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Abstract. The problem of structural diversity search is to find the top-
k vertices with the largest structural diversity in a graph. However, when
identifying distinct social contexts, existing structural diversity models
(e.g., t-sized component, t-core, and t-brace) are sensitive to an input
parameter of t. To address this drawback, we propose a parameter-free
structural diversity model. Specifically, we propose a novel notation of
discriminative core, which automatically models various kinds of social
contexts without parameter t. Leveraging on discriminative cores and
h-index, the structural diversity score for a vertex is calculated. We study
the problem of parameter-free structural diversity search in this paper.
An efficient top-k search algorithm with a well-designed upper bound
for pruning is proposed. Extensive experiment results demonstrate the
parameter sensitivity of existing t-core based model and verify the supe-
riority of our methods.

1 Introduction

Nowadays, information spreads quickly and widely on social networks (e.g.,
Twitter, Facebook). Individuals are usually influenced easily by the information
received from their social neighborhoods [14]. Recent studies show that social
decisions made by individuals often depend on the multiplicity of social contexts
inside his/her contact neighborhood, which is termed as structural diversity [25].
Individuals with larger structural diversity, are shown to have higher probability
to be affected in the process of social contagion [25]. Structural diversity search,
finding the individuals with the highest structural diversity in graphs, has many
applications such as political campaigns [15], viral marketing [17], promotion of
health practices [25], facebook user invitations [25], and so on.

In the literature, several structural diversity models (e.g., t-sized compo-
nent, t-core and t-brace) need an input of specific parameter t to model distinct
social contexts. A social context is formed by a number of connected users. The
component-based structural diversity [25] regards each connected component
whose size is larger than t as a social context. Another core-based structural
diversity model is defined based on t-core. A t-core is the largest subgraph such
that each vertex has at least t neighbors within t-core. The core-based structural
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Fig. 1. The ego-network GN(v) of vertex v

diversity model regards each maximal connected t-core as a distinct social con-
text. Figure 1 shows the contact neighborhood (ego-network) GN(v) of a user v.
All vertices and edges in ego-network GN(v) are in solid lines. Consider the core-
based structural diversity model and parameter t = 2. Subgraphs H1, H2 and
H3 are maximal connected 2-cores. H1, H2, and H3 are regarded as 3 distinct
social contexts. Thus, the core-based structural diversity of v is 3.

This paper proposes a new parameter-free structural diversity model based
on the core-based model [12] and h-index measure [11]. Our parameter-free model
does not need the input of parameter t any more. This avoids suffering from the
limitations of setting parameter t. We show two major drawbacks of the t-core
based model as follows.

– Sensitivity of t-core based model. The number of social contexts is sensi-
tive to parameter t. On the one hand, if t is set to a large value, it may discard
small and weakly-connected social contexts; On the other hand, if t is set to a
small value, it may have weak ability of recognizing strongly-connected social
contexts fully. Consider the contact neighborhood GN(v) of a user v in Fig. 1.
When t = 2, the structural diversity of v is 3. When t = 3, H2 and H3 are
2-cores and disqualified for social contexts, due to the requirement of social
contexts as 3-core. Meanwhile, H1 is decomposed as two components of 3-
core as H4 and H5. Thus, the structural diversity of v becomes 2. However,
when t ≥ 4, the structural diversity of v is 0. This example clearly shows the
sensitivity of structural diversity w.r.t. parameter t.

– Inflexibility of t-core based model. Structural diversity model lacks flex-
ibility for different vertices using the same parameter t. Generally, different
social contexts should not be modeled and quantified using the same criteria of
parameter t. For example, in a social network, the social contexts of a famous
singer and a junior student can be dramatically different in terms of size and
density. Thus, it is difficult to choose one consistent value t for different ver-
tices in a graph. In Fig. 1, H1 can be decomposed into two social contexts H4

and H5, which requires the setting of t = 3. However, the identification of H2

and H3 requires t = 2. This indicates the necessary of personalized parameter
t for different social contexts.
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To address the above two limitations, we define a novel notation of
discriminative core to represent each distinct social context without inputing any
parameters. Specifically, a discriminative core is a densest and maximal connected
subgraph inside a user’s contact neighborhood. It can be regarded as a criteria
for representing unique and strong social context. However, the distribution of
discriminative cores in two users’ contact neighborhoods can be totally different
in terms of density and quantity, which cannot be compared directly. To tackle
this issue, we propose a new structural diversity model based on h-index. In
the literature, the h-index is defined as the maximum number of h such that a
researcher has published h papers whose citations have at least h [11]. We apply
the similar idea to measure structural diversity in ego-networks. Given a vertex
v, the structural diversity of v is the largest number h such that there exists
at least h discriminative cores with coreness at least h. In this paper, we study
the problem of top-k h-index based structural diversity search, which finds k
vertices with largest h-index based structural diversity. To summarize, we make
the following contributions:

