
Noname manuscript No.
(will be inserted by the editor)

I/O Efficient K-Truss Community Search in Massive Graphs

Yuli Jiang · Xin Huang · Hong Cheng

the date of receipt and acceptance should be inserted later

Abstract Community detection that discovers all densely

connected communities in a network has been studied

a lot. In this paper, we study online community search

for query-dependent communities, which is a different

but practically useful task. Given a query vertex in a

graph, the problem is to find meaningful communities

that the vertex belongs to in an online manner. We pro-

pose a community model based on the k-truss concept,

which brings nice structural and computational proper-

ties. We design a compact and elegant index structure

which supports the efficient search of k-truss commu-

nities with a linear cost with respect to the community

size. We also investigate the k-truss community search

problem in a dynamic graph setting with frequent inser-

tions and deletions of graph vertices and edges. In addi-

tion, to support k-truss community search over massive

graphs which cannot entirely fit in main memory, we

propose I/O-efficient algorithms for query processing

under the semi-external model. Extensive experiments

on massive real-world networks demonstrate the effec-

tiveness of our k-truss community model, the efficiency,

and the scalability of our in-memory and semi-external

community search algorithms.

Keywords k-truss; community search; dynamic

graphs; semi-external algorithms

Yuli Jiang
The Chinese University of Hong Kong, Hong Kong, China
E-mail: yljiang@se.cuhk.edu.hk

Xin Huang
Hong Kong Baptist University, Hong Kong, China
E-mail: xinhuang@comp.hkbu.edu.hk

Hong Cheng
The Chinese University of Hong Kong, Hong Kong, China
E-mail: hcheng@se.cuhk.edu.hk

1 Introduction

Community structure exists in many real-world net-

works, for example, social networks and biological net-

works [18]. Community detection, which is to find com-

munities in a network, has been studied a lot in the lit-

erature [29,37]. A different but related problem is online

community search, which finds communities containing

a query vertex in an online manner [31,7,32,8,17,3,19,

36,1,11,20,38,42,43,13,44,12,18,41,23,24]. These two

tasks have different goals: community detection targets

all communities in the entire network and usually ap-

plies a global criterion to find qualified communities.

In contrast, online community search provides person-

alized community detection for a query vertex. As com-

munities for different vertices in a network may have

very different characteristics, this user-centered person-

alized search is more meaningful. Furthermore, as the

communities a user participates in represent the social

contexts of the user, online community search provides

a useful tool for other analytical tasks, such as social

circle discovery [28] and social contagion modeling [33].

In this paper, we study modeling and querying of the

communities of a query vertex.

Cui et al. [7] have proposed a novel approach for on-

line overlapping community search. A community model

was defined as an α-adjacency-γ-quasi-k-clique. A γ-

quasi-k-clique is a k-node graph with at least bγ k(k−1)
2 c

edges. Another parameter α is imposed to union two γ-

quasi-k-cliques if they share at least α vertices. Given a

query vertex q, the problem is to find all α-adjacency-γ-

quasi-k-cliques containing q. However, there are several

limitations in this community model.
1. γ as an average density measure, may not necessar-

ily guarantee a cohesive community structure. Con-

sider the graph in Figure 1 which is a 0.8-quasi-7-

clique containing query vertex q. However, q is only

2 Yuli Jiang et al.

connected with one vertex in the community, thus

it is not a cohesive community for q obviously.

2. There are three parameters α, γ, k in this model, the

setting of which may vary significantly for different

query vertices. For example, in a research collabora-

tion network, the communities of a famous scholar

and a junior scholar can be dramatically different

in terms of the community size and density. Thus

it is difficult to choose proper values for the three

parameters given a query vertex.

3. Finding α-adjacency-γ-quasi-k-clique has been proven

to be NP-hard [7], which imposes a severe com-

putational bottleneck. The approximate algorithms

for clique enumeration and expansion [7] reduce the

complexity, but cannot give a theoretical guarantee

of the approximation quality.

s6s5

s4s3

s2s1

q

Fig. 1 A 0.8-quasi-7-clique containing q

Considering these limitations, we propose a novel

community model based on the k-truss concept. Given

a graph G, the k-truss of G is the largest subgraph in

which every edge is contained in at least (k−2) triangles

within the subgraph [6]. The k-truss is a type of cohe-

sive subgraph defined based on triangle which models

the stable relationship among three nodes. However,

the k-truss subgraph may be disconnected, for exam-

ple, the two shaded regions form the 4-truss subgraph

in Figure 2(a) which is obviously disconnected. So the

k-truss subgraph may not correspond to a meaningful

community. On top of the k-truss, we impose an edge

connectivity constraint, that is, any two edges in a com-

munity either belong to the same triangle, or are reach-

able from each other through a series of adjacent trian-

gles. Here two triangles are defined as adjacent if they

share a common edge. The edge connectivity require-

ment ensures that a discovered community is connected

and cohesive. This defines our novel k-truss commu-
nity model. To the best of our knowledge, this is the

first work that proposes the k-truss community. Com-

pared with the α-adjacency-γ-quasi-k-clique model, our

community model has the following advantages.

1. Cohesive community. The k-truss community has

a cohesive structure according to our analysis in Sec-

tion 2. For example, the graph in Figure 1 is not a

valid k-truss community containing q for k ≥ 3, as

the edge (q, s4) is not in any of the triangles.

2. Fewer parameters. Our community model only

needs to specify the trussness value k. In addition,

a (k + 1)-truss community is contained in a k-truss

community. Thus by using different k values for

community queries, we can get a hierarchical com-

munity structure of a query vertex.

3. Polynomial time algorithm. There exist poly-

nomial time algorithms for computing the k-truss

subgraphs [6,34], which make the k-truss commu-

nity model computationally tractable and efficient.

Simply searching k-truss community by its defini-

tion may incur a large number of wasteful edge accesses

as shown in Section 3.2. Thus the key to efficient k-truss

community query processing is to design an effective in-

dex. Towards this goal, we first apply an efficient truss

decomposition algorithm [34] on a graph G which com-

putes the k-truss subgraphs for all k values. Then we

design a novel and elegant index structure, called TCP-

Index, to index the pre-computed k-truss subgraphs.

The TCP-Index preserves the trussness value and the

triangle adjacency relationship in a compact tree-shape

index, and supports the query of k-truss community in

linear time with respect to the community size, which

is optimal. Interestingly, the k-truss community model

can be generalized using other dense subgraph defini-

tions, such as the k-core community and the k-edge-

connected component community. The TCP-Index and

the proposed query algorithm can be extended to han-

dle the above models.

In real-world networks, vertices and edges can be

frequently inserted or deleted. Thus we study k-truss

community search in dynamic graphs in Section 4. We

present a theoretical analysis to identify the scope in a

graph that is affected by edge insertion/deletion. Specif-

ically, we derive a tight upper bound of the trussness for

a newly inserted edge, which allows us to precisely iden-

tify the affected region with a light cost. Then we design

efficient algorithms to update the trussness value and

the TCP-Index in the affected region. The incremental

update algorithms effectively support querying k-truss

community in highly dynamic graphs.

On top of the conference version [17], we further in-

vestigate the problem of k-truss community search in

massive graphs in Section 5, where the entire graph can-

not fit in main memory. The motivation is that many

big graphs in real world are too large to reside en-

tirely in the main memory. For instance, one web graph

crawled by WebBase crawler in 2001 consists of 115.5

million nodes and 1.7 billion edges [2], which is difficult

to fit in the main memory of an ordinary machine. In

the literature, there exist I/O-efficient algorithms for

truss decomposition [34]. However, to the best of our

knowledge, I/O-efficient algorithms for k-truss commu-

nity search in massive graphs have not been studied

yet. The challenges lie in developing I/O-efficient so-

lutions for TCP-Index construction and online k-truss

I/O Efficient K-Truss Community Search in Massive Graphs 3

community search. Specifically, the structure of TCP-

Index for a graph or even for a neighborhood induced

subgraph may not fit in main memory. We develop

several novel strategies to tackle the memory capacity

issue. We adopt the widely used semi-external model

by assuming that all nodes can be stored in memory

while the edges are stored on disk. For example, for the

graph with 115.5 million nodes and 1.7 billion edges,

it only requires 5.5 GB memory for running our semi-

external algorithms, which is affordable for most PCs

nowadays. For TCP-Index construction, a straightfor-

ward approach is to generate the weighted neighbor-

hood graphs and sort the weighted edges by external

sorting on disk. However, this approach may incur large

I/O costs by frequently moving edges between disk and

main memory. To reduce I/O costs, we propose an I/O-

efficient algorithm, which does not use external sorting

and achieves a low I/O complexity. Moreover, we de-

velop an I/O-efficient algorithm for k-truss community

search based on two elegant data structures of bitmap

and circular queue for reducing I/O costs.

We conduct extensive experimental studies on large

real-world networks and have the following findings.

First, k-truss community search using the TCP-Index is

highly efficient in all networks. The query time is from

one millisecond for low degree query vertices to a few

seconds for high degree query vertices which have large

and dense communities. The TCP-Index is very com-

pact and can be constructed very efficiently. Second,

the TCP-Index can be updated in milliseconds given

an edge insertion/deletion. Thus it is highly efficient

to support the k-truss community search in dynamic

graphs. Third, our semi-external algorithms are par-

ticularly efficient on real-world networks in terms of

both index construction and query processing. For the

WebBase graph with 115.5 million nodes and 1.7 billion

edges, our I/O-efficient algorithm takes 11.8 hours for

index construction. The query processing takes around

one millisecond for low degree query vertices and 0.1 –

1 second for high degree query vertices. Last but not

least, we evaluate the quality of the discovered commu-

nities on two social networks with ground-truth com-

munities and a scientific collaboration network. The re-

sults show that our community model can find cohesive

and meaningful communities of a query vertex.

The rest of this paper is organized as follows. We for-

mulate the k-truss community search problem in Sec-

tion 2. We design a novel TCP-Index and an efficient

k-truss community search algorithm in a static graph

in Section 3. We further study how to maintain the

TCP-Index for query processing in a dynamic graph in

Section 4. We investigate the problem of k-truss com-

munity search using a semi-external model, and develop

p1

p3 p4

t
r1

r2 r3

q

s1 s2

s4x1 s3

p2

x2

4-truss graph

C1

C2

t r1

r2 r3

q

p1

p3 p4

t q

p2

(a) Graph G (b) Two 4-truss communities for q

Fig. 2 k-truss community example

I/O-efficient algorithms in Section 5. Extensive experi-

mental results on large real-world networks are reported

in Section 6. We discuss related work in Section 7 and

conclude this paper in Section 8.

2 K-Truss Community

2.1 Problem Definition

We consider an undirected, unweighted simple graph

G = (V,E) with n = |V | vertices and m = |E| edges.

We denote the set of neighbors of a vertex v by N(v),

i.e., N(v) = {u ∈ V : (v, u) ∈ E}, and the degree of v

by d(v) = |N(v)|. We use dmax to denote the maximum

vertex degree in G.

A triangle in G is a cycle of length 3. Let u, v, w ∈ V
be the three vertices on the cycle, and we denote this

triangle by4uvw. Then the support of an edge is defined

as follows.

Definition 1 (Support) The support of an edge e(u, v)

∈ E in G, denoted by sup(e,G), is defined as |{4uvw :

w ∈ V }|. When the context is obvious, we replace

sup(e,G) by sup(e).

If an edge e is contained in a triangle 4, we denote

it by e ∈ 4. Now we give the definitions of triangle

adjacency and triangle connectivity below.

Definition 2 (Triangle Adjacency) Given two tri-

angles 41,42 in G, they are adjacent if 41 and 42

share a common edge, which is denoted by 41 ∩ 42

6= ∅.

Definition 3 (Triangle Connectivity) Given two tri-

angles4s,4t inG,4s and4t are triangle connected, if

there exist a series of triangles 41, . . . ,4n in G, where

n ≥ 2, such that 41 = 4s, 4n = 4t and for 1 ≤ i < n,

4i ∩ 4i+1 6= ∅.
For the graph G in Figure 2(a), e(q, p4) is contained

in 4qp3p4
and 4qp2p4

, thus its support sup(e(q, p4)) =

2.4qp3p4 and4qp2p4 are triangle adjacent as they share

a common edge e(q, p4). 4tp3p4
and 4qp2p4

are triangle

connected through 4qp3p4
in G.

On the basis of definitions of support and triangle

connectivity, we define a k-truss community as follows.

Definition 4 (K-Truss Community) Given a graph

G and an integer k ≥ 2, G′ is a k-truss community, if

G′ satisfies the following three conditions:

(1) K-Truss. G′ is a subgraph of G, denoted as G′ ⊆ G,

such that ∀e ∈ E(G′), sup(e,G′) ≥ k − 2;

4 Yuli Jiang et al.

(2) Edge Connectivity. ∀e1, e2 ∈ E(G′), ∃41,42 in G′

such that e1 ∈ 41, e2 ∈ 42, then either 41 = 42,

or 41 is triangle connected with 42 in G′;

(3) Maximal Subgraph. G′ is a maximal subgraph sat-

isfying conditions (1) and (2). That is, @G′′ ⊆ G,

such that G′ ⊂ G′′, and G′′ satisfies conditions (1)

and (2).

Actually, the largest subgraph satisfies condition (1) is

exactly the k-truss definition used in literature [6,34].

However, the k-truss condition itself is insufficient to

define a cohesive and meaningful community due to the

following two reasons. First, a k-truss subgraph can be

disconnected, thus does not represent a cohesive com-

munity. For example, the two shaded regions in Figure

2(a) form the 4-truss subgraph of G, which is obviously

disconnected. So this 4-truss subgraph does not corre-

spond to a meaningful community. Second, for a fixed

k value, any vertex can belong to at most one k-truss

subgraph. This cannot deal with a common scenario

that a user can participate in multiple communities.

With these considerations, we impose the edge con-

nectivity requirement in condition (2) to ensure the dis-

covered communities are connected and cohesive. The

rationale is that, a triangle represents the strong and

stable relationship among three vertices. If any two

edges in a subgraph are reachable from each other through

a series of adjacent triangles, the subgraph must be

connected, and have a cohesive structure among all in-

volved vertices. This definition also allows a vertex to

participate in multiple communities.

Example 1 Two 4-truss communities containing vertex

q are shown in Figure 2(b) as C1 and C2, respectively.

We can verify that every edge in C1 is contained in

at least two triangles in C1, any two edges in C1 are

reachable through adjacent triangles, and C1 is max-

imal. Thus C1 is a 4-truss community. These proper-

ties also hold for another 4-truss community C2. As the

edges in C1 cannot reach the edges in C2 through ad-

jacent triangles, C1 and C2 cannot merge as one large

community. This is very reasonable, as there is no con-

nection between the two vertex sets {p1, p2, p3, p4} and

{r1, r2, r3}. In addition, we can see that vertices q and

t participate in both communities.

Problem Definition. The problem of k-truss com-

munity search studied in this paper is defined as fol-

lows. Given a graph G(V,E), a query vertex vq ∈ V and

an integer k ≥ 2, find all k-truss communities contain-

ing vq. We also study k-truss community search in dy-

namic graphs, where vertices and edges are frequently

inserted or deleted. Moreover, we further investigate k-

truss community search over massive graphs which can-

not entirely fit in memory using a semi-external model.

2.2 Why K-Truss Community?

Compared with the α-adjacency γ-quasi-k-clique [7] com-

munity model, k-truss community model has three sig-

nificant advantages: stronger guarantee on cohesive struc-

ture, fewer parameters and lower computational cost.

These nice properties, which are inherited from the k-

truss subgraph [6], not only lead to the discovery of

more cohesive and meaningful communities, but also

enable the design of more efficient, scalable and easier-

to-use algorithms for community search. We present

these properties in the following.

Bounded Diameter in K-Truss Community. The

diameter of a k-truss community C with |C| vertices is

no larger than b 2|C|−2k c [6]. This property guarantees

that the shortest distance between any two vertices in

a community is bounded, which has been considered as

an important feature of a good community in [10].

Consider the 4-truss community C1 in Figure 2(b)

as an example. The diameter of C1 is 2, which is the

same as the diameter upper bound b 2×6−24 c = 2.

(K-1)-Edge-Connected Graph. A graph is (k − 1)-

edge-connected if it remains connected whenever fewer

than k−1 edges are removed [14]. A k-truss community

is (k−1)-edge-connected [6]. This property ensures high

connectivity of a community, which has been proposed

as a criterion of a good community in [15].
In contrast, the γ-quasi-k-clique is not (k−1)-edge-

connected for γ < 1. The 0.8-quasi-7-clique in Figure 1

becomes disconnected when one edge is removed.

