, ∃41,42 such that

e1 ∈ 41, e2 ∈ 42, then either 41 = 42, or 41 is

triangle connected with 42. Based on the k-truss and

triangle connectivity, the problem of triangle-connected

truss community (TTC) search is formulated as follows.

Problem 15 (TTC search) Given an undirected sim-

ple graph G(V,E), a query vertex q ∈ V , and an integer

k ≥ 2, return all subgraphs H ⊆ G satisfies the follow-

ing three properties:

1. Structure Cohesiveness. H contains the query

vertex q such that ∀e ∈ E(H), sup(e,H) ≥ (k − 2);

2. Triangle Connectivity. ∀e1, e2 ∈ E(H), e1 and e2
are triangle connected;

3. Maximal Subgraph. H is the maximal subgraph

of G satisfying Properties 1 and 2.

TTC model imposes the triangle connectivity re-

quirement in Property 2 to ensure the discovered com-

munities are connected. This requirement also allows

the query vertex to participate in multiple overlapping

communities. For example, consider the graph G in Fig.

15(a), a query vertex q, and parameter k = 5. Two

triangle-connected 5-truss communities C1 and C2 con-

taining vertex q are shown in Fig. 15(b). As the edges in

C1 cannot reach the edges in C2 through adjacent trian-

gles, C1 and C2 cannot merge as one large community.

This is reasonable, as there are few connections between

the two vertex sets {s1, s2, s3, s4} and {x1, x2, x3, x4}.
Thanks to k-trusses, truss-based community model

inherits several good structural properties of k-trusses

[98], such as (k− 1)-edge-connected, bounded diameter

and hierarchical structure. Specifically, the diameter of

a k-truss community H with |V (H)| vertices is no larg-

er than b 2|V (H)|−2
k c [41]. Small diameter has been con-

sidered as an important feature of a good community

in [52]. Second, a k-truss community is (k − 1)-edge-

connected [41], i.e., the community keeps connected

whenever fewer than k−1 edges are deleted [74]. Third,

truss-based communities have a strong decomposability

for analyzing large-scale networks at different levels of

granularity.
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Fig. 16 TCP-index Tq for vertex q of G in Figure 15(a).

To tackle the problem of TTC search, there ex-

ists one online search algorithm [98], and two index-

based search algorithms, which are respectively based

on TCP-index [98] and EquiTruss [6]. In the following,

we briefly introduce the key ideas of these algorithms

one by one.

• Online search algorithm [98]. Huang et al. [98]

proposed an online query algorithm to process a TTC

query on a graph G. The algorithm firstly applies the

truss decomposition [184] on graph G to compute the

trussness of all edges in G. By the community defini-

tion, it starts from the query vertex q and checks an

incident edge of (q, v) ∈ E with trussness τ((q, v)) ≥ k

to search triangle-connected truss communities. It ex-

plores all edges that are triangle-connected to (q, v) and

having trussness no less than k in a BFS manner. This

process iterates until all incident edges of q have been

processed. Finally, a set of k-truss communities contain-

ing q are returned.

However, this online search algorithm may incur a

large number of wasteful edge accesses on checking dis-

qualified edges, which is inefficient.

• TCP-index based search algorithm [98]. To avoid

the computational issues mentioned above, Huang et al.

[98] designed a Triangle Connectivity Preserving index

(TCP-index). TCP-Index preserves the truss number

and triangle adjacency relationship in a compact tree-

shape index, and supports the query of k-truss commu-
nity in linear time with respect to the community size,

which is optimal. Given a graph G, it needs to construct

a TCP-index for each vertex in G, which is denoted as

Tx. Take a vertex x as an example for TCP-index con-

struction. Essentially, Tx is the maximum spanning for-

est ofGx, whereGx is the induced subgraph ofG by ver-

tex set of x’s neighbors as N(x). For each edge (y, z) ∈
E(Gx), a weight w(y, z) = min{τ((x, y)), τ((x, z)), τ((y,

z))} is assigned to it, which indicates that 4xyz can

appear only in k-truss communities where k ≤ w(y, z).

Fig. 16 presents a TCP-index Tq for vertex q in graph

G shown in Fig. 15(a). Vertices x1, x2, x3 and x4 are

connected via the weighted edges of 5, indicating these

vertices present in a triangle-connected 5-truss commu-

nity.

Based on the TCP-index, an efficient query pro-

cessing algorithm is developed for CTC search. Assume

that we want to query 5-truss communities containing

a query vertex q in G in Fig. 15(a), we first visit an

incident edge on q, say (q, x1), where τ((q, x1)) = 5.
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From TCP-index Tq in Fig. 16, we retrieve the vertex

set {x1, x2, x3, x4} belong to the same 5-truss commu-

nity. Since Tq is a spanning forest, which does not keep

all the edges between the vertices, the query processing

algorithm then performs the reverse operations on the

TCP-index for each vertex x1, x2, x3, x4 and gets the

complete 5-truss community.

Remarkably, the TCP-index supports the k-truss

community query in the optimal time, which access-

es each edge in the answer community exactly twice

[98]. Meanwhile, the TCP-index can be constructed in

O(
∑

(u,v)∈E min{degG(u), degG(v)}) time and stored

in O(m) space.

• EquiTruss-index based search algorithm [6]. To

further improve efficiency, Akbas and Zhao [6] proposed

a novel indexing technique of k-truss equivalence, to

represent the triangle connectivity and k-truss cohe-

siveness in the triangle-connected truss communities.

We introduce the definition of k-truss equivalence

as follows. Given two edges e1, e2 ∈ E, e1 and e2 are

k-truss equivalence, if and only if (1) τ(e1) = τ(e2) = k,

and (2) e1 and e2 are triangle-connected via a series of

triangles in a k-truss.

The index of EquiTruss, a summarized graph G =

(V, E), is constructed based on k-truss equivalence. Ac-

cording to k-truss equivalence, all edges of a given graph

G are partitioned into a series of mutually exclusive

equivalence classes. Each class represents a TTC. A

super-node Ei ∈ V represents a distinct equivalence

class Ci where e ∈ G, and a super-edge (Ei, Ej) ∈ E
, where Ei, Ej ∈ V, indicates that the two equivalence

classes are triangle-connected; that is, there exists two
edges e1 ∈ Ei and e2 ∈ Ej , s.t., e1 and e2 are k-truss

triangle adjacent. Note that EquiTruss is a community-

preserving graph summary, where all triangle-connected

k-truss communities are comprehensively recorded in

the super-nodes, and the triangle connectivity across d-

ifferent communities is exactly encoded in super-edges.

In this way, EquiTruss keeps records of all the informa-

tion critical to community search. Moreover, each edge

e is recorded in exactly one super-node, which repre-

sents its k-truss equivalence class, Ce. Compared with

TCP-Index, which may redundantly maintain an edge

in multiple maximum spanning forests, EquiTruss is sig-

nificantly more succinct and space-efficient [6].

For example, Fig. 17 shows an EquiTruss index for

graph G in Fig. 15(a). It has 5 super-nodes represent-

ing the k-truss equivalence classes for edges in G, as

tabulated in Fig. 17. The super-node E2 represents a

5-truss community with 10 edges: all these 10 edges are

triangle connected, and belong to the 5-truss. In addi-

tion, there exist 5 super-edges in EquiTruss, which rep-

E2

E1 (k=3)
(s3, p), (p, q)

E2 (k=5)
(s1, q), (s2, q),(s3,q),
(s4, q),(s1, s2), (s1, s3),
(s1, s4), (s2, s3),(s2, s4),

(s3, s4)

E4 (k=5)
(x1, q), (x2, q),(x3,q),
(x4, q),(x1, x2), (x1, x3),
(x1, s4), (x2, x3),(x2, x4),

(x3, x4)

E3 (k=4)
(s2, x1), (s2, x4)

E5 (k=3)
(r1, q), (r2, q),
(r1, r2), (r2, x2)

E3 E4

E1 E5

Fig. 17 EquiTruss index for graph G in Fig. 15(a).

resents the triangle connectivity between super-nodes

(triangle-connected k-truss communities).

The EquiTruss-index based community search algo-

rithm is described as follows. Finding triangle-connected

communities containing vertex q can be carried out di-

rectly on EquiTruss, without the access to graph G.

First, the algorithm finds all super-nodes containing q.

A hash structure can help quick identification of such

super-nodes. Next, starting from these super-nodes, we

can traverse G in a BFS manner. For each unvisited

neighboring super-nodes E∗ with τ(E∗) ≥ k, the edges

within E∗ will be included into the k-truss community.

The algorithm outputs all the discovered communities

containing q. Consider the graph G in Fig. 15(a), k = 5

and query vertex q. Based on the EquiTruss index Fig.

15(a), we first find two super-nodes E2 and E4 con-

taining q with trussness no less than 5. Super-nodes E2

and E4 are disconnected via any super-edges. Then, E2

and E4 can be respectively output as two communities.

Compared to TCP-index, EquiTruss-index based query

processing only needs to access each edge exactly once,

which is more efficient [6].

4.2 Closest Truss Community Search

In this section, we introduce a new truss-based com-

munity model for multiple query vertices. Although the

triangle-connected k-truss community model works well

to find all overlapping communities containing a sin-

gle query vertex q, it may fail to discover any com-

munity for multiple query vertices, due to the strict

requirement of triangle connectivity constraint. For ex-

ample, for the graph G in Fig. 18(a) and query vertices

Q = {v4, q3, p1}, the above k-truss community model

cannot find a qualified community for any k, since the

edges (v4, q3) and (q3, p1) are not triangle connected

in any k-truss. To address this limitation, Huang et al.

[101] studied the problem of closest truss community

(CTC) search for multiple query vertices as follows.

Problem 16 [CTC search] Given a graph G and a set

of query vertices Q, return a subgraph H ⊆ G as a

closest truss community (CTC), satisfying the following

two properties:
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v3

v5

v4
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4-truss

(a) Graph G (b) Closest Truss Community
for Q={q1, q2, q3}

Fig. 18 Closest truss community example.

1. Connected k-truss. H is containing Q and a con-

nected k-truss with the largest k, i.e., Q ⊆ H and

∀e ∈ E(H), sup(e,H) ≥ k − 2;

2. Smallest Diameter. H is a subgraph of smallest di-

ameter satisfying Property 1.

Property 1 requires that the closest community con-

tains the query vertices Q which are densely connect-

ed. In addition, to ensure every vertex included in the

community is close to query vertices and other vertices

in the community, Property 2 uses graph diameter to

measure the closeness of all vertices in the communi-

ty. Moreover, the CTC model can avoid the free rider

effect issue, that is, vertices far away from query ver-

tices and irrelevant to them are included in the detected

community [101].

Consider the graphG in Fig. 18(a), andQ = {q1, q2, q3};
the subgraph in the region shaded gray is a 4-truss con-

taining Q with the largest trussness, and has a diameter

of 4. Fig. 18(b) shows another 4-truss containing Q but

not p1, p2, p3, and its diameter is 3. It can be verified

that this is indeed the CTC, which is the 4-truss con-

taining the query vertices Q with the smallest diameter.

The problem of CTC search is very challenging. A

connected k-truss with the largest k containing query

vertices can be found in polynomial time. However,

finding such a k-truss with the minimum diameter is

NP-hard [101]. Moreover, it is even hard to approx-

imate the CTC-Problem within a factor better than 2.

Here, the approximation is with regard to the minimum

diameter.

To find the closest truss community, a simple but

effective greedy algorithm is proposed in [101]. The

method uses a greedy strategy for finding a CTC that

delivers a 2-approximation to the optimal solution, thus

essentially matching the lower bound. Here is an overview

of this algorithm. First, given a graph G and query ver-

tices Q, we find a maximal connected k-truss, denot-

ed G0, containing Q and having the largest trussness.

