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Abstract

The proliferation of rich information available for real world entities and their relationships gives rise
to a type of graph, namely attributed graph, where graph vertices are associated with a number of
attributes. The set of an attribute can be formed by a series of keywords. In attributed graphs, it
is practically useful to discover communities of densely connected components with homogeneous at-
tribute values. In terms of different aspects, the community analysis tasks can be categorized into global
network-wide and ego-centric personalized. The global network-wide community analysis considers the
entire network, such that community detection, which is to find all communities in a network. On the
other hand, the ego-centric personalized community analysis focuses on the local neighborhood sub-
graph of given query nodes, such that community search. Given a set of query nodes and attributes,
community search in attributed graphs is to locally detect meaningful community containing query-
related nodes in the online manner. In this work, we briefly survey several state-of-the-art community
models based on various dense subgraphs, meanwhile also investigate social circles, that one special
kind of communities are formed by friends in 1-hop neighborhood network for a particular user.

1 Introduction

Nowadays with rich information available for real world entities and their relationships, graphs can be built in
which vertices are associated with a set of attributes describing the properties of the vertices. The attributed
graphs exist in many application domains such as web, social networks, collaboration networks, biological
networks and communication networks and so on. Community(cluster), as a group of densely inter-connected
nodes sharing similar properties, naturally exists in real-world networks [24]. In this work, we investigate
communities in two aspects of global network-wide and ego-centric personalized. From the global network-wide
analysis, we study the task of community detection that is to identify all communities in a network [13, 17, 23].
On the other hand, in the ego-centric personalized community analysis, we studied the problem of community
search that is to find meaningful communities containing query-related nodes in local subgraph. Since the
communities defined by different nodes in a network may be quite different, community search with query
nodes opens up the prospects of user-centered and personalized search, with the potential of the answers being
more meaningful to a user[9]. Recently, several papers [19, 9, 11, 22, 15, 5, 4, 1] have studied community search
on graph structure for ego-centric personalized community analysis.
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In Section 2, we focus on community detection in attributed graphs. For discovering all communities in
attributed graph, [24, 25, 2] model the problem as graph clustering, which aims to partition the graph into sev-
eral densely connected components with homogeneous attribute values. We proposed a novel graph clustering
algorithm, SA-Cluster, which combines structural and attribute similarities through a unified distance measure.
SA-Cluster finds all clusters by considering the full attribute space. However, in high-dimensional attributed
graphs[10], the high-dimensional clusters are hard to interpret, or there is even no significant cluster with ho-
mogeneous attribute values in the full attribute space. If an attributed graph is projected to different attribute
subspaces, various interesting clusters embedded in subspaces can be discovered. Therefore, based on the uni-
fied distance measure, we extend the method of SA-Cluster to propose a novel cell-based algorithm SCMAG to
discover clusters embedded in subspaces, with similar attribute values and cohesive structure[10].

In Section 3, we focus on community search in attributed graphs. Unlike community detection, community
search focus on the local neighborhood of given query-related nodes. Given a set of query nodes and attributes,
community search on attribute graph is to detect a densely inter-connected communities containing all required
query nodes and attributes in the online manner. First, we introduce one of best known query applications on
attribute graph as team formation [12, 14, 6]. Team formation is to find a group of individuals satisfying all
skilled required in a task with low communication cost. Then we show how to generalize the problem of team
formation into community search. Next, we briefly summarize several community models based on various
dense subgraphs, such as quasi-clique[4], densest subgraph[22], k-core[19, 15, 5, 1] and k-truss[9, 11]. Finally,
we investigate social circles, and analyze its power in social contagion. In social network, for a particular user,
social circles are defined as communities in her 1-hop neighborhood network, a network of connections between
her friends. The structure of social circles can be modeled as connected component, k-core and k-truss. [20]
shows the probability of contagion in social contagion process is tightly controlled by the number of social
circles.

2 Community Detection on Attributed Graphs

In this section, we study the community detection on attributed graphs, under the semantics of both full attribute
space and attribute subspace. We first formulate the problem of graph clustering on attributed graphs by con-
sidering both structural connectivity and attribute similarities. Then, we design a unified distance measure to
combine structural and attribute similarities. Finally, we briefly review the key ideas of community detection
algorithms, as SA-Cluster for graph clustering on full space attributes [24] and SCMAG for graph subspace
clustering[10].

