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Abstract. Community search that finds query-dependent communities
has been studied on various kinds of graphs. As one instance of commu-
nity search, intimate-core group search over a weighted graph is to find
a connected k-core containing all query nodes with the smallest group
weight. However, existing state-of-the-art methods start from the max-
imal k-core to refine an answer, which is practically inefficient for large
networks. In this paper, we develop an efficient framework, called local
exploration k-core search (LEKS), to find intimate-core groups in graphs.
We propose a small-weighted spanning tree to connect query nodes, and
then expand the tree level by level to a connected k-core, which is finally
refined as an intimate-core group. We also design a protection mechanism
for critical nodes to avoid the collapsed k-core. Extensive experiments on
real-life networks validate the effectiveness and efficiency of our methods.

Keywords: Graph mining · Weighted graphs · K-core · Community
search

1 Introduction

Graphs widely exist in social networks, biomolecular structures, traffic networks,
world wide web, and so on. Weighted graphs have not only the simple topolog-
ical structure but also edge weights. The edge weight is often used to indicate
the strength of the relationship, such as interval in social communications, traffic
flow in the transportation network, carbon flow in the food chain, and so on [18–
20]. Weighted graphs provide information that better describes the organization
and hierarchy of the network, which is helpful for community detection [19] and
community search [10,11,13,26]. Community detection aims at finding all com-
munities on the entire network, which has been studied a lot in the literature.
Different from community detection, the task of community search finds only
query-dependent communities, which has a wide application of disease infection
control, tag recommendation, and social event organization [23,29]. Recently,
several community search models have been proposed in different dense sub-
graphs of k-core [2,22] and k-truss [11,24].
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As a notation of dense subgraph, k-core requires that every vertex has k
neighbors in the k-core. For example, Fig. 1(a) shows a graph G. Subgraphs
G1 and G2 are both connected 3-cores, in which each vertex has at least three
neighbors. K-core has been popularly used in many community search models [1,
9,16,17,23,31]. Recently, Zheng et al. [29] proposed one problem of intimate-core
group search in weighted graphs as follows.

Fig. 1. An example of intimate-core group search in graph G for Q = {v8, v10} and
k = 3.

Motivating Example. Consider a social network G in Fig. 1(a). Two individ-
uals have a closer friendship if they have a shorter interval for communication,
indicating a smaller weight of the relationship edge. The problem of intimate-
core group search aims at finding a densely-connected k-core containing query
nodes Q with the smallest group weight as an answer. For Q = {v8, v10} and
k = 3, the intimate-core group is shown in Fig. 1(b) with a minimum group
weight of 13.

This paper studies the problem of intimate-core group search in weighted
graphs. Given an input of query nodes in a graph and a number k, the problem
is to find a connected k-core containing query nodes with the smallest weight.
In the literature, existing solutions proposed in [29] find the maximal connected
k-core and iteratively remove a node from this subgraph for intimate-core group
refinement. However, this approach may take a large number of iterations, which
is inefficient for big graphs with a large component of k-core. Therefore, we pro-
pose a solution of local exploration to find a small candidate k-core, which takes
a few iterations to find answers. To further speed up the efficiency, we build a
k-core index, which keeps the structural information of k-core for fast identifica-
tion. Based on the k-core index, we develop a local exploration algorithm LEKS
for intimate-core group search. Our algorithm LEKS first generates a tree to
connect all query nodes, and then expands it to a connected subgraph of k-core.
Finally, LEKS keeps refining candidate graphs into an intimate-core group with
small weights. We propose several well-designed strategies for LEKS to ensure
the fast-efficiency and high-quality of answer generations.

Contributions. Our main contributions of this paper are summarized as fol-
lows.
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– We investigate and tackle the problem of intimate-core group search in
weighted graphs, which has wide applications on real-world networks. The
problem is NP-hard, which bring challenges to develop efficient algorithms.

– We develop an efficient local exploration framework of LEKS based on the
k-core index for intimate-core group search. LEKS consists of three phases:
tree generation, tree-to-graph expansion, and intimate-core refinement.