As G0 may have a large diameter, we iteratively re-

move vertices far away from the query vertices, while

maintaining the trussness of the remainder subgraph

at k. Actually, this algorithm can find a connected k-

truss with the largest k containing query vertices, which

achieves the smallest query distance in optimal. Accord-

4-truss

DM,DB,ML

DM,DB

DM

DB
IR

q1

v1 v2

v4

v3

q2

v5

v6

v7
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v9
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DMML

ML
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H

(a) An attributed graph G

DM,DB

DM,DB
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q1

v1 v2

v4

v3
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v6 DB
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DM
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(b) H

Fig. 19 An example of attributed truss community search
with query vertices Vq = {q1,q2} and query attributesWq = {
‘DB’, ‘DM’}. Here, k = 4.

ing to the inequality of query distance and graph diam-

eter, this answer is a 2-approximation to CTC [101].

In order to improve the efficiency of CTC search,

Huang et. al proposed two new techniques of bulk dele-

tion and local exploration. One of them is based on

bulk deletion of vertices far away from query vertices.

This speeds up the pruning process, by deleting at least

k vertices in batch, to achieve quick termination while

sacrificing some approximation ratio. Second, they al-

so propose a heuristic strategy of local exploration to

quickly find the closest truss community in the local

neighborhood of query vertices. The key idea is as fol-

lows. It first forms a Steiner tree to connect all query

vertices, and then expand the Steiner tree to a k-truss

with the largest k by involving the local neighborhood

of the query vertices. Finally, to reduce the diameter,

it iteratively removes the furthest vertices from this k-

truss using the bulk deletion.

4.3 Keyword-Based Attributed Graphs

In this section, we introduce a k-truss-based communi-

ty search model on a keyword-based attributed graph

where vertices are associated with a set of keywords.

Huang and Lakshmanan [102] proposed an attribute-

driven truss community model, denoted by ATC, which

finds the densely inter-connected communities contain-

ing query vertices with similar query attributes. ATC

is equipped with two key components of (k, d)-truss and

an attribute score function.

To capture dense cohesiveness and low communi-

cation cost, ATC builds upon a notion of dense and

tight substructure called (k, d)-truss. A (k, d)-truss re-

quires that every edge is contained at least (k − 2) tri-

angles, and the communication cost between the ver-

tices of H and the query vertices is no greater than d.

By definition, the cohesiveness of a (k, d)-truss increas-

es with k, and its proximity to query vertices increases

with decreasing d. For instance, H in Fig. 19(b) for

Vq = {q1, q2} is a (k, d)-truss with k = 4 and d = 2.

To measure the goodness of an attributed communi-

ty w.r.t. attribute coverage and correlation, an attribute
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score function is developed for ATC. Let f(H,Wq) be

the attribute score of community H w.r.t. query at-

tributesWq. Then, f(H,Wq) =
∑
w∈Wq

score(H,w)2

|V (H)| , where

score(H,w) = |Vw∩V (H)| is the number of vertices cov-

ering query attribute w. The function f(H,Wq) satisfies

three important properties as follows. Property 1: The

more query attributes that are covered by some ver-

tices of H, the higher score of f(H,Wq). The rationale

is obvious; Property 2: The more vertices that contain

an attribute w ∈ Wq, the higher the contribution of w

should be toward the overall score f(H,Wq). The intu-

ition is that attributes that are covered by more vertices

of H signify homogeneity within the community w.r.t.

shared query attributes; Property 3: The more vertices

of H that are irrelevant to the query, the lower the score

f(H,Wq). The more query attributes a community has

that are shared by more of its vertices, the higher its

attribute score. For example, consider the query Q =

({q1}, {‘DB’, ‘DM’}) on the running example graph of

Fig. 19(a). Intuitively, we can see that H has 5 vertices

covering ‘DB’ and ‘DM’ each and also has the highest

attribute score (i.e., f(H,Wq) = 52

8 + 52

8 = 6.25), which

is the attributed truss community. On the other hand,

the induced subgraph of G by vertices {q1, q2, v1, v2, v3}
and {q1, q2, v4, v5, v6} are mainly focused in one area

(‘DB’ or ‘DM’), achieving the score of 5.8.

Based on the (k, d)-truss and f(H,Wq), Huang et al.

[102] studied the ATC problem.

Problem 17 (ATC search) Given a graphG, a query

Q = (Vq,Wq), and two numbers k and d, return an at-

tributed truss community (ATC) H, satisfying the fol-

lowing properties:

1. H is a (k, d)-truss containing Vq.

2. H has the maximum attribute score f(H,Wq) a-

mong all subgraphs satisfying property 1.

Theoretical proofs show that ATC search is NP-

hard [102], which shows the challenging for computa-

tion. To help efficiently processing of ATC queries, [102]

presents a greedy algorithmic framework for finding an

ATC in a top-down search manner. The general ideas

of this algorithm has three steps. First, it finds the

maximal (k, d)-truss of original graph G as a candi-

date. Second, it iteratively removes vertices with the

smallest “attribute marginal gains” from the candidate

graph, and maintains the remaining graph as a (k, d)-

truss, until no longer possible. The removed vertices

have the smallest contribution to attribute score func-

tion f(H,Wq). Finally, it returns a (k, d)-truss with the

maximum attribute score among all generated candi-

date graphs as the answer. If there exists more than

one (k, d)-truss with the maximum attribute scores, the

algorithms just outputs one answer.
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Fig. 20 An example of weighted truss community search.

To further improve the search efficiency while en-

suring high quality, a novel index called attributed-

truss index (ATindex) is developed. The ATindex con-

sists of two components: structural trussness and at-

tribute trussness, which maintain known graph struc-

ture and attribute information. ATindex can quickly i-

dentify a good candidate of (k, d)-truss to the answer. In

addition, another technique of local exploration is ap-

plied for efficiently detecting a small neighborhood sub-

graph around query vertices, which tends to be densely

and closely connected with the query attributes.

4.4 Weight-Based Attributed Graphs

In this section, we consider an undirected weighted graph

G = (V,E,W ), where the weight of e is denoted by

w(e) ∈ W , representing the importance between ver-

tices u and v. Weighted graphs naturally exist in the

real-world applications. For instance, in the collabora-

tion network, the edge weights may represent the num-

ber of co-authored articles between two authors. Fig.

20 depicts an undirected weighted graph G, e.g., edge

(q, s1) has a weight of 0.8. Taking the edge weights in-

to consideration, community search on weighted graphs

can find communities capturing more semantics. Zheng

et al. [216] proposed a model of weighted truss commu-

nity (WTC):

Definition 21 (Weighted Truss Community) Giv-

en an undirected weighted graph G=(V , E, W ), and a

positive integer k, a weighted k-truss community is an

induced subgraphH ⊆ G, the following properties hold:

1. Connectivity. ∀e1, e2 ∈ E(H), e1 and e2 are tri-

angle connected in H;

2. Cohesiveness. ∀e ∈ E(H), supH(e) ≥ k − 2;

3. Maximal Structure. H is a maximal induced sub-

graph that satisfies Properties 1 and 2.

In the weighted k-truss community model, Proper-

ty 1 adopts the same constraint of triangle connectiv-

ity as other k-truss community models [98]; Property

2 requires the community to satisfy the structure of k-

truss; Property 3 can guarantee the property of maxi-

mal structure in the weighted k-truss community. Given
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a weighted truss community H, the community weight

of H is defined as w(H) = mine∈E(H) w(e). To discover

the communities with large weights, Zheng et al. [216]

investigated the problem of weighted truss community

(WTC) search.

Problem 18 (WTC search) Given an undirected weight-

ed graph G(V,E,W ), and parameters k and r, find the

top-r weighted k-truss communities H with the largest

weights w(H).

Consider a weighted graph G in Fig. 20, k = 5, and

r = 1. The community C1 shown in Fig. 20 has the

weight w(C1) = 0.8, which is larger than the weight of

community C2 as w(C2) = 0.2. Thus, C1 is the answer

of WTC search with the largest weight.

Straightforward to enumerate all weighted k-truss

communities to find the r communities with the largest

community weights is impractical in large graphs. To

speed up the search efficiency, an index structure called

KEP-Index is designed. KEP-Index is built upon the

observation that all the communities can be organized

into a tree-shaped structure. This is because all the

weighted k-truss communities from a partial order re-

lationship for each value of k. By indexing all the pre-

computed weighted k-truss communities in a tree-shaped

structure, WTC search can be done in the linear time

w.r.t. the answer size, which is optimal.

4.5 Discussions

Generally, the k-truss-based CS solutions on simple graph-

s can be divided into two groups, where the first group

[98,6] computes the k-truss community, while the sec-

ond group [101] aims to find closest communities. In

the first group, Akbas et al. [6] improved the efficien-

cy of [98] by developing a novel index. For attributed

graphs, there are two CS solutions, which consider key-

words [102] and influence values [216] respectively. For

all these studies above, both online and index-based al-

gorithm are developed.

For practitioners, to perform CS, we would like to of-

fer some suggestions: (1) We should figure out the type

of graph (e.g., simple graphs and attributed graphs) in

the application. (2) For simple graphs, there are two

community models, i.e., triangle-connected model and

closest model. Generally, the triangle-connected model

[98,6] is suitable for one single query vertex to discov-

er all overlapping communities containing it, while the

closest model [101] is suitable to discover one closest

community containing multiple query vertices, which is

not strict to one query vertex. Moreover, triangle con-

nectivity is weaker than the optimization metric of min-

imum diameter. According to our experience in the real-

world applications, the discovered closest community

has smaller graph size than triangle-connected truss

community. (3) For triangle-connected model [98,6], the

index-based algorithm in [6] is faster than that in [98].

5 K-Clique-Based Community Search

In this section, we survey CS solutions that use k-clique

or its variants to capture the structure cohesiveness. We

first briefly introduce the k-clique model and its vari-

ants in Section 5.1. Then, we present CS solutions using

k-clique component and k-plex models in Sections 5.3

and 5.3. After that, we discuss the most influential CS

using k-clique in Section 5.4. Finally, we discuss these

studies in Section 5.5.

5.1 K-Clique and Its Variants

Recall that by Definition 6, a k-clique is a complete

graph with k vertices where there is an edge between

every pair of vertices. The k-clique model has been

widely used for the overlapping community detection

(e.g., [151,4]). As the condition of k-clique is strict,

some relaxed variants such as γ-quasi-k-clique [23,45]

and k-plex [171], are proposed to identify cohesive sub-

graphs. Below are detailed definitions.

Definition 22 (γ-quasi-k-clique [23,45]) A γ-quasi-

k-clique is a graph with k vertices and at least bγ k(k−1)2 c
edges, where 0 ≤ γ ≤ 1.

When γ = 1, the corresponding γ-quasi-k-clique is a

k-clique. We can tune the desired cohesiveness of the k

vertices by varying γ value.

Definition 23 (k-plex [171]) A graph G(V,E) is a

k-plex, if for each vertex v ∈ V , v has at least |V | − k
neighbors in G, where 1 ≤ k ≤ |V |.

When k=1, the k-plex is exactly a k-clique. Clearly,

by setting a smaller value of k, we can obtain a more

cohesive k-plex. The problem of finding a k-plex from

a given graph for an integer k is NP-hard [14].

Another way to relax the constraint of k-clique is to

consider the connection of two vertices.

Definition 24 (kr-clique [125]) Given a graphG and

two integers k and r, a kr-clique S is an induced sub-

graph of G such that: (1) the number of vertices in S is

at least k; and (2) any two vertices in S can reach each

other within r hops.