Fewer Parameters. In k-truss community model, we

only need to specify the trussness value k, which con-

trols or affects the diameter, edge connectivity, and

edge support in a community. In contrast, α-adjacency

γ-quasi-k-clique model uses three parameters, the ad-

jacency parameter α, density γ and clique size k. Al-

though having more parameters may give more leverage

on the properties of the community, it is much more dif-

ficult to choose proper values for different parameters.

Polynomial Time Complexity. There exist polyno-

mial time algorithms [6,34] for computing k-truss sub-

graphs. By applying such algorithms, we can compute

k-truss subgraphs for all k. The pre-computed results

enable us to design compact index structures and effi-

cient algorithms for querying k-truss communities. In

contrast, finding γ-quasi-k-cliques has been proven to

be NP-hard [7], which imposes a severe computational

bottleneck.

2.3 Variations of K-Truss Community

The k-truss community can be extended to several in-

teresting variants.
Densest K-Truss Community. It is interesting to

discover the densest k-truss community containing a

I/O Efficient K-Truss Community Search in Massive Graphs 5

5-truss edge

4-truss edge

3-truss edgep

r1 r2

x4

x3x2

x1
s4

s3

s2s1

q

Fig. 3 An example graph for k-truss community search

user q, that is, a k-truss community containing q that

maximizes the trussness value k.
Most Diverse Communities. It is interesting to know

how diverse the social contexts of a user q are, where

a community represents a distinct social context. For a

set of k-truss communities containing q as {C1, . . . , Cl},
the community diversity is measured by the entropy

of the community vertex size distribution: Div(q, k) =

−
∑

1≤i≤l
|Ci|∑

1≤j≤l |Cj | log |Ci|∑
1≤j≤l |Cj | . By choosing k which

maximizes the diversity, i.e., k = arg maxkDiv(q, k), we

can find the most diverse communities.
Other Community Models. The community model

can be generalized using other dense subgraph defini-

tions, such as the k-core community and k-edge-connected

component community [18,27]. Take k-core as an exam-

ple. A graph G′ ⊆ G is a k-core community if it satisfies

the following three conditions:
1. G′ is a k-core graph;

2. G′ satisfies the triangle-based edge connectivity re-

quirement;

3. G′ is a maximal subgraph satisfying the above two

conditions.
The techniques for k-truss community search pro-

posed in this paper can be extended to solve the above

variant forms. Accordingly, the index construction for

k-truss community (in Algorithm 3) needs to be modi-

fied for constructing the TCP-Index for k-core commu-

nity. Specifically, for an edge (x, y) ∈ E(G), we define

τ((x, y)) as the largest k value that (x, y) belongs to a

k-core community. The core value for every edge can

be precomputed using a modified core decomposition

method on G in step 1. The rest of Algorithm 3 re-

mains unchanged. For querying k-core community us-

ing the TCP-Index, the query processing algorithm (in

Algorithm 4) remains unchanged.

3 Querying K-Truss Community

In this section, we study how to process a k-truss com-

munity query. We first design a simple k-truss index

which is then proven to incur unnecessary computa-

tional overhead for query processing. Then we design

a compact and elegant structure, called Triangle Con-

nectivity Preserved Index (TCP-Index), and a highly ef-

ficient algorithm to process a k-truss community query.

3.1 Subgraph and Edge Trussness

We define the trussness of subgraphs and edges as fol-

lows.

Algorithm 1 Truss Decomposition

Input: G = (V,E)
Output: τ(e) for each e ∈ E

1: k ← 2;
2: compute sup(e) for each edge e ∈ E;
3: sort all the edges in ascending order of their support;
4: while(∃e such that sup(e) ≤ (k − 2))
5: let e = (u, v) be the edge with the lowest support;
6: assume, w.l.o.g, deg(u) ≤ deg(v);
7: for each w ∈ N(u) and (v, w) ∈ E do
8: sup((u,w))← sup((u,w))− 1;

sup((v, w))← sup((v, w))− 1;
9: reorder (u,w) and (v, w) according to their new

support;
10: τ(e)← k, remove e from G;
11: if(not all edges in G are removed)
12: k ← k + 1;
13: goto Step 4;
14: return {τ(e)|e ∈ E};

Definition 5 (Subgraph Trussness) The trussness

of a subgraph H ⊆ G is the minimum support of an

edge in H, denoted by τ(H) = min{sup(e,H)+2 : e ∈
E(H)}.
Definition 6 (Edge Trussness) The trussness of an

edge e ∈ E(G) is defined as τ(e) = maxH⊆G{τ(H) :

e ∈ E(H)}.
Such a subgraph H which defines τ(e) is denoted

as He. It follows that τ(He) = τ(e). For an edge e

and 2 ≤ k ≤ τ(e), we denote the k-truss community

containing e as He
k , which is unique in the sense that

no other k-truss community contains e. We use kgmax

to denote the maximum trussness of any edge in G.

Consider the graph in Figure 3 as an example. The

trussness of the edge e(s1, s2) is τ(e) = 5, and the sub-

graphHe is the 5-clique on the vertex set {q, s1, s2, s3, s4}.

3.2 A Simple K-Truss Index

We design a simple k-truss index and propose an algo-

rithm for k-truss community search based on the index.

K-Truss Index Construction. We first apply a truss

decomposition algorithm [34] on G, which computes the

trussness of each edge. For the self-completeness of this

paper, the truss decomposition algorithm [34] is out-

lined in Algorithm 1. After the initialization, for each k

starting from k = 2, the algorithm iteratively removes

the lowest support edge e(u, v) if sup(e) ≤ k − 2. We

assign the trussness of the removed edge as τ(e) = k.

Upon the removal of e, we also decrement the support of

all other edges that form a triangle with e, and reorder

them according to their new support. This process con-

tinues until all edges with support less than or equal

to (k − 2) are removed. In this way, we compute the

trussness of all edges in G.

6 Yuli Jiang et al.

Algorithm 2 Query Processing Using K-Truss Index

Input: G = (V,E), an integer k, query vertex vq
Output: k-truss communities containing vq

1: visited← ∅; l← 0;
2: for u ∈ N(vq) do
3: if τ((vq, u)) ≥ k and (vq, u) /∈ visited
4: l← l + 1; Cl ← ∅; Q← ∅;
5: Q.push((vq, u)); visited← visited ∪ {(vq, u)};
6: while Q 6= ∅
7: (x, y)← Q.pop(); Cl ← Cl ∪ {(x, y)};
8: for z ∈ N(x) ∩N(y) do
9: if τ((x, z)) ≥ k and τ((y, z)) ≥ k

10: if (x, z) /∈ visited
11: Q.push((x, z));
12: visited← visited ∪ {(x, z)};
13: if (y, z) /∈ visited
14: Q.push((y, z));
15: visited← visited ∪ {(y, z)};
16: return {C1, . . . , Cl};

For each vertex v ∈ V , we sort its neighbors N(v)

in descending order of the edge trussness τ(e(u, v)) for

u ∈ N(v). For each distinct trussness value k ≥ 2, we

mark the position of the first vertex u in the sorted ad-

jacency list where τ(e(u, v)) = k. This supports efficient

retrieval of v’s incident edges with a certain trussness

value. We also use a hash table to keep all edges and

their trussness values. This is the simple k-truss index.

Query Processing. Algorithm 2 outlines the proce-

dure to process a k-truss community query based on

the simple index. Given an integer k and a query ver-

tex vq, the algorithm checks every incident edge on vq
to search k-truss communities. If there exists an unvis-

ited edge (vq, u) with τ((vq, u)) ≥ k, (vq, u) is the seed

edge to form a new community Cl. By definition, all the
other edges in Cl can be reached from (vq, u) through

adjacent triangles. So we push (vq, u) into a queue Q

and perform a BFS traversal to search for other edges

for expanding Cl, i.e., edges which have trussness no

less than k and form triangles with edges already in

Cl (line 6-15). When Q becomes empty, all edges in Cl

have been found. Then the algorithm checks the next

unvisited incident edge of vq for forming a new commu-

nity Cl+1. This process iterates until all incident edges

of vq have been processed. Finally, a set of k-truss com-

munities containing vq are returned.

The correctness of Algorithm 2 is apparent since the

algorithm essentially computes k-truss communities by

definition, that is, exploring triangle connected edges

with trussness no less than k in a BFS manner. We show

the complexity of the simple k-truss index construction

and query processing by Algorithm 2 as follows.

Theorem 1 The construction of the simple k-truss in-

dex takes O(
∑

(u,v)∈E min{d(u), d(v)}) time and O(m)

space. The index size is O(m). Algorithm 2 takes O(

dAmax|Ans|) time to process one query, where Ans =

C1 ∪ . . . ∪ Cl is the union of the produced k-truss com-

munities, |Ans| is the edge number in Ans and dAmax

is the maximum vertex degree in Ans.

The proof can be found in [17].

Example 2 Suppose we want to query the 4-truss com-

munities containing vertex q in the graph in Figure 3.

Algorithm 2 first visits edge (q, s1) with τ((q, s1)) = 5 ≥
4, and adds it into Q. The algorithm pops (q, s1) from

Q and inserts it into a new community C1. Then the

algorithm checks the common neighbors of q and s1 and

the edges between them. Consider a common neighbor

s2 as an example. As τ((q, s2)) ≥ 4 and τ((s1, s2)) ≥ 4,

both edges (q, s2) and (s1, s2) are then inserted into C1

and also pushed into Q for further expansion. This BFS

expansion process continues until Q is empty and the

4-truss community C1 is the induced subgraph by the

vertex set {q, s1, s2, s3, s4, x1, x2, x3, x4}.

3.3 A Novel TCP-Index

3.3.1 Limitations of Simple K-Truss Index

Algorithm 2 has two drawbacks in its query processing

mechanism by using the simple k-truss index. Specifi-

cally, in line 8-15, for any edge (x, y) that has already

been included in Cl, the algorithm needs to access adja-

cent edges (x, z) and (y, z) for each common neighbor z

of x and y. The following two cases lead to unnecessary

and excessive computational overhead.
1. Unnecessary access of disqualified edges: If

τ((x, z)) < k or τ((y, z)) < k, (x, z), (y, z) will not

be included in Cl, thus accessing and checking such

disqualified edges become a waste.

2. Repeated access of qualified edges: For each

edge (u, v) in Cl, it is accessed at least 2(k − 2)

times in the BFS traversal, which is a huge waste.

This is because τ((u, v)) ≥ k, (u, v) is contained in

at least (k−2) triangles by definition. For each such

triangle denoted as 4uvw, (u, v) will be accessed

twice when we do BFS expansion from the other two

edges (u,w), (v, w). It follows that the query time of

Algorithm 2 is lower bounded by Ω(k|Ans|).
Considering these drawbacks, we design a novel Tri-

angle Connectivity Preserved Index (TCP-Index), which

avoids computational problems in Algorithm 2. Remark-

ably, TCP-Index supports k-truss community query in

O(|Ans|) time, which is essentially optimal. Meanwhile,

TCP-Index can be constructed in O(
∑

(u,v)∈E min{d(u),

d(v)}) time and stored in O(m) space, which has ex-

actly the same complexity as simple k-truss index.

3.3.2 TCP-Index Construction

We first make some observations from the example in

Figure 3.

I/O Efficient K-Truss Community Search in Massive Graphs 7

Observation 1: Consider 4pqs3 in which the three

edge trussness values are 5, 3, and 3. Then 4pqs3 can

appear in a 3-truss community, but not in 4- or 5-truss

communities, due to the two 3-truss edges. To general-

ize, a triangle 4xyz can appear only in k-truss commu-

nities where k ≤ min{τ((x, y)), τ((x, z)), τ((y, z))}.
Observation 2: Consider a subgraph in Figure 4(a)

which is extracted from Figure 3. By definition, vertices

x1, x2, x3 belong to the same 5-truss community con-

taining q, as each involved edge is 5-truss, and 4qx1x2

and 4qx1x3 are adjacent via edge (q, x1). Thus we can

use a compact representation for vertex q as depicted in

solid line in Figure 4(b), which preserves the trussness

and adjacency information for community search. Note

that there is no need to include edge (x2, x3), as the

tree-shape structure clearly indicates that x2, x3 belong

to the same 5-truss community by triangle adjacency.

x1

x2

x3

q

55

55

5
5

x1

x2

x3

q

5

5

(a) Subgraph extracted from Fig. 3 (b) Compact representation

Fig. 4 Compact representation of a community with q

Observation 3: From Figure 3, we can see two 5-truss

communities {q, x1, x2, x3, x4}, {q, s1, s2, s3, s4} involv-

ing vertex q are contained in the 4-truss community

{q, x1, x2, x3, x4, s1, s2, s3, s4}, which is in turn contained

in the 3-truss community, which is the whole graph.

Based on the above observations, we are ready to

construct the TCP-Index using Algorithm 3. For each

vertex x ∈ V , we build a graph Gx, where V (Gx) =

N(x), and E(Gx) = {(y, z)|(y, z) ∈ E(G), y, z ∈ N(x)}.
For each edge (y, z) ∈ E(Gx), we assign a weight w(y, z)
= min{τ((x, y)), τ((x, z)), τ((y, z))}, which indicates

that 4xyz can appear only in k-truss community where

k ≤ w(y, z) based on Observation 1. The TCP-Index for

vertex x is a tree structure, denoted as Tx, which is ini-

tialized to be the node set N(x). Then in line 8-12, for

each k from the largest weight kmax to 2, we iteratively

collect the set of edges Sk ⊆ E(Gk) whose weight is k.

For each (y, z) ∈ Sk, if y, z are still in different compo-

nents of Tx, we add (y, z) with a weight w(y, z) into Tx.

Essentially, Tx is the maximum spanning forest of Gx.

The trees Tx for all x ∈ V form the TCP-Index of G.

Example 3 Figure 5 shows the TCP-Index for vertex q

in the graph in Figure 3. Tq is initialized to be N(q).

Figure 5(a) shows the tree structure when we add edges

whose weights are 5. According to Observation 2, when

the edges (x1, x2) and (x1, x3) are added into Tq, the

edge (x2, x3) will not be added into Tq, as x2, x3 are al-

ready connected in Tq and we know that x2, x3 belong

to the same 5-truss community by triangle adjacency.

This is essential to keep Tq as a compact forest. The

Algorithm 3 TCP-Index Construction

Input: G = (V,E)
Output: TCP-Index Tx for each x ∈ V

1: Perform truss decomposition for G;
2: for x ∈ V do
3: Gx ← {(y, z)|y, z ∈ N(x), (y, z) ∈ E};
4: for (y, z) ∈ E(Gx) do
5: w(y, z)← min{τ((x, y)), τ((x, z)), τ((y, z))};
6: Tx ← N(x);
7: kmax ← max{w(y, z)|(y, z) ∈ E(Gx)} ;
8: for k ← kmax to 2 do
9: Sk ← {(y, z)|(y, z) ∈ E(Gx), w(y, z) = k};

10: for (y, z) ∈ Sk do
11: if y, z are in different components in Tx
12: add (y, z) with weight w(y, z) in Tx;
13: return {Tx|x ∈ V };

complete TCP-Index for q is shown in Figure 5(c). Ac-

cording to the community containment relationship in

Observation 3, it is sufficient to use a single structure

Tq for all trussness levels from kmax to 2.

(a) 5-truss level (b) 4-truss level (c) 3-truss level

x1

x2

x4

x3

s4s1

s2 s3

r1r2 p

5

55

5

55 4

33
3

x1

x2

x4

x3

s4s1

s2 s3

r1r2 p

5

55

5

55 4
x1

x2

x4

x3

s4s1

s2 s3

r1r2 p

5

55

5

55

Fig. 5 TCP-Index construction of vertex q

Theorem 2 The TCP-Index of graph G can be con-

structed in O(
∑

(u,v)∈E min{d(u), d(v)}) time and O(m)

space by Algorithm 3. The index size is O(m).

The proof can be found in [17].

Remark 1 O(
∑

(u,v)∈E min{d(u), d(v) }) ⊆ O(ρm) holds

according to [5], where ρ is the arboricity of a graph G.

ρ ≤ min {d
√
m e, dmax} holds for any graph. Thus the

TCP-Index construction time is O(
∑

(u,v)∈E min{d(u),

d(v)}) ⊆ O(ρm) ⊆ O(m1.5).

3.3.3 Query Processing Using TCP-Index

We first illustrate query processing through an exam-

ple, before we formally present the algorithm. Accord-

ing to the design of the TCP-Index, if two vertices are

connected through a series of edges with weight ≥ k in

Tx for x ∈ V , these two vertices belong to the same k-

truss community via adjacent triangles. Consider Tq in

Figure 5(c). As x2, x3 are connected through two edges

with weight 5, they belong to the same 5-truss commu-

nity. Thus we first define the k-level connected vertex

set on a tree Tx to find all such vertices that belong to

a k-truss community.