– We propose a novel definition of discriminative core to provide a parameter-
free scheme for identifying social contexts. To simultaneously measure the
quantity and strength of social contexts in one’s contact neighborhood, we
propose a new h-index based structural diversity model. We formulate the
problem of top-k h-index based structural diversity search in a graph (Sect. 3).

– We propose a useful approach for computing the h-index based structural
diversity score h(v) for a vertex v and give a baseline algorithm for solving
the top-k structural diversity search problem (Sect. 4).

– Based on the analysis of the discriminative core structure and the property of h-
index, we design an upper bound of h(v). Equipped with the upper bound, we
propose an efficient top-k search framework to improve the efficiency (Sect. 5).

– We conduct extensive experiments on four real-world large datasets to demon-
strate the parameter sensitivity of the existing core-based structural diversity
model and verify the effectiveness of our proposed model. Experiment results
also validate the efficiency of our proposed algorithms (Sect. 6).

2 Related Work

This work is related to the studies of structural diversity search and k-core
mining.

Structural Diversity Search. In [25], Ugander et al. studied the structural
diversity models in the real-world applications of social contagion. The prob-
lem of top-k structural diversity search is proposed and studied by Huang
et al. [12,13]. The goal of the problem is to find k vertices with the highest struc-
tural diversity scores. Two structural diversity models based on t-sized compo-
nent and t-core respectively are studied w.r.t. a parameter threshold t. Recently,
Chang et al. [4] proposed fast algorithms to address structural diversity search
by improving the efficiency and scalability of the methods [13]. Cheng et al. [5]
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propose an approach of diversity-based keyword search to solve the mashup con-
struction problem. Different from above studies, we propose a parameter-free
structural diversity model based on the novel definition of discriminative cores,
which avoids suffering from the difficulties of parameter tuning.

K-Core Mining. There exist lots of studies on k-core mining in the literature.
k-core is a definition of cohesive subgraph, in which each vertex has degree at
least k. The task of core decomposition is finding all non-empty k-cores for all
possible k’s. Batagelj et al. [2] proposed an in-memory algorithm of core decom-
position. Core decomposition has also been widely studied in different computing
environment such as external-memory algorithms [6], streaming algorithms [23],
distributed algorithms [22], and I/O efficient algorithms [26]. The study of core
decomposition is also extended to different types of graphs such as dynamic
graphs [1,16], uncertain graphs [3], directed graphs [19], temporal graphs [27],
and multi-layer networks [9]. Recently, core maintenance in dynamic graphs has
attracted significant interest in the literature [1,20,28].

3 Problem Statement

In this section, we formulate the problem of h-index based structural diversity
search.

3.1 Preliminaries

We consider an undirected and unweighted simple graph G = (V,E), where V is
the set of vertices and E is the set of edges. We denote n = |V | and m = |E| as
the number of vertices and edges in G respectively. W.l.o.g. we assume the input
graph G is a connected graph, which implies that m ≥ n − 1. For a given vertex
v in a subgraph H of G, we define NH(v) = {u in H : (u, v) ∈ E(H)} as the set
of neighbors of v in H, and dH(v) = |NH(v)| as the degree of v in H. We drop
the subscript of NG(v) and dG(v) if the context is exactly G itself, i.e. N(v),
d(v). The maximum degree of graph G is denoted by dmax = maxv∈V dG(v).

Given a subset of vertices S ⊆ V , the subgraph of G induced by S is denoted
by GS = (S,E(S)), where the edge set E(S) = {(u, v) ∈ E : u, v ∈ S}. Based on
the definition of induced subgraph, we define the ego-network [8,21] as follows.

Definition 1. (Ego-network) Given a vertex v in graph G, the ego-network of
v is the induced subgraph of G by its neighbors N(v), denoted by GN(v).