Clearly the problem of finding kr-clique is NP-hard

because kr-clique is a k-clique when r=1.
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5.2 K-Clique-Based Community Search

In Section 5.2.1, we introduce the seminar work on

overlapping community detection [151], in which the

k-clique component is proposed. Section 5.2.2 presents

the community search algorithm based on the relax-

ation of k-clique component, while Section 5.2.3 studies

the densest k-clique community search.

5.2.1 K-Clique-Based Community

In [151], Palla et al. showed that that many real net-

works are characterized by well-defined overlapping com-

munities. For instance, a person may belong to three d-

ifferent communities related to school, hobby and fam-

ily. For a given graph G, a k-clique graph Gk can be

derived where each node is a k-clique in G and there is

an edge if two nodes (k-cliques) are adjacent, i.e., they

share k − 1 vertices in G. Then the k-clique communi-

ties are the union of all adjacent k-cliques, which are

defined as follows.

Definition 25 (k-clique component) Let C denote

a connected component in the k-clique graph, then a

k-clique component is the union of all k-cliques repre-

sented by vertices in C.

One may explore the communities of the graph based

on the k-cliques and their adjacency, and a graph vertex

may belong to several communities. Efficient k-clique

component detection algorithm is presented in [4]. Par-

ticularly, considering that each k-clique must be con-

tained by at least one maximal clique, they first identify

all maximal cliques of the network and then enumerate

the communities by carrying out a standard component

analysis of the clique overlap matrix.

5.2.2 K-Clique-Based Community Search

In [45], Cui et al. showed that there are two short-

comings in the k-clique community model: (1) there

are overwhelming number of k-cliques communities in

real-life graphs; and (2) the k-clique constraint and the

definition of adjacent (i.e., sharing k-1 common ver-

tices) are not flexible in practice. To address these t-

wo shortcomings, they proposed an online community

search (OCS) problem. Instead of enumerating all com-

munities, they focused on the search of the communi-

ties containing a given query vertex q. They relaxed

the k-clique adjacent from k − 1 common vertices to

α vertices, namely α-adjacency. They also relaxed k-

clique model to γ-quasi-k-clique model (Definition 22).

By doing this, the k-clique components in the k-clique

communities are relaxed to the γ-quasi-k-clique com-

ponents. Below is the formal problem definition.

Problem 19 ((α, γ)-OCS) Given an undirected sim-

ple graph G(V,E), a query vertex q ∈ V , and an inte-

ger k, an integer α ≤ k − 1, and a real value γ with

0 ≤ γ ≤ 1, find all γ-quasi-k-clique components con-

taining query vertex q.

Clearly, a k-clique component search is a special case

of (α, γ)-OCS with α = k − 1 and γ = 1. By reducing

to k-clique decision problem, it is shown in [45] that the

(α, γ)-OCS problem is #P -Complete. It is shown that

the density of each community in (α, γ)-OCS is at least

2 max{0,min{f(1), f(α)}} where f(x) =
γ(k

2)(
k−x
2 )

x . Both

exact and approximate solutions are proposed in [45]. A

naive algorithm for exact solution is to enumerate all γ-

quasi-k-cliques containing the query vertex q, and then

compute the γ-quasi-k-clique components based on the

α-adjacency. To avoid enumerating cliques belonging to

none of the valid communities, a new computing frame-

work is proposed to check the adjacency when a clique

is discovered. By carefully maintaining the visit status

of each clique, authors further optimize the searching

cost. Authors also proposed an approximate solution.

To reduce the search space, the approximate algorith-

m only enumerates an unvisited clique which contains

at least one new vertex not contained by any existing

community. A heuristic is proposed to choose a ver-

tex sequence such that the resulting clique sequence is

short, leading to a good approximation solution.

5.2.3 Densest Clique Percolation Community Search

Following the k-clique community model in [151], Yuan

et al. studied the problem of densest clique percolation

community search [205], where a k-clique percolation

community (KCPC) is a k-clique component in [151]. In

particular, they aimed to find the k-clique percolation

community with the maximum k value that contains a

given set of query vertices.

Problem 20 Given an undirected simple graphG(V,E)

and a set of query vertex Q ⊆ V , the problem of the

densest clique percolation community (DCPC) search

is to find the k-clique component with the maximum k

value that contains all the vertices in Q.

Fig. 21 in [205] illustrates a part of the collabora-

tion network in DBLP, in which each vertex represents

an author and each edge indicates the co-author rela-

tionship between two authors. G1 is a 4-clique perco-

lation community as it is a maximal union of five ad-

jacent 4-cliques: {v14, v15, v16, v17}, {v14, v15, v16, v18},
{v14, v15, v17, v18}, {v14, v16, v17, v18}, {v15, v16, v17, v18},
and any two 4-cliques share 3 nodes. Similarly, G2 is

also a 4-clique percolation community. G1 overlaps G2
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with nodes v14, v15. Given a query q = {v9, v18}, the

densest clique percolation community of q is the 3-

clique percolation community G3 since G3 is the k-

clique percolation community with maximum k value

that contains v9 and v18.
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Fig. 21 Illustrating DCPC search [205].

A baseline solution is to start from the maximal pos-

sible k value and check if there is a KCPC by applying

the k-clique component detection algorithm in [151].

If there is no KCPC detected, the k value will be de-

creased by one until a KCPC is detected. To efficiently

support online DCPC search, an index-based approach

is developed in [205]. Particularly, based on the obser-

vation that a k-clique component can be treated as a

union of maximal cliques, they take maximal cliques as

building blocks of k-clique components and propose a

tree-structure named clique adjacency tree which can

efficiently identify the k-clique components for a giv-

en k value. The authors further developed a new tree-

structure named ordered adjacency tree such that only

the subtrees related to the query vertices will be ex-

plored. Together with maximal cliques and their invert-

ed indexes, a compact index structure named DCPC-

Index is proposed to support efficient DCPC queries.

5.3 K-Plex-Based Community Search

5.3.1 Social Group Query (SGQ)

Problem 21 presents SGQ, which was designed for sug-

gesting attendees in activity planning [195].

Problem 21 (SGQ) Given a simple undirected graph

G(V,E), an activity initiator q ∈ V , three integers p, s,

and k, return a set F of vertices from G such that the

following properties hold:

1. |F |=p;
2. The length of the minimum distance path between

v and q, dv,q, is at most s;

3. Each vertex v ∈ F is allowed to share no edges with

at most k other vertices in F ;

4. The total social distance Σv∈F dv,q is minimized.

In Problem 21, Property 1 controls the expected

number of attendees in the activity; Property 2 spec-

ifies a radius constraints which requires each attendee

is close to q in the graph G; Property 3 requires that

each attendee is acquainted with other attendees by fol-

lowing the k-plex model; Property 4 ensures that the

returned group is the most compact one among all the

groups satisfying all the above properties.

The SGQ problem is computationally challenging

because it is NP-hard, which can be proved by a re-

duction from the k-plex problem [14]. To answer S-

GQ, Yang et al. [195] proposed an efficient solution

SGSelect. The idea is that we can first extract a sub-

graph H ⊆ G by using the radius constraint. Then,

starting from q, we iteratively explore vertices in H to

derive the optimal solution. In each iteration, we can

keep track of a set of vertices that satisfy the constraint

of k, until the set has p vertices. To further speedup this

process, some effective pruning criteria have been devel-

oped. For example, to choose vertices, we can give high

priorities for vertices that may significantly increase the

total social distance. Also, during the search process, we

can prune vertices which would not lead to eventual an-

swer by considering the acquaintance constraint p and

social radius constraint s.

In addition, Yang et al. [195] studied another query,

called social-temporal group query (STGQ), which gen-

eralizes SGQ by considering the available time of each

candidate attendee. In specific, it finds a group of ver-

tices satisfying: (1) all constraints in an SGQ; and (2)

all the attendees are available in a time period [t, t+δt],

where t is time slot and δt is query parameter. The

STGQ problem is also NP-hard and some efficient so-

lutions are developed. For details, please refer to [195].

5.3.2 Maximum k-Plex Community Query (MCKPQ)

In [187], Wang et al. proposed and studied the maxi-

mum k-plex community query (MCKPQ):

Problem 22 (MCKPQ) Given a simple undirected

graph G(V,E), a set of query vertices Q ∈ V , an integer

k, return a subgraph GQ(VQ, EQ) ⊆ G(V,E) such that

the following properties hold:

1. Connectivity. GQ is connected and contains Q;

2. Structure cohesiveness. GQ is a k-plex;

3. Maximal structure. There exists no other G′Q ⊆
G satisfying the above properties and GQ ⊂ G′Q.

A good property of MCKPQ is that the communi-

ties returned by an MCKPQ can avoid the free rider
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effect, which has been introduced and discussed in Sec-

tion 4. Nevertheless, the MCKPQ problem is very com-

putationally challenging, because it is NP-complete, which

can be proved by a reduction from the k-plex problem

[14]. Moreover, it is hard to approximate for MCKPQ

problem in polynomial time within a factor n1−ε.
A basic solution to the MCKPQ problem is to use

the generate-and-verify method, which enumerates all

the k-plexes in the whole search space, and then returns

the one with the largest size. Obviously, this method is

too expensive and impractical for large graphs. To alle-

viate this issue, Wang et al. developed a more advanced

method based on the branch-and-bound paradigm with

some effective pruning criteria and a heuristic method

which performs fast but has no theoretical guarantee

[187]. We skip the details due to space limitation.

5.4 Most Influential Community Search

In [125], Li et al. proposed the problem of most influ-

ential community search, which aim to find the most

influential cohesive subgraph. The concept of kr-clique

community (Definition 24) is proposed to capture the

cohesiveness of a set of vertices. In addition to cohesive-

ness, authors also considered the influence of the com-

munity. Following the popular Linear Threshold (LT)

model [120], the aggregate influence probability of a

community C w.r.t a vertex v, denoted by Pr(v|C), is

defined as follows:

Pr(v|C) = 1−
∏

u∈C
(1− Pu→v)

where Pu→v is the probability that v is influenced by u.

Note that there is a influence probability Puv for each

edge (u, v) in G, and Pu→v is computed by multiplying

the influence of the edges along the maximum influence

path [120] from u to v. Given a probabilistic thresh-

old ∆, the influence score of the community C is the

number of vertices in G\C with aggregate influence not

less than ∆, denoted by score(C). Below is the problem

definition.

Problem 23 Given a simple graph G where each edge

has an influence probability, the problem of the most

influential community search is to find a maximal kr-

clique community with the highest influence score.

It is shown in [125] that the problem is NP-hard be-

cause of the clique computation. A baseline solution is

to access the vertices by their individual influence and

compute the maximal kr-clique for each vertex. To im-

prove efficiency, a tree structure named C-Tree is pro-

posed such that any kr-clique community can be gen-

erated efficiently. Four efficient search algorithms are

developed to significantly prune the search space based

on the kr-clique constraints and the influence scores.

5.5 Discussions

In this section, we survey the CS solutions [45,205,195,

187,125] using k-clique model. We can divide them in-

to two groups, where the first group [45,205,195,187]

focuses on simple graphs, while the second group [125]

is developed for attributed graphs. In the first group,

the first one [45] uses quasi-clique model, the second

one [205] adopts k-clique model, and the last two [195,

187] are based on k-plex model. However, to our best

knowledge, there is no systematic study to compare the

goodness of different k-clique based models in real-life

applications, which is crucial for researchers and prac-

titioners to choose desirable models in practice. More-

over, there is no investigation on the trade-off between

the computing time complexity and the flexibility of

these models. It will be interesting to fill these two gaps

in the future study.

6 K-ECC-Based Community Search

In this section, we review CS studies [25,95] that use the

k-ECC model as the community structure cohesiveness.