– In the phase of tree generation, we propose to find a seed tree to connect all
query nodes, based on two generated strategies of spanning tree and weighted
path respectively. Next, we develop the tree-to-graph expansion, which con-
structs a hierarchical structure by expanding a tree to a connected k-core sub-
graph level by level. Finally, we refine a candidate k-core to an intimate-core
group with a small weight. During the phases of expansion and refinement,
we design a protection mechanism for query nodes, which protects critical
nodes to collapse the k-core.

– Our experimental evaluation demonstrates the effectiveness and efficiency of
our LEKS algorithm on real-world weighted graphs. We show the superiority
of our methods in finding intimate groups with smaller weights, against the
state-of-the-art ICG-M method [29].

Roadmap. The rest of the paper is organized as follows. Section 2 reviews the
previous work related to ours. Section 3 presents the basic concepts and for-
mally defines our problem. Section 4 introduces our index-based local exploration
approach LEKS. Section 5 presents the experimental evaluation. Finally, Sect. 6
concludes the paper.

2 Related Work

In the literature, numerous studies have been investigated community search
based on various kinds of dense subgraphs, such as k-core [2,22], k-truss [11,24]
and clique [25,26]. Community search has been also studied on many labeled
graphs, including weighted graphs [7,29,30], influential graphs [4,16], and
keyword-based graphs [8,9,12]. Table 1 compares different characteristics of
existing community search studies and ours.

The problem of k-core minimization [1,6,17,31] aims to find a minimal con-
nected k-core subgraph containing query nodes. The minimum wiener connector
problem is finding a small connected subgraph to minimize the sum of all pair-
wise shortest-path distances between the discovered vertices [21]. Different from
all the above studies, our work aims at finding an intimate-core group contain-
ing multiple query nodes in weighted graphs. We propose fast algorithms for
intimate-core group search, which outperform the state-of-the-art method [29]
in terms of quality and efficiency.

3 Preliminaries

In this section, we formally define the problem of intimate-core group search and
revisit the existing intimate-core group search approaches.
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Table 1. A comparison of existing community search studies and ours

Method Dense subgraph

model

Node type Edge type Local

search

Index-

based

Multiple

query nodes

NP-hard

[25] Clique × × � � × �
[26] Clique × × × � � �
[14] k-truss × × � � � �
[17,31] k-core × × × × × �
[6] k-core × × � × × �
[23] k-core × × × × � �
[1] k-core × × � � � �
[12] k-truss Keyword × � � � �
[9] k-core Keyword × � � × �
[16] k-core Influential × × � × ×
[4] k-core Influential × � × × ×
[30] k-truss × Weighted � � × ×
[29] k-core × Weighted × × � �
Ours k-core × Weighted � � � �

3.1 Problem Definition

Let G(V,E,w) be a weighted and undirected graph where V is the set of nodes,
E is the set of edge, and w is an edge weight function. Let w(e) to indicate the
weight of an edge e ∈ E. The number of nodes in G is defined as n = |V |. The
number of edges in G is defined as m = |E|. We denote the set of neighbors of
a node v by NG(v) = {u ∈ V : (u, v) ∈ E}, and the degree of v by degG(v) =
|NG(v)|. For example, Fig. 1(a) shows a weighted graph G. Node v5 has two
neighbors as NG(v5) = {v4, v6}, thus the degree of v5 is degG(v5) = 2 in graph
G. Edge (v2, v3) has a weight of w(v2, v3) = 1. Based on the definition of degree,
we can define the k-core as follows.

Definition 1 (K-Core [2]). Given a graph G, the k-core is the largest subgraph
H of G such that every node v has degree at least k in H, i.e., degH(v) ≥ k.

For a given integer k, the k-core of graph G is denoted by Ck(G), which is
determinative and unique by the definition of largest subgraph constraint. For
example, the 3-core of G in Fig. 1(a) has two components G1 and G2. Every node
has at least 3 neighbors in G1 and G2 respectively. However, the nodes are dis-
connected between G1 and G2 in the 3-core C3(G). To incorporate connectivity
into k-core, we define a connected k-core.