Definition 7 (K-Level Connected Vertex Set) For

x ∈ V and y ∈ N(x), we use Vk(x, y) to denote the set

of vertices which are connected with y through edges of

weight ≥ k in Tx. We regard y also belongs to this set,

i.e., y ∈ Vk(x, y).

8 Yuli Jiang et al.

x4x3x2x1

q

x4x3x2x1

q

x4

x3x2

x1

q

(c) Complete 5-truss community(b) Expansion from x2(a) Expansion from q

Fig. 6 5-truss community query on q using TCP-Index

Example 4 If we want to query 5-truss communities

containing q, we first visit an incident edge on q, (q, x1)

where τ((q, x1)) = 5. From Tq we retrieve the vertex

set V5(q, x1) = {x1, x2, x3, x4} as they are connected

through edges with weight 5. According to Observation

2, these four vertices belong to the same 5-truss com-

munity with q. As V5(q, x1) ⊂ N(q), we can construct

part of the community as shown in Figure 6(a).

At this stage, we still miss the edges between the

four vertices, for example, (x2, x3), (x3, x4), etc. This

is because Tq which is a spanning forest does not keep

all the edges between the vertices. To fully recover all

the edges in the 5-truss community, for each vertex

xi ∈ V5(q, x1), we “reverse” the edge (q, xi) to (xi, q),

then further expand the community in xi’s neighbor-

hood. Take vertex x2 as an example. We reverse (q, x2)

to (x2, q) and then query x2’s index Tx2 to get the ver-

tex set V5(x2, q) = {q, x1, x3, x4}, as x1, x3, x4 are con-

nected with q in Tx2
. Then we can obtain the edges

between x2 and every vertex in V5(x2, q). After this,

the community is shown in Figure 6(b). Similarly, we

perform the reverse operation for each vertex x1, x3, x4
and get the complete 5-truss community in Figure 6(c).

We can observe that in this search process, each edge

in a community is accessed exactly twice, for example,

accessing (q, x2) from Tq and (x2, q) from Tx2
.

Algorithm 4 outlines the procedure of query pro-

cessing using the TCP-Index. Similar to Algorithm 2,

Algorithm 4 computes the k-truss communities for a

query vertex vq by expanding from each incident edge

on vq in a BFS manner. If there exists an unvisited

edge (vq, u) with τ((vq, u)) ≥ k, (vq, u) is the seed edge

to form a new community Cl (line 2-4). Then the al-

gorithm performs a BFS traversal using a queue Q in

line 5-14. For an unvisited edge (x, y), it searches the

vertex set Vk(x, y) from Tx. The procedure of comput-

ing Vk(x, y) is listed in line 16-17. For each z ∈ Vk(x, y),

the edge (x, z) is added into Cl. Then we perform the

reverse operation, i.e., if (z, x) is not visited yet, it is

pushed into Q for z-centered community expansion us-

ing Tz. Note that (z, x) and (x, z) are considered dif-

ferent here. When Q becomes empty, all edges in Cl

have been found. The process iterates until all incident

edges of vq have been processed. Finally, a set of k-truss

communities containing vq are returned.

We prove the correctness of Algorithm 4 as follows.
Lemma 1 Given a query vertex x ∈ V and an integer

k, Algorithm 4 correctly computes all k-truss commu-

nities containing x.

Algorithm 4 Query Processing Using TCP-Index

Input: G = (V,E), an integer k, query vertex vq
Output: k-truss communities containing vq

1: visited← ∅; l← 0;
2: for u ∈ N(vq) do
3: if τ((vq, u)) ≥ k and (vq, u) /∈ visited
4: l← l + 1; Cl ← ∅; Q← ∅;
5: Q.push((vq, u));
6: while Q 6= ∅
7: (x, y)← Q.pop();
8: if (x, y) /∈ visited
9: compute Vk(x, y);

10: for z ∈ Vk(x, y) do
11: visited← visited ∪ {(x, z)};
12: Cl ← Cl ∪ {(x, z)};
13: if the reverse edge (z, x) /∈ visited
14: Q.push((z, x));
15: return {C1, · · · , Cl};
16: Procedure compute Vk(x, y)
17: return {z|z is connected with y in Tx through edges of

weight ≥ k};

The proof can be found in [17].

Theorem 3 The time complexity of Algorithm 4 is O

(|Ans|), where Ans = C1 ∪ . . . ∪ Cl is the union of the

produced k-truss communities and |Ans| is the number

of edges in Ans.

The proof can be found in [17].

Complexity Comparison. By using the TCP-Index
and the simple k-truss index, each edge in a k-truss

community is accessed exactly twice versus at least 2(k−
2) times. In addition, the TCP-Index successfully avoids

the unnecessary access of disqualified edges whose truss-

ness is less than k. These are the key reasons to explain

the query time difference between Algorithms 4 and 2,

i.e., O(|Ans|) versus O(dAmax|Ans|). Meanwhile, the

TCP-Index construction has exactly the same time and

space complexity as the simple k-truss index.

4 Querying K-Truss Community in Dynamic

Graphs

In this section, we study k-truss community search in

dynamic graphs where vertices and edges are inserted or

deleted. We mainly focus on edge insertion and deletion,

because vertex insertion/deletion can be regarded as a

sequence of edge insertions/deletions preceded/followed

by the insertion/deletion of an isolated vertex.

Consider the insertion of edge e0(x, y) into G which

leads to a set of new triangles {4xyz : z ∈ N(x) ∩
N(y)}. Due to a new 4xyz, the support of both edges

(x, z), (y, z) increases by 1. This may increase the sub-

graph trussness, τ(H), for H ⊆ G which contains 4xyz

since τ(H) = min{sup(e,H) : e ∈ E(H)}. It may in

turn increase the trussness of those edges contained in

I/O Efficient K-Truss Community Search in Massive Graphs 9

H, as τ(e) = maxH⊆G{τ(H) : e ∈ E(H)}, however,

such edges may not necessarily be incident on vertices

x or y. Edge deletion has a similar effect on decreasing

edge trussness. To handle the edge trussness update ef-

ficiently, the key is to identify the affected region in

the graph precisely. Thus, in Section 4.1 we present a

theoretical analysis to define the scope that an edge in-

sertion/deletion may affect. We design algorithms for

updating the edge trussness and the TCP-Index in Sec-

tions 4.2 and 4.3, respectively.

4.1 Scope of Affected Edges

We use τ(e) and τ̂(e) to represent the trussness of an

edge e before and after an edge insertion/deletion re-

spectively. We have the following three properties.

Rule 1: If e0 is inserted into G with τ̂(e0) = l, then

∀e ∈ E(G) with τ(e) ≥ l, τ̂(e) = τ(e) holds.

Rule 2: If e0 is deleted from G with τ(e0) = l, then

∀e ∈ E(G) \ {e0} with τ(e) > l, τ̂(e) = τ(e) holds.

Rule 3: ∀e ∈ E(G) \ {e0}, |τ̂(e)− τ(e)| ≤ 1 holds.

The rationale of Rules 1 and 2 is that e0 is not

included in a (l+ 1)-truss subgraph. Rule 3 holds since

the support of any edge changes by at most 1 with an

edge insertion/deletion. In order to apply Rule 1, we

need to obtain τ̂(e0) first. However, computing τ̂(e0)

itself is costly. So we resort to an alternative, that is,

we estimate an upper bound of τ̂(e0), denoted as τ̂(e0),

with a light cost, and apply Rule 1’ instead of Rule 1.

Rule 1’: If e0 is inserted into G, then ∀e ∈ E(G) with

τ(e) ≥ τ̂(e0) ≥ τ̂(e0), τ̂(e) = τ(e) holds.

p

r1 r2

x4

x3x2

x1
s4

s3

s2s1

q

(a) G with Edge Insertion

p

r1

q

x4

s2

x2

x1
4

4

3

3

5

5

5

5

(b) Trussness Update

Fig. 7 An example graph with edge insertion

To estimate τ̂(e0), we define the k-level triangles of

an edge.

Definition 8 (K-Level Triangles) For an edge e(u, v)

and k ≥ 2, we denote the k-level triangles containing

e by 4k
(u,v) = {4uvw : min{τ((u,w)), τ((v, w))} ≥ k}.

The number of triangles in4k
(u,v) is denoted by |4k

(u,v)|.
Lemma 2 gives the lower and upper bound of τ̂(e0).

Lemma 2 If an edge e0(u, v) is inserted into a graph,

then τ̂(e0) satisfies k1 ≤ τ̂(e0) ≤ k2 and k2 − k1 ≤ 1,

where k1 = maxk{k : |4k
e0 | ≥ k − 2}, k2 = maxk{k :

|4k−1
e0 | ≥ k − 2}.

The proof can be found in [17].

Corollary 1 τ̂(e0) = maxk{k : |4k−1
e0 | ≥ k − 2} is an

upper bound of τ̂(e0) .

The upper bound in Corollary 1 is extremely tight,

as it may be larger than the real trussness by at most

1. For example, if we insert edge (p, r1) into the graph

in Figure 7(a), we have 43
(p,r1)

= {4qpr1} and k1 =

k2 = 3 by Lemma 2. So we get τ̂((p, r1)) = 3. If we in-

sert another edge (s2, x2), we have 44
(s2,x2)

= {4s2x2q,

4s2x2x1
, 4s2x2x4

}, k1 = 4, k2 = 5 by Lemma 2.

Due to the insertion/deletion of edge e0, there are

two reasons for edge e ∈ E(G) \ {e0} to change truss-

ness, i.e., τ̂(e) 6= τ(e): (1) e forms/breaks a triangle with

e0 when e0 is inserted/deleted; or (2) the edges of the

triangles in which e lies have changed their trussness.

We study the insertion case in Lemma 3.

Lemma 3 If an edge e0 is inserted into a graph, we

first assign τ(e0) = maxk{k : |4k
e0 | ≥ k − 2}. Then for

e(x, y) ∈ E(G) ∪ {e0} with τ(e) = l < τ̂(e0), e may

have τ̂(e) = l + 1 only in two cases:
(1) A new triangle with edges e, e0 and another e′ is

formed, and min{τ(e0), τ(e′)} ≥ l holds; or

(2) For e(x, y), ∃z ∈ N(x)∩N(y), min{τ((x, z)), τ((y

, z))} = l holds.
The proof can be found in [17].

According to Lemma 3, we summarize the affected

edge trussness due to edge insertion/deletion.

Scope of Affected Edges. We define the weight of a

triangle by the minimum edge trussness in the triangle.

Then the insertion/deletion of an edge e0 may lead to

the following trussness update.

(1) Insertion case. For e ∈ E(G) ∪ {e0} with τ(e) <

τ̂(e0), if e, e0 and another e′ form a new triangle with

weight τ(e), or e is connected with e0 through a series

of adjacent triangles each with weight τ(e), then e may

have τ̂(e) = τ(e) + 1.

(2) Deletion case. For e ∈ E(G) \ {e0} with τ(e) ≤
τ(e0), if e, e0 belong to a triangle with weight τ(e), or e

is connected with e0 through a series of adjacent trian-

gles each with weight τ(e) before deletion, then e may

have τ̂(e) = τ(e)− 1.

4.2 Updating Edge Trussness

In this section, we propose an algorithm to update the

edge trussness when an edge e0 is inserted. The algo-

rithm to handle edge deletion is similar and thus omit-

ted. From Section 4.1 we know that only edges which

have τ(e) < τ̂(e0), and are either in the same triangle

with e0 or connected to e0 through adjacent triangles

at the same trussness level may increase their trussness.

Thus we first collect all edges in case (1) of Lemma 3 as

candidates, then expand the candidate edges and exam-

ine their edge trussness level by level according to case

10 Yuli Jiang et al.

(2). Finally, we use a variant of truss decomposition

algorithm to finalize the trussness update.

The procedure to update edge trussness given an in-

serted edge e0 is outlined in Algorithm 5. We first insert

the edge e0 and compute the range of τ̂(e0) as [k1, k2]

by Lemma 2. Then the algorithm sets τ(e0) = k1 and

the maximum edge trussness kmax = k2− 1 by Rule 1’.

In line 4-9, by case (1) of Lemma 3, we collect every

edge which forms a triangle with e0, and has the min-

imum trussness in the triangle with τ(e) = k ≤ kmax.

These edges are inserted into Lk. Then in line 10-30, for

each k from kmax to 2, the algorithm updates the truss-

ness of edges with τ(e) = k using three steps, namely,

edge expansion (line 11-20), edge eviction (line 21-28),

and trussness update (line 29-30). In the edge expan-

sion step, the algorithm expands Lk by finding all edges

with trussness k using breadth-first search through ad-

jacent triangles with weight k by case (2) of Lemma

3 (line 14-20). Meanwhile, it computes the number of

k-level triangles |4k
e | as s[e] (line 16). In the edge evic-

tion step, the algorithm iteratively evicts edges with

s[e] ≤ k− 2 from Lk (line 22) until no such edges exist.

After evicting an edge e, for each edge e′ ∈ Lk that

forms a triangle of weight k with e, s[e′] is decreased

by 1 (line 24-28). In the trussness update step, each

edge e ∈ Lk has s[e] ≥ k − 1 and gets trussness update

τ̂(e) = k+1 (line 29-30). Three steps can be further op-

timized by pushing the edge eviction operation (line 21-

28) into the edge expansion step (line 11-20) after each

s[(x, y)] is calculated, in order to avoid expanding use-

less edges in an early stage. The technique is similar

to the early node eviction technique for k-core update

[30]. We omit the detailed discussion on this heuristic.

Example 5 We update the edge trussness with the in-

sertion of e0(s2, x2) in the graph shown in Figure 7(a).

We first compute k1 = 4, k2 = 5, and assign τ(e0) = 4

and kmax = 4. Since τ(e0) = kmax indicates that e0 may

increase its trussness, we add (s2, x2) into L4. Then

the algorithm checks the edges forming new triangles

with e0 as shown in Figure 7(b), and adds (s2, x1) and

(s2, x4) into L4. Next the algorithm uses BFS to find

the edges connected with those in L4 through adjacent

triangles with weight 4. As there is no such edge sat-

isfying this condition, L4 remains unchanged. Mean-

while, for each e ∈ L4, it computes |44
e| as s[e], that

is, s[(s2, x2)] = s[(s2, x1)] = s[(s2, x4)] = 3 (shown in

Figure 7(a)). As the three edges have s[e] > 2, the al-

gorithm updates τ̂(s2, x2) = τ̂(s2, x1) = τ̂(s2, x4) = 5.

4.3 Updating TCP-Index

We study how to update the TCP-Index. Recall that,

for x ∈ V , the index Tx is the maximum spanning for-

Algorithm 5 Trussness Update with Edge Insertion

Input: G = (V,E), the inserted edge e0 = (u, v)
Output: Updated trussness τ̂(e) for e ∈ E(G) ∪ {e0}

1: G.insert(e0);
2: compute [k1, k2] for τ̂(e0) by Lemma 2;
3: τ(e0)← k1; kmax ← k2 − 1;
4: for k ← 2 to kmax do Lk ← ∅;
5: for w ∈ N(u) ∩N(v) do
6: k ← min{τ((w, u)), τ((w, v))};
7: if k ≤ kmax then
8: if τ((w, u)) = k then Lk ← Lk ∪ {(w, u)};
9: if τ((w, v)) = k then Lk ← Lk ∪ {(w, v)};

10: for k ← kmax to 2 do
11: Q← ∅; Q.push(Lk);
12: while Q 6= ∅
13: (x, y)← Q.pop(); s[(x, y)]← 0;
14: for z ∈ N(x) ∩N(y) do
15: if τ((z, x)) < k or τ((z, y)) < k then continue;
16: s[(x, y)]← s[(x, y)] + 1;
17: if τ((z, x)) = k and (z, x) /∈ Lk then
18: Q.push((z, x)); Lk ← Lk ∪ {(z, x)};
19: if τ((z, y)) = k and (z, y) /∈ Lk then
20: Q.push((z, y)); Lk ← Lk ∪ {(z, y)};
21: while ∃s[(x, y)] ≤ k − 2 in Lk

22: Lk ← Lk \ {(x, y)};
23: for z ∈ N(x) ∩N(y) do
24: if τ((x, z)) < k or τ((y, z)) < k then continue;
25: if τ((x, z)) = k and (x, z) /∈ Lk then continue;
26: if τ((y, z)) = k and (y, z) /∈ Lk then continue;
27: if (x, z) ∈ Lk then s[(x, z)]← s[(x, z)]− 1;
28: if (y, z) ∈ Lk then s[(y, z)]← s[(y, z)]− 1;
29: for (x, y) ∈ Lk do
30: τ̂((x, y))← k + 1;

est of x’s neighborhood graph Gx. Thus the key prob-

lem is how to update the maximum spanning forest of

Gx given an edge insertion/deletion and the consequent

edge trussness update.