In the literature, the term “neighborhood induced subgraph” [12] is also used
to describe the ego-network of a vertex. For example, consider the graph G in
Fig. 1. The ego-network of vertex v is shown in the gray area of Fig. 1, which
excludes v itself with its incident edges. The t-core of a graph G is the largest
subgraph of G in which all the vertices have degree at least t. However, the
t-core of a graph can be disconnected, which may not be suitable to directly
depict social contexts. Hence, we define the connected t-core as follows.
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Definition 2. (Connected t-Core) Given a graph G and a positive integer t, a
subgraph H ⊆ G is called a connected t-Core iff H is connected and each vertex
v ∈ V (H) has degree at least t in H.

Given a parameter t, the core-based structural diversity model treats each
maximal connected t-core as a distinct social context [12,25]. To measure the
structural diversity of an ego-network, one essential step is to tune a proper value
for parameter t. However, such parameter setting is not easy and even critically
challenging. The following example illustrates it.

Example 1. Figure 1 shows an ego-network GN(v) of vertex v. Given an integer
t = 2, three maximal connected 2-core (H1, H2 and H3) will be treated as
distinct social contexts. The core-based structural diversity of v is 3. When we
set t = 3, the core-based structural diversity of v will be 2, since H4 and H5 will
be treated as two distinct social contexts. In this case, H2 and H3 are no longer
treated as social contexts. If we set t to be some values higher than 3, no social
contexts can be identified. The core-based structural diversity of v will then be 0.
From this example, we can see that if the value of t is tuned too high, no social
contexts can be identified. But if the value of t is set too low, some strong social
contexts with denser structures cannot be captured. Thus, to choose a proper
value of t for all vertices in a graph is a challenging task.

To tackle the above issue, we propose a parameter-free scheme for automat-
ically identifying strong social contexts in one’s ego-network. We firstly give a
novel definition of discriminative core based on the concept of coreness as follows.

Definition 3. (Coreness) Given a subgraph H ⊆ G, the coreness of H is the
minimum degree of vertices in H, denoted by ϕ(H) = minv∈H{dH(v)}. The
coreness of a vertex v ∈ V (G) is ϕG(v) = maxH⊆G,v∈V (H){ϕ(H)}.
Definition 4. (Discriminative Core) Given a graph G and a subgraph H ⊆ G,
H is a discriminative core if and only if H is a maximal connected subgraph such
that there exists no subgraph H ′ ⊆ H with ϕ(H ′) > ϕ(H).

By Definition 4, a discriminative core H is a maximal connected component
that cannot be further decomposed into smaller subgraphs with a higher core-
ness. It indicates that a discriminative core is the densest and most important
component of a social context, which can be used as a distinct element to repre-
sent a social context. In addition, the coreness of a discriminative core reflects the
strength of its representative social context. For example, H4 is a discriminative
core with ϕ(H4) = 3. And H2 is another discriminative core with ϕ(H2) = 2.
According to the core-based structural diversity, they cannot be identified as
distinct social contexts simultaneously using the same value of parameter t. But
by our discriminative core definition, they will be treated as distinct social con-
texts automatically without loosing the information of their strength.

For an ego-network GN(v), the whole network may consist of multiple
discriminative cores with various corenesses, which can be depicted as a coreness
distribution of discriminative cores. Moreover, to rank the structural diversity
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of two vertices, it is difficult to directly compare the coreness distributions of
two ego-networks. Because it is not easy to measure both the number of social
contexts and the strength of social contexts simultaneously.

Making use of the idea of h-index criteria, we define the diversity vector and
diversity score as follows.

Definition 5. (Diversity Vector and Diversity Score) Given a graph G and a
vertex v, the diversity vector of v is the coreness distribution of discriminative
cores in GN(v), denoted by C(v) = [cv(1), ..., cv(n)], where cv(r) = |{H : ϕ(H) =
r and H is a discriminative core in GN(v)}|. The h-index based structural diver-
sity score of v, denoted by h(v), is defined as h(v) = max{r :

∑n
r cv(r) ≥ r}.

For short, diversity score is called.

Example 2. Consider the ego-network of v shown in Fig. 1, subgraph H1 is not
a 2-core discriminative component since it can be further decomposed into two
3-cores H4 and H5. There is no discriminative core with the coreness of 1, so
cv(1) = 0. And cv(2) = 2 since it has two discriminative cores H2 and H3 with
the coreness of 2. Similarly, cv(3) = 2 because H4, H5 are two discriminative
cores with the coreness of 3. There exists no discriminative cores with coreness
greater than 3. Thus, the diversity vector of v is C(v) = [0, 2, 2, 0, ..., 0]. And the
diversity score is h(v) = 2 by definition.