2.1 Attributed Graphs

An undirected, unweighted simple graph is represented as G = (V, E) with |V | vertices and |E| edges. When
the vertices are associated with attributes, the network structure can be modeled as a new type of attributed graph
as follow.

Definition 1 (Attributed Graph): An attributed graph is denoted as G = (V,E,Λ), where V is the set of
vertices, E is the set of edges, and Λ = {a1, . . . , am} is the set of attributes associated with vertices in V for
describing vertex properties. A vertex v ∈ V is associated with an attribute vector [a1(v), . . . , am(v)] where
aj(v) is a set of attribute values of vertex v on attribute aj .

Figure 1 shows an example of a coauthor graph where a vertex represents an author and an edge represents
the coauthor relationship between two authors. In addition, there are an author ID, research topic and age range
associated with each author, which are considered as attributes to describe the vertex properties. For example,
the author r8 works on two topics of XML and Skyline. The problem of community detection is to find all
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(a) Attributed Graph
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(b) Attribute Augmented Graph

Figure 1: A Coauthor Network with Two Attributes “Research Topic” and “Age Range”

communities on the attributed graph, such as the example in Figure 1(a), based on both structural and attribute
similarities. Therefore, we formulate the problem as the graph clustering on attributed graph in the following.
Attributed graph clustering is to partition an attributed graph G into k disjoint subgraphs {Gi = (Vi, Ei,Λ)}ki=1,
where V =

∪k
i=1 Vi and Vi

∩
Vj = ∅ for any i ̸= j. A desired clustering of an attributed graph should achieve

a good balance between the following two objectives: (1) vertices within one cluster are close to each other in
terms of structure, while vertices between clusters are distant from each other; and (2) vertices within one cluster
have similar attribute values, while vertices between clusters could have quite different attribute values.

2.2 Attribute Augmented Graph

In the following, we used an attribute augmented graph to represent attributes explicitly as attribute vertices
and edges proposed by [24].

Definition 2 (Attribute Augmented Graph): Given an attributed graph G = (V,E,Λ) with a set of attributes
Λ = {a1, . . . , am}. The domain of attribute ai is Dom(ai) = {ai1, . . . , aini} with a size of |Dom(ai)| = ni.
An attribute augmented graph is denoted as Ga = (V ∪ Va, E ∪ Ea) where Va = {vij}m, ni

i=1,j=1 is the set of
attribute vertices and Ea ⊆ V × Va is the set of attribute edges. An attribute vertex vij ∈ Va represents that
attribute ai takes the jth value. An attribute edge (vi, vjk) ∈ Ea iff ajk ∈ aj(vi), i.e., vertex vi takes the value
of ajk on attribute aj . Accordingly, a vertex v ∈ V is called a structure vertex and an edge (vi, vj) ∈ E is called
a structure edge.

Figure 1(b) is an attribute augmented graph on the coauthor network example. Two attribute vertices v11 and
v12 representing the topics “XML” and “Skyline” are added. Authors with corresponding topics are connected
to the two vertices respectively in dashed lines. We omit the attribute vertices and edges corresponding to the
age attribute, for the sake of clear presentation. In the attributed graph clustering problem, we need to discuss
two main issues: (1) a distance measure, and (2) a clustering algorithm below.

2.3 A Unified Random Walk Distance

We use the neighborhood random walk model on the attribute augmented graph Ga to compute a unified distance
between vertices in V . The random walk distance between two vertices vi, vj ∈ V is based on the paths con-
sisting of both structure and attribute edges. Thus it effectively combines the structural proximity and attribute
similarity of two vertices into one unified measure. The transition probability matrix PA on Ga is defined as
follows.
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A structure edge (vi, vj) ∈ E is of a different type from an attribute edge (vi, vjk) ∈ Ea. The m attributes
in Λ may also have different importance. Therefore, they may have different degree of contributions in random
walk distance. Without loss of generality, we assume that a structure edge has a weight of ω0, attribute edges
corresponding to a1, a2, . . ., am have an edge weight of ω1, ω2, . . ., ωm, respectively. In the following, we
will define the transition probabilities between two structure vertices, between a structure vertex and an attribute
vertex, and between two attribute vertices. First, the transition probability from a structure vertex vi to another
structure vertex vj through a structure edge is