Definition 2 (Connected K-Core). Given graph G and number k, a con-
nected k-core H is a connected component of G such that every node v has
degree at least k in H, i.e., degH(v) ≥ k.

Intuitively, all nodes are reachable in a connected k-core, i.e., there exist paths
between any pair of nodes. G1 and G2 are two connected 3-cores in Fig. 1(a).
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Definition 3 (Group Weight). Given a subgraph H ⊆ G, the group weight
of H, denoted by w(H), is defined as the sum of all edge weights in H, i.e.,
w(H) =

∑
e∈E(H) w(e).

Example 1. For the subgraph G1 ⊆ G in Fig. 1(a), the group weight of G1 is
w(G1) =

∑
e∈E(G1)

w(e) = 1 + 3 + 5 + 2 + 1 + 3 = 15.

On the basis of the definitions of connected k-core and group weight, we
define the intimate-core group in a graph G as follows.

Definition 4 (Intimate-Core Group [29]). Given a weighted graph G =
(V,E,w), a set of query nodes Q and a number k, the intimate-core group is
a subgraph H of G if H satisfies following conditions:

– Participation. H contains all the query nodes Q, i.e., Q ⊆ VH ;
– Connected K-Core. H is a connected k-core with degH(v) ≥ k;
– Smallest Group Weight. The group weight w(H) is the smallest, that is,

there exists no H ′ ⊆ G achieving a group weight of w(H
′
) < w(H) such that

H
′
also satisfies the above two conditions.

Condition (1) of participation makes sure that the intimate-core group con-
tains all query nodes. Moreover, Condition (2) of connected k-core requires that
all group members are densely connected with at least k intimate neighbors.
In addition, Condition (3) of minimized group weight ensures that the group
has the smallest group weight, indicating the most intimate in any kinds of
edge semantics. A small edge weight means a high intimacy among the group.
Overall, intimate core groups have several significant advantages of small-sized
group, offering personalized search for different queries, and close relationships
with strong connections.

The problem of intimate-core group search studies in this paper is formulated
in the following.

Problem Formulation: Given an undirected weighted graph G(V,E,w), a
number k, and a set of query nodes Q, the problem is to find the intimate-core
group of Q.

Example 2. In Fig. 1(a), G is a weighted graph with 12 nodes and 20 edges. Each
edge has a positive weight. Given two query nodes Q = {v8, v10} and k = 3, the
answer of intimate-core group for Q is the subgraph shown in Fig. 1(b). This is a
connected 3-core, and also containing two query nodes {v8, v10}. Moreover, it has
the minimum group weight among all connected 3-core subgraphs containing Q.

3.2 Existing Intimate-Core Group Search Algorithms

The problem of intimate-core group search has been studied in the literature [29].
Two heuristic algorithms, namely, ICG-S and ICG-M, are proposed to deal with
this problem in an online manner. No optimal algorithms have been proposed yet
because this problem has been proven to be NP-hard [29]. The NP-hardness is
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shown by reducing the NP-complete clique decision problem to the intimate-core
group search problem.

Existing solutions ICG-S and ICG-M both first identify a maximal connected
k-core as a candidate, and then remove the node with the largest weight of its
incident edges at each iteration [29]. The difference between ICG-S and ICG-M
lies on the node removal. ICG-S removes one node at each iteration, while ICG-M
removes a batch of nodes at each iteration. Although ICG-M can significantly
reduce the total number of removal iterations required by ICG-S, it still takes
a large number of iterations for large networks. The reason is that the initial
candidate subgraph connecting all query nodes is the maximal connected k-
core, which may be too large to shrink. This, however, is not always necessary. In
particular, if there exists a small connected k-core surrounding query nodes, then
a few numbers of iterations may be enough token for finding answers. This paper
proposes a local exploration algorithm to find a smaller candidate subgraph. On
the other hand, both ICG-S and ICG-M apply the core decomposition to identify
the k-core from scratch, which is also costly expensive. To improve efficiency, we
propose to construct an index offline and retrieve k-core for queries online.