4.3.1 Updating TCP-Index With Edge Insertion

Index Update with Edge Insertion. With an in-

serted edge e0(u, v), we first consider how to update

Tu and Tv. Take vertex u as an example. Gu now in-

cludes a new vertex v and a set of new edges {(v, w)|w ∈
N(u)∩N(v)}. Then we update the maximum spanning

forest Tu with the new vertex and edges in Gu. The

time cost is O(|N(u)|+ |N(u) ∩N(v)|) ⊆ O(|N(u)|).
For example, consider the insertion of (s2, x2) in

Figure 7(a). The index Tx2
before insertion is shown

in Figure 8(a). Now vertex s2 and three edges (s2, q),

(s2, x1), (s2, x4) all with weight 5 are inserted into Gx2 .

So the updated Tx2
is shown in Figure 8(b).

Now we consider how to update Tw for w ∈ N(u) ∩
N(v). Gw includes a new edge (u, v). We first compute

the weight w(u, v) = min{τ̂((u, v)), τ̂((u,w)), τ̂((v, w))}.
If u, v are in different components of Tw, we add the

edge (u, v) with weight w(u, v) into Tw; otherwise, we

can find a unique path P between u and v in Tw. Then

I/O Efficient K-Truss Community Search in Massive Graphs 11

we compute the minimum weight on P as w∗ = mine∈P
w(e). If w∗ ≥ w(u, v), Tw remains unchanged; if w∗ <

w(u, v), the corresponding edge is replaced by (u, v) in

Tw. The time cost is O(|N(w)|).
Continue with the above example. With the inser-

tion of (s2, x2), their common neighbor q’s index be-

fore insertion is shown in Figure 8(e). There is a path

(s2, x4, x1, x2) with a minimum weight 4. So we replace

(s2, x4) by (s2, x2) with weight 5 in Figure 8(f).

Index Update with Trussness Increase. Besides

the above cases, we also need to consider the index

maintenance for an existing edge e(x, y) which has truss-

ness update τ̂(e) = τ(e) + 1 due to the insertion of e0.

We discuss the update of Tx (and similarly Ty). For ev-

ery triangle4xyz, we denote wxyz = min{τ((x, y)), τ((x,

z)), τ((y, z))}, and ŵxyz = min{τ̂((x, y)), τ̂((x, z)), τ̂((y,

z))}. If ŵxyz = wxyz, Tx remains unchanged. Otherwise,

for ŵxyz = wxyz + 1, if (y, z) ∈ Tx, we update the edge

weight w(y, z) = ŵxyz in Tx; if (y, z) /∈ Tx, we find the

unique path P between y and z in Tx and update P

with the new weight w(y, z) in a similar process as de-

scribed above for updating Tw. For the neighbor vertex

z ∈ N(x)∩N(y), the index Tz can be updated similarly.

x3

q

x4

x1

5

55

(b) Updating Tx2(a) Tx2

(f) Updating Tq

q

s2

x2

x1

5

54 x3

5

(c) Tx4

q

s2

x2

x1

5

5 x3

5

(d) Updating Tx4

5r2
3

x3

q

x4

x1

5

55

r2
3

s2
5

(e) Tq

4

x1

x2

x4

x3

s4s1

s2 s3

r1

r2
p

5

55

5

55
33

3

x1

x2

x4

x3

s4s1

s2 s3

r1

r2
p

5

55

5

55
33

3

5

Fig. 8 The updating steps of TCP-Index

Continue with the above example. With the inser-

tion of (s2, x2), we have τ̂((s2, x4)) = τ((s2, x4))+1, and

ŵs2x4x1 = 5. The index Tx4 before insertion is shown in

Figure 8(c). We use (s2, x1) with weight 5 to replace

(s2, q) with weight 4 in Figure 8(d).

4.3.2 Updating TCP-Index With Edge Deletion

Index Update with Edge Deletion. With a deleted

edge e0(u, v), we first consider how to update Tu and

Tv. Take vertex u as an example. We first delete ver-

tex v and edges {(v, w)|(v, w) ∈ Tu} from Tu. Then

we update the maximum spanning forest Tu with the

available edges in E(Gu).

Now we consider how to update Tw for w ∈ N(u) ∩
N(v). If (u, v) ∈ Tw, we try to find an edge (u′, v′) ∈
E(Gw) where u′ ∈ V2(w, u), v′ ∈ V2(w, v) with the max-

imum weight to replace (u, v) in Tw. If no such replace-

ment edge exists, we simply remove (u, v). On the other

hand, if (u, v) /∈ Tw, Tw remains unchanged.

Index Update with Trussness Decrease. Besides

the above cases, we also need to consider the index

maintenance for an existing edge e(x, y) which has truss-

ness update τ̂(e) = τ(e)−1 due to the edge deletion. We

discuss the update of Tx (and similarly Ty). For every

4xyz, we denote wxyz = min{τ((x, y)), τ((x, z)), τ((y,

z))}, and ŵxyz = min{τ̂((x, y)), τ̂((x, z)), τ̂((y, z))}. If

ŵxyz = wxyz, Tx remains unchanged. Otherwise, for

ŵxyz = wxyz − 1, if (y, z) /∈ Tx, Tx remains unchanged;

if (y, z) ∈ Tx, we try to find an edge (y′, z′) ∈ E(Gx)

where y′ ∈ Vwxyz
(x, y), z′ ∈ Vwxyz

(x, z) and w(y′, z′) =

wxyz to replace (y, z) in Tx. If no such replacement edge

exists, we just update w(y, z) = ŵxyz. For the neighbor

vertex z ∈ N(x) ∩ N(y), the index Tz can be updated

in a similar way.

5 I/O-Efficient Algorithms for K-Truss

Community Search

In this section, we study k-truss community search in

massive graphs which cannot fit entirely in main mem-

ory. In this case, Algorithm 3 fails to construct TCP-

Index for the graph in memory. Even worse, TCP-Index
may not be held in memory, as its size complexity is

O(m). As a consequence, TCP-Index-based query pro-

cessing for k-truss community search by Algorithm 4

does not work either. To address the limitations of these

in-memory algorithms on very large graphs, we develop

I/O-efficient solutions for TCP-Index construction and

query processing under a semi-external model.

In the following, we first give an overview of our

solution in Section 5.1. In Section 5.2, we present I/O-

efficient algorithms for TCP-Index construction. We first

introduce a straightforward indexing method extended

from Algorithm 3, which incurs a lot of I/O opera-

tions. To improve the efficiency, we design various novel

strategies to reduce I/O costs for TCP-Index construc-

tion. We analyze the correctness and I/O complexity of

our algorithms. Based on TCP-Index on disk, we propose

an I/O-efficient algorithm for querying k-truss commu-

nity in Section 5.3.

5.1 Solution Overview

We mainly consider how to reduce the number of basic

operations of reading/writing blocks from disk/memory

into memory/disk, under the semi-external model as

follows.

Semi-External Model. We adopt a widely-used semi-

external model in our solution. We denote the size of

main memory by M and the disk block size by B. An

I/O operation will read/write one block of size B from

disk/memory into memory/disk. The semi-external model

assumes that all graph nodes can be stored in the main

memory while the edges cannot, i.e., M ≥ c × |V (G)|
where c is a small constant. This assumption practically

holds as the node size is far smaller than the edge size in

12 Yuli Jiang et al.

most real social networks and web graphs. For example,

for the WebBase graph with 115.5 million nodes and 1.7

billion edges, it only requires 5.5 GB memory for run-

ning our semi-external algorithms, which is affordable

for most PCs nowadays.

I/O-Efficient TCP-Index Construction. We con-

sider the TCP-Index construction for a vertex x ∈ V .

Recall that our in-memory TCP-Index construction in

Algorithm 3 mainly consists of two steps:

1. Finding Gx. We first generate a weighted neighbor-

hood graph Gx. We find all edges (y, z) in Gx for

y, z ∈ N(x) and compute their weights. Note that

the size of Gx may exceed the memory capacity M .

2. Constructing Tx. The TCP-Index Tx is built as the

maximum spanning forest of Gx. We start building

Tx from isolated vertices in N(x), and insert edges

of Gx one by one in the decreasing order of edge

weight to link different components into one.

Thus the key problem is how to find Gx and sort the

edges in E(Gx) when |E(Gx)| ≥M .

Section 5.2.1 first presents a straightforward solu-

tion to generating Gx. It writes the new found edges of

Gx into disk immediately when the edges and their edge

weights are obtained. When the whole structure of Gx

is on disk, we apply an external sorting algorithm on all

edges in E(Gx) based on their weights. Finally, we con-

struct Tx by one scan of the sorted edges on disk. This

method is simple, but needs a large number of I/Os.

To reduce the I/O cost of external sorting, we apply

the idea of merge sort to construct TCP-Index in Sec-

tion 5.2.2. The key idea is to divide Gx into multiple

partitions, where each partition has O(M) edges sorted

in memory and then written to disk. To build Tx, we

read blocks with the largest edge weights from all par-

titions into memory, using the idea of merge sort. To

further improve the I/O efficiency, in Section 5.2.3, we

develop a sort-free method for TCP-Index construction,

which does not need to perform external sorting.

I/O-Efficient K-Truss Community Search. Note

that the constructed TCP-Index for all vertices takes

O(m) space, which cannot fit into memory. Moreover,

in the process of community search, the visited edge

list and queue Q may also exceed the memory size M .

To address these issues, we use two data structures of

bitmap and circular queue, which realize the functions

of visited edge list and the sequential visiting order in

an I/O-efficient way. The bitmap uses one bit to record

an edge as visited or not, which saves the space cost.

The purpose of circular queue is to avoid frequently

allocating and releasing memory, as it is easy to write

to and load from disk.

Algorithm 6 External-Sort TCP-Index Construction

Input: G = (V,E)
Output: TCP-Index Tx for each x ∈ V

1: Apply I/O-efficient truss decomposition for G [34];
2: for x ∈ V do
3: Load the block containing N(x) from disk;
4: for y ∈ N(x) do
5: Load the block containing N(y) from disk;
6: for z ∈ N(x) ∩N(y) do
7: w(y, z)← min{τ((x, y)), τ((x, z)), τ((y, z))};
8: Store < (y, z), w(y, z) > in disk;
9: Sort all edges (y, z) in the decreasing order of w(y, z)

where y, z ∈ N(x);
10: Tx ← N(x);
11: kmax ← max{w(y, z)|y, z ∈ N(x)};
12: for k ← kmax to 2 do
13: Load edges (y, z) with w(y, z) = k from disk;
14: Sk ← {(y, z)|y, z ∈ N(x), w(y, z) = k};
15: for (y, z) ∈ Sk do
16: if y, z are in different components in Tx
17: add (y, z) with weight w(y, z) in Tx;
18: Store Tx in disk;
19: return {Tx|x ∈ V };

5.2 TCP-Index Construction in a Semi-External

Model

5.2.1 External-Sort based TCP-Index Construction

In this section, we first present a basic method to

construct TCP-Index in Algorithm 6 which consists of

two steps. The first step is to construct and output

the weighted graph Gx to disk iteratively. The second

step is then to apply an external-sorting algorithm to

sort the edges of Gx in decreasing order of weights for

constructing Tx.

Algorithm 6 first applies an I/O-efficient truss de-

composition for G [34] and obtains the trussness of all

edges in G (line 1). Then, for each vertex x ∈ V , it

builds the TCP-Index Tx (line 2-19). Specifically, we con-

struct the weighted graph Gx (line 3-9). For each vertex

y ∈ N(x), we load the blocks containing the adjacent

list N(y) from disk (line 4-5). Then, we compute all tri-

angles 4xyz where z ∈ N(x)∩N(y), and store the edge

(y, z) with the weight w(y, z) in disk (line 6-8). After

obtaining Gx, we use an external-sorting algorithm on

the edges of Gx in the decreasing order of edge weights

(line 9). Next, we construct Tx as the maximum span-

ning forest of Gx (line 10-18). We build Tx from iso-

lated vertices in N(x), and load from disk sorted edges

as many as the memory allows (line 10-13). We then in-

sert them one by one into Tx to connect different com-

ponents (line 14-17), which is the same as Algorithm 3.

Finally, Tx for each vertex x ∈ V is built and stored on

disk (line 18-19).

I/O Efficient K-Truss Community Search in Massive Graphs 13

Algorithm 7 Merge-Sort TCP-Index Construction

Input: G = (V,E)
Output: TCP-Index Tx for each x ∈ V

1: Apply I/O-efficient truss decomposition for G [34];
2: Let r ← 0;
3: for x ∈ V do
4: Load the block containing N(x) from disk;
5: Gx ← ∅;
6: for y ∈ N(x) do
7: Load the block containing N(y) from disk;
8: for z ∈ N(x) ∩N(y) do
9: w(y, z)← min{τ((x, y)), τ((x, z)), τ((y, z))};

10: Gx ← Gx ∪ {< (y, z), w(y, z) >};
11: if there is no enough memory to store new edges
12: r ← r + 1;
13: Sort E(Gx) in decreasing order of weights;
14: Store Gx as partition Pr on disk;
15: Gx ← ∅;
16: The partitions {P1, P2, . . . , Pr} keep Gx on disk;
17: while r ≥M/B do
18: merge the partitions to reduce r;
19: Load M

Br
blocks with the largest weights into memory

from each partition Pi where 1 ≤ i ≤ r, and mark them
as visited;

20: Tx ← N(x);
21: while ∃ one unvisited block in Pi do
22: (y, z)← edge with the largest weight in memory;
23: Sk ← {(y, z)|y, z ∈ N(x), w(y, z) = k};
24: for (y, z) ∈ Sk do
25: if y, z are in different components in Tx
26: add (y, z) with weight w(y, z) in Tx;
27: if all edges of a block in Pi have been traversed
28: Load a block with the largest weights from Pi

into memory, and mark it as visited;
29: Store Tx in disk;
30: return {Tx|x ∈ V };

5.2.2 Merge-Sort based TCP-Index Construction

Algorithm 6 wastes a lot of I/O costs on many repeated

reading/writing operations of generating, sorting, and

scanning Gx. To reduce the I/O costs, we do not need

to sort all edges of Gx. Instead, we create multiple edge

partitions of Gx, each having O(M) edges, which are

sorted in memory and then written to disk. We then

read blocks from all partitions into memory and use

the idea of merge sort to build TCP-Index. The method

is outlined in Algorithm 7.

Algorithm 7 consists of two phases: generating Gx

(line 1-15) and building Tx fromGx (line 17-30). To gen-

erate Gx for a vertex x, it performs the following opera-

tions iteratively. Gx is initialized empty and grows with

a new edge (y, z) where y ∈ N(x) and z ∈ N(x)∩N(y).

Once the number of edges in Gx reaches the memory

capacity (line 11), the algorithm sorts all edges of Gx

in decreasing order of weights in memory (line 13). It

then stores all edges on disk and sets Gx to be empty

again (line 14-15). Thus, Gx is divided into several par-

titions {P1, P2, . . . , Pr}. For each partition Pi, edges are

sorted in order (line 16). To build Tx from Gx, Algo-

rithm 7 adopts the idea of merge sort over all partitions.

If the number of partitions r ≥ M/B, it performs sev-

eral rounds of merge to reduce r until r < M/B, which

ensures that at least one block from each partition of

{P1, P2, . . . , Pr} can be read into memory (line 17-18).

It loads M
Br blocks with the largest weights into mem-

ory from each partition Pi, and marks them as visited

(line 19). Then, it builds Tx from isolated nodes by in-

serting edges with the largest weights, and expands it

to a maximum spanning forest (line 21-28). If all edges

of a block from partition Pi have been visited in mem-

ory, we load the next unvisited block of Pi (line 27-28).

Finally, the algorithm generates the TCP-Index for each

vertex x ∈ V (line 30).

5.2.3 Sort-Free TCP-Index Construction

To further improve the I/O efficiency, we propose an

optimal algorithm for TCP-Index construction in Algo-

rithm 8. This method does not need to store the whole

structure of Gx on disk. Alternatively, it dynamically

generates partial structure of Gx and updates the max-

imum spanning forest Tx based on the current structure

of Gx. The generation of Gx and update of Tx can be

done in memory without any I/O cost.