Given a graph G and a set Q of vertices, their general

goals are to find a subgraph H of G, which contains Q

and has the maximum edge-connectivity, also called the

Steiner Maximum-Connected Subgraph (SMCS). Their

difference is that one maximizes the size of H [25], while

the other one tries to minimize the size of H [95].

6.1 Maximum SMCS

In [25], Chang et al. computed the maximum SMCS for

a set of query vertices Q, which is defined as follows.

Problem 24 Given an undirected simple graphG(V,E),

and a set of query vertices Q ⊆ V , return a subgraph

H(VH , EH) of G, such that

1. VH contains Q;

2. λ(H) is maximized;

3. There exists no other subgraph H ′ satisfying the

above properties, such that H ⊂ H ′.

For example, consider the graph in Fig. 22(a). Let

Q={v1,v4}. Then, for this query we will return the sub-

graph g1, and its connectivity is λ(g1)=4.

A basic solution of Problem 24 is to sequentially

enumerate all the maximal k-ECCs by varying k from
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SMCC, SMCCL, and steiner-connectivity; that is, the algo-
rithms are in linear time regarding the query and result sizes.

• Efficient Index Construction and Maintenance Techniques.
1) For index construction, we propose an efficient algorithm
to compute the steiner-connectivity for all edges in G in time
O(α(G) · h · l · |E|). We show that the maximum spanning tree
is enough to preserve the steiner-connectivity for all edges.

2) We also propose efficient incremental techniques to up-
date the steiner-connectivity and our index structure when
the graph changes. To do this, we identify important proper-
ties to restrict our computation locally to a small subgraph.

We conduct extensive empirical studies on large real and syn-
thetic graphs. The empirical studies confirm that the proposed
index-based algorithms significantly outperform baseline algorithms
by several orders of magnitude, and demonstrate that our indexing
techniques can construct and maintain the indexes very efficiently.
Organization. The rest of the paper is organized as follows. A
brief overview of related work is given below. Section 2 gives the
definitions of the studied queries, and Section 3 presents baseline
algorithms by using the existing techniques. We propose index-
based optimal query processing techniques in Section 4. Efficient
techniques for index construction and maintenance are developed
in Section 5. Experimental results are reported in Section 6. We
discuss extensions of our techniques to process other queries and
possible ways to conduct external-memory computation in Sec-
tion 7, and give a conclusion in Section 8. Proofs are omitted due
to space limits and can be found in Section A.3 in the Appendix.
Related Work. We categorize the related works as follows.
Computing k-Edge Connected Components. As discussed in the
challenge part, we can compute SMCC by extending the existing
techniques for computing k-edge connected components. In the lit-
erature, there are three approaches for computing k-edge connected
components of a graph; that is, cut-based approach [25, 31, 34],
decomposition-based approach [7], and randomized approach [4].
As the decomposition-based approach has a time complexity of
O(h · l · |E|) where h and l are usually bounded by small constants,
extending it to compute SMCC takes O(|V | · h · l · |E|) time which is
time-consuming; we further discuss these techniques in Section 3.
In this paper, we propose optimal algorithms for computing SMCC;
that is, our running time is linear to the output size.
Online Community Search. Given a set q of query vertices and a
graph G, the problem of online community search that computes
the communities in G containing q has been studied recently. Dif-
ferent semantics for community search have been studied; for ex-
ample, local modularity based community search [11], k-core based
community search [27, 14], k-truss based community search [20],
and α-adjacency γ-quasi-k-clique based community search [13].
Nevertheless, due to inherent different problem definitions, none
of these techniques can be used to compute SMCC or SMCCL.
Dense Subgraph Extraction. Efficient techniques for computing all
maximal cliques and quasi-cliques of a graph are presented in [6,
9] and [32], respectively. Problems of efficiently computing other
dense subgraphs, including k-core [8], DN-subgraph [29], triangle
k-core motifs [33], etc., have also been recently investigated. Nev-
ertheless, due to inherently different problem natures, these tech-
niques are inapplicable to compute SMCC or SMCCL.
Edge-Connectivity. Efficiently computing edge-connectivities be-
tween vertex-pairs has been studied in graph theory [17], which
can be computed by the maximum flow techniques [12]. The state-
of-the-art algorithms compute exact maximum flow in O(|V ||E|)
time [24] and approximate maximum flow in almost linear time to
|E| [21, 26]. To efficiently process vertex-to-vertex edge-connectivity

queries, index structures have also been developed in [1] and [18].
Nevertheless, due to inherently different formulations, these tech-
niques cannot be used to compute steiner-connectivities.

2. COMPUTING STEINER MAXIMUM-
CONNECTED COMPONENTS

In this paper, we focus on an undirected graph G = (V, E) [17],
where V is the set of vertices and E is the set of edges. We denote
the number of vertices and the number of edges in G by |V | and
|E|, respectively. Given a vertex subset Vs ⊆ V , the vertex-induced
subgraph G[Vs] by Vs is a subgraph G[Vs] = (Vs, Es) of G with Vs
as its vertex set such that Es consists of only the edges in G with
both endpoints in Vs; that is, G[Vs] = (Vs, {(u, v) ∈ E | u, v ∈ Vs}).
Definition 2.1: (k-edge Connected [17]) A graph G is k-edge con-
nected if the remaining graph is still connected after the removal of
any (k − 1) edges from G. �

The edge-connectivity of a graph is the largest k for which the
graph is k-edge connected. In the following, for presentation sim-
plicity we refer edge-connectivity as connectivity.

Definition 2.2: (Steiner Maximum-Connected Component) Given
a set q of vertices in a graph G, we define the steiner maximum-
connected component in G of q, denoted SMCC, as the maximum
induced subgraph with the maximum connectivity among all sub-
graphs of G that contain q. �

We call the connectivity of the SMCC of q as the steiner-connectivity
of q, denoted sc(q). SMCC is related to k-edge connected compo-
nents defined below.

Definition 2.3: (k-edge Connected Component [4, 7]) Given a
graph G, a subgraph g of G is a k-edge connected component of G
if 1) g is k-edge connected, and 2) any super-graph in G of g is not
k-edge connected. �

g3
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Figure 2: An example graph
A k-edge connected component is a maximum vertex-induced

subgraph. It is easy to see that the SMCC of q is the k-edge con-
nected component of G containing q with the maximum k. For ex-
ample, the graph G in Figure 2 is 2-edge connected, the subgraph
g1 is a 4-edge connected component, and g3 is a 3-edge connected
component. However, g2 is not a 3-edge connected component,
since g1∪g2 is also 3-edge connected; g1∪g2 is a 3-edge connected
component. Here, g1 ∪ g2 denotes the union of g1, g2, which also
includes the edges between vertices in g1 and vertices in g2 [17].
Therefore, the SMCC of {v1, v4} is g1 with sc({v1, v4}) = 4, and the
SMCC of {v1, v4, v7} is g1 ∪ g2 with sc({v1, v4, v7}) = 3.

Definition 2.4: (SMCC with Size Constraint (≥ L)) Given a set
q of vertices in a graph G and a number L, we define the SMCC
with size constraint (≥ L) in G of q, denoted SMCCL, as the SMCC
containing q with the number of vertices not smaller than L. �

For example, in Figure 2, the SMCCL of {v1, v4} with L = 4 is
g1, while the SMCCL of {v1, v4} with L = 6 is g1 ∪ g2.
Problem Statement. Given a set q of query vertices in a graph G
and possibly a number L, we study the following three queries:
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Figure 3: Connectivity graph and MST

The corresponding connectivity graph to the graph in Figure 2
is shown in Figure 3(a) (including edges indicated by both solid
lines and dashed lines), where weights of edges are also shown.
Connectivity graph has the following property.

Lemma 4.3: Given vertex u and vertex v in a connectivity graph
Gc, let Pu,v denote the set of all simple paths between u and v in
Gc, and define the weight w(P) of a path P as the minimum edge
weight in P (i.e., w(P) = min{w(u′, v′) | (u′, v′) ∈ P}), then the
steiner-connectivity of {u, v} is sc(u, v) = maxP∈Pu,v w(P). �

Lemma 4.3 illustrates the key observation for computing steiner-
connectivities based on the connectivity graph. For example, for
computing sc(v1, v7) in Figure 3(a), the path (v1, v4, v7) has the max-
imum weight among all paths between v1 and v7; thus sc(v1, v7) =
w(v4, v7) = 3. Although this is not an efficient approach, we are
able to develop a compact index structure based on the key obser-
vation in Lemma 4.3, in the following.
Index Structure: MST. Given the connectivity graph Gc = (V, E,w)
of a graph G, we construct a compact tree-structured index T , which
is the maximum spanning tree (MST) of Gc; that is, the index is a
weighted tree where each tree edge has a steiner-connectivity re-
garding the two end-vertices.

Definition 4.2: (Maximum Spanning Tree [17]) Given a con-
nected, undirected graph G, a spanning tree of G is a subgraph of G
that is a tree and contains all vertices of G. A maximum spanning
tree of G is the spanning tree with the maximum total weight. �

The MST has the nice property that it explicitly stores the path
with maximum weight for every pair of vertices as proved below.

Lemma 4.4: Given any MST T constructed from the connectivity
graph Gc, the unique path P in T between vertex u and vertex v has
the maximum weight (see Lemma 4.3) among all paths between u
and v in Gc. Thus, sc(u, v) = min(u′ ,v′)∈P λT (u′, v′) where λT (u′, v′)
denotes the weight of edge (u′, v′) in T . �

For example, the MST T of the graph in Figure 3(a) consists of
the edges indicated by solid lines and is reillustrated in Figure 3(b).
The path in T between v1 and v7 is (v1, v4, v7) which is the path with
the maximum weight among all paths in Gc between v1 and v7.
Index Storage. Following from Lemmas 4.2 and 4.4, we can see
that any MST T preserves all the steiner-connectivity information;
that is, for any q ⊂ V , we can compute sc(q) just based on any
MST T . Therefore, we can store any MST T and use it to process
the queries we study in this paper. Note that, the connectivity graph
can be simply stored by adding the weight on each edge of the orig-
inal graph, where the weight of an edge is the steiner-connectivity
between its two end-vertices.

The size of the MST index is O(|V |). This provides a possibility
to process the studied queries in main memory; that is, we store
the MST in main memory. Nevertheless, in Section 7 we also dis-
cuss possible structures of disk-based index and possible ways to
conduct external-memory computation.

4.3 Optimally Processing Steiner-Connectivity
Queries

In this subsection, we propose an index-based optimal algorithm
for processing steiner-connectivity queries. Firstly, we present the
following lemma for computing the steiner-connectivity of q which
directly follows from Lemma 4.2 and Lemma 4.4.

Lemma 4.5: Given a set q of query vertices, the steiner-connectivity
of q is equal to the minimum edge weight in the subtree Tq of T ,
where Tq is the minimal connected subtree of T that contains all
vertices of q. �

Intuitively, Tq is formed by the set of paths in T between v0 ∈
q and every other vertex in q. Following from Lemma 4.5, the
pseudocode for processing steiner-connectivity queries is shown in
Algorithm 3. Given a set q of vertices, we first obtain the subtree
Tq of T , and then report the minimum edge weight among all edges
in Tq as the steiner-connectivity of q.

Algorithm 3: SC-MST
Input: A MST T , and a set q of vertices
Output: The steiner-connectivity of q

1 Compute the subtree Tq;
2 return sc(q) = min(u,v)∈Tq λT (u, v);

Implementation and Time Complexity. A naive implementation
of Algorithm 3 by BFS or DFS [12] would require O(|V |) time to
get the subtree Tq for q, which is too slow. We demonstrate that
Algorithm 3 can be implemented in O(|Tq|) time in the following.
Obviously, Line 2 runs in O(|Tq|) time. Therefore, we only need to
describe how to obtain the subtree Tq (i.e., Line 1) in O(|Tq|) time.