4 Index-Based Local Exploration Algorithms

In this section, we first introduce a useful core index and the index construc-
tion algorithm. Then, we present the index-based intimate-core group search
algorithms using local exploration.

4.1 K-Core Index

We start with a useful definition of coreness as follows.

Definition 5 (Coreness). The coreness of a node v ∈ V , denoted by δ(v), is
the largest number k such that there exists a connected k-core containing v.

Obviously, for a node q with the coreness δ(q) = l, there exists a connected
k-core containing q where 1 ≤ k ≤ l; meanwhile, there is no connected k-core
containing q where k > l. The k-core index keeps the coreness of all nodes in G.

K-Core Index Construction. We apply the existing core decomposition [2] on
graph G to construct the k-core index. The algorithm is outlined in Algorithm 1.
The core decomposition is to compute the coreness of each node in graph G. Note
that for the self-completeness of our techniques and reproducibility, the detailed
algorithm of core decomposition is also presented (lines 1–7). First, the algorithm
sort all nodes in G based on their degree in ascending order. Second, it finds the
minimum degree in G as d. Based on the definition of k-core, it next computes
the coreness of nodes with degG(v) = d as d and removing these nodes and their
incident edges from G. With the deletion of these nodes, the degree of neighbors
of these nodes will decrease. For those nodes which have a new degree at most
d, they will not be in (d+1)-core while they will get δ(v) = d. It continues the
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Algorithm 1. Core Index Construction
Input: A weighted graph G = (V, E, w)
Output: Coreness δ(v) for each v ∈ VG

1: Sort all nodes in G in ascending order of their degree;
2: while G �= ∅
3: Let d be the minimum degree in G;
4: while there exists degG(v) ≤ d
5: δ(v) ← d;
6: Remove v and its incident edges from G;
7: Re-order the remaining nodes in G in ascending order of their degree;
8: Store δ(v) in index for each v ∈ VG;

removal of nodes until there is no node has degG(v) ≤ d. Then, the algorithm
back to line 2 and starts a new iteration to compute the coreness of remaining
nodes. Finally, it stores the coreness of each vertex v in G as the k-core index.

4.2 Solution Overview

Fig. 2. LEKS framework for intimate-core group search

At a high level, our algorithm of local exploration based on k-core index for
intimate-core group search (LEKS) consists of three phases:

1. Tree Generation Phase: This phase invokes the shortest path algorithm to find
the distance between any pair of nodes, and then constructs a small-weighted
tree by connecting all query nodes.

2. Expansion Phase: This phase expands a tree into a graph. It applies the idea
of local exploration to add nodes and edges. Finally, it obtains a connected
k-core containing all query nodes.

3. Intimate-Core Refinement Phase: This phase removes nodes with large
weights, and maintains the candidate answer as a connected k-core. This
refinement process stops until an intimate-core group is obtained.

Figure 2 shows the whole framework of our index-based local exploration
algorithm. Note that we compute the k-core index offline and apply the above
solution of online query processing for intimate-core group search. In addition,
we consider |Q| ≥ 2 for tree generation phase, and skip this phase if |Q| = 1.
Algorithm 2 also depicts our algorithmic framework of LEKS.
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Algorithm 2. LEKS Framework
Input: G = (V, E, w), an integer k, a set of query vertices Q
Output: Intimate-core group H

1: Find a tree TQ for query nodes Q using Algorithm 3 or Algorithm 4;
2: Expand the tree TQ to a candidate graph GQ in Algorithm 5;
3: Apply ICG-M [29] on graph GQ;
4: Return a refined intimate-core group as answers;

4.3 Tree Generation

In this section, we present the phase of tree generation. Due to the large-scale
size of k-core in practice, we propose local exploration methods to identify small-
scale substructures as candidates from the k-core. The approaches produce a tree
structure with small weights to connect all query nodes. We develop two algo-
rithms, respectively based on the minimum spanning tree (MST) and minimum
weighted path (MWP).