The key idea of Algorithm 8 is based on the principle

that a maximum spanning forest Tx of Gx is identical to

the maximum spanning forest of T ∗∪{Gx−G∗} where

T ∗ is a maximum spanning forest of G∗. This indicates

that we can generate a partial structure of Gx, build

the maximum spanning forest for it, and then release

the partial structure in memory, and continue to gener-

ate other parts of Gx. The correctness of this principle

is proved in Theorem 4. Algorithm 8 generates partial
structure of Gx whose size is limited by M and up-

dates Tx at the same time (line 10-13). After that, the

graph structure of Gx is discarded, which makes room

in memory to further generate other parts of Gx. An

in-memory procedure findMSF is developed to compute

the maximum spanning forest Tx from any graph struc-

ture G∗, which is similar to Algorithm 3.

Example 6 Figure 9 shows an example of generating

neighborhood graph Gx and finding maximum span-

ning forest (MSF) simultaneously. The edges of Gx are

identified one by one. When the size of Gx reaches the

memory size M as Figure 9(a) shows, we find the MSF
T1 of graph G1 in Figure 9(b). Only edges in T1 are kept

in memory, and other edges of G1 are discarded. Then

we continue to identify edges of Gx and add them into

T1 until the size reaches M again or all edges of Gx are

visited. Assume all edges in Gx have been identified and

the graph now is shown in Figure 9(c). We can verify

that the MSF T2 in Figure 9(d) built by Algorithm 8

14 Yuli Jiang et al.

Algorithm 8 Sort-Free TCP-Index Construction

Input: G = (V,E)
Output: TCP-Index Tx for each x ∈ V

1: Apply I/O-efficient truss decomposition for G [34];
2: for x ∈ V do
3: Load the block containing N(x) from disk;
4: Gx(V,E)← G(N(x), ∅) ;
5: for y ∈ N(x) do
6: Load the block containing N(y) from disk;
7: for z ∈ N(x) ∩N(y) do
8: w(y, z)← min{τ((x, y)), τ((x, z)), τ((y, z))};
9: E(Gx) = E(Gx) ∪ {(y, z)};

10: if there is no enough memory to store new edges
11: Gx ← findMSF (Gx);
12: Tx ← findMSF (Gx);
13: Store Tx in disk;
14: return {Tx|x ∈ V };
15:
16: Procedure findMSF (Graph G∗)
17: Sort E(G∗) in the decreasing order of weights;
18: T ∗ ← V (G∗);
19: kmax ← max{w(y, z)|y, z ∈ G∗};
20: for k ← kmax to 2 do
21: Sk ← {(y, z)|y, z ∈ E(G∗), w(y, z) = k};
22: for (y, z) ∈ Sk do
23: if y, z are in different components in T ∗
24: add (y, z) with weight w(y, z) in T ∗;
25: return T ∗;

is also the MSF of the whole neighborhood graph Gx.

In this process we build the TCP-Index of a vertex in

memory.

(c) Graph G2

s1 s2

s3

s4

x1

x3

x4

q
35

3

5

2
4

4
6

2

3

4 5

(d) T2 (MST of G2)

s1 s2

s3

s4

x1

x3

x4

q

5

5

4

6

3

4 5

(a) Graph G1

s1 s2

s3

s4

x1

x3

x4

q

1

2
3

5
3

3
3

2
5

2

1

4

4

(b) T1 (MST of G1)

s1 s2

s3

s4

x1

x3

x4

q 3
5

3

5

2
4

4

Fig. 9 An example graph to finding MSF

Correctness Analysis. To prove the correctness of

Algorithm 8, we need to show that given a vertex x,

the output Tx by Algorithm 8 is exactly the MSF of Gx.

The core idea of our proof is shown as follows. When

the condition that there is no enough memory to store

new edges (line 10) holds for the first time, we denote

the partial structure of Gx as g1 and its corresponding

MSF as T1 (line 11). Algorithm 8 then assigns T1 as the

new structure of Gx, denoted as g2, i.e., g2 = T1 (line

11), and continues reading the remaining edges of Gx

from disk to memory, until the size of g2 reaches the

memory limit. We denote the corresponding MSF of g2
as T2. Algorithm 8 repeats the above process until all

edges of Gx are read from disk to memory. We denote

the last partial graph of Gx in memory as gr and its

corresponding tree as Tr where r ≥ 1. Clearly, the whole

graph is Gx = g1 ∪ g2 ∪ . . . ∪ gr, then we prove that Tr
is the MSF of Gx in Theorem 4.

In the following, we introduce some useful notations

in our theorem and lemmas. Given a graph G(V,E), the

induced subgraph of G by a vertex set S ⊆ V is denoted

by G[S] = (S,ES) where ES = {(u, v) ∈ E : u, v ∈ S}.
The weight of a subgraph H ⊆ G is defined as w(H) =∑

e∈E(H) w(e). In addition, we use G∪{e∗} to represent

a new graph that is formed by G with an edge insertion

of e∗.

Lemma 4 Consider a graph G(V,E) and a new edge

e∗ = (x, y) /∈ E. If T is the MSF of G, then the MSF of

T ∪ {e∗} is also the MSF of G ∪ {e∗}.
Proof Let H1 = T ∪ {e∗} and H2 = G∪{e∗}. To prove

that the MSF of H1 is also the MSF of H2, it is equiv-

alent to prove w(T1) = w(T2), where T1 and T2 are the

MSF of H1 and H2 respectively.

First, we prove w(T1) ≤ w(T2). For T ⊆ G, we have

H1 ⊆ H2. In addition, T2 is the MSF of H2. Obviously,

w(T1) ≤ w(T2).

Second, we prove w(T1) ≥ w(T2). This inequality

holds based on the two following cases.

Case 1: e∗ /∈ T2. We have that T2 is the MSF of G, as

G ⊆ H2. Since T is the MSF of G, w(T2) = w(T) holds.

Moreover, T1 is the MSF of H1 ⊃ T . Thus, w(T1) ≥
w(T) = w(T2) holds.

Case 2: e∗ ∈ T2. Assume that we delete e∗ = (x, y)

from T2 and split the whole forest into two disjoint

forests Tx and Ty. Let X, Y be the vertex set of Tx and

Ty respectively, and X ∩ Y = ∅. We have two induced

subgraphs G[X] ⊆ G and G[Y] ⊆ G, and their corre-

sponding MSFs as T̂x, T̂y. Obviously, w(T̂x) ≥ w(Tx)

and w(T̂y) ≥ w(Ty). If T contains an edge e′ = (x′, y′)

where x′ ∈ X and y′ ∈ Y , we have w(T) − w(e′) ≥
w(T̂x) + w(T̂y) ≥ w(Tx) + w(Ty), because T is the

MSF of G and G ⊇ G[X] ∪ G[Y]; otherwise, T con-

tains no such edge e′, then w(T) = w(T̂x) + w(T̂y) ≥
w(Tx) + w(Ty). Overall, w(T) ≥ w(Tx) + w(Ty) holds.

Now, T1 is the MSF of H1 = T ∪ {e∗}, indicating

w(T1) ≥ w(T)− w(e′) + max{w(e′), w(e∗)} ≥ w(Tx) +

w(Ty) + max{w(e′), w(e∗)} ≥ w(Tx) +w(Ty) +w(e∗) =

w(T2). Note that, w(e′) = 0 if e′ does not exist in T .

As a result, w(T1) ≥ w(T2) follows from this.

Finally, w(T1) = w(T2) holds, due to w(T1) ≤ w(T2)

and w(T1) ≥ w(T2).

Lemma 5 Given two graphs Ga and Gb, Ta is a MSF
of Ga, and Tb is a MSF of Gb. If Ta ⊆ Gb, then Tb is a

MSF of Ga ∪Gb.

Proof For Ta ⊆ Gb, let Gb = Ta∪{e1}∪{e2}∪ . . .∪{el}
where l is a positive integer. Since Ta is a MSF of Ga,

we have Ta ⊆ Ga, and Ga∪Gb = Ga∪Ta∪{e1}∪{e2}∪
. . .∪{el} = Ga∪{e1}∪{e2}∪ . . .∪{el}. Now, we prove

that the MSF of Ta ∪{e1}∪{e2}∪ . . .∪{el} is the MSF
of Ga ∪ {e1} ∪ {e2} ∪ . . . ∪ {el}.

I/O Efficient K-Truss Community Search in Massive Graphs 15

We prove it using induction. Specifically, we show

that Ti is MSF of Gi, where 0 ≤ i ≤ l. Let T0 = Ta
and G0 = Ga. Obviously, Ti is the MSF of Gi for i = 0.

For 0 ≤ i ≤ l, let Ti+1 be the MSF of Ti ∪ {ei} and

Gi+1 = Gi ∪ {ei}.
Next, we show that for 1 ≤ i ≤ l, given Ti as the

MSF of Gi and Ti+1 as the MSF of Ti∪{ei}, Ti+1 is also

the MSF of Gi∪{ei} = Gi+1. This rule clearly holds by

Lemma 4. As a result, Ti+1 is always the MSF of Gi+1,

where 0 ≤ i ≤ l.
Finally, for i = l, Gl+1 = Ga∪{e1}∪{e2}∪. . .∪{el},

and Tl+1 is the MSF of Gl+1 = Ga∪Gb. Moreover, Tl+1

is a subgraph of Ta ∪ {e1} ∪ {e2} ∪ . . .∪ {el} = Gb, and

Gb ⊆ Ga ∪ Gb = Gl+1, thus Tl+1 is also the MSF of

Ta ∪ {e1} ∪ {e2} ∪ . . .∪ {el} = Gb, which completes the

proof.

Theorem 4 Given r graphs g1, g2, . . . , gr and their

corresponding MSFs T1, T2, . . . , Tr, let Gi = g1∪. . .∪gi
and Ti ⊆ gi+1 for 1 ≤ i ≤ r − 1. Then, it holds that Tr
is the MSF of Gr = g1 ∪ . . . ∪ gr.

Proof We apply the induction to prove that Ti is the

MSF of Gi for 1 ≤ i ≤ r. First, for i = 1, T1 obviously is

the MSF ofG1 = g1. Next, for 1 ≤ i ≤ r−1, assume that

Ti is the MSF of Gi. By Lemma 5, we have Ti ⊆ gi+1,

then Ti+1 is a MSF of Gi ∪ gi+1 = Gi+1. Finally, for

i = r−1, we prove that Tr is a MSF of Gr = g1∪. . .∪gr.

Based on Theorem 4, we finally prove the correct-

ness of Algorithm 8.

5.2.4 Complexity Analysis

We analyze the complexity of the three TCP-Index con-

struction algorithms. The memory consists of M
B blocks.

For vertex x, the edge size of its neighborhood induced

subgraph Gx is |E(Gx)| ≤
∑

y∈N(x) min{d(x), d(y)}.
The storage of Gx takes O(|E(Gx)|

B) blocks. Note that

we do not take the complexity of truss decomposition

[34] into account. We have the following I/O complexity

for the three algorithms.

Theorem 5 Algorithm 6 takes O(
∑

(x,y)∈E (d(x)+d(y))

B +∑
x∈V

|E(Gx)|
B log M

B

|E(Gx)|
B) I/Os, where Gx is the in-

duced subgraph of G by N(x).

Proof Algorithm 6 constructs TCP-Index for all vertices

in graph G. Consider the TCP-Index construction in Gx

for vertex x. The algorithm consists of three steps: load

adjacent lists, store and reload graph Gx, and sort edges

of Gx in disk.

First, the step of loading all adjacent lists N(y) for

y ∈ N(x) takes O(
∑

y∈N(x) |N(y)|
B) I/Os. Second, Gx oc-

cupies O(|E(Gx)|
B) blocks on disk. Moving Gx between

memory and disk takes O(|E(Gx)|
B) I/Os. Third, sorting

all edges of Gx takes O(|E(Gx)|
B log M

B

|E(Gx)|
B) I/Os, as it

takes O(N
B log M

B

N
B) I/Os for sorting N numbers using

the external sorting algorithm [22].

Adding up these three steps, Algorithm 6 takes

O(
∑

x∈V (
∑

y∈N(x) |N(y)|
B + |E(Gx)|

B + |E(Gx)|
B log M

B

|E(Gx)|
B))

⊆ O(
∑

(x,y)∈E (d(x)+d(y))

B +
∑

x∈V
|E(Gx)|

B log M
B

|E(Gx)|
B)

I/Os.
Theorem 6 Algorithm 7 takes O(

∑
(x,y)∈E (d(x)+d(y))

B +∑
x∈V

|E(Gx)|
B log M

B

|E(Gx)|
M) I/Os, where Gx is the in-

duced subgraph of G by N(x).
Proof Algorithm 7 has two steps: generating Gx and

movingGx between memory and disk. It takesO(
∑

(x,y)∈E
(d(x)+d(y))

B) I/Os for computing allGx in graphG. Next,

we consider the cost of moving Gx between memory

and disk. For a given vertex x, Gx occupies O(|E(Gx)|
B)

blocks. All edges of Gx are partitioned into r partitions

P1, . . . , Pr where r = d |E(Gx)|
M e. The memory has M

B

blocks. We consider two following cases. (1) M
B > r,

Algorithm 7 skips the merging process of external sort-

ing (line 17-18 of Algorithm 7); or (2) M
B ≤ r. It takes

O(log M
B

|E(Gx)|
M) rounds to merge partitions into a small

number of sorted edge lists such that the number of

partitions r < M
B holds. Each round of merging process

needs a full scan of the whole graphGx using O(|E(Gx)|
B)

I/Os. Overall, it takes O(
∑

x∈V
|E(Gx)|

B log M
B

|E(Gx)|
M)

I/Os for moving Gx between memory and disk to iden-

tify Tx. As a result, the I/O complexity of Algorithm 7

is O(
∑

(x,y)∈E (d(x)+d(y))

B +
∑

x∈V
|E(Gx)|

B log M
B

|E(Gx)|
M).

Theorem 7 Algorithm 8 takes O(
∑

(x,y)∈E (d(x)+d(y))

B)

I/Os.
Proof Algorithm 8 only needs to load adjacent lists

from disk to memory. Other operations of TCP-Index
construction are performed in memory. Thus, Algorithm

8 takes O(
∑

(x,y)∈E (d(x)+d(y))

B) I/Os.

Space Complexity Analysis. All three algorithms

take O(min{M,m}) in-memory space and O(m
B) blocks

on disk. For constructing TCP-Index for each graph Gx,

it only keeps all edges of Gx using O(m) disk space.

In addition, graph G and TCP-Index of G both take

O(m) space. Overall, the consumption of disk space by

all three algorithms is O(m
B) blocks.

In summary, Table 1 shows the comparison of the

three algorithms in terms of three key operations, I/O

complexity, and disk space complexity. All three meth-

ods need to generate Gx by loading adjacent lists into

memory. Free-TCP performs other operations in mem-

ory. Both Merge-TCP and External-TCP need to read/

write disk operations by moving Gx between memory

and disk for constructing Tx. External-TCP applies the

external sorting algorithm onGx, while Merge-TCP does

not need this step.

16 Yuli Jiang et al.

Table 1 A comparison of three algorithms in terms of three key operations, I/O complexity, and disk space complexity.

Algorithms External-TCP Merge-TCP Free-TCP

Generating Gx X X X

Moving Gx between
X Xmemory/disk

Sorting Gx X

I/O Complexity
O(

∑
(x,y)∈E (d(x)+d(y))

B
O(

∑
(x,y)∈E (d(x)+d(y))

B O(
∑

(x,y)∈E (d(x)+d(y))

B
)

+
∑

x∈V
|E(Gx)|

B
log M

B

|E(Gx)|
B

) +
∑

x∈V
|E(Gx)|

B
log M

B

|E(Gx)|
M

)

Disk Space
O(m

B
) O(m

B
) O(m

B
)

Complexity

Algorithm 9 I/O-efficient K-Truss Community Search

Input: G = (V,E), an integer k, query vertex vq
Output: k-truss communities containing vq

1: visited← ∅; l← 0;
2: for u ∈ N(vq) do
3: if τ((vq, u)) ≥ k and (vq, u) /∈ visited
4: l← l + 1; Cl ← ∅; Q← ∅;
5: Q.push((vq, u));
6: while Q 6= ∅ or Qfile 6= ∅
7: if Q 6= ∅
8: (x, y)← Q.pop();
9: else

10: read edges into Q from Qfile;
11: (x, y)← Q.pop();
12: if (x, y) /∈ visited
13: load Tx from disk;
14: compute Vk(x, y);
15: for z ∈ Vk(x, y) do
16: visited← visited ∪ {(x, z)};
17: output (x, z) into the community file;
18: if the reverse edge (z, x) /∈ visited
19: if Q is full
20: write Q into Qfile;
21: Q.push((z, x));
22: return;
23: Procedure compute Vk(x, y)
24: return {z|z is connected with y in Tx through edges of

weight ≥ k};

5.3 I/O-efficient K-Truss Community Search

In this section, we propose an I/O-efficient algo-

rithm for k-truss community search in Algorithm 9.