In this paper, we study the problem of h-index based structural diversity
search in a graph. The problem formulation is defined as follows.

Problem Formulation. Given a graph G and an integer k, the goal of h-index
based structural diversity search problem is to find an optimal answer S∗ consisted
of k vertices with the highest h-index based structural diversity scores, i.e.,

S∗ = arg max
S⊆V,|S|=k

{min
v∈S

h(v)}.

4 Baseline Algorithm

In this section, we introduce a baseline approach for h-index based structural
diversity search over graph G. The high-level idea is to compute the diversity
score for each vertex in graph G one by one. After obtaining the scores of all
vertices, it sorts vertices in decreasing order of their scores and returns the first
k vertices with the highest structural diversity scores. This method computes
the top-k result from scratch, which is intuitive and straightforward to obtain
answers.

In the following, we first introduce an existing algorithm of core decomposi-
tion [2]. Then, we present an important and useful procedure to compute h-index
based structural diversity score h(v) for a given vertex v.
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Algorithm 1. Core Decomposition [2]
Input: a graph G = (V, E)
Output: the coreness ϕG(v) for each vertex v ∈ V

1: L ← Sort all vertices in G in ascending order of their degree.
2: Let t ← 1;
3: while G is not empty do
4: for each vertex v ∈ L with d(v) < t do
5: Remove v and its incident edges from G; Remove v from L;
6: ϕG(v) ← t − 1;
7: Update the degree of the affected vertices and reorder L;
8: t ← t + 1;
9: return ϕG(v) for each vertex v ∈ V ;

4.1 Core Decomposition

The core decomposition of graph G computes the coreness of all vertices v ∈ V .
Algorithm 1 outlines the algorithm of core decomposition [2]. The algorithm
starts with an integer t = 1, and iteratively removes the nodes with degree
less than t and their incident edges. The number of t − 1 is assigned to be the
coreness of the removed vertices. Then, the degree of affected vertices needs to
be updated, since the removal of a vertex decreases the degree of its neighbors
in the remaining graph. The number t is increased by one after each iteration,
until all vertices and edges are deleted from the input graph.

4.2 Computing h(v)

The computation of h(v) includes three major steps. First, we extract from
graph G and obtain an ego-network GN(v) for vertex v, which is the induced
subgraph of G by the set of v’s neighbors N(v). Next, we decompose the entire
ego-network GN(v) into several discriminative cores, and count their corenesses
to derive structural diversity vector C(v). The detailed procedure is outlined
in Algorithm 2. Finally, based on the diversity vector of C(v), we compute the
diversity score h(v) by the Definition 5 using Algorithm 3.

Discriminative Core Decomposition. Algorithm 2 outlines the detailed steps
for discriminative core decomposition and diversity vector computation. For an
ego-network GN(v) of vertex v, we firstly apply the core decomposition algorithm
on it to calculate the coreness of each vertex (line 1). Then, we sort all vertices in
GN(v) in ascending order of their coreness (line 3). For each integer t from 1 to the
maximum coreness of the vertices in GN(v), we identify and count the number of
discriminative cores with the coreness of t by using a breadth first search approach
(lines 5–19). By definition, a discriminative core with the coreness of t will be only
formed by the vertices with the coreness of exactly t. Thus, in each iteration,
we traverse vertices with the same coreness of t to search all the discriminative
cores Hs with ϕ(H) = t (lines 7–19 and lines 14–15). Edges connecting the
current visited vertex x to the vertices with coreness greater than t indicate that
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Algorithm 2. Discriminative Core Decomposition
Input: an ego-network GN(v) = (N(v), {(u, w) ∈ E : u, w ∈ N(v)}))
Output: the diversity vector C(v)

1: Apply the core decomposition algorithm in Algorithm 1 on GN(v);
2: tmax = maxu∈N(v) ϕGN(v)(u);
3: L ← Sort all vertices in GN(v) in ascending order of their coreness;
4: Q ← ∅; visited ← ∅
5: for t ← 1 to tmax do
6: cv(t) ← 0;
7: for each vertex u ∈ L with the coreness of ϕGN(v)(u) = t do
8: Flag ← true;
9: if u /∈ visited then;