Tree Construction. The tree construction has three major steps. Specifically,
the algorithm firstly generates all-pairs shortest paths for query nodes Q in the
k-core Ck (lines 1–7). Given a path between nodes u and v, the path weight is the
total weight of all edges along this path between u and v. It uses spathCk

(u, v)
to represent the shortest path between nodes u and v in the k-core Ck. For any
pair of query nodes qi, qj ∈ Q, our algorithm invokes the well-known Dijkstra’s
algorithm [5] to find the shortest path spathCk

(qi, qj) in the k-core Ck.
Second, the algorithm constructs a weighted graph Gpw for connecting all

query nodes (lines 3–8). Based on the obtained all-pairs shortest paths, it col-
lects and merges all these paths together to construct a weighted graph Gpw

correspondingly.
Third, the algorithm generates a small spanning tree for Q in the weighted

graph Gpw (lines 9–22), since not all edges are needed to keep the query nodes
connected in Gpw. This step finds a compact spanning tree to connect all query
nodes Q, which removes no useful edges to reduce weights. Specifically, the algo-
rithm starts from one of the query nodes and does expand based on Prim’s min-
imum spanning tree algorithm [5]. The algorithm stops when all query nodes
are connected into a component in Gpw. Against the maximal connected k-core,
our compact spanning tree has three significant features: (1) Query-centric. The
tree involves all query nodes of Q. (2) Compactly connected. The tree is a con-
nected and compact structure; (3) Small-weighted. The generation of minimum
spanning tree ensures a small weight of the discovered tree.

Example 3. Figure 3(a) shows a weighted graph G with 6 nodes and 8 edges
with weights. Assume that k = 2, the whole graph is 2-core as C2. A set of
query nodes Q = {v1, v2, v5} are colored in red in Fig. 3(a). We first find the
shortest path between every pair of query nodes in Q. All edges along with
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Algorithm 3. Tree Construction
Input: G = (V, E, w), an integer k, a set of query vertices Q, the k-core index
Output: Tree TQ

1: Identify the maximal connected k-core of Ck containing query nodes Q;
2: Let Gpw be an empty graph;
3: for q1, q2 ∈ Q
4: if there is no path between q1 and q2 in Ck then
5: return ∅;
6: else
7: Compute the shortest path between q1 and q2 in Ck;
8: Add the spathCk

(q1, q2) between q1 and q2 into Gpw;
9: Tree: TQ ← ∅;

10: Priority queue: L ← ∅;
11: for each node v in Gpw

12: dist(v) ← ∞;
13: Q ← Q − {q0}; dist (q0) ← 0; L.push(q0, dist(q0));
14: while Q �= ∅ do
15: Extract a node v and its edges with the smallest dist(v) from L;
16: Insert node v and its edges into TQ;
17: if v ∈ Q then
18: Q ← Q − {v};
19: for u ∈ NGpw (v) do
20: if dist(u) > w(u, v) then
21: dist(u) ← w(u, v);
22: Update (u, dist(u)) in L;
23: return TQ;

Fig. 3. Tree construction for query nodes v1, v2, v5.

these shortest path are colored in red in Fig. 3(a). For example, the short-
est path between v1 and v2 is spathC2

(v1, v2) = {(v1, v3), (v3, v2)}. Similarly,
spathC2

(v1, v5) = {(v1, v3), (v3, v4), (v4, v5)}, spathC2
(v2, v5) = {(v2, v5)}. All

three paths are merged to construct a weighted graph Gpw in red in Fig. 3(a).
A spanning tree of TQ is shown in Fig. 3(b), which connects all query nodes
{v1, v2, v5} with a small weight of 7.