Definition 4.3: (Lowest Common Ancestor [3]) The Lowest Com-
mon Ancestor (LCA) of two vertices, u and v, in a rooted tree [17],
denoted lca(u, v), is defined as the vertex that is farthest to the root
and has both u and v as its descendants (where a vertex is allowed
to be a descendant of itself). �

Similarly, we can define the LCA of a set q of vertices, denoted
lca(q). Given the MST T , we make it a rooted tree by choosing an
arbitrary vertex to be the root. Then, it is easy to see that Tq consists
of all edges in the paths from every vertex in q to lca(q). Moreover,
assume q = {v0, v1, . . . , v|q|−1}, and let lcai = lca(v0, . . . , vi), then
lcai = lca(lcai−1, vi),∀1 ≤ i ≤ |q| −1 where lca0 = v0. Thus, we can
first compute lca1, then lca2, and so forth; finally, lca|q|−1 is lca(q).

To efficiently compute LCA, we firstly preprocess the rooted tree
T : for each vertex v in T , we store its parent p(v) and its level
number l(v), where the level number of the root vertex is 0 and
l(v) = l(p(v)) + 1 for other vertices. Then, given u and v, we can
obtain lca(u, v) by traversing u and v to their ancestor vertices ac-
cording to their level numbers and by following p(·); that is, start-
ing from u′(= u) and v′(= v), each time we traverse the vertex with
larger level number to its parent (i.e., u′ ← p(u′) if l(u′) > l(v′)
and v′ ← p(v′) otherwise), and lca(u, v) is obtained as u′ when u′

and v′ are the same. Moreover, for computing lcai(lcai−1, vi), once
vi reaches a vertex that has already been visited when computing
lca1, . . . , lcai−1, we can conclude that lcai(lcai−1, vi) = lcai−1. Fi-
nally, Tq is obtained by including all the visited edges. It is easy to
verify that the running time is O(|Tq|). We show the psudocode in
Algorithm 10 in Section A.1 in the Appendix.

Example 4.1: Suppose q = {v3, v13, v11}, where the MST T is
shown in Figure 3(b) with v1 as the root. For computing lca(v3, v13),
we traverse from v3 and v13 to their ancestor vertices until reaching
v1; thus lca(v3, v13) = v1. Now, we compute lca(lca(v3, v13), v11);
firstly, we traverse v11 to its parent v10 which has been visited be-
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Fig. 22 An example for illustrating maximum SMCS [25].

|V | to 1, and stops when the first k-ECC which con-

tains Q is found. Then, the first k-ECC is returned as

the community. In the literature, there are two efficient

k-ECC enumeration algorithms. One is based on graph

decomposition [26], while the other one is based on the

random contraction [7]. As shown in [25], the basic so-

lution takes O(|V | · h · l · |E|) time if the first k-ECC

enumeration algorithm is adopted, or O(|V |·t·|E|) time

if the second one is used, where h and l are bounded

by small constants for real graphs, and t=O(log2 · |V |).
Obviously, both of them are inefficient for large graphs.

To improve the query efficiency, Chang et al. pro-

posed a novel compact index structure, which allows

the query can be answered in optimal time cost, i.e.,

the time cost is linear to the size of H. The index is

built based on a key observation that for any pair of

vertices u and v in H, their connectivity λ(u, v) is at

least λ(H). This implies, if the connectivity of each pair

of vertices in G is preserved, then the query can be an-

swered in linear time cost, because we can first get λ(H)

by checking the connectivity of vertex pairs in Q, and

then find H by traversing the connected edges whose

connectivity are at least λ(H).

To preserve all the connectivity information of G,

Chang et al. developed the concept of connectivity graph

Gc for the graph G, which has the same sets of vertices

and edges with G, and for each edge (u, v) ∈ Gc, it is

associated with a connectivity value denoting the edge-

connectivity between vertices u and v in G. Then, the

maximum spanning tree (MST) of Gc is the index struc-

ture built for G. For example, Fig. 22(b) presents the

index structure for the graph in Fig. 22(a). The index

can be built by first constructing the connectivity graph

Gc and then computing the MST from Gc. Clearly, the

space cost of the MST is O(|V |) since it has |V | vertices

and at most |V |–1 edges.

Based on the index MST, Chang et al. proposed an

efficient query algorithm to solve Problem 24. Specif-

ically, it first computes λ(H) by using the MST, and

then finds the maximum SMCS by collecting the sub-

tree of MST, whose edges have connectivity values be-

ing at least λ(H). By using the technique of lowest com-

mon ancestor (LCA), the query can achieve a time cost

of O(|HV |), which is optimal since outputting the ver-

tex set of H takes O(VH) time.

In addition, the authors studied a variant of Prob-

lem 24 by imposing an additional constraint, which re-

quires the number of vertices in H is at least L, where

L is a parameter specified by the user. It can also be

solved in optimal time cost with the index MST.

6.2 Minimum and Minimal SMCS’s

In [96], Hu et al. found that although the maximum

SMCS has a high cohesiveness (i.e., high connectivi-

ty), the size of maximum SMCS’s are often extreme-

ly large and complex. For example, on the DBLP bib-

liographical network that contains 803K vertices and

3.2M edges, the average number of vertices in a max-

imum SMCS is over 400K. This not only hinders the

analysis of the SMCS structure, but also makes it diffi-

cult to be used in real situations. To remedy this issue,

Hu et al. examined the discovery of an SMCS that has

a small number of vertices. Particularly, they studied

the minimum SMCS and minimal SMCS problems:

Problem 25 (Minimum SMCS) Given an undirect-

ed simple graph G(V,E), and a set of query vertices

Q ⊆ V , return a subgraph H(VH , EH) of G, such that

1. VH contains Q;

2. λ(H) is maximized;

3. |HV | is minimized.

Problem 26 (Minimal SMCS) Given an undirected

simple graph G(V,E), and a set of query vertices Q ⊆
V , return a subgraph H(VH , EH) of G, such that

1. VH contains Q;

2. λ(H) is maximized;

3. There exists no other subgraph H ′ ⊂ H satisfying

the above properties.

Obviously, a minimum SMCS is also a minimal SM-

CS, and both of them are much smaller than the maxi-

mum SMCS. For example, on the DBLP network, their

average sizes are less than 0.23K, while the average size

of maximum SMCS is over 400K. We illustrate these

three kinds of SMCS in Fig. 23.

In [96], Hu et al. showed that the minimum SMCS

problem is APX-hard, since it is a generalization of the

Steiner Tree problem (see Section 3.1.2). Further-

more, unless P=NP, there does not exist any polynomial-

time algorithm that approximates the minimum SMCS

problem within any constant ratio. Therefore, it is not

only intractable to obtain a minimum SMCS, but al-

so hard to get its approximate version in an accurate
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Fig. 23 The maximum SMCS (G3), minimum SMCS (G2),
and minimal SMCS’s (G1 and G2) for query Q={f} [96].

manner. To trade off the efficiency and result quality,

Hu et al. [96] focused on the minimal SMCS problem.

A naive solution for Problem 26 is to first adopt the

solution in [25] to compute the maximum SMCSG′, and

then iteratively refineG′ to ensure its minimality. While

this solution is simple, it has a high time complexity,

since the cost of testing the minimality of an SMC-

S is high. To achieve higher efficiency, Hu et al. pro-

posed an Expand-Refine framework to find a minimal

SMCS, which consists of three steps. First, the Steiner-

connectivity of the query vertex set Q (i.e., the max-

imum λ(H)) is computed. Then, in the Expand step,

through local expansion of vertices starting from ver-

tices in Q, a subgraph H ′ of G with connectivity being

λ(H) is obtained. In the Refine step, an algorithm is

proposed to remove vertices based on the dependence

of vertices on their minimal SMCS’s. As a result, the

minimal SMCS problem can be solved in a polynomial

time cost, i.e., O(t · h · l · |E|), where t<|HV |, and h and

l are usually bounded by small constants. Besides, to

further improve the efficiency, the authors relaxed the

constraints from two perspectives, namely connectivity

and minimality, and computed the approximate SMCS

with theoretical guarantee.

In addition, for an important special case with only

one query vertex (i.e., |Q|=1), Hu et al. developed a

customized algorithm for it. The main idea is to keep

the processing information related to the current query

in a small cache structure, and use these information to

answer the subsequent queries. As a result, it performs

faster than the solution above.

6.3 Discussions

In this section, we review two CS studies that adopt the

k-ECC model as the community cohesiveness metric.

The first one [25] aims to find the maximum SMCS,

while the second one [95,96] tries to find the minimum

SMCS. In terms of efficiency, the maximum SMCS can

be computed more efficiently. For example, by using

the MST index [25], it can be computed in the optimal

time cost. Nevertheless, the maximum SMCS may have

size much larger than that of the minimum or minimal

SMCS’s. This also implies that for practitioners, they

have to choose the specific algorithm, based on their

specific requirements on community sizes and efficiency.

We remark that these two CS studies mainly focus

on simple graphs. It is not clear how to adapt for them

for other kinds of graphs, such as directed graphs and

attributed graphs. Thus, an interesting future topic is to

investigate how to perform CS on other kinds of graphs

by adopting the k-ECC model.

7 Other Metrics-Based Community Search

In this section, we review a particular kind of commu-

nity search, namely local community detection, which

takes an input vertex as a seed and expands the com-

munity from the seed according to a specific goodness

function. The representative goodness functions are lo-

cal modularity [40,136], query biased density [190], per-

sonalized pagerank [114], and neighbor expansion [142].

7.1 Local Modularity-Based Community Search

Generally, studies of local modularity-based CS follow

Problem 1 with a local modularity-based goodness func-

tion f . Two typical such functions are as follows.

• Boundary-based local modularity [40]. Assume

we have a simple undirected graph G and three sets of

vertices, i.e., C, U , B ∈ G. The known set C contains

vertices in the known proportion of the community; the

unknown set U is a set of vertices that are adjacent to

vertices in C; and the boundary set B is a subset of C,
which contains vertices having neighbors in U .

By considering all the edges linked to sets B and

C, Clauset et al. [40] defined the local modularity of C

as f(C)=I/T , where I is the number of edges with no

end vertex in U , and T is the number of edges with at

least one end vertex in B. Intuitively, a good community

has a sharp boundary, which means that there are few

connections from its boundary set B to the unknown

set U , resulting in a higher value of f(C).
To uncover a community, Clauset et al. develope-

d an algorithm that works in vertex-at-a-time manner.

Let q be a source (seed) vertex. Initially, it lets C={q}
and puts q’s neighbors into set U . At each step, it adds

to C the neighboring vertex that results in the largest

increase of the local modularity. This process contin-

ues until it has agglomerated either a given number of

vertices k, or it has discovered the entire enclosing com-

ponent, whichever happens first. As a result, its time

complexity is O(k2d), where d is the mean degree and

k is the number of vertices to be explored.

• Subgraph degree-based local modularity [136].

Given a subgraph C of a graph G, Luo et al [136] defined
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its indegree, ind(), as the number of edges within C, and

its out-degree, outd(C), as the number of edges that con-

nect C to the remaining part of G. Then, they defined

the subgraph modularity of S as f(C)=ind()/outd().

Clearly, its value will increase if C has more internal

edges and fewer external edges.

To find a community, Luo et al. proposed an algo-

rithm consisting of an addition step and a deletion step.

Initially, C contains a seed vertex q and its neighbors

are in a set N . In the addition step, it iteratively adds

vertices from N to C that result in the greatest increase

of f(C), until a certain number of neighbors have been

in the subgraph. In the deletion step, it iteratively re-

moves vertices in C that result in the increase of f(C)
but not separating C. The addition and deletion steps

will be repeated until no vertex is added to C. Note that

there is no guarantee whether q will be in the returned

community as it may be removed during the deletion

step. It has the same time complexity as the algorithm

for the boundary-based local modularity.