10: visited ← visited ∪ {u}; Q.push(u);
11: while Q is not empty do
12: x ← Q.pop();
13: for each y ∈ {y : (x, y) ∈ E(GN(v))} do
14: if ϕGN(v)(y) = t then
15: Insert y to Q and visited if y is unvisited;
16: else if ϕGN(v)(y) > t then
17: Flag ← false;
18: if Flag = true then;
19: cv(t) ← cv(t) + 1;
20: return C(v);

the current found component can not be counted as a discriminative core and x
does not belong to any discriminative cores in GN(v) (lines 16–17). Then the t-th
element cv(t) of the diversity vector C(v) can be computed (lines 18–19). Finally,
the diversity vector C(v) of v will be returned.

H-index Score Computation. The details of computing the h-index based
structural diversity score are shown in Algorithm 3. After figuring out the diver-
sity vector C(v) (lines 1–2), the diversity score h(v) can then be calculated by
Definition 5 (lines 3–6). We firstly initialize h(v) as 0 (line 3). Then, for each
element cv(t) in the reverse order of the diversity vector C(v), we keep accumu-
lating it to h(v) until the first t appears such that h(v) ≥ t (line 4–6). Such t is
the diversity score h(v) of v.

Equipped with Algorithm 3, we are able to compute the h-index based struc-
tural diversity for all the vertices in G. By sorting the diversity scores, we can
obtain the top-k results for a given k.

5 Efficient Top-k Search Algorithm

The drawback of baseline method presented in the previous section is obviously
inefficient and can be improved. Firstly, both the ego-network extraction and
discriminative core decomposition are costly in computation. Secondly, it iter-
atively computes the h-index based structural diversity scores for all vertices
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Algorithm 3. Compute h(v)
Input: a graph G = (V, E); a vertex v
Output: the diversity score h(v)

1: Extract the ego-network GN(v) of v;
2: C(v) ← Apply the discriminative core decomposition procedure in Algorithm 2 on

GN(v);
3: h(v) ← 0;
4: for t ← tmax to 1 do
5: h(v) ← h(v) + cv(t)
6: if h(v) ≥ t then h(v) ← t; break;
7: return h(v);

on the entire graph G, which is expensive. Thirdly, some vertices appear to be
obviously unqualified for the top-k result. And the score computations of them
are reluctant and should be avoided.

In this section, we develop an efficient top-k search framework by exploiting
useful pruning techniques to reduce the search space, leading to a small number
of candidate vertices for score computations. Specifically, we design an upper
bound ĥ(v) for diversity score h(v), based on the analysis of the core structure.

5.1 An Upper Bound of h(v)

We starts with a structural property of t-core.

Lemma 1. Given a vertex v and any vertex u ∈ N(v), if u has ϕGN(v)(u) = r
in ego-network GN(v), then u has the coreness ϕG(u) ≥ r + 1 in graph G.

Proof. We omit the proof for brevity. The detailed proof can be referred to [12].

Example 3. Consider vertex x1 in Fig. 1, x1 has coreness ϕG(x1) = 4. However,
in the ego-network GN(v), ϕGN(v)(x1) = 3. Here ϕG(x1) ≥ ϕGN(v)(x1) + 1 holds.

For a vertex v and some vertices u ∈ N(v), the global coreness ϕG(u)
is sometimes much larger than the coreness of u in the ego-network of v, i.e.
ϕG(u) � ϕGN(v)(u). The following lemma gives another upper bound for esti-
mating the coreness ϕGN(v)(u), w.r.t. vertices v and u ∈ N(v).

Lemma 2. Given a vertex v and its coreness ϕG(v), ∀u ∈ N(v), ϕGN(v)(u) <
ϕG(v).

Proof. We prove this by contradiction. For any u ∈ N(v), we assume ϕG(v) = r
and ϕGN(v)(u) ≥ ϕG(v), which is ϕGN(v)(u) ≥ r. By the definition of coreness,
there exists a subgraph H ⊆ GN(v) with coreness ϕ(H) ≥ r indicating that
∀v∗ ∈ V (H), dH(v∗) ≥ r. We add the vertex v and its incident edges to H to
generate a new subgraph H ′ ⊆ G, where V (H ′) = V (H) ∪ {v} and E(H ′) =
E(H) ∪ {(v, u) : u ∈ V (H)}. It’s easy to verify that for all v∗ in H ′, we have
dH′(v∗) ≥ r + 1. Since v is also contained in H ′, by definition, ϕG(v) ≥ r + 1,
which contradicts to the condition ϕG(v) = r.
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Combining Lemmas 1 and 2, we have the following corollary.