Path-Based Construction. Algorithm 3 may take expensive computation for
finding the shortest path between every pair of nodes that are far away from
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Algorithm 4. Path-based Construction
Input: G = (V, E, w), an integer k, a set of query vertices Q, the k-core index
Output: Tree TQ

1: Identify the maximal connected k-core of Ck containing query nodes Q;
2: Let q0 be the first query node of Q;
3: Q ← Q − {q0};
4: while Q �= ∅ do
5: if there is no path between q and q0 in Ck then
6: return ∅;
7: else
8: Compute the shortest path between q and q0 in Ck;
9: Add the spathCk

(q, q0) between q and q0 into TQ;
10: q0 ← q, Q ← Q − {q0};
11: return TQ;

each other. To improve efficiency, we develop a path-based approach to connect
all query nodes directly. The path-based construction is outlined in Algorithm 4.
The algorithm starts from one query node q0, and searches the shortest path to
the nearest query node in Q (lines 2–8). After that, it collects and merges the
weighted path spathCk

(q, q0) into TQ to construct the tree (line 9). Recursively,
it starts from the new query node q as q0 to find the next nearest query node
q, until all query nodes in Q are found in such a way (line 10). The algorithm
returns the tree connecting all query nodes.

Example 4. We apply Algorithm 4 on graph G in Fig. 3(a) with query Q =
{v1, v2, v5} and k = 2. We start the shortest path search from v1. The near-
est query node to v1 is v5, we can find the shortest path spathC2

(v1, v5)
= {(v1, v3), (v3, v4), (v4, v5)}. Next, we start from v5 and find the shortest path
spathC2

(v5, v2) = {(v5, v2)}. Finally, we merge the two paths spathC2
(v1, v5) and

spathC2
(v5, v2) to construct the tree TQ.

Complexity Analysis. We analyze the complexity of Algorithms 3 and 4.
Assume that the k-core Ck has nk nodes and mk edges where nk ≤ n and
mk ≤ m.

For Algorithm 3, an intuitive implementation of all-pairs-shortest-paths
needs to compute the shortest path for every pair nodes in Q, which takes
O(|Q|2mk log nk) time. However, a fast implementation of single-source-shortest-
path algorithm can compute the shortest path from one query node q ∈ Q to
all other nodes in Q, which takes O(mk log nk) time. Overall, the computa-
tion of all-pairs-shortest-paths can be done in O(|Q|mk log nk) time. In addi-
tion, the weighted graph Gpw is a subgraph of Ck, thus the size of Gpw is
O(nk + mk) ⊆ O(mk). Identifying the spanning tree of Gpw takes O(mk log nk)
time. Overall, Algorithm 3 takes O(|Q|mk log nk) time and O(mk) space.

For Algorithm 4, it applies |Q| times of single-source-shortest-path to identify
the nearest query node. Thus, Algorithm 4 also takes O(|Q|mk log nk) time and
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Algorithm 5. Tree-to-Graph Expansion
Input: G = (V, E, w), a set of query vertices Q, k-core index, TQ

Output: Candidate subgraph GQ

1: Identify the maximal connected k-core of Ck containing query nodes Q;
2: L0 ← {v|v ∈ VTQ}; L′ ← L0 ;
3: i ← 0; GQ ← ∅;
4: while GQ = ∅ do
5: for each v ∈ Li do
6: for each u ∈ NCk(v) and u /∈ L′ ∪ Li+1 do
7: Li+1 ← Li+1 ∪ {u};
8: L′ ← L′ ∪ Li+1; i ← i + 1;
9: Let GL be the induced subgraph of G by the node set L′;

10: Generate a connected k-core of GL containing query nodes Q as GQ;
11: return GQ;

O(mk) space. In practice, Algorithm 4 runs faster than Algorithm 3 on large
real-world graphs, which avoids the weighted tree construction and all-pairs-
shortest-paths detection.

4.4 Tree-to-Graph Expansion

In this section, we introduce the phase of tree-to-graph expansion. This method
expands the obtained tree from Algorithms 3 or 4 into a connected k-core can-
didate subgraph GQ. It consists of two main steps. First, it adds nodes/edges
to expand the tree into a graph layer by layer. Then, it prunes disqualified
nodes/edges to maintain the remaining graph as a connected k-core. The whole
procedure is shown in Algorithm 5.