pvi,vj =


ω0

|N(vi)| ∗ ω0 + ω1 + . . .+ ωm
, if(vi, vj) ∈ E

0, otherwise
(1)

where N(vi) represents the set of structure vertices connected to vi.
The transition probability from a structure vertex vi to an attribute vertex vjk through an attribute edge is

pvi,vjk =


ωj

|N(vi)| ∗ ω0 + ω1 + . . .+ ωm
, if(vi, vjk) ∈ Ea

0, otherwise
(2)

The transition probability from an attribute vertex vik to a structure vertex vj through an attribute edge is

pvik,vj =


1

|N(vik)|
, if(vik, vj) ∈ Ea

0, otherwise

(3)

The transition probability between two attribute vertices vip and vjq is 0 as there is no edge between attribute
vertices.

pvip,vjq = 0, ∀vip, vjq ∈ Va (4)

The transition probability matrix PA is a |V ∪ Va| × |V ∪ Va| matrix, where the first |V | rows and columns
correspond to the structure vertices and the rest |Va| rows and columns correspond to the attribute vertices. For
the ease of presentation, PA is represented as

PA =

[
PV1 A1

B1 O

]
(5)

where PV1 is a |V |×|V | matrix representing the transition probabilities defined by Equation (1); A1 is a |V |×|Va|
matrix representing the transition probabilities defined by Equation (2); B1 is a |Va| × |V | matrix representing
the transition probabilities defined by Equation (3); and O is a |Va| × |Va| zero matrix.

Definition 3 (Random Walk Distance Matrix): Let PA be the transition probability matrix of an attribute aug-
mented graph Ga. Given L as the length that a random walk can go, c ∈ (0, 1) as the random walk restart
probability, the unified neighborhood random walk distance matrix RA is

RA =

L∑
l=1

c(1− c)lP l
A (6)
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2.4 SA-Cluster Algorithm

SA-Cluster adopts the K-Medoids clustering framework. After initializing the cluster centroids and calculating
the random walk distance at the beginning of the clustering process, it repeats the following four steps until
convergence.

1. Assign vertices to their closest centroids;

2. Update cluster centroids;

3. Adjust attribute edge weights {ω1, . . . , ωm};

4. Re-calculate the random walk distance matrix RA.

Different from traditional K-Medoids, SA-Cluster has two additional steps (i.e., steps 3-4): in each itera-
tion, the attribute edge weights {ω1, . . . , ωm} are automatically adjusted to reflect the clustering tendencies of
different attributes. Interested readers can refer to [24] for the proposed mechanism for weight adjustment.

The time complexity of SA-Cluster is O(t ·L · |V ∪Va|3), where t is the number of iterations in the clustering
process, and O(L · |V ∪Va|3) is the cost of computing the random walk distance matrix RA. In order to improve
the efficiency and scalability of SA-Cluster, [25] proposes an efficient algorithm Inc-Cluster to incrementally
update the random walk distances given the edge weight increments. Complexity analysis shows that Inc-Cluster
can improve SA-Cluster by approximately t times. For further speed up Inc-Cluster, [2] designs parallel matrix
computation techniques on a multicore architecture.

2.5 Subspace Clustering in High-dimensional Attributed Graphs

Although SA-Cluster can differentiates the importance of attributes with an attribute weighting strategy, it can-
not get rid of irrelevant attributes completely, especially when the dimension of attribute is high, i.e., |Λ| = m
is large. The high-dimensional clusters are hard to interpret, or there is even no significant cluster with homoge-
neous attribute values in the full attribute space. If an attributed graph is projected to different attribute subspaces,
various interesting clusters embedded in subspaces can be discovered which, however, may not exhibit in the
full attribute space. In the following, we will study the problem of subspace clustering in high-dimensional
attributed graphs. We first define the subspace criterion of good subspace clusters in terms of homogeneous
properties and cohesive structure. Then, we propose a novel cell-based subspace clustering algorithm SCMAG.