Corollary 1. Given a vertex v in graph G, for any vertex u ∈ N(v),
ϕ̂GN(v)(u) = min{ϕG(v), ϕG(u) − 1} and ϕ̂GN(v)(u) ≥ ϕGN(v)(u) hold.

Based on Corollary 1, we derive an upper bound ĥ(v) for the h-index based
structural diversity score h(v) as follows.

Lemma 3. Given a vertex v and its ego-network GN(v), we have an upper bound
of diversity score h(v), denoted by

ĥ(v) = max
x∈Z+

{x : |{u ∈ N(v) : ϕ̂GN(v)(u) ≥ x}| ≥ x · (x + 1)}.

Proof. Assume that h(v) = x∗, we prove ĥ(v) ≥ x∗. By h(v) = x∗, it indicates
that there exists x∗ discriminative cores g with ϕ(g) ≥ x∗ in the ego-network
GN(v). For ϕ(g) ≥ x∗, discriminative core g has at least x∗ + 1 nodes u with
ϕGN(v)(u) ≥ x∗. Thus, the whole ego-network GN(v) has at least x∗ · (x∗ + 1)
nodes u with ϕGN(v)(u) ≥ x∗, i.e., h(v) = x∗ ≤ maxx∈Z+{x : |{u ∈ N(v) :
ϕGN(v)(u) ≥ x}| ≥ x · (x+1)}. By Corollary 1, ϕ̂GN(v)(u) ≥ ϕGN(v)(u), hence we
have ĥ(v) ≥ x∗ = h(v).

According to Lemma 3, once applying the core decomposition algorithm on
graph G, we can directly compute the upper bounds ĥ(v) for all vertices v.

Algorithm 4. Efficient Top-k Search Framework
Input: G = (V, E), an integer k
Output: top-k structural diversity results

1: Apply the core decomposition on G by Algorithm 1 and obtain ϕG(v) for all vertices
v ∈ V ;

2: for v ∈ V do
3: Compute ̂h(v) according to Lemma 3;

4: L ← Sort all vertices V in descending order of ̂h(v);
5: S ← ∅;
6: while L �= ∅ do
7: v∗ ← arg maxv∈L ̂h(v); Delete v∗ from L;

8: if |S| = r and ̂h(v∗) ≤ minv∈S h(v) then
9: break;

10: Invoke Algorithm 3 to compute h(v∗);
11: if |S| < r then S ← S ∪ {v∗};
12: else if h(v∗) > minv∈S h(v) then
13: u ← arg minv∈S h(v);
14: S ← (S − {u}) ∪ {v∗};
15: return S;
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5.2 Top-K Structural Diversity Search Framework

Equipped with the upper bound ĥ(v), we develop an efficient top-k search frame-
work for safely pruning the search space and avoiding the unnecessary computa-
tion of h(v). The efficient top-k structural diversity search framework is presented
in Algorithm 4.

Algorithm 4 starts with the initialization of the upper bound of each vertex
v (lines 1–2). Then, it sorts all vertices in descending order according to their
upper bounds (line 3). It maintains a list S to store the top-k result (line 4). In
each iteration, the algorithm pops out a vertex v∗ from the vertex list L with
the largest upper bound ĥ(v∗) (line 6). Next, it checks the early stop condition:
if the answer set S has k results and the minimum score in S is no less than
the current upper bound, i.e. ĥ(v∗) ≤ minv∈Sh(v), the current vertex v∗ is
safely pruned and the searching process is terminated (lines 8–9). Otherwise,
the procedure of structural diversity score computation is invoked and check if
v∗ can be added into the result set (lines 10–14). Finally, the top-k results stored
in S are returned.

5.3 Complexity Analysis

In this section, we analyze the time and space complexity of Algorithm 4.

Lemma 4. Algorithm 3 computes h(v) for each vertex v in O(
∑

u∈N(v)

min{d(u), d(v)}) time and O(m) space.