Algorithm 5 first gets all nodes in TQ and puts them into L0 (line 2). Let
Li be the vertex set at the i-th depth of expansion tree, and L0 be the initial
set of vertices. It uses L′ to represent the set of candidate vertices, which is the
union of all Li set. The iterative procedure can be divided into three steps (lines
4–10). First, for each vertex v in Li, it adds their neighbors into Li+1 (lines 5–7).
Next, it collects and merges {L0, ..., Li+1} into L′ and constructs a candidate
graph GL as the induced subgraph of G by the node set L′ (lines 8–9). Finally,
we apply the core decomposition algorithm on GL to find the connected k-core
subgraph containing all query nodes, denoted as GQ. If there exists no such GQ,
Algorithm 5 explores the (i+1)-th depth of expansion tree and repeats the above
procedure (lines 4–10). In the worst case, GQ is exactly the maximum connected
k-core subgraph containing Q. However, GQ in practice is always much smaller
than it. The time complexity for expansion is O(

∑lmax

i=0

∑
v∈V (Gi)

deg(v)), where
lmax is the iteration number of expansion in Algorithm 5.
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Fig. 4. Tree-to-graph expansion

Example 5. Figure 1(a) shows a weighted graph G with query Q = {v8, v10} and
k = 3. We first identify the maximal connected 3-core containing query nodes
Q. Since there is only 2 query nodes, the spanning tree is same as the shortest
path between them, such that TQ = spathC3

(v8, v10). Next, we initialize L0 as
L0 = {v8, v10} and expand nodes in L0 to their neighbors. The expansion pro-
cedure is shown in Fig. 4(a). We put all nodes in Fig. 4(a) into L′ and construct
a candidate subgraph GL shown in Fig. 4(b). Since GL is a 3-core connected
subgraph containing query nodes, the expansion graph GQ is GL itself.

4.5 Intimate-Core Refinement

This phase refines the candidate connected k-core into an answer of the intimate-
core group. We apply the existing approach ICG-M [29] by removing nodes
to shrink the candidate graph obtained from Algorithm 5. This step takes
O(m′ logε n′) time, where ε > 0 is a parameter of shrinking graph [29]. To avoid
query nodes deleted by the removal processes of ICG-M, we develop a mechanism
to protect important query nodes.

Protection Mechanism for Query Nodes. As pointed by [3,27,28], the k-
core structure may collapse when critical nodes are removed. Thus, we precom-
pute such critical nodes for query nodes in k-core and ensure that they are not
deleted in any situations. We use an example to illustrate our ideas. For a query
node q with an exact degree of k, it means that if any neighbor is deleted, there
exists no feasible k-core containing q any more. Thus, q and all q’s neighbors
are needed to protect. For example, in Fig. 4(b), assume that k = 3, there exists
degG(v10) = k. The removal of each node in NG(v10) will cause core decompo-
sition and the deletion of v10. This protection mechanism for query nodes can
also be used for k-core maintenance in the phrase of tree-to-graph expansion.

5 Experiments

In this section, we experimentally evaluate the performance of our proposed
algorithms. All algorithms are implemented in Java and performed on a Linux
server with Xeon E5-2630 (2.2 GHz) and 256 GB RAM.

Datasets. We use three real-world datasets in experiments. All datasets are
publicly available from [15]. The edge weight represents the existence probability
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of an edge. A smaller weight indicates a higher possibility of the edge to existing.
The statistics of datasets are shown in Table 2. The maximum coreness δmax =
maxv∈V δ(v).

Table 2. Network statistics

Datasets |V | |E| δmax

wiki-vote 7,115 103,689 56

Flickr 24,125 300,836 225

DBLP 684,911 2,284,991 114

Algorithms. We compare 3 algorithms as follows.

• ICG-M: is the state-of-the-art approach for finding intimate-core group using
bulk deletion [29].

• LEKS-tree: is our index-based search framework in Algorithm 2 using Algo-
rithm 3 for tree generation.

• LEKS-path: is our index-based search framework in Algorithm 2 using Algo-
rithm 4 for tree generation.

We evaluate all algorithms by comparing the running time and the intimate-
core group weight. The less running time costs, the more efficient the algorithm
is. Smaller the group weight of the answer, better effectiveness is.