7.2 Query Biased Density-Based Community Search

In [190], Wu et al. proposed the query biased density

as the goodness function for CS. Before introducing the

query biased density, the authors presented a vertex

weighting scheme, which ensures that vertices far away

from the query vertices will have large weights, resulting

in high penalties to be included in the community. To

assign each vertex u a weight r(u) w.r.t a set Q of query

vertices, they adopted the penalized hitting probability,

which can be computed by random walk. Then, the
query biased vertex weight of vertex u, π(u), can be

defined as the reciprocal of r(u), i.e., π(u)=1/r(u).

Based on the weights, the authors defined the query

biased density of a graph S as ρ(S)= e(S)
π(S) , where e(S) is

the sum of edges weights and π(S) is the sum of query

biased weights for vertices in S. After that, the authors

proposed and studied the problem of finding the query

biased densest subgraph S from a graph G (or QDS

problem), which theoretically guarantees that QDS is a

connected subgraph and contains Q.

Clearly, if π(u)=1, the query biased density degen-

erates to the classical edge-density (i.e., e(S)
|S| ), and ac-

cordingly the QDS problem is reduced to the problem of

densest subgraph discovery [78]. This also implies that

after weighting π(u), it forces the global densest sub-

graph shift to the neighborhood of the query vertices.

Unfortunately, the QDS problem is computational-

ly intractable. To improve efficiency, the authors intro-

duced two variants of the QDS problem by removing

constraints that S is connected and Q is included in S,

respectively. They showed that these variants can be

solved in polynomial time and the results can be used

to find an optimized solution for the QDS problem.

7.3 Personalized PageRank-Based Community Search

In [114], Kloumann et al. studied the use of personalized

PageRank (PPR) model for identifying the communi-

ty of a set of seed vertices Q. We first introduce the

PageRank model: suppose there are an infinite number

of surfers walking on a graph. If at a certain timestamp

a surfer is staying at vertex i, at the next timestamp she

goes to a random neighbor vertex j. As time goes on,

the expected percentage of surfers at each vertex i con-

verges (under certain conditions) to a limit r(i), called

PageRank score of vertex i. Since r(i) is independen-

t of the distribution of starting vertices, it reflects the

global importance of the vertex i.

Notice that r(i) is computed with no preference for

any particular vertices. However, in reality, for a par-

ticular user, some vertices, denoted by a set Q, may be

more interesting than others, and they could be con-

sidered as the preferred vertices. To incorporate prefer-

ences of Q into the model above, we can make a mod-

ification: at each step, a surfer jumps back to a vertex

in Q with probability c, and with probability (1 − c)

continues forth along a neighbor. The limit distribu-

tion of surfers in this model would favor vertices in Q

and vertices which are close to Q. The modified model

is also called PPR model. Clearly, if we let Q be a set of

query vertices, the vertices whose limit probabilities are

highest can be considered as Q’s community members.

Now we formally introduce the PPR model. Consid-

er a graph G and let degG(i) denote the degree of vertex

i and A be the adjacent matrix of G, i.e., Ai,j=
1

degG(i)

if vertex i is linked to vertex j, where degG(i) is the

degree of vertex i. The preference vector u is defined

over the seed vertices such that |u|=1 and u(i)= 1
|Q| if

the i-th vertex is in Q. Then, the PPR equation is v=

(1− c)Av + cu, where c ∈ (0, 1] is the decay factor and

a typical value of c is 0.10 [114]. The solution v, called

PPR vector, is a steady-state distribution of surfers.

Problem 27 Given a graph G(V,E), a set of query

vertices Q ⊆ V , and an integer k, return a set C of

vertices, such that

1. Q ⊆ C;

2. C contains k vertices, whose corresponding values

in the PPR vector w.r.t Q are the highest;

In the literature [9,114], many efficient PPR algo-

rithms have been developed, and thus can be applied

to CS. We skip the details due to space limitation.
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7.3.1 Neighbors Expansion-Based Community Search

In [142], Mehler et al. presented a neighbor expansion

method to discover the community from representative

seeds. Specifically, given a graph G(V,E) and a set S of

seed vertices, it repeatedly identifies the optimal “nex-

t” vertex v, which is not in the community C (initially

C=S) but linked with vertices of C, based in some man-

ner on the number or strength of v’s neighbors who had

previously been identified as community members. De-

tails of vertex selection criteria and stopping rules of

the expansion process are introduced as follows.

• Selection criteria. Mehler et al. proposed to assign a

score to each vertex in the graph and select the highest-

scoring outside vertex to join the community. The score

assignment criteria are as follows:

– neighbor count: the number of v’s neighbors in C;

– juxtaposition count: consider the weights of edges

when counting the number of v’s neighbors in C;

– neighbor ratio: normalize vertices’ degrees and count

the degree-normalized neighbors in C;

– juxtaposition ratio: consider the weights of edges

when computing the neighbor ratio;

– binomial probability: compute the binomial proba-

bility that v is in C, given its neighbor count.

• Stopping rules. The authors proposed to reserve

some fraction of seed vertices as validation members,

and then monitor the frequency with which these vali-

dation members are incorporated into the community,

during the expansion process. In the first phase, when

community members are identified with high precision,

we expect to add a new validation member with fre-

quency equal to the fraction of community comprised

by the validation set. After leaving the natural bound-

aries of the neighborhood, we expect to rediscover val-

idation members according to their frequency in the

entire graph. As a result, we can find the stopping ver-

tex as the one that best splits the validation interval

(i.e., the difference between the discovery times of the

ith and (i−1)-st validation members) into two groups.

7.4 Discussions

In this section, we review CS studies that do not re-

ly on metrics introduced in Section 2, which are often

referred as local community detection. These studies

mainly focus on simple undirected graphs, and uncov-

er the communities by seed expansion using link-based

metrics, such as modularity, density, pagerank, etc. Un-

like CS studies introduced before, these works often re-

ly on good seed selection algorithms [146] and assume
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that there are some ground truth communities. In oth-

er words, they might not aim to search communities

in an online manner over big graphs, based on a query

request. As a result, some of them may cost high run-

ning time for searching communities. Consequently, an

interesting research direction is to develop index-based

solutions for supporting efficient online CS queries us-

ing these metrics. Moreover, it would be interesting to

study how to apply them for CS on attributed graphs.

8 Community Search Systems

Recently, many graph processing systems have been de-

veloped [18]. Generally, they can be classified into two

groups. The first group (e.g., GraphX [80] and Pregel

[138]) aims to provide a platform for supporting gener-

al graph tasks (e.g., computing PageRank scores). The

second group is customized for specific graph tasks. For

example, in [69], Fan et al. developed a graph system,

called Expfinder, for finding experts in social networks;

in [105], a system called VIIQ is developed for inter-

active graph query formulation; in [203], AutoG shows

an interactive system to facilitate graph query formu-

lation. However, none of them can be readily used for

CS. To address this issue, recently some systems have

been developed for searching, visualizing, and analyz-

ing communities in large graphs. Below, we introduce

two systems, namely C-Explorer [62] and VizCS [106].

8.1 C-Explorer

C-Explorer is a web-based system that enables commu-

nity retrieval in a simple, online, and interactive man-

ner. The key features of C-Explorers are as follows:

First, it implements several typical CS algorithm-

s on simple undirected graphs and keyword-based at-
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Fig. 25 Interface of VizCS [106].

tributed graphs, including Global and Local (see Sec-

tion 3.1), ACQ algorithm (see Section 3.3). In addition,

a CD algorithm called CODICIL [164] is included.

Second, it offers a user-friendly facility that enables

online visualization of communities. Fig. 24 shows the

user interface of C-Explorer configured to run on the

DBLP bibliographical network. On the left panel, a us-

er inputs the name of an author (e.g., “jim gray”) and

the minimum degree of each vertex in the community

she wants to have. The user can also indicate the la-

bels or keywords related to her community. Once she

clicks the “Search” button, the right panel will display

a community of Jim Gray. The user can further click

on one of the vertices (e.g., Michael Stonebraker), and

continue to examine its community.

Third, it allows users to compare the communities

retrieved by various CS and CD algorithms, in terms of

community quality and statistics.

Finally, it provides a list of API functions so that

other CS and CD algorithms can be plugged in. For

public users, they can easily plug their own algorithms

into C-Explorer using these API functions.

8.2 VizCS

VizCS is an online query processing system for search-

ing and visualizing communities in graphs [106]. VizCS

exhibits four key innovative features as follows.

First, VizCS adopts a triangle-connected truss com-

munity model for dynamic graphs where vertices/edges

undergo frequently insertions/deletions [98]. It provides

the feature of CS over dynamic graphs, which can be

uploaded with one file of graph updates by users.

Second, VizCS offers a user-friendly visual interface

to formulate queries and a real-time response query pro-

cessing engine. Fig. 25 shows an example query of au-

thor vertex q=“Jim Gray” and parameter k=8. Thanks

to efficient k-truss CS algorithms, the query results can

be quickly obtained in real-time.

Third, VizCS generates a community exploration

wall by offering interactive community visualization,

which facilitates users to in-depth understanding of the

data. The community exploration wall uses graph vi-

sualization techniques to depict the community results

and also presents informative features to users through

various exploration channels, such as the profile search

of community members by Google, structural statis-

tic report, collaborator recommendation, and tag cloud.

Fig. 25 shows the community exploration wall.

Last but not least, VizCS is a CS platform that can

visualize and compare different community results by

various state-of-the-art algorithms and user-uploaded

approaches. It benefits users to understand different

models vividly and directly.

9 Comparison Analysis

Recall that in the last subsections of Sections 3, 4, 5,

and 6, we have compared and analyzed the CS solutions

using k-core, k-truss, k-clique, and k-ECC, respectively.

In this section, we would like to further compare these

CS solutions across different metrics. Due to the space

limitation, we are unable to compare all the surveyed

27 CS problems as well as their solutions. In the follow-

ing, we mainly compare the representative CS problems

and solutions on simple graphs and attributed graphs

respectively, while other solutions can be considered as

either their variants or less representative studies.

9.1 Simple Graphs

In this section, we compare representative CS prob-

lems for cohesiveness metrics studied on simple graphs,

which are Problem 1 for k-core, Problem 15 for k-truss,

Problem 20 for k-clique, and Problem 24 for k-ECC.

In the following, we first compare these solutions in

terms of the complexities and scalability of the state-

of-the-art online algorithms, index construction com-

plexities, index-based query algorithms, community co-

hesiveness, and support for overlapped CS as well as

dynamic graphs. After that, we perform an experiment

on real large graphs by using these CS algorithms, and

compare their empirical performance.

To make a fair comparison, we consider a simple

undirected graph G(V,E), where n=|V |, m=|E|, and

its arboricity is denoted by α(G) (α(G) is often much

smaller than
√
m). We use h and l to denote small val-

ues that can be bounded by small constants [25]. In

Table 4, we compare these representative CS solutions

on G. Note that to measure the strength of algorithm

scalability and community cohesiveness, we use nota-

tion F; that is, an algorithm with more F means that

it has better scalability or cohesiveness. Meanwhile, if
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Table 4 Comparison analysis for representative CS solutions on simple graphs.

Metric
Online algorithm Index-based algorithm Cohesi

-veness
O D

query scalab. time space scalab. query

k-core O(n) [175] FFFF O(m)[17] O(n)[17] FFFF O(|E(C)|) F ×
√

k-truss O(m1.5)[98] FF O(m1.5)[6] O(m)[6] FFF O(
∑r

i=1 |E(Ci)|) FFF
√ √

k-clique O(log(n)sT )[205] F O(sLp) [205] O(sL)[205] F O(g log(g)Q)[205] FFFF
√ √

k-ECC O(hlm)[25] FFF O(α(G)hlm)[25] O(m)[25] FF O(|E(C)|) FF ×
√

Table 5 Empirical comparison for representative CS solutions on a real large graph.