Based on the TCP-Index on disk, we consider how to

efficiently compute all k-truss communities containing

a query vertex vq. Recall that the in-memory Algorithm

4 starts from an edge (vq, u) with τ((vq, u)) ≥ k, and

expands (vq, u) to a k-truss community by finding other

community edges based on TCP-Index. During the pro-

cess of k-truss community search, each edge (x, y) is ac-

cessed by queue Q exactly twice in the form: edge (x, y)

and reverse edge (y, x). However, the size of commu-

nity may exceed the memory capacity, indicating that

we need to implement a new data structure of queue

Q. Moreover, to check whether an edge (x, y) has been

visited or not, Algorithm 4 uses a hash table, which

may also fail to hold large communities by the limited

memory. To address these issues, we use two data struc-

tures of bitmap and circular queue in the semi-external

model.
Bitmap. We use a bitmap to implement the function

of hash table, which uses 1 bit to mark whether an edge

has been visited or not. Specifically, w.l.o.g., given an

edge (x, y) ∈ E and x < y, we assign an integer for

edge (x, y), denoted as δ(x, y) ∈ [1,m]. Another integer

δ(y, x) = δ(x, y) +m is assigned to edge (y, x), denoted

as δ(y, x) ∈ [m + 1, 2m]. Thus, for edge (x, y), we use

the δ(x, y)-th position of the bitmap to mark whether it

has been visited or not. If |E| = 1, 000, 000, 000, it only

needs 119.3 MB to implement the bitmap. Moreover,

for sparse graphs with |E| ≤ 32|V |, the bitmap can be

kept in main memory, since an integer consists of at

least 32 bits.

For some massive graphs, the bitmap may not fit

into memory. We develop two simple techniques to re-

duce I/O cost. (1) When the gap between one edge’s

position and its reverse edge’s position, m, is very large,

line 18 in Algorithm 9 may cause disk access every time.

We may simply skip the checking for the reverse edge

and the result will not change, for line 12 will check

again. As a side effect, the size of the queue will in-

crease. But as the queue is accessed sequentially, it will

cause much fewer I/Os compared with the bitmap. (2)

In line 12, the access of bitmap is random and depends

on the sequence in the queue. As changing the order of

edges in the queue will not change the query result, we

can sort the edges in the queue to access the bitmap

more sequentially and reduce I/O cost.
Circular Queue. We use a circular queue Q to imple-

ment the queue used in Algorithm 4. Specifically, we

can store the edges of Q on disk as Qfile when needed,

and read the blocks of Qfile sequentially. The circular

queue Q maintains a fixed number of edges in memory.

If Q is not full, we push an edge into Q; otherwise, we

I/O Efficient K-Truss Community Search in Massive Graphs 17

write edges of Q into disk. If Q is empty, we read edges

from disk as many as possible. As we read the edges

sequentially, this operation costs few I/Os.

Algorithm 9 presents our I/O-efficient query pro-

cessing method. We initialize the bitmap to 0 (line 1).

If there is an edge(vq, u) on query node with trussness

larger than or equal to k, we search the community ex-

panded from this edge in a BFS manner using the circu-

lar queueQ and its corresponding fileQfile in disk (line

2-5). WhenQ orQfile is not empty, we process the edge

(x, y) popped from Q (line 6-11). If the edge (x, y) is un-

visited, we compute all nodes that can be connected to

y through edges whose trussness is larger than or equal

to k in Tx (line 12-14). For each node z ∈ Vk(x, y), we

mark edge (x, z) as visited in the bitmap and output

this edge to the disk as part of the searched community.

Then we calculate the reverse edge (z, x) through the

bitmap definition (i.e., δ(z, x) = δ(x, z)±m) and check

whether it is unvisited (line 18). If it is unvisited and Q

is full, we write all edges in Q to disk (line 19-20), and

then push it into Q (line 21).

6 Experiments

We evaluate the efficiency and effectiveness of our pro-

posed algorithms on real-world networks. All algorithms

are implemented in C++. We evaluate in-memory al-

gorithms and I/O-efficient algorithms on different com-

puting environments respectively. All the experiments

of in-memory algorithms are conducted on Windows

with 2.67GHz six-core CPU and 100GB main memory.

To evaluate the semi-external algorithms, we test them

on a machine with 3.4GHz four-core CPU and a man-

ually set small memory capacity, so the tested massive

graphs cannot fit into memory.

Data sets. We use 7 publicly available real-world net-

works to evaluate the algorithms. The network statis-

tics are shown in Table 2. Except for Wise1 (a micro-

blogging network from WISE 2012 Challenge), UK20022

(a web graph from a 2002 crawl of the .uk domain)

and WebBase2 (a web graph from the 2001 crawl per-

formed by the WebBase crawler), all the other data

sets are downloaded from the Stanford Network Anal-

ysis Project3. All networks are treated as undirected in

the experiments.

6.1 In-Memory K-Truss Community Search

Performance

6.1.1 Query Processing

We evaluate and compare the performance of the two

in-memory k-truss community query algorithms: Algo-

1 http://www.wise2012.cs.ucy.ac.cy/challenge.html
2 http://law.di.unimi.it/datasets.php
3 http://snap.stanford.edu/data/index.html

Table 2 Network statistics (K = 103 and M = 106)

Network |VG| |EG| dmax kgmax

WikiTalk 2.4M 5M 100029 53
Flickr 80K 11.8M 5706 308

LiveJournal 4.8M 69M 20333 362
Orkut 3.1M 117.2M 33313 78
Wise 58.6M 265.1M 278489 80

UK2002 18.6M 298.1M 194955 944
WebBase 115.5M 1709.6M 816127 1507

rithm 2 that uses the simple k-truss index and Algo-

rithm 4 that uses the TCP-Index.

In the first experiment, we select query vertices with

different degrees to test the query processing time. For

each network, we sort the vertices in descending or-

der of their degrees and partition them into 10 equal-

sized buckets. We randomly select 100 vertices from

each bucket for query. The average query processing

time for each degree group is reported in Figure 10.

We fix k = 10 for all networks except for WikiTalk

and Wise which use k = 4, because the edges in these

two networks have smaller trussness. As we can see,

for the high degree query vertices which usually have

larger and denser k-truss communities, the TCP-Index
based method is two orders of magnitude faster than

the k-truss index based method; whereas for the low

degree query vertices which have smaller and sparser

k-truss communities for the same k, the query time of

the two methods is very close and is around a few mil-

liseconds. This shows the superiority of the TCP-Index
based query processing, especially for high degree query

vertices.

In the second experiment, we vary the parameter k

to test the query time for k-truss community search. For

each network, we randomly generate two test sets: a set

of 100 high degree query vertices (degree in top 30%)

and another set of 100 low degree query vertices (degree

in the remaining 70%). We denote the two query meth-

ods on the high/low degree test sets as Truss-H/Truss-L

and TCP-H/TCP-L, respectively. Figure 11 shows the

average query processing time of each method when we

vary the parameter k. As we can see, for the high de-

gree query vertices, the TCP-Index based method is two

to three orders of magnitude faster than the k-truss

based method for all k values; while for the low degree

query vertices, the TCP-Index based method is still one

to two orders of magnitude faster in most networks es-

pecially when k is small. Finally, we can see that the

query processing time decreases when k increases, be-

cause the discovered communities become smaller when

k increases. This experiment again demonstrates the

advantage of the TCP-Index based query processing and

conforms with the time complexity analysis of the two

query methods.

18 Yuli Jiang et al.

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100

degree rank (%)

Truss
TCP

(a) WikiTalk

0.001
0.01

0.1
1

10
100

1000

0 20 40 60 80 100

degree rank (%)

Truss
TCP

(b) Flickr

0.001

0.01

0.1

1

10

100

1000

0 20 40 60 80 100

degree rank (%)

Truss
TCP

(c) LiveJournal

0.001
0.01

0.1
1

10
100

1000
10000

0 20 40 60 80 100

degree rank (%)

Truss
TCP

(d) Orkut

0.001
0.01

0.1
1

10
100

1000
10000

0 20 40 60 80 100

degree rank (%)

Truss
TCP

(e) Wise

0.001

0.01

0.1

1

10

100

0 20 40 60 80 100

degree rank (%)

Truss
TCP

(f) UK2002
Fig. 10 Query time (in seconds) of different algorithms for query vertices in different degree percentile groups

0.001

0.01

0.1

1

10

100

4 5 6 7 8 9 10

k

Truss-H

TCP-H

Truss-L

TCP-L

(a) WikiTalk

0.01

0.1

1

10

100

1000

5 7 9 11 13 15 20

k

Truss-H

TCP-H

Truss-L

TCP-L

(b) Flickr

0.001

0.01

0.1

1

10

100

1000

5 7 9 11 13 15 20

k

Truss-H

TCP-H

Truss-L

TCP-L

(c) LiveJournal

0.001

0.01

0.1

1

10

100

1000

10000

5 7 9 11 13 15 20

k

Truss-H

TCP-H

Truss-L

TCP-L

(d) Orkut

0.001

0.01

0.1

1

10

100

1000

10000

4 5 6 7 8 9 10

k

Truss-H

TCP-H

Truss-L

TCP-L

(e) Wise

0.001

0.01

0.1

1

10

100

1000

5 7 9 11 13 15 20

k

Truss-H

TCP-H

Truss-L

TCP-L

(f) UK2002
Fig. 11 Query time (in seconds) of different algorithms for different k

6.1.2 Index Construction

In this experiment, we compare the two indexing schemes:

the simple k-truss index and the TCP-Index in terms

of index size and index construction time in Table 3.

Note that the index is maintained in memory for both

schemes. The reported index time includes the truss

decomposition time and index construction time.

We can observe that the size of the TCP-Index is

about 3 times that of the k-truss index, and 4.3 times

of the original graph size. This confirms that both in-

dexing schemes have O(m) space complexity and are

very compact. In addition, the index construction is

very efficient for both schemes. The index time of the

TCP-Index is around 1.4–3.4 times that of the k-truss

index. The longest TCP-Index time is 1.9 hours on Wise.

6.1.3 Scalability Test

To evaluate the scalability of our proposed methods, we

generate a series of power-law graphs using the Python-

Web Graph Generator4 [25], which implements a threaded

variant of the RMAT algorithm. We vary |V | from 1,000

to 10,000,000, and |E| = 20|V |. We select 100 vertices of

the highest degree from each graph as the query nodes

and set the trussness parameter k = 4.

Figure 12(a) shows the index construction time of

the k-truss index and TCP-Index. Both methods scale

very well with the vertex number. The construction

time of TCP-Index is 2 times that of the k-truss in-

dex. Figure 12(b) reports the average query processing

time. TCP-Index takes around 10 milliseconds to pro-

cess one query in all networks. It is more than one order

of magnitude faster than the k-truss method in query

processing.

6.1.4 Updating TCP-Index in Dynamic Graphs

In this experiment, we evaluate the performance of in-

cremental update of the TCP-Index when the input net-

work is updated. For each network, we randomly in-

sert/delete 1000 edges, and update the edge trussness

4 http://pywebgraph.sourceforge.net/

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

10
3

10
4

10
5

10
6

10
7

ti
m

e
 (

s
e
c
o

n
d

s
)

number of vertices

Truss
TCP

(a) Index construction

 0.1

 1

 10

 100

 1000

 10000

10
3

10
4

10
5

10
6

10
7

ti
m

e
 (

m
il
li
s
e
c
o

n
d

s
)

number of vertices

Truss
TCP

(b) Query processing
Fig. 12 Scalability test

and the TCP-Index after each edge insertion/deletion.

The average update time, including the edge trussness

update time and the index update time, is reported in

Table 4. In addition, we report the batch update time

for the 1000 edge insertions/deletions. All the experi-

ments are repeated for 20 times, and the average perfor-

mance is reported. For comparison, we also report the

time for constructing the TCP-Index from scratch when

the network is updated with an edge insertion/deletion.

The results in Table 4 show that the update time

per edge insertion ranges from 0.2 to 16.1 milliseconds.

The batch update for 1000 edge insertions can achieve

further performance improvement, compared with the
instant update which handles the inserted edges one by

one. Thus, handling edge insertion is highly efficient.

For the deletion case, the update time per edge dele-

tion ranges from 3.9 to 38.8 milliseconds. The batch up-

date for 1000 edge deletions also achieves further per-

formance improvement. Compared with the insertion

case, handling edge deletion is a little more costly, as it

has a larger search space for finding a replacement edge

in the TCP-Index.

We can see that the incremental update approach

is several orders of magnitude faster than constructing

the TCP-Index from scratch when a network is updated.

This demonstrates the superiority of our proposed in-

cremental update algorithms.

6.2 I/O-Efficient K-Truss Community Search

Performance

In this experiment, we evaluate the efficiency of semi-

external algorithms. We choose four big graphs: Orkut,

I/O Efficient K-Truss Community Search in Massive Graphs 19

Table 3 Comparison of index size (in Megabytes) and index construction time (wall-clock time in seconds)

Network
Graph Index Size Index Time
Size K-Truss TCP-Index K-Truss TCP-Index

WikiTalk 80 118 296 41 138
Flickr 90 135 485 690 1326

LiveJournal 672 1003 3174 1176 1686
Orkut 1792 2662 8714 2291 3342
Wise 4209 5960 11049 3078 6997

UK2002 4055 5980 21238 1374 2860

Table 4 TCP-Index update time (wall-clock time in milliseconds)

Network
Insertion Insertion Deletion Deletion Computing
Per Edge 1000 Edges Per Edge 1000 Edges from Scratch

WikiTalk 0.2 125 3.9 2509 138000
Flickr 10.2 6344 58 33763 1326000

LiveJournal 0.7 693 3.9 1891 1686000
Orkut 16.1 17190 29.6 21351 3342000
Wise 7.8 3902 38.8 31282 6997000

UK2002 3.9 4065 12.2 12326 2860000

Wise, UK2002, and WebBase for testing. Under the

semi-external model assumption, we set the memory

size M as a few times of the vertex size of a graph, but

cannot hold all graph edges. We test the I/O efficiency

of TCP-Index construction and query processing.

6.2.1 Index Construction

TCP-Index construction for a graph. We test and

compare three semi-external algorithms for TCP-Index
construction: External-TCP, Merge-TCP, and Free-TCP.

Table 5 reports the memory capacity, I/O cost, and

running time of all three methods. We can observe that

External-TCP is much slower than the other two meth-

ods. It takes more than 48 hours for External-TCP to

construct TCP-Index on Wise, UK2002 and WebBase,

thus it is terminated. Free-TCP performs the best in

terms of both I/O cost and running time. Merge-TCP
achieves good performances close to Free-TCP. This is

because only a few vertices have large neighborhood

induced subgraphs, whose sizes exceed the memory ca-

pacity. The difference between Merge-TCP and Free-

TCP lies in computing TCP-Index for such vertices with

large degree. For vertices with small degree, TCP-Index
construction can be completed in memory for both Merge-

TCP and Free-TCP.
TCP-Index construction for a vertex with the

largest neighborhood subgraph. To further com-

pare these three methods, we select one vertex with

the largest neighborhood subgraph, and evaluate TCP-

Index construction for this vertex. The I/O cost and

running time are reported in Table 6. Free-TCP achieves

the best performance with the smallest number of I/O

costs and running time. On the other hand, External-
TCP performs the worst. Compared with External-TCP,

Merge-TCP reduces I/O cost and running time almost

by half on Orkut, Wise and UK2002, and achieves sub-

stantially better efficiency on WebBase. Free-TCP and

Merge-TCP achieve similar performance on WebBase,

since the size of the neighborhood subgraph Gx does

not exceed the memory capacity.
Vary memory capacity M . In this experiment, we

vary the memory capacity M to compare the three

TCP-Index construction methods on WebBase. We re-

port the I/O cost and running time in Figure 13. As we

can see, when the memory capacity decreases, External-
TCP performs stably in terms of running time and I/O

cost, because External-TCP always needs to store all

edges of Gx on disk. For Merge-TCP, when Gx can fit

into the memory (M ≥ 4.25 GB), the running time and

I/Os become the lowest. When the size of Gx exceeds

the memory capacity (M < 4.25 GB), Merge-TCP takes

much higher running time and I/Os, because Merge-

TCP needs to store edges on disk and reload them into

memory to build TCP-Index. Free-TCP performs the

best on all different M values in terms of running time

and I/Os. The I/O cost of Free-TCP remains stable for

all different M values. The running time of Free-TCP
increases slightly when the memory capacity becomes

small.