Queries and Parameters. We evaluate all competitive approaches by varying
parameters k and |Q|. The range of k is {2, 4, 6, 8}. The number of query nodes
|Q| falls in {1, 2, 3, 4, 5, 6, 7}. We randomly generate 100 sets of queries by
different k and |Q|.
Exp-1: Varying k. Figure 5 shows the group weight of three algorithms by
varying parameter k on all datasets. The results show that our local search
methods LEKS-tree and LEKS-path can find intimate groups with lower group
weights than ICG-M, for different k. The performance of LEKS-tree and LEKS-
path are similar. Figure 6 shows that LEKS-path performs the best for most cases,
and runs significantly faster than ICG-M. Interestingly, ICG-M can find answers
quickly for k = 4, which achieves similar performance with LEKS methods.

Exp-2: Varying |Q|. Figure 7 reports the group weight results of three algo-
rithms for different queries by varying |Q|. With the increasing |Q|, LEKS-tree
and LEKS-path methods can always find intimate groups with smaller weights
than ICG-M. LEKS-tree and LEKS-path perform similarly. Figure 8 reports the
results of running time. It shows that our methods are always faster than ICG-M.

Exp-3: Quality Evaluation of Candidate Intimate-Core Groups. This
experiment evaluates the subgraphs of candidate intimate-core groups by all
methods, in terms of vertex size and group weight. ICG-M takes the maximal
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Fig. 5. Effectiveness evaluation by varying k

Fig. 6. Efficiency evaluation by varying k

connected k-core subgraph containing query nodes as an initial candidate, and
iteratively shrinks it. LEKS-tree and LEKS-path both generate an initial can-
didate subgraph locally expanded from a tree, and then iteratively shrink the
candidate by removing nodes. We use k = 6 and |Q| = 5. We report the results
of the first 5 removal iterations and the initial candidate at the #iteration of 0.
Figure 9(a) shows that the group weight of candidates by our methods is much
smaller than ICG-M. Figure 9(b) reports the vertex size of all candidates at each
iteration. The number of vertices in the candidate group by LEKS-tree and LEKS-
path at the #iteration of 0, is even less than the vertex size of candidate group
by ICG-M at the #iteration of 5.

Fig. 7. Effectiveness evaluation by varying |Q|
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Fig. 8. Efficiency evaluation by varying |Q|

Fig. 9. The size and weight of intimate-groups varied by #iterations

Exp-4: Case Study on the DBLP Network. We conduct a case study of
intimate-core group search on the collaboration DBLP network [29]. Each node
represents an author, and an edge is added between two authors if they have
co-authored papers. The weight of an edge (u, v) is the reciprocal of the number
of papers they have co-authored. The smaller weight of (u, v), the closer inti-
macy between authors u and v. We use the query Q = {“Huan Liu”, “Xia Hu”,
“Jiliang Tang”} and k = 4. We apply LEKS-path and ICG-M to find 4-core inti-
mate groups for Q. The results of LEKS-path and ICG-M are shown in Fig. 10(a)
and Fig. 10(b) respectively. The bolder lines of an edge represent a smaller
weight, indicating closer intimate relationships. Our LEKS method discovers a
compact 4-core with 5 nodes and 10 edges in Fig. 10(a), which has the group

Fig. 10. Case study of intimate-core group search on the DBLP network. Here, query
Q = {“Huan Liu”, “Xia Hu”, “Jiliang Tang”} and k = 4.
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weight of 1.6, while ICG-M finds a subgraph with 12 nodes, which has a larger
group weight of 16.7 in Fig. 10(b). We can see that nodes on the right side of
Fig. 10(b) has no co-author connections with two query nodes “Xia Hu” and “Jil-
iang Tang” at all. This case study verifies that our LEKS-path can successfully
find a better intimate-core group than ICG-M.

6 Conclusion

This paper presents a local exploration k-core search (LEKS) framework for
efficient intimate-core group search. LEKS generates a spanning tree to connect
query nodes in a compact structure, and locally expands it for intimate-core
group refinement. Extensive experiments on real datasets show that our approach
achieves a higher quality of answers using less running time, in comparison with
the existing ICG-M method.
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