2.5.1 Criterion of Subspace Clusters

For the discovered clusters embedded in subspaces, should not only have homogeneous attribute values, but also
have dense connections, i.e., correspond to communities with homogeneous properties and cohesive structure.
Attribute Criterion. Given a attribute subspace S ⊆ Λ, the subspace entropy and interest are defined as follows.

Definition 4 (Subspace Entropy): Given a set of attributes S = {a1, . . . , ak} ⊆ Λ, the subspace entropy of S
is defined as

H(a1, . . . , ak) = −
∑

A1∈Dom(a1)

· · ·
∑

Ak∈Dom(ak)

p(A1, . . . , Ak) log p(A1, . . . , Ak) (7)

where p(A1, . . . , Ak) is the percentage of graph vertices whose attribute value vector is [A1, . . . , Ak].
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In addition, we want the attributes of a subspace to be correlated. If the attributes are independent of each
other, the subspace does not give more information than looking at each attribute independently. We measure
the correlation of a subspace S using mutual information between all individual dimensions of the subspace as
below.

I({a1, . . . , ak}) =
k∑

i=1

H(ai)−H(a1, . . . , ak)

We consider a subspace S = {a1, . . . , ak} as an interesting subspace, if S is more strongly correlated than any
of its subsets S ′ ⊆ S . To measure the increase in correlation of a subspace, we define the interest of a subspace.

Definition 5 (Subspace Interest): Given a set of attributes S = {a1, . . . , ak} ⊆ Λ, the subspace interest of S
is defined as the minimum increase in correlation of S over its (k − 1)-dimensional subsets.

interest(a1, . . . , ak) = I({a1, . . . , ak})−max
i

I({a1, . . . , ak} − {ai})

Therefore, a good subspace for clustering should have low subspace entropy and high subspace interest.
Structural Criterion. Given a subspace S = {a1, . . . , ak} and each attribute ai has ni values, the k-dimensional
space is partitioned to form a grid. The vertices with same attribute vector fall into the same cell of grid, under
this k-dimensional space. Thus, for a good space for clustering, we identify the cells with high coverage and
connectivity, according to the following definition.

Definition 6 (Coverage and Connectivity): Given a cell u in a subspace, the coverage of u is measured by the
number of vertices in u, i.e., V (u) = |u|. The connectivity of u is measured by the sum of random walk scores
of all pairs of vertices, divided by the cell size

D(u) =

∑
vi,vj∈u Q̃V V (vi, vj)

|u|
,

where Q̃V V (vi, vj) is the normalized structural similarity between vi and vj .

2.5.2 A review of SCMAG

Based on the criteria for interesting subspace with good clustering tendency and coverage subspace with dense
connectivity, the cell-based algorithmic framework of SCMAG is described as follow. We will first find the
subspaces with good clustering tendency, and then identify cells in the subspace with high coverage and high
connectivity. Adjacent qualified cells will be merged to form a maximal cluster in the subspace.

Follow by the framework of SA-Cluster, we first construct the attribute augmented graph by Definition 2.
Then, we use the random walk with restart to unify the structural closeness and attribute similarity into a single
measure. Based on the random walk score, we design a novel cell combining strategy on dimensions of at-
tributes. Moreover, to distinguish the multi-values in an attribute, we choose one attribute value with the largest
attribute similarity between the value and vertex as the unique one. Thus, each vertex is associated with an at-
tribute vector containing a single value in each attribute. Finally, we iteratively find subspace with low subspace
entropy and high subspace interest, and detect clusters by merging adjacent dense cells to satisfy high coverage
and dense connectivity. The entire procedure is shown as follow.

1. Construct the attribute augmented graph, and calculate the random walk distance;

2. Identify similar attribute values to be adjacent;
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Table 1: Clusters in attribute subspace {Citation, H-index, G-index, Venue} on bibliographic graph, where each
vertex represents an author and an edge represents the author collaboration. Each author has 12 attributes, such
as Topic, Citation, H-index, Sociability and so on[10].