Proof. Extracting GN(v) of v takes O(
∑

u∈N(v) min{d(u), d(v)}), since all trian-
gles 	vuw should be listed to enumerate each edge (u,w) ∈ E(GN(v)). According
to [2], the core decomposition performed in GN(v) takes O(|E(GN(v))| + d(v))
time. The sorting of the vertices can be finished in O(d(v)) time using bin
sort. And the breadth first search process for identifying the discriminative cores
needs O(|E(GN(v))|) time. In addition, the computing of the h-index based
structural diversity score h(v) runs in O(δ(GN(v))) time, where δ(GN(v)) =
maxu∈N(v) ϕGN(v)(u) is the degeneracy of GN(v). And δ(GN(v)) is bounded by
the degree of v, which is O(δ(GN(v))) ⊆ d(v). Overall, the time complexity of
Algorithm 3 is O(

∑
u∈N(v) min{d(u), d(v)}).

We continue to analyze the space complexity of Algorithm 3. The storage
of the ego-network of v takes O(n + m) space since GN(v) ⊆ G. And both the
sorted list of vertices (line 4) and the structural diversity vector of v takes O(n)
space. Thus, the space complexity of Algorithm 3 is O(n + m) ⊆ O(m) due to
our graph connectivity assumption.

Theorem 1. Algorithm 4 computes the top-k results in O(ρm) time and O(m)
space, where ρ is the arboricity of G and ρ ≤ min{dmax,

√
m} [7].

Proof. Firstly, the core decomposition algorithm performed on G takes O(m)
time and O(n+m) space. Secondly, the computation of upper bound ĥ(v) for all
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v’s takes O(m) time and O(n)space. In the worst case, Algorithm 4 needs to com-
pute h(v) for every vertex v. This takes O(

∑
v∈V {∑

u∈N(v) min{d(u), d(v)}})
time in total by Lemma 4. According to [7], we have

O(
∑

v∈V

{
∑

u∈N(v)

min{d(u), d(v)}}) ⊆ O(
∑

(u,v)∈E

min{d(u), d(v)}) ⊆ O(ρm).

Here ρ is the arboricity of graph G, which is defined as the minimum number
of disjoint spanning forests that cover all the edges in G. In addition, the top-k
results can be maintained in a list in O(n) time and O(n) space using bin sort.
Overall, Algorithm 4 runs in O(ρm) time and O(m) space.

6 Experiments

We conduct extensive experiments on real-world datasets to evaluate the effec-
tiveness and efficiency of our proposed h-index based structural diversity model
and algorithms.

Datasets: We run our experiments on four real-world datasets downloaded on
the SNAP website [18]. All datasets are treated as undirected graphs. The statis-
tics of the networks are listed in Table 1. We report the node size |V |, edge size
|E| and the maximum degree dmax of each network.

Table 1. Network statistics

Name |V | |E| dmax

Gowalla 196,591 950,327 14,730

Youtube 1,134,890 2,987,624 28,754

LiveJournal 3,997,962 34,681,189 14,815

Orkut 3,072,441 117,185,083 33,313

Compared Methods: We evaluate all compared methods in terms of efficiency,
effectiveness and also sensitivity to parameter setting. Specifically, we show three
compared algorithms as follows.

• baseline: is the baseline method proposed in Sect. 4.
• h-core: is an improved top-k search algorithm for computing the top-k vertices

with highest h-index based structural diversity in Algorithm 4.
• t-core: is to compute the top-k vertices with highest t-core based structural

diversity [12]. Here, t is a parameter of coreness threshold.

Note that in the sensitivity evaluation, we test the state-of-the-art competitor
t-core and compare the top-k results for different parameter t. Our h-index based
structural diversity model has no input parameter, which is consistent on the
top-k results.
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Fig. 2. Comparsion of baseline, h-core and t-core in terms of running time (in seconds).

Fig. 3. Comparsion of baseline, h-core and t-core in terms of search space.

6.1 Efficiency Evaluation

In this experiment, we compare the efficiency of baseline, h-core and t-core on four
real-world datasets. For the t-core method, we fix parameter t = 2. We compare
the running time and search space (i.e., the number of vertices whose structural
diversity scores are computed in the search process). Figure 2 shows the running
time results of three methods varied by k. It clearly shows that top-k search
algorithm h-core runs much faster than baseline on all the reported datasets.
Specifically, in Fig. 2(c), h-core is 5 times faster than baseline on Youtube in term
of running time. Moreover, Fig. 3 further shows the search space of three methods
varied on all datasets. We can observe that leveraging on the upper bound ĥ(v),
a large number of disqualified vertices is pruned during the search process by
h-core. The search space significantly shrinks into less than 1

10 of vertex size
in graphs. It verifies the tightness of our upper bound and the superiority of
h-core against baseline in efficiency. According to Figs. 2 and 3, our h-core is
very comparative to the state-of-art method t-core in terms of running time and
search space.