 10

 100

 1000

5.00 4.75 4.50 4.25 4.00 3.90 3.80 3.70

Memory Capacity M

External
Merge

Free

(a) Running Time

 100000

 1x10
6

 1x10
7

5.00 4.75 4.50 4.25 4.00 3.90 3.80 3.70

Memory Capacity M

External
Merge

Free

(b) I/Os

Fig. 13 Running time (in seconds) and I/Os of External-
TCP, Merge-TCP, and Free-TCP versus the memory capacity
M (in GB) on WebBase.

6.2.2 Query Processing

In this experiment, we evaluate the performance of semi-

external query processing algorithms for k-truss com-

munity search. We compare two approaches. The first

20 Yuli Jiang et al.

Table 5 Comparison of TCP-Index construction by three methods External-TCP, Merge-TCP, and Free-TCP, in terms of I/O
costs and running time (in seconds). Here, M = 106.

Network
Memory I/O Cost Index Construction Time
Capacity External-TCP Merge-TCP Free-TCP External-TCP Merge-TCP Free-TCP

Orkut 150MB 663M 491M 487M 127057.8 6083.0 5892.8
UK2002 750MB – 1262M 1252M – 9382.5 8747.0

Wise 2000MB – 4680M 4211M – 127971.8 76852.6
WebBase 5000MB – 7629M 7583M – 44430.3 42732.9

Table 6 For one vertex with large degree, we test and compare TCP-Index construction for this vertex by three methods
External-TCP, Merge-TCP, and Free-TCP, in terms of I/O cost and running time (in seconds). Here, K = 103 and M = 106.

Network
Memory I/O Cost Index Construction Time
Capacity External-TCP Merge-TCP Free-TCP External-TCP Merge-TCP Free-TCP

Orkut 150MB 200K 86K 53K 20.113 13.727 1.456
UK2002 750MB 740K 204K 51K 91.949 47.681 4.756

Wise 2000MB 1484K 915K 752K 112.522 63.707 18.535
WebBase 5000MB 1666K 150K 150K 201.967 12.691 12.304

0.001

0.01

0.1

1

10

100

1000

10000

100000

5 7 9 11 13 15 20

k

Basic-H

I/O-H

Basic-L

I/O-L

(a) Orkut

0.001

0.01

0.1

1

10

100

1000

10000

4 5 6 7 8 9 10

k

Basic-H

I/O-H

Basic-L

I/O-L

(b) Wise

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

5 7 9 11 13 15 20

k

Basic-H

I/O-H

Basic-L

I/O-L

(c) UK2002

0.001

0.01

0.1

1

10

100

1000

10000

100000

4 5 6 7 8 9 10

k

Basic-H

I/O-H

Basic-L

I/O-L

(d) WebBase
Fig. 14 Query time (in seconds) of query processing algorithms for different k

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

5 7 9 11 13 15 20

k

Basic-H

I/O-H

Basic-L

I/O-L

(a) Orkut

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

4 5 6 7 8 9 10

k

Basic-H

I/O-H

Basic-L

I/O-L

(b) Wise

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

5 7 9 11 13 15 20

k

Basic-H

I/O-H

Basic-L

I/O-L

(c) UK2002

 1

 100

 10000

 1x10
6

 1x10
8

 1x10
10

4 5 6 7 8 9 10

k

Basic-H

I/O-H

Basic-L

I/O-L

(d) WebBase
Fig. 15 I/O cost of query processing algorithms for different k

one is a variant of in-memory query processing algo-

rithm (i.e., Algorithm 4), denoted by basic, which di-

rectly stores and accesses data on disk whenever the

memory is used up. The second approach is our I/O-

efficient algorithm in Algorithm 9, denoted by I/O. We

select query nodes of high degree (degree in top 30%)

and low degree (degree in the remaining 70%). To eval-

uate the effectiveness of Algorithm 9, we vary the pa-

rameter k to find k-truss community for each query ver-

tex. We report the average query time and the average

number of I/Os respectively.

The results of query time by basic and I/O are re-

ported in Figure 14. Compared with basic, our I/O-

efficient algorithm performs two to four orders of mag-

nitude faster for query nodes of high degree and low

degree in most cases. The results show that the query

processing of k-truss community search can be done in

milliseconds to several seconds by our I/O algorithm.

In addition, the results of I/O cost are reported in Fig-

ure 15. Similarly, our I/O method takes much fewer

I/Os than basic and achieves two orders of magnitude

of I/O cost saving in most cases.

0

1×10
4

2×10
4

3×10
4

4×10
4

5×10
4

20 40 60 80 100
0

2×10
3

4×10
3

6×10
3

8×10
3

1×10
4

ti
m

e
 (

s
e
c
o

n
d

s
)

I/
O

 c
o

s
t

(M
)

Edge percentage

Time
I/O

(a) Index construction

1

10

1×10
2

1×10
3

1×10
4

1×10
5

1×10
6

20 40 60 80 100

ti
m

e
 (

m
il
li
s
e
c
o

n
d

s
)

Edge percentage

(b) Query processing

Fig. 16 Efficiency test on WebBase with edge insertions

6.2.3 Performance Comparison between the Original

Graph and Updated Graph

In this experiment, we evaluate the effectiveness and ef-

ficiency of our I/O-efficient method Free-TCP between

the original graph and the updated graph after edge

insertions. This experiment is conducted on the largest

graph WebBase. We simulate edge insertions by creat-

ing five subgraphs of WebBase which include 20%, 40%,

60%, 80%, and 100% edges respectively. For each sub-

graph, we use the same 100 high-degree query vertices

(degree in top 30% in the complete WebBase graph)

and set the trussness parameter k = 4 for finding 4-

truss communities.

I/O Efficient K-Truss Community Search in Massive Graphs 21

Table 7 The graph statistics of five subgraphs of WebBase and the community quality measures. #Community denotes the
total number of communities from 100 query vertices. Here M = 106.

Edge Percentage |EG| dmax kgmax
Discovered communities

#Community Clustering coefficient

20% 342M 163514 44 12 0.095
40% 684M 326952 202 57 0.303
60% 1026M 489987 486 84 0.484
80% 1368M 652771 903 91 0.627
100% 1710M 816127 1507 95 0.767

To evaluate quality of the discovered communities,

we calculate the average clustering coefficient. For a ver-

tex vi, its local clustering coefficient ci in a community

C is calculated as ci =
2{ejk:vj ,vk∈Ni,ejk∈E(C)}

di(di−1) , where

Ni denotes the neighbors of vertex vi in C, di is the

degree of vertex vi in C, and E(C) is the edge set of

C. The clustering coefficient of a community C is de-

fined as the average local clustering coefficient of each

vertex in C, i.e., c = 1
|C|

∑|C|
i=1 ci, where |C| denotes the

number of vertices in the community C.

Table 7 reports the statistics of the five subgraphs

of WebBase in terms of the number of edge |EG|, the

maximum degree dmax, and the largest trussness kgmax.

We also report the number of discovered communities

and the average clustering coefficient of the communi-

ties. We can see that as the graph includes more edges,

there are more query vertices containing in 4-truss com-

munities and the clustering coefficient of communities

also becomes larger.

Figure 16(a) shows the running time and I/O cost

of index construction by Free-TCP. As we can see, Free-

TCP scales very well with the increased number of edges

in terms of both running time and I/O cost. Figure 16(b)

reports the average query time of our I/O-efficient com-

munity search method in Algorithm 9. It takes more

time for community search on larger graphs as there

are more discovered communities and the discovered

communities have more edges too.

6.2.4 K-Truss Community Search Comparison:

EquiTruss and Free-TCP

EquiTruss proposed by Akbas and Zhao [1] is the lat-

est k-truss community search method using the truss

equivalence techniques. Due to the same truss-based

community definition, EquiTruss finds the same com-

munities as our method. In this experiment, we evaluate

and compare the index construction and query process-

ing time between EquiTruss and Free-TCP. We obtain

the executable program of EquiTruss [1] from the au-

thors. We randomly select 100 high degree query ver-

tices (degree in top 30%) and set k = 5 for querying

5-truss communities.

Table 8 reports the memory usage, index construc-

tion time, query preprocessing time, and query time

on four big graphs. We can observe that the memory

consumption of EquiTruss is more than two orders of

magnitude larger than that of Free-TCP. As a semi-

external method, Free-TCP can construct TCP-Index in

a very small memory capacity, which is even smaller

than the graph size on disk. On the other hand, Equi-

Truss [1] requires a large memory space for index con-

struction, and it fails to construct index on the largest

graph WebBase on the server with 384GB memory ca-

pacity. In terms of index construction time, EquiTruss

runs faster than Free-TCP on Orkut and Wise, but is

slower than Free-TCP on UK2002.

Next we compare the query efficiency of Free-TCP
and EquiTruss. In the implementation of EquiTruss,

we observe that EquiTruss needs a one-off preprocess-

ing step before answering queries as follows: it reads

the entire graph and its constructed index into memory

and then maps the index to the original graph edges.

This preprocessing step consumes a long time. On the

other hand, our TCP-Index does not need such a pre-

processing step. The query time of the two methods is

close. Free-TCP is faster than EquiTruss on Orkut and

Wise, but is slightly slower on UK2002.

6.3 Comparison with Other Community Search

Models

In this experiment, we compare the k-truss community

model (the in-memory version) with three other com-

munity search models: quasi-clique (OCS) [7], k-core

[8], and k-ECC [3]. We compare the efficiency and ef-

fectiveness of these four models on networks with and

without ground-truth communities, as well as perform

a case study on the DBLP collaboration network.

6.3.1 Comparison on Effectiveness and Efficiency

On networks with ground-truth communities.

We conduct the quality and efficiency evaluations on

two social networks: Facebook and Twitter from the

Stanford Network Analysis Project, both of which con-

tain ground-truth communities for individual nodes.

The Facebook network contains 4,039 vertices, 88,234

edges, and 10 query vertices with ground-truth com-

munities in their neighborhood. The Twitter network

contains 81,306 vertices, 1,768,149 edges, and 973 query

vertices with ground-truth communities in their neigh-

borhood. For a query, we denote the discovered com-

22 Yuli Jiang et al.

Table 8 Comparison of EquiTruss [1] and the I/O-efficient algorithm Free-TCP, in terms of memory cost and running time
(in seconds). Here, 1GB = 1024MB.

Network Graph Size
Memory Cost Index Construction Time Query Preprocess Time Query Time

Free-TCP EquiTruss Free-TCP EquiTruss Free-TCP EquiTruss Free-TCP EquiTruss
Orkut 1.7GB 150MB 100.2GB 5892.8 4299.9 nil 1210.9 119.7 120.4

UK2002 4.9GB 750MB 133.3GB 8747.0 10872.6 nil 1117.2 4.2 3.2
Wise 4.6GB 2.0GB 165.9GB 76854.6 6839.1 nil 1943.2 4.3 29.4

WebBase 29.8GB 5.0GB - 42732.9 - nil - 1.1 -

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

4 6 8 10 13 16

F
1
-s

c
o

r
e

K

Truss

OCS

Ecc

Core

(a) Facebook F1 score

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

4 6 8 10 13 16

ti
m

e
 (

s
e
c
o

n
d

s
)

K

Truss
OCS
Ecc

Core

(b) Facebook query time

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

4 6 8 10 13 16

F
1
-s

c
o

r
e

K

Truss

OCS

Ecc

Core

(c) Twitter F1 score

 0.1

 1

 10

4 6 8 10 13 16

ti
m

e
 (

s
e
c
o

n
d

s
)

K

Truss
OCS
Ecc

Core

(d) Twitter query time

Fig. 17 Quality and efficiency comparison of four community models on networks with ground-truth communities

munities as C = {C1, . . . , Ci}, and the ground-truth

communities as C = {C1, . . . , Cj}. We use the F1 score

to measure the alignment between a discovered commu-

nity C and a ground-truth community C. Since we do

not know the correspondence between communities in

C and C, we compute the optimal match via linear as-

signment [28] by maxf :C→C
1
|f |

∑
C∈dom(f) F1(C, f(C)),

where f is a (partial) correspondence between C and C.
We compare the F1 score of the four community

search models using the executable programs provided

by the respective authors. For k-truss, k-ECC and k-

core models, we vary the parameter k; for the quasi-

clique model, we follow the experimental setting in [7]

to use the (k− 1, 1)-OCS model (α = k− 1, γ = 1) and

vary the clique size k. Figures 17(a) and (c) show the

F1 score of the detected communities by the four meth-

ods versus their respective parameter k on Facebook

and Twitter. Although the parameter k has different

meanings in different models, the results still show the
obvious differences in the F1 score between our method

and the others over a broad range of parameter values.

On both networks, we observe that our k-truss model

has a very stable performance when we vary the truss-

ness k. The (k − 1, 1)-OCS model is consistently worse

than our method. The k-ECC and k-core models have

a very low F1 score. The reason is that these two mod-

els only find one community for a query. However, there

are more than one ground-truth community for a query

and the discovered community only corresponds to one

of the ground-truth communities. For the quasi-clique

model, we also tried other α and γ values. However,

when we set α < k − 1 or γ < 1, the program cannot

output all communities within the time limit set in the

executable program due to the expensive quasi-clique

enumeration.
Figures 17(b) and (d) report the average query time

of these four models on Facebook and Twitter respec-

tively. Our method is more efficient than the (k− 1, 1)-

OCS and k-core models, but slower than k-ECC.

On networks without ground-truth communi-

ties. We also compare the above four community search

models on networks without ground-truth communi-

ties. For a fair comparison, we set the parameter k as

the largest value such that communities can be found

for a query vertex in each community search model re-

spectively. We test these four community models on

four networks: WikiTalk, Flickr, LiveJournal and a web

graph Google with 875,713 vertices and 5,105,039 edges

(downloaded from Stanford Network Analysis Project).

We randomly select 100 high degree vertices (degree in

top 30%) as the query vertices.

Figure 18 reports the results of the four methods.

In terms of the index construction time, our k-truss

model is slower than the k-core model but faster than

k-ECC as shown in Figure 18(a). Note that the quasi-

clique method OCS does not need to build any index.

Figure 18(b) reports the query time. Our k-truss model

is slower than k-ECC, but is faster than k-core and

OCS. Note that OCS cannot finish the execution on

LiveJournal in 5 days and output no community.

To evaluate the result quality, we report the average

clustering coefficient of the discovered communities by

all models in Figure 18(c). Our k-truss model always

finds the communities with the highest cluster coeffi-

cient. Overall, our k-truss model achieves a good bal-

ance of fast index construction, query processing and

higher community quality.

6.3.2 Case Study on DBLP

We build a collaboration network from the DBLP data

set5 for case study. A vertex represents an author and

an edge is added between two authors if they have

co-authored 3 times or more. The network contains

234,879 vertices and 541,814 edges.