Metric
Online algorithm Index-based algorithm Community quality Community

numberquery time space query diameter degree density CC

k-core 7.2s 8.1s 7.9MB 2.7s 14.0 19.2 0.044 0.763 1
k-truss 55.1s 103.1s 179MB 0.2s 4.1 13.9 0.476 0.868 1.31
k-clique 1872s 61.6s 108MB 4.3s 10.6 9.2 0.424 0.709 1.05
k-ECC 39.9s 38.3s 68MB 0.15s 10.5 18.4 0.152 0.774 1

a CS solution returns only one community C, we de-

note its community edge number by |E(C)|. If multiple

communities are returned, we use Ci to denote the i-

th (1≤i≤r) community, where r is the total number

of returned communities. We use “O” and “D” to de-

note whether the solutions support overlapped CS and

dynamic graphs respectively.

In addition, for the complexities of the k-clique-

based algorithm, we adopt the notations in [205], where

s is the average size of maximal cliques, T is the time

to enumerate all maximal cliques, L is the number of

maximal cliques, p is the average number of maximal

cliques a vertex is contained in, Q is the number of

maximal cliques containing at least one query vertex,

and g is the height of the index tree.

From Table 4, we can make the observations:

– For online query algorithms, in terms of query time

complexity, we can rank them as: k-core � k-ECC

� k-truss � k-clique, which is consistent with the

efficiency ranking relationship of these metrics in

Section 2.2. As a result, the k-core-based algorithm

achieves the highest scalability while the k-clique-

based algorithm has the lowest scalability.

– For index construction algorithms, the ranking re-

lationship above still holds. For index-based query

algorithms, most of them except k-clique have the

optimal time complexity, which is linear to the com-

munity edge number (i.e., |E(C)|).
– The community structure cohesiveness is in line with

the cohesiveness of these four metrics.

– The k-core and k-ECC-based solutions can only re-

turn one community for each query, while the other

two solutions may return multiple overlapped com-

munities containing the query vertex.

– All algorithms support dynamic graphs where ver-

tices and edges are inserted or deleted dynamically.

Next, we empirically evaluate the performance of al-

gorithms in Table 4. The input of these algorithms ex-

cept the k-truss-based one is a query vertex, and they

aim to find communities containing the query vertex

which will maximize the value of k. For the k-truss-

based one (Problem 15), its input is a set of query ver-

tices and an integer k. To make a fair comparison, we

adapt its algorithm such that its input is a query vertex

and the algorithm will maximize the value of k. To mea-

sure the quality of returned communities (subgraphs),

we introduce four metrics, i.e., diameter, degree, densi-

ty (i.e., the number of edges over the maximum number

of possible edges in a graph), and clustering coefficient

(CC). Generally, a lower value of diameter and high-

er values of degree, density, and CC mean the higher

quality of the community.

To conduct the experiments, we use a real-world

graph Google 4, which contains 875,713 vertices and

5,105,039 edges. We randomly select 100 vertices from

the graph as query vertices, perform CS queries using

these vertices, compute the average running time and

community quality, and report experimental results in

Table 5. Generally, the efficiency results in Table 5 are

consistent with the complexity analysis in Table 4. More

specifically, we have:

– For online query algorithms, the k-core-based algo-

rithm is the fastest. The k-truss and k-ECC-based

algorithms have similar time cost. The k-clique-based

algorithm takes the highest time cost.

– To build indexes, the k-core-based algorithm is the

fastest and the k-truss-based algorithm is slower

than others.

– For index space cost, the k-core-based index takes

the least space, while the space cost of others is

around or over an order of magnitude larger than

that of k-core-based algorithm.

4 Available at http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html
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– For index-based query algorithms, the k-core-based

algorithm is slower than the k-truss-based algorithm

(which also takes optimal query time cost), because

its returned communities are larger than those of

other algorithms. The k-clique-based algorithm is

the slowest, as its complexity is higher than others.

– In terms of community quality, the k-truss-based so-

lution achieves the smallest diameter, highest den-

sity, and highest clustering coefficient, due to small

and tight triangle-based community structure. The

k-core-based algorithm achieves the highest degree,

against other methods. The k-clique-based method

achieves the smallest degree.

– In line with Table 4, the k-core and k-ECC-based

solutions return one community, while k-truss-based

and k-clique-based solutions respectively return 1.31

and 1.05 communities.

9.2 Attributed Graphs

As shown in Table 1, for attributed graphs, five kinds

of attributes have been considered for CS, which are

keywords, locations, temporal information, profile, and

influence values. However, the semantics of these at-

tributed communities are different. Moreover, the prob-

lem definitions are also different. Therefore, it may not

make sense to compare them under the same metrics.

For location, temporal information, and profile-based

attributed graphs, only the k-core model has been s-

tudied on these graphs, which have been discussed and

compared extensively in Section 3.8. For influence value-

based graphs, the meanings of influences are very d-

ifferent. In k-core-based CS solutions [127,128,30,21,

126,50], the influence values are associated to graph

vertices, denoting their influence or importance. In k-

truss-based CS solutions [216], the influence values are

associated to graph edges, representing the influence

or importance of edges. In k-clique-based CS solutions

[125], the influence values are also associated to graph

edges, but they are probability values, meaning how

likely a vertex is influenced by another vertex. Mean-

while, none of these influence value-based graphs has

been investigated with at least two different cohesive-

ness metrics, so we do not compare solutions for influ-

ence value-based graphs in this paper. In the following,

we mainly focus on comparing and analyzing CS solu-

tions on keyword-based attributed graphs.

For keyword-based attributed graphs, there are two

representative studies, namely ACQ [61,58] and ATC

[102]. Generally, both of them seek to find a densely

connected community containing query vertex(es) with

similar query keywords, but ACQ adopts the k-core

model, while ATC uses the k-truss model. From the dis-

cussions in Section 2.2, we infer that the community of

ATC is more structurally cohesive, but may take higher

computational cost. Besides, in terms of keyword cohe-

siveness, ACQ model in Section 3.3 imposes a strict ho-

mogeneity constraint, requiring that each vertex shares

same query attributes in the community; ATC model in

Section 4.3 uses an attribute score function to quantify

the query keyword coverage and allows missing some

query keywords in the community.

In [102], Huang et al. empirically compared the com-

munity quality and efficiency of ACQ and ATC. They

used 13 real graphs with ground-truth communities. For

each graph, they ran 200 CS queries. Specifically, for

each query, they randomly selected a ground-truth com-

munity, and then randomly selected a vertex from the

community as the query vertex. After that, they ran

ACQ and ATC with the same parameters, i.e., k=4

and two query keywords which are selected from the

community. The results are consistent with the discus-

sions above. Specifically, ATC achieves higher average

F1 score values than ACQ on all the datasets, which

means that it is more accurate to search communities.

On the other hand, in terms of efficiency, ACQ consis-

tently outperforms ATC on all the datasets, and is up

to two orders of magnitude faster than ATC.

10 Related Work

In this section, we review related studies, including com-

munity detection, cohesive subgraph discovery, graph

keyword search, and graph pattern matching.

10.1 Community Detection

Below, we review representative CD studies on undi-

rected graphs, directed graphs, and attributed graphs.

10.1.1 Undirected Graphs

A large number of studies aim to detect communities

from simple graphs, and we can classify these studies

based on the techniques they use. Some representative

classes are as follows, to name a few:

1. community quality optimization-based methods (e.g.,

modularity [148]);

2. clustering methods (e.g., k-means [178], spectral clus-

tering [182]);

3. graph partitioning methods (e.g., Metis [109]);

4. embedding-based methods (e.g., DeepWalk [155], [132]);

5. random walk-based methods (e.g., [157]);
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6. label propagation-based methods (e.g., [81]);

7. information diffusion-based methods (e.g., [87]);

8. statistic inference-based models (e.g., [89]);

9. deep learning-based methods (e.g., [200]);

10. centrality-based methods (e.g., [149]);

11. locality sensitive hashing-based methods (e.g., [137]);

12. physics-based methods (e.g., Potts low [189]);

13. local metric-based methods (e.g., k-plex [42]);

14. multi-commodity flow-based methods (e.g., [122]);

15. hybrid-based methods (e.g., [91]).

For a detailed survey of CD, please refer to the fol-

lowing survey and empirical evaluation papers: [158,

194,71,152,48,83,44,154,156,110,8,112,163,123,88,197].

Although these CD solutions are able to discover com-

munities from networks, they may not well satisfy the

desirable factors of CS on big graphs as we discuss in

Section 1, because most of them often use a global pre-

defined criterion for generating communities and can-

not find communities in an online manner.

10.1.2 Directed Graphs

In recent years, a number of studies have investigat-

ed CD on directed graphs. Here are some representa-

tive studies, to name a few. In [121], Leicht et al. ex-

tended the concept of modularity maximization [148],

which was originally designed for undirected graphs,

for detecting community structure in directed networks

that makes explicit use of information contained in edge

directions. In [70], Flake et al. identified communities

from websites network, which can be considered as di-

rected graphs. In [119], Lancichinetti et al. introduced

new benchmark graphs to test CD methods on directed

networks. In [113], Kim et al. also proposed a new mod-

ularity metric for CD on directed networks. In [201],

Yang et al. developed a new stochastic block model for

CD on directed networks. In [199], Yang et al. presented

algorithms for detecting communities from both direct-

ed and undirected networks. Ning et al. [150] studied

local community extraction in directed networks. A re-

cent survey can be found in [139].

10.1.3 Keyword-Based Attributed Graphs

To identify communities from keyword-based attribut-

ed graphs, recent works [220,176,159,33,164,99] often

use clustering techniques. Zhou et al. [220] computed

vertices’ pairwise similarities using both links and key-

words, and then clustered the graph. Subbian et al.

[176] explored noisy labeled information of graph ver-

tices for finding communities. Qi et al. [159] dynami-

cally maintained communities of moving objects using

their trajectories. Ruan et al. [164] developed a method

CODICIL, which augments the original graph by creat-

ing new edges based on content similarity, and then

performs clustering on the new graph.

Another common approach is based on topic mod-

els. In [147,135], the Link-PLSA-LDA and Topic-Link

LDA models jointly model vertices’ content and links

based on the LDA model. In [192], the attributed graph

is clustered based on probabilistic inference. In [165],

the topics, interaction types, and the social connections

are considered for discovering communities. CESNA [198]

detects overlapping communities by assuming commu-

nities “generate” both the link and content. A discrimi-

native approach [202] has also been considered for com-

munity detection. However, computing pairwise simi-

larity among vertices is very costly, and thus they are

questionable for performing online CS queries.

10.1.4 Location-Based Attributed Graphs

The problem of CD on location-based attributed graphs

(or geo-social networks) [16] has been extensively stud-

ied [77,84,54,172,32]. In [77], Girvan et al. introduced

the geo-community, which is a graph of intensely con-

nected vertices being loosely connected with others, but

it is more compact in space. Guo et al. [84] proposed the

average linkage (ALK) measure for clustering objects in

spatially constrained graphs. In [54], Expert et al. un-

covered communities from spatial graphs based on mod-

ularity maximization. In [172], Shakarian et al. used a

variant of Newman-Girvan modularity to mine the geo-

graphically dispersed communities. In [32], Chen et al.

proposed a method using modularity maximization for

detecting communities from geo-social networks.