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Database Software Engineering & Hardware & Algorithms &

Scientific Computing Architecture Theory
Rakesh Agrawal C.A.R. Hoare A. L. Sangiovanni-Vincentelli Rajeev Motwani

Hector Garcia-Molina Leslie Lamport Sharad Malik Robert E. Tarjan
Jeffrey D. Ullman Thomas A. Henzinger Sartaj K. Sahni Christos Papadimitriou
Jennifer Widom Rajeev Alur Lothar Thiele Prabhakar Raghavan

Christos Faloutsos David Harel Sudhakar M. Reddy David R. Karger
Jim Gray Joseph Halpern Jason Cong Richard M. Karp

David J. DeWitt Amir Pnueli Robert Brayton Jon M. Kleinberg
Michael Stonebraker Moshe Vardi Miodrag Potkonjak Leslie Valiant

Ramakrishnan Srikant Edmund Clarke Massoud Pedram Oded Goldreich
Serge Abiteboul Robin Milner Janak H. Patel Moni Naor

3. Assign vertices into cells of the grid by handling multi-valued attributes;

4. Find good subspaces with low subspace entropy and high subspace interest;

5. Find clusters in the identified subspace by merging adjacent dense cells to satisfy high coverage and dense
connectivity;

Case study. Table 1 shows that SCMAG discovers 4 clusters from different research fields on bibliographic
graph in the subspace {Citation, H-index, G-index, Venue}, and list 10 representative authors in each cluster.
The subspace combination of Citation, H-index and G-index is interesting, as these three attributes are positively
correlated – H-index and G-index are computed from citations.

3 Community Search on Attributed Graphs

Given a set of query nodes and attributes, community search on attributed graphs is to detect meaningful com-
munity containing query nodes and satisfying attribute constraints in the online manner. As an ego-centric
personalized analysis, community search is different from community detection, which focuses on the local
neighborhood subgraph of query-related nodes. In the following, we first introduce one of best known query
application on attributed graphs as team formation, and show how to generalize it into community search on
attributed graphs. Then, we will discuss several state-of-the-art community models based on various dense
subgraphs, including special community models of social circles.

3.1 Team Formation

Task-driven Team formation [14]. Assume that in attributed graph G(V,E,Λ), each vertex is associated with
different skill attributes. Given a task T that requires a set of skills, the problem of team formation is to find a
group of individuals X ⊆ V who can function as a team to accomplish task T , such that every required skill in
T is exhibited by at least one individual in X . Additionally, the members of team X should define a subgraph or
a tree in G with low communication cost. The communication cost measures how effectively the team members
can collaborate: the lower the communication cost, the better the quality of the team. [14] measures team
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communication cost in terms of diameter or spanning tree. We formulate the problem of diameter based team
formation as below.

Definition 7 (Graph Diameter): The diameter of a graph G is defined as the maximum length of a shortest
path in G, i.e., diam(G) = maxu,v∈G{distG(u, v)}, where distG(u, v) is the length of a shortest path between
u and v in G.

Definition 8 (Diameter based Team Formation): Given an attributed graph G(V,E,Λ) and a task T = {w1,
..., wk} ⊆

∪
a∈ΛDom(a), find a subgraph H ⊆ G such that satisfies

1. ∀w ∈ T , ∃v ∈ H and a ∈ Λ, s.t, w ∈ a(v);

2. diam(H) is minimized.

This problem has been shown to be NP-complete. However, there exists a 2-approximation algorithm, which
can find a subgraph H that satisfies all required skills and has the diameter no greater than 2 times of the optimal
one.

3.2 A Formulation of Community Search

In the diameter based team formation, the diameter metric may not measure the communication cost well,
because this simple function is instability: a slight change in the graph may result in a radical change in the
solution, due to the weak connectivity[6]. Therefore, to enforce the dense connectivity constraints on the formed
team is necessary. On the other hand, in some application scenarios, we may need to specify leaders in a team,
since leaders need to iteratively communicate with each team member to monitor and coordinate the project[12].
Thus, the given leaders(vertices) must be contained in the reported team. As a result, we can generalize team
formation with leader constraints into the problem of diverse attributed community search on attributed graph
as follow.