6.2 Sensitivity Evaluation

This experiment evaluates the sensitivity of t-core model. Given two different
values of t, t-core model may generate two different lists of top-k ranking results.
We use the Kendall rank tau distance to counts the number of pairwise dis-
agreements between two top-k lists. The larger the distance, the more dissimilar
the two lists, and also more sensitive the t-core model. We adopt the Kendall
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Fig. 4. Sensitivity heat matrices of t-core model on all datasets. Each matrix element
represents the Kendall’s Tau distance between two top-100 ranking lists by t-core model
with different t.

distance with penalty, denoted by,

K(p)(τ1, τ2) =
∑

{i,j}∈P
K

(p)

i,j (τ1, τ2)

where P is the set of all unordered pairs of distinct elements in two top-k list
τ1, τ2 and p is the penalty parameter. In our setting, we set p = 1 and normalize
the Kendall distance by the number of permutation |P|. The values of normalized
Kendall distance range from 0 to 1.

We test the sensitivity of t-core model by varying parameter t in
{2, 4, 6, 8, 10}. We compute the Kendall distance of two top-100 lists by t-core
model with two different t. The results of sensitivity heat matrix on four datasets
are shown in Fig. 4. The darker colors reveal larger Kendall distances between
two top-k lists and also more sensitive of t-core models on this pair of parame-
ters t. Overall, sensitivity heat matrices are depicted in dark for most parameter
settings on all datasets. This reflects that the top-k results computed by t-core
are very sensitive to the setting of parameter t, which has a bad robustness. It
strongly indicates the necessity and importance of our parameter-free structural
diversity model.

6.3 Effectiveness Evaluation

In this experiment, we evaluate the effectiveness of our proposed h-index
based structural diversity. We compare our method h-core with state-of-the-art
t-core [12] in the task of social contagion. Specifically, we adopt the indepen-
dent cascade model to simulate the influence propagation process in graphs [10].
Influential probability of each edge is set to 0.01. Then, we select 50 vertices as
activated seeds by an influence maximization algorithm [24]. We perform 1000
times of Monte Carlos sampling for propagation. For comparison, we count the
number of activated vertices in the top-k results by t-core and h-core methods.
The method that achieves the largest number of activated vertices is regarded
as the winner.

First, we report the average activated rate by h-core and t-core method
on all four datasets in Fig. 5(a). Let D = {“Gowalla”,“Youtube”, “LiveJour-
nal”,“Orkut”}. Given a dataset d ∈ D, the activated rate is defined as fk(d) =
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Fig. 5. Comparison of t-core and h-core in terms of the average activated ratio and win
cases on four datasets.

ActNumk

k , where ActNumk is the number of activated vertices in the top-k result.

The average activated rate is defined as ActRatek =
∑

d∈D fk(d)

|D| . Figure 5(a)
shows that our method h-core achieves the highest activated rates, which signif-
icantly outperforms t-core method for all different t. It indicates that the top-k
results found by h-core tend to have higher probability to be affected in social
contagion.

In addition, we also report the win cases of h-core and t-core with different
parameter t on all dataset. We vary t = {2, 3, 4} and set k = 100 for all methods.
The winner of a dataset is the method that achieves the highest number of
activated vertices in this dataset. Figure 5(b) shows the win cases of t-core and
h-core. As we can see, h-core wins on three datasets, which achieves the best
performance. It further shows the superiority of our h-index structural diversity
model. Besides, 3-core wins once, 4-core and 5-core win none, indicating that
t-core performs sensitively to parameter t.

7 Conclusion

In this paper, we propose a parameter-free structural diversity model based
on h-index and study the top-k structural diversity search problem. To solve
the top-k structural diversity search problem, an upper bound for the diversity
score and a top-k search framework for efficiently reducing the search space
are proposed. Extensive experiments on real-wold datasets verify the efficiency
of our pruning techniques and the effectiveness of our proposed h-index based
structural diversity model.
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