10.1.5 Temporal Graphs

Many recent studies aim to detect communities from

temporal graphs. In [217], Zhou et al. studied CD over

a temporal heterogeneous social network consisting of

authors, document content, and the venues. In [134],

Liu et al. studied persistent community detection for i-

dentifying communities that exhibit persistent behavior

over time. In [10], Angadi et al. detected communities

from dynamic networks where data arrives as a stream

to find the overlapping vertices in communities. In [19],

Bazzi et al. investigated the detection of communities

in temporal multi-layer networks. In [51], DiTursi et al.

proposed a filter-and-verify framework for community

detection in dynamic networks. In [116], Kuncheva et

al. presented a method by using spectral graph wavelet-

s to detect communities in temporal graphs. For more

related studies, please refer to survey papers [163,177].
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10.2 Cohesive SubGraph Discovery

In this section, we review studies on cohesive subgraph

discovery. Notice that CD is one kind of cohesive sub-

graph discovery, but the latter one is more general.

10.2.1 Simple Graphs

For simple graphs, typical cohesive subgraph model-

s are k-core [170,17], k-truss [166,41,212], k-clique [2,

151], and k-ECC [76,95], as discussed in Section 2. To

compute these subgraphs, there are many efficient in-

memory algorithms (e.g., k-core [17], k-truss [184], k-

clique [47], and k-ECC [218,26,7]). For graphs that are

too large to be kept in memory, there are also some disk-

based and parallel algorithms. For example, in [34,188],

[184,111], and [36], disk-based algorithms for comput-

ing k-core, k-truss, and k-clique are developed, respec-

tively; in [145] and [29], parallel algorithms for com-

puting k-core and k-truss are proposed, respectively. In

addition, to maintain k-core and k-truss for dynamic

graphs, some efficient algorithms are developed in [130,

167,213] and [219], respectively.

Besides, there are many other cohesive subgraph

models and the representatives are as follows. In [171],

Seidman proposed the k-plex model (which is intro-

duced in Section 5). In [141], Matsuda et al. introduced

the concept of quasi-clique model. In [210], Zhang et

al. proposed the (k, s)-core, which considers both user

engagement and tie strength. In [168], the authors pro-

posed the concept of nucleus, which is a generalization

of k-core and k-truss. In [214], Zhao et al. introduced

the mutual-friend subgraph. In [186], Wang et al. pro-

posed the DN-Graphs by considering vertices’ common

neighbors. In [26], Chang et al. studied the problem of

enumerating k-ECCs in a graph for a given k. In [222],

Zhu et al. introduced the notion of coherent cores on

multi-layer graphs. In addition, Goldberg et al. [78] and

Fang et al. [67] discovered the densest subgraph, Gal-

brun et al. [73] studied the top-k densest subgraphs,

Tsourakais et al. [180] computed the quasi-clique-based

dense subgraphs, and Qin et al. [161] studied the prob-

lem of finding top-k locally densest subgraphs.

10.2.2 Attributed Graphs

For attributed graphs, in addition to CD methods, there

are also many studies of finding cohesive subgraphs. In

[196], Yang et al. studied the socio-spatial group query

which finds a group of users that are cohesively linked

and close to the rally point in a geo-social network.

In [211], Zhang et al. studied the problem of finding

(k, r)-cores on attributed graph and for a specific (k,

r)-core, each vertex has at least k neighbors, and the

attribute similarity of each pair of vertices is at least r.

In [28], Chen et al. studied the problem of (k, d)-MCC

(maximum co-located community) search on geo-social

network, where a (k, d)-MCC is a connected k-truss

and for any two vertices, their distance is at most d. In

addition, Wu et al. [191] studied the problem of finding

the densest connected subgraph from the dual network,

which can be considered as an attributed graph.

10.3 Graph Keyword Search

Generally, graph keyword search [183,204,206,208] aim-

s to find a tree or a subgraph, which contains a set of

query keywords, from a large graph G. Earlier studies

often output a tree structure. In [20], Bhalotia et al. de-

veloped a backward algorithm for finding Steiner trees.

In [49], Ding et al. proposed a dynamic programming

algorithm finding Steiner trees. In [79], Golenberg et

al. presented a novel algorithm which produces Steiner

trees with polynomial delay. In [107], Kacholia et al.

proposed a bidirectional search algorithm, and He et

al. [90] improved it by introducing a new index struc-

ture.

Recently, some solutions have output subgraphs. In

[124], Li et al. proposed to find r-radius Steiner graphs

that contain query keywords. Qin et al. [162] proposed

to find multi-centered subgraphs that contain query

keywords within a given distance. Kargar et al. [108]

studied the r-clique which is a set of vertices that cover

query keywords and satisfy the distance constraint.

However, these works are substantially different from

CS queries on keyword-based attributed graphs. First,

they do not specify query vertices as required by CS

queries. Second, the tree or subgraph produced do not

guarantee structure cohesiveness. Third, their solutions

do not ensure strong keyword cohesiveness.

10.4 Graph Pattern Matching (GPM)

For simple graphs, the problem of GPM is NP-complete

[43] and it has been studied extensively under differen-

t settings: (1) in main memory [181,37]. For example,

Ullmann [181] proposed a backtracking algorithms. (2)

in external memory, Chu et al. [39] and Hu et al. [97]

studied triangle counting; in [160], a novel GPM solu-

tion based on graph compression is presented. (3) in

distributed platforms, both DFS-style approaches [5,

153]and BFS-style approaches [117,118] are developed.

The DFS-style approaches avoid intermediate results

by using one-round computation, while BFS-style ap-

proaches shuffle a large number of intermediate results.
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For attributed graphs, there are also many studies.

Tong et al. [179] studied the use of lines, loops and stars

for finding the matched subgraphs; Zou et al. [223] de-

veloped a novel GPM solution based on distance join;

Fan et al. [55] studied GPM by using bounded simula-

tion; in [56], GPM has been studied for finding graph

association rules; in [35], Cheng et al. studied the prob-

lem of top-k GPM. Recently, Fang et al. have stud-

ied a variant of the GPM problem on spatial databas-

es [59,64], and it aims to find spatial objects that are

matched with a given pattern. However, GPM is dif-

ferent with CS since (1) it often focuses on small pat-

terns, so it cannot generate large communities; and (2)

the subgraphs of GPM solutions often do not guaran-

tee strong structure cohesiveness. Other related topics

include subgraph search [209,207].

11 Future Work

Recall that in Table 1, the cohesiveness metrics are or-

thogonal to graph types, so if a metric has not been s-

tudied for a particular type of graphs, then it is a future

research direction to study CS by applying the metric

on this type of graphs. Apart from this, we present a

number of promising future directions as follows.

11.1 Optimization for Query Parameters

Most existing CS queries require users to input some

parameters, in addition to the query vertex. A typical

parameter is the integer k [175,46,15], which control-

s the structure cohesiveness of returned communities.

For attributed graphs, existing works also require users

to input some parameters related to attributes. For ex-

ample, in ACQ [61] and ATC [102], a set of query key-

words are required. Although these parameters provide

strong flexibility and personalization for the query, it

may not be easy for users to set proper values for these

parameters. For example, if the integer k is too large,

a false query may incur, i.e., the query returns empty

result. On the other hand, if k is too small (e.g., k=1

or 2), the returned community may contain too many

vertices, which may make the community meaningless.

Unfortunately, most existing CS works assume that

users can input proper values for these parameters. This

assumption, however, is too strong, especially when user-

s do not know much about the underlying network. To

suggest query parameters, a possible research direction

is to exploit historical query logs and suggest some val-

ues of parameters automatically [13,140]. Another di-

rection is to study how to use crowdsourcing platforms

(e.g., AMT [1]) to facilitate query suggestions.

11.2 More Cohesiveness Metrics

As aforementioned, in CS solutions, a community is re-

quired to satisfy certain cohesiveness metrics. Essential-

ly, the cohesiveness metrics formally define the commu-

nities, so they play crucial roles in CS.

For structure cohesiveness, there are many other co-

hesiveness models (see Section 10.2) which have not

been used for CS. Thus, it would be interesting to study

CS using these models. For example, in [168,169], the

authors have proposed the concept of nucleus, which is

a generalization of k-core and k-truss.

For attribute-based cohesiveness, as discussed in Sec-

tion 10.2, there are some studies finding cohesive sub-

graphs from attributed graphs. Thus, it is of interest

to extend them for CS on attributed graphs. Besides,

each existing CS solution only focuses on one partic-

ular type of attribute (e.g., keyword). This, however,

may be problematic for many real applications because

a real graph often involves multiple types of attributes.

Thus, it is desirable to study how to perform CS by

considering multiple types of attributes.

11.3 Other Types of Graphs

In recent years, many novel network models have been

developed and the representative ones are as follows:

– Public-private network [11,100,38]. In a public-private

network (e.g., Facebook), there is a public graph G,

containing a set of vertices and a set of edges that

are visible to all users of the network. In particular,

each vertex u is associated with a private graph Gu,

where vertices of Gu are vertices from the public

graph G, and Gu is only known to u.

– Uncertain graph [94,131,104]. In many real applica-

tions (e.g., biology), the graph data are often noisy,

inexact, and inaccurate, and they can be modeled

as uncertain graphs, where each edge is associated

with a value denoting its existence probability.

– Signed graph [193]. A signed graph is a graph whose

edges carry signs. For example, in social networks,

the relationship of two users is either positive (e.g.,

friendship) or negative (e.g., hostility). Thus, users’

relationship can be modeled as a signed graph.

– Multi-dimensional graphs [68]. In many scenarios, a

graph often contains various types of edges, which

represent various types of relationships between en-

tities. Such graphs are often called multi-dimensional

graph, or multi-layer graphs or multi-view graphs.

– Heterogeneous information network (HIN) [174,93].

HINs are networks with multiple typed objects and

multiple typed links denoting different relations.
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To our best knowledge, there is no prior research

about CS on these graphs. Thus, it is still an open prob-

lem of how to perform CS on these graphs.

11.4 Real Big Graphs

Most existing CS studies assume that the graphs can

be kept in the memory of a single machine. The graphs

used for experimental evaluation are often million-scale,

and only a few of them [66,127] are able to process

billion-scale graphs. However, in many real applications

(e.g., Facebook), the graphs may involve billions of ver-

tices and edges [133]. As a result, existing CS solutions

may fail to process such real big graphs within reason-

able time cost. Hence, how to efficiently perform online

CS on such big graphs is a challenging task.

For big graphs that cannot be kept by a single ma-

chine, some possible research directions are as follows.

First, we can consider developing query algorithms based

on distributed computation platforms (e.g., GraphX

[80]), which are able to process big graphs in a cluster.

Second, to save memory space, we may keep the graph

data on disk and design I/O-efficient query algorithms.

11.5 An Online Repository for Codes and Datasets

For most of surveyed CS studies, their codes of algo-

rithms and datasets are not publicly available. Thus, it

is desirable to build an online repository to keep these

codes and datasets. The major benefits of doing this are

two-fold: First, for researchers, the codes and datasets

can serve as a benchmark for comparison studies. Sec-
ond, practitioners can easily plug these CS solutions

into their applications without re-implementation.

12 Conclusion

In this paper, we conduct an extensive survey on the

topic of community search over large graphs. We sys-

tematically review over 30 research articles, which focus

on the topic of community search, published between

2010 and 2019. We first analyze and compare differ-

ent community cohesiveness metrics. Then, we classify

studies about CS according to these metrics, and for

each class of works, we review and discuss the repre-

sentative studies on different types of graphs. Further-

more, two systems that are customized for the purpose

of community search are discussed. Finally, we point

out a list of future research topics as well as challenges.

In summary, our survey provides an overview of the

start-of-the-art research achievements on the topic of

community search, and it will give researchers a thor-

ough understanding of community search.
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