We query the 5-truss communities containing ‘Ji-

awei Han’ which are shown in Figure 19. For OCS,

5 http://dblp.uni-trier.de/xml/

I/O Efficient K-Truss Community Search in Massive Graphs 23

 0.01

 0.1

 1

 10

 100

 1000

 10000

Google WikiTalk Flickr LiveJournal

ti
m

e
 (

s
e
c
o

n
d

s
)

Networks

Core
Ecc

Truss

(a) Index construction time

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

Google WikiTalk Flickr LiveJournal

ti
m

e
 (

s
e
c
o

n
d

s
)

Networks

Core
Ecc

Truss
OCS

(b) Query time

 0

 0.2

 0.4

 0.6

 0.8

 1

Google WikiTalk Flickr LiveJournal

c
lu

s
te

r
c
o

e
ff

ic
ie

n
t

Networks

Core
Ecc

Truss
OCS

(c) Clustering coefficient
Fig. 18 Quality and efficiency comparison of four community models on networks without ground-truth communities

Jiawei Han

B. Mortazavi-Asl

Qiming Chen

Meichun Hsu

Umeshwar Dayal

Jian Pei
Helen PintoGuozhu Dong

Ada Wai-Chee Fu

Jianyong Wang

B. Mortazavi-AslB. Mortazavi-AslB. Mortazavi-Asl
Benjamin W. Wah

Yixin Chen

Ada Wai-Chee FuAda Wai-Chee Fu
Ke Wang

Philip S. Yu

Jeffrey Xu Yu

Feida Zhu

Yizhou Sun

Xifeng Yan
Jiong Yang

Chen Chen

Jing Gao

Wei Fan

Wei Wang

Haixun Wang

M. M. Masud

Latifur Khan
B. M. Thuraisingham

Rick Barber

Tim Weninger

Fabio Fumarola

Donato Malerba

M. M. H. Khan

Hossein Ahmadi

Hieu Khac Le Tim Weninger
T. F. Abdelzaher

Chengxiang Zhai

Cindy Xide Lin

Bolin Ding

Bo Zhao

Zhijun Yin

Liangliang Cao

Xin Jin

T. S. Huang

Jiebo Luo

Jie Yu

Fig. 19 Five 5-truss communities containing ‘Jiawei Han’

Jiebo Luo

T. S. Huang

Jie Yu

Xin Jin

Jiawei Han Liangliang Cao

Zhijun Yin

Latifur Khan

M. M. Masud

B. M. Thuraisingham

M. M. MasudM. M. MasudM. M. MasudM. M. MasudJing Gao

Chen Chen

Philip S. Yu

Xifeng Yan

Feida Zhu

Wei Fan

Philip S. Yu_1

Jing Gao_1

Yizhou Sun

Benjamin W. Wah

Jian Pei

Jianyong Wang

Yixin Chen

Guozhu Dong

Umeshwar Dayal

Jian Pei_1

Umeshwar DayalUmeshwar Dayal
Qiming Chen

B. Mortazavi-Asl

Helen Pinto

Meichun Hsu

Philip S. Yu_2

Jiong Yang

Haixun Wang

M. M. Masud
Wei Wang

T. F. Abdelzaher

Hossein Ahmadi

M. M. H. Khan

Hieu Khac Le
Philip S. Yu_3

Benjamin W. Wah_1

Ada Wai-Chee Fu

Jian Pei_2

Jianyong Wang_1
Yixin Chen_1

Jeffrey Xu Yu

Ke Wang

Guozhu Dong_1

Bolin Ding

Helen PintoHelen Pinto
Bo Zhao

Cindy Xide Lin

Chengxiang Zhai

Donato Malerba

Tim Weninger

Fabio Fumarola
Rick Barber

Fig. 20 Eleven 4-adjacency-1.0-quasi-5-clique communities
containing ‘Jiawei Han’

we follow the case study setting in [7] which uses the

(k − 1, 1)-OCS model to query ‘Jiawei Han’ by setting

k = 5, α = 4, γ = 1 and produces communities at a

similar scale as shown in Figure 20. We duplicate some

authors who participate in more than one community in

Figure 20, e.g., ‘Jian Pei’, ‘Jian Pei 1’ and ‘Jian Pei 2’,

for a better visualization effect. We also query the 5-

core and 5-ECC in Figures 21 and 22 respectively. Note

that we only plot the one-hop neighbors of ‘Jiawei Han’

in the discovered communities by all four methods. We

have the following observations.

(1) Our model generates 5 communities containing

‘Jiawei Han’, among which the 4 smaller ones are also

found by the (k − 1, 1)-OCS model and depicted using

the same color in Figure 20.

(2) The largest 5-truss community depicted in blue

in Figure 19, however, is decomposed into 7 smaller

communities by the (k − 1, 1)-OCS model in Figure

20. This phenomenon can be explained by the differ-

ent mechanisms of the two community models. The

(k − 1, 1)-OCS model tends to find the small, clique-

based “paper communities”, in which all the involved

scholars appear in the same paper. For example, a pa-

per community is formed by ‘Jiawei Han’, ‘Philip S.

Fig. 21 The 5-core community containing ‘Jiawei Han’

Fig. 22 The 5-ECC community containing ‘Jiawei Han’

Yu’, ‘Chen Chen’, ‘Xifeng Yan’, and ‘Feida Zhu’. In

contrast, such small paper communities can be merged

into a larger dense one by the triangle adjacency condi-

tion in our k-truss model. For example, two small paper
communities can be merged if they share a common

edge as (‘Jiawei Han’, ‘Philip S. Yu’) and form a 5-

truss graph after being merged. In addition, we observe

a community containing ‘Guozhu Dong’ and 5 other

authors (depicted in purple) in Figure 20 is completely

subsumed by another bigger community (depicted in

black) in the same figure. Such duplicate output, which

is not desired, may be explained by the approximate

heuristics for clique enumeration and expansion in [7].

(3) A less restrictive community criterion can be

realized by tuning α and γ in [7]. But in our experiment,

if we set α < k − 1 or γ < 1, it cannot output all

communities within the time limit set in the executable

program due to the expensive quasi-clique enumeration.

(4) With the same parameter of k, the core-based

and ECC-based models find much larger communities

compared with the truss-based model. In Figure 19,

there are 45 vertices in the one-hop 5-truss commu-

nities when querying ‘Jiawei Han’. In contrast there

are 90 vertices and 119 vertices in the one-hop 5-core

24 Yuli Jiang et al.

and one-hop 5-ECC communities in Figures 21 and 22.

In addition, the k-truss and OCS modelscan find more

than one community for a query, but the k-core and k-

ECC models can only find one community for a query.

7 Related Work

The related work to our study includes community search,

k-truss mining, and I/O-efficient graph processing.

Community Search. Community search aims at find-

ing query-dependent dense subgraphs over graphs. A

comprehensive survey on community search can be found

in [12,18]. There are numerous community search mod-

els based on different dense subgraph patterns, includ-

ing k-core [31,8,11,42,13,44,41], k-truss [17,19,1,20,

43,23,24], k-clique [32,7,38], k-edge connectivity com-

ponent (k-ECC) [3,16], and query-biased densest sub-

graph [36]. Sozio and Gionis [31] first studied the prob-

lem of community search and proposed a k-core based

model for online community search. Cui et al. [7] stud-

ied the problem of online search of overlapping commu-

nities for a query vertex by designing a new α-adjacency

γ-quasi-k-clique model. Wu et al. [36] proposed a query-

biased densest subgraph based community search model

to avoid the free-rider effect. Huang et al. [19] extended

the k-truss community model [17] to find the closest

k-truss community with the smallest diameter, which

can avoid the free-rider effect. Various latest studies

of community search conducted investigations on more

complex graphs, such as attributed graphs [11,20,41,

24], weighted graphs [42,43], and directed graphs [13,

23]. Different from the above studies, to the best of our

knowledge, our newly proposed I/O-efficient algorithms

are the first work to address the problem of community

search over massive graphs in a semi-external setting,

where the entire graph cannot fit into the memory.

The most similar study to our work is [1]. Akbas

and Zhao studied the same problem of k-truss commu-

nity search and proposed a space-efficient and truss-

preserving index called EquiTruss [1]. EquiTruss is a

summarized graph built upon the k-truss equivalence

classes, where each supernode represents an equivalence

class of edges and each superedge represents that two

end-point supernodes of components are triangle con-

nected. For a given query, it needs to map the supern-

ode in EquiTruss index to all the edges of the origi-

nal graph first, which is time consuming. However, our

query processing algorithms leverage TCP-Index to re-

construct the community edges only during the search

process. Moreover, the total number of visited edges in

the search process is proportional to the query com-

munity size but not the graph size, which makes our

TCP-Index algorithms efficient for large graphs. A de-

tailed experimental comparison between EquiTruss and

our methods is presented in Section 6.2.4.

K-Truss Mining. k-truss [6] is an important motif

based on triangles in a graph, requiring that each edge

is contained in at least k − 2 triangles within the k-

truss. k-truss decomposition [34] finds the k-trusses for

all values of k in a graph. k-truss mining has also been

studied on various kinds of graphs, including directed

graphs [23], probabilistic graphs [21], public-private net-

works [9], and dynamic graphs [17,40]. The problem of

truss maintenance is to compute the trussness of all

edges when a graph updates with vertex/edge inser-

tions/deletions. Zhang and Parthasarathy [39] designed

an incremental algorithm for updating triangle k-core

(equivalent to k-truss). Recently, Zhang and Yu [40]

haven shown the truss maintenance is bounded for edge

deletions but is unbounded for edge insertions. Based

on the truss decomposition order, they proposed an ef-

ficient truss maintenance algorithm on dynamic graphs.

I/O-Efficient Graph Processing. Many I/O-efficient

algorithms have been proposed to solve various graph

analysis problems. I/O-efficient algorithms have been

proposed for core decomposition [4] and truss decom-

position [34]. Wen et al. [35] proposed a more efficient

semi-external algorithm for core decomposition and core

maintenance over dynamic graphs. More I/O-efficient

algorithms can be found in the survey [26].

8 Conclusions

In this paper, we study the online community search

problem in a network. We propose a novel k-truss com-

munity model based on the k-truss concept which is

shown to have cohesive and hierarchical community struc-
ture. To support the efficient search of k-truss commu-

nity, we design a novel and compact tree-shape index,

called the TCP-Index, which preserves the edge truss-

ness and the triangle adjacency relationship, and sup-

ports community search in linear time with respect to

the community size. We further study the k-truss com-

munity search in dynamic graphs and propose efficient

incremental algorithms to update the index. Moreover,

we propose I/O-efficient algorithms to construct TCP-

Index and query k-truss communities for massive graphs

where the entire graph cannot fit into the main memory.

We conduct extensive experiments on large real-world

networks, and the results demonstrate the effectiveness

and efficiency of the proposed algorithms.

Acknowledgements The work was supported by grants from
the Research Grant Council of the Hong Kong Special Ad-
ministrative Region, China [Project No.: CUHK 14205617],
[Project No.: CUHK 14205618], and [Project No.: HKBU
22200320], and NSFC Grant Nos. U1936205 and 61702435.

I/O Efficient K-Truss Community Search in Massive Graphs 25

References

1. Akbas, E., Zhao, P.: Truss-based community search:
a truss-equivalence based indexing approach. PVLDB
10(11), 1298–1309 (2017)

2. Boldi, P., Vigna, S.: The WebGraph framework I: Com-
pression techniques. In: WWW, pp. 595–601 (2004)

3. Chang, L., Lin, X., Qin, L., Yu, J.X., Zhang, W.: Index-
based optimal algorithms for computing steiner compo-
nents with maximum connectivity. In: SIGMOD, pp.
459–474 (2015)

4. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core
decomposition in massive networks. In: ICDE, pp. 51–62
(2011)

5. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing
algorithms. SIAM J. Comput. 14(1), 210–223 (1985)

6. Cohen, J.: Trusses: Cohesive subgraphs for social network
analysis. Tech. rep., National security agency technical
report (2008)

7. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wang, W.: Online
search of overlapping communities. In: SIGMOD, pp.
277–288 (2013)

8. Cui, W., Xiao, Y., Wang, H., Wang, W.: Local search of
communities in large graphs. In: SIGMOD, pp. 991–1002
(2014)

9. Ebadian, S., Huang, X.: Fast algorithm for k-truss discov-
ery on public-private graphs. In: IJCAI, pp. 2258–2264
(2019)

10. Edachery, J., Sen, A., Brandenburg, F.J.: Graph cluster-
ing using distance-k cliques. In: International Symposium
on Graph Drawing, pp. 98–106 (1999)

11. Fang, Y., Cheng, R., Chen, Y., Luo, S., Hu, J.: Effec-
tive and efficient attributed community search. VLDB J.
26(6), 803–828 (2017)

12. Fang, Y., Huang, X., Qin, L., Zhang, Y., Zhang, W.,
Cheng, R., Lin, X.: A survey of community search over
big graphs. VLDB J. 29(1), 353–392 (2020)

13. Fang, Y., Wang, Z., Cheng, R., Wang, H., Hu, J.: Effec-
tive and efficient community search over large directed
graphs. IEEE Trans. Knowl. Data Eng. 31(11), 2093–
2107 (2018)

14. Hartmanis, J.: Computers and intractability: a guide to
the theory of np-completeness. Siam Review 24(1), 90
(1982)

15. Hartuv, E., Shamir, R.: A clustering algorithm based on
graph connectivity. Inf. Process. Lett. 76(4–6), 175–181
(2000)

16. Hu, J., Wu, X., Cheng, R., Luo, S., Fang, Y.: On mini-
mal steiner maximum-connected subgraph queries. IEEE
Trans. Knowl. Data Eng. 29(11), 2455–2469 (2017)

17. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.:
Querying k-truss community in large and dynamic
graphs. In: SIGMOD, pp. 1311–1322 (2014)

18. Huang, X., Lakshmanan, L.V., Xu, J.: Community
Search over Big Graphs. Morgan & Claypool Publish-
ers (2019)

19. Huang, X., Lakshmanan, L.V., Yu, J.X., Cheng, H.:
Approximate closest community search in networks.
PVLDB 9(4), 276–287 (2015)

20. Huang, X., Lakshmanan, L.V.S.: Attribute-driven com-
munity search. PVLDB 10(9), 949–960 (2017)

21. Huang, X., Lu, W., Lakshmanan, L.V.S.: Truss decompo-
sition of probabilistic graphs: Semantics and algorithms.
In: SIGMOD, pp. 77–90 (2016)

22. Leu, F., Tsai, Y., Tang, C.Y.: An efficient external sorting
algorithm. Inf. Process. Lett. 75(4), 159–163 (2000)

23. Liu, Q., Zhao, M., Huang, X., Xu, J., Gao, Y.: Truss-
based community search over large directed graphs. In:
SIGMOD, pp. 2183–2197 (2020)

24. Liu, Q., Zhu, Y., Zhao, M., Huang, X., Xu, J., Gao,
Y.: Vac: Vertex-centric attributed community search. In:
ICDE, pp. 937–948 (2020)

25. Macropol, K., Singh, A.: Scalable discovery of best clus-
ters on large graphs. PVLDB 3(1-2), 693–702 (2010)

26. Maheshwari, A., Zeh, N.: A survey of techniques for de-
signing i/o-efficient algorithms. In: Algorithms for Mem-
ory Hierarchies, pp. 36–61 (2002)

27. Malliaros, F., Giatsidis, C., Papadopoulos, A., Vazirgian-
nis, M.: The core decomposition of networks: Theory, al-
gorithms and applications. VLDB J. 29(1), 61–92 (2020)

28. McAuley, J.J., Leskovec, J.: Learning to discover social
circles in ego networks. In: NIPS, pp. 548–556 (2012)

29. Newman, M.E., Girvan, M.: Finding and evaluating com-
munity structure in networks. Physical review E 69(2),
026113 (2004)

30. Sarıyüce, A.E., Gedik, B., Jacques-Silva, G., Wu, K.L.,
Çatalyürek, Ü.V.: Streaming algorithms for k-core de-
composition. PVLDB 6(6), 433–444 (2013)

31. Sozio, M., Gionis, A.: The community-search problem
and how to plan a successful cocktail party. In: KDD,
pp. 939–948 (2010)

32. Tsourakakis, C., Bonchi, F., Gionis, A., Gullo, F., Tsiarli,
M.: Denser than the densest subgraph: extracting optimal
quasi-cliques with quality guarantees. In: KDD, pp. 104–
112 (2013)

33. Ugander, J., Backstrom, L., Marlow, C., Kleinberg, J.:
Structural diversity in social contagion. Proc. Natl. Acad.
Sci. 109(16), 5962–5966 (2012)

34. Wang, J., Cheng, J.: Truss decomposition in massive net-
works. PVLDB 5(9), 812–823 (2012)

35. Wen, D., Qin, L., Zhang, Y., Lin, X., Yu, J.X.: I/o ef-
ficient core graph decomposition: Application to degen-
eracy ordering. IEEE Trans. Knowl. Data Eng. 31(1),
75–90 (2019)

36. Wu, Y., Jin, R., Li, J., Zhang, X.: Robust local commu-
nity detection: on free rider effect and its elimination.
PVLDB 8(7), 798–809 (2015)

37. Xie, J., Kelley, S., Szymanski, B.K.: Overlapping com-
munity detection in networks: The state-of-the-art and
comparative study. ACM Comput. Surv. 45(4), 43 (2013)

38. Yuan, L., Qin, L., Zhang, W., Chang, L., Yang, J.: Index-
based densest clique percolation community search in
networks. IEEE Trans. Knowl. Data Eng. 30(5), 922–
935 (2017)

39. Zhang, Y., Parthasarathy, S.: Extracting analyzing and
visualizing triangle k-core motifs within networks. In:
ICDE, pp. 1049–1060 (2012)

40. Zhang, Y., Yu, J.X.: Unboundedness and efficiency of
truss maintenance in evolving graphs. In: SIGMOD, pp.
1024–1041 (2019)

41. Zhang, Z., Huang, X., Xu, J., Choi, B., Shang, Z.:
Keyword-centric community search. In: ICDE, pp. 422–
433 (2019)

42. Zheng, D., Liu, J., Li, R.H., Aslay, C., Chen, Y.C.,
Huang, X.: Querying intimate-core groups in weighted
graphs. In: IEEE ICSC, pp. 156–163 (2017)

43. Zheng, Z., Ye, F., Li, R.H., Ling, G., Jin, T.: Finding
weighted k-truss communities in large networks. Inf. Sci.
417, 344–360 (2017)

44. Zhu, R., Zou, Z., Li, J.: Diversified coherent core search
on multi-layer graphs. In: ICDE, pp. 701–712 (2018)