Definition 9 (Diverse Attributed Community Search): Given an attributed graph G(V,E,Λ), a set of attribute
values T = {w1, ..., wk} ⊆

∪
a∈ΛDom(a) and a set of query nodes Q ⊆ V (G), find a connected subgraph

H ⊆ G such that satisfies

1. Q ⊆ V (H);

2. ∀w ∈ T , ∃v ∈ H and a ∈ Λ, s.t, w ∈ a(v);

3. H is densely connected, and the communication cost is minimum.

As we can see, the problem of diverse attributed community search tends to find a densely connected sub-
graph containing all query nodes and achieving the coverage of diverse attributes, with the minimum commu-
nication cost. In Definition 9, either a set of attributes T or a set of query nodes Q can be empty. If the set of
attributes are empty as T = ∅, the problem of community search on attributed graph is equivalent to the problem
of find densely connected community in a simple graph G(V,E). If the set of query nodes are empty as Q = ∅,
the problem of community search on attributed graph is equivalent to the problem of team formation without
leader constraints in Definition 8.
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3.3 Dense Subgraph based Community Models

In this section, we will introduce several novel community models in a simple graph G(V,E) without at-
tributes. These state-of-the-art community models are based on different dense subgraph definitions, such as
quasi-clique[4], densest subgraph[22], k-core[19, 15, 5, 1] and k-truss[9, 11]. These community models can be
further developed and extended for applying on attributed graph G(V,E,Λ).
Quasi-Clique Community. Cui et. al[4] propose a α-adjacency-γ-quasi-k-clique community model. A γ-
quasi-k-clique of a simple graph G is defined as a k-node subgraph of G with at least ⌊γ k(k−1)

2 ⌋ edges, where
0 ≤ γ ≤ 1. A γ-quasi-k-clique is a relaxation of a k-clique. Two γ-quasi-k-cliques are α-adjacent and can
be union if they share at least α common vertices. Given a query node, the community search problem is to
find all α-adjacency-γ-quasi-k-cliques containing it. Several heuristic approaches are proposed for speed up the
NP-hard query processing.
Query-biased Densest Subgraph Community. Wu et al. [22] studied the query biased densest connected
subgraph (QDC) problem for avoiding subgraphs irrelevant to query nodes in the discovered community. The
community is defined based on a connected graph containing given query nodes, and it optimizes a fundamen-
tally different function called query biased edge density, which is calculated as the overall edge weight averaged
over the weight of nodes in a community.
K-core Community. Several community models build up on the structure of k-core [19, 15, 5, 1]. A k-core
is a subgraph of G that requires each node has at least k neighbors within this subgraph [18]. Sozio et al.
[19] proposed a k-core based community model, called Cocktail Party, with the distance and size constraints.
Cocktail Party community model finds the k-core with largest k as the density optimization, and uses the furthest
query distance as the communication cost function. Cui et al. [5] find a k-core community for a query node using
local search. In addition, Li et al. [15] propose influential community model that finds top-r communities with
the highest influence scores over the entire graph, without considering query nodes.
K-truss Community. A k-truss is a subgraph of G that requires each edge be contained at least (k-2) triangles
within this subgraph [3]. In a social network, a triangle indicates two friends have a common friend, which
shows a strong relationship among three friends. Intuitively, the more common friends two people have, the
stronger their relationship. In a k-truss, each pair of friends is “endorsed” by at least (k-2) common friends[11].
Thus, a k-truss with a large value of k signifies strong inner-connections between members of the subgraph. The
community proposed by [9] and [11] both are build upon the connected k-truss. [9] proposes a k-truss com-
munity model based on triangle adjacency, to find all overlapping communities of one query node. The closest
truss community [11] aims to find a connected k-truss subgraph with the largest k that contains Q, and has the
minimum diameter among such subgraphs. Here, the minimum graph diameter is used as the communication
cost constraint. In comparison of the k-core community and the k-truss community, conceptually, k-truss is
a more cohesive definition than k-core, as k-truss is based on triangles whereas k-core simply considers node
degree.
Case study. Figure 2(b) shows a closest truss community [11] detected on DBLP network using the query
Q = {“Alon Y. Halevy”, “Michael J. Franklin”, “Jeffrey D. Ullman”, “Jennifer Widom”} and T = ∅. It has 14
authors, 81 edges and the edge density of 0.89. The community does not include any authors in a 9-truss [3]
that are far away from and loosely connected with queried authors in Figure 2(a), which shows the superiority
of closest truss community.

3.4 Social Circles and Social Contagion

In this section, we will study one special kind of community in social networks as social circles. For one query
user, social circles are communities in query users 1-hop neighborhood network, a network of connections
between her friends. Simply, in terms of graph structure, for a user with a small number of friends, a connected
component is strongly enough to represent a social circle; Whereas, for a user with a large number of friends,
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(a) 9-truss [3] (b) closest truss community [11]

Figure 2: Community search on DBLP network without attributes using query Q ={“Alon Y. Halevy”, “Michael
J. Franklin”, “Jeffrey D. Ullman”, “Jennifer Widom”} and T = ∅

since the structure of her neighborhood network becomes complex, a connected k-core and a connected k-truss
as cohesive structure are much better social circle models. Interested readers can refer to more community
models on attribute graphs [16, 21].

In the following, we will show how these social circles affects the process of information diffusion on social
contagion. Ugander et al. [20] study two social contagion processes in Facebook: the process that a user joins
Facebook in response to an invitation email from an existing Facebook user, and the process that a user becomes
an engaged user after joining. They find that the probability of contagion is tightly controlled by the number
of social circles in a users neighborhood, rather than by the number of friends in the neighborhood. A social
circle represents a distinct social context of a user, and the multiplicity of social contexts is termed structural
diversity [20]. A user is much more likely to join Facebook and become engaged if he or she has a larger
structural diversity, i.e., a larger number of distinct social contexts. [7, 8] studied the problem of find k users
with the highest structural diversity in graphs, which can be beneficial to a wide range of application domains,
for example, political campaign, the promotion of health practices, marketing, and so on.

(a) Word (b) Christmas

Figure 3: Top-2 structural diversity based on connected 2-core in word association network. Here “word” and
“Christmas” respectively has the top-2 highest structural diversity score as 4 and 3.
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Case study. Figure 3 shows that top-2 results in the word association network using connected 2-core as the
structural bone of social circles. Two words “word” and “Christmas” have the highest two structural diversity
scores of 4 and 3. As we can see, in Figure 3, each vertex in the 2-core component has at least two neighbor
words. Specifically, the word “word” in Figure 3 (a) has 4 distinct contexts of associated words with different
meanings. For example, {“swear”, “oath”, “promise”} represent the synonym of “words” as “promise”, and
{“verb”, “noun”, “pronoun”} are different types of “word”. The word “Christmas” has three distinct contexts
of associated words, as shown in Figure 3 (b), {“reindeer”, “sleigh”, “Santa”} describe the “Santa”, {“present”,
“gift”, “package”} represent the “Christmas gifts” and {“tree”, “ornament”, “decoration”} are related to the
“Christmas tree”.

4 Future Work and Conclusion

In this paper, we study two problems of community detection and community search in attributed networks, re-
spectively in terms of global network-wide analysis and ego-centric personalized analysis aspects. For commu-
nity detection, we design a unified distance measure to combine structural and attribute similarities on attribute
graphs. Based on that, we propose two community detection algorithms SA-Cluster and SCMAG for respec-
tively considering the full space and subspace of attributes. For community search, we give a formal problem
definition of community search on attributed graphs by generalizing from the problem of team formation. Sev-
eral dense subgraph based community model are surveyed here for a comparison. Since all these dense subgraph
based community models only consider structures in simple graphs without attributes, it would be interesting to
extend the models and algorithms to attributed graphs for community search. Given the recent surge of interest
k-core and k-truss in probabilistic graphs, an exciting question is how k-core and k-truss models generalizes to
probabilistic graphs. The challenge is to develop extensions that are widely useful and tractable.
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