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Abstract 

 

Proxy caching is an effective technique to reduce the network resources consumed by web services 

as well as the access latencies perceived by web users. This article discusses the issues and challenges 

of deploying web caching proxies over the Internet. We focus on the cache management for 

conventional web objects such as HTML pages and images and present the state-of-the-art solutions 

to various cache management problems including prefetching, consistency maintenance, and 

cooperative caching. We also highlight several possible research directions with the emerging 

applications and services. 
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I. INTRODUCTION 

The World Wide Web (WWW) has emerged as the most widely used tool for information access and 

dissemination throughout the Internet. Nevertheless, web users today often experience long access latency 

due to network congestions especially in peak hours and/or during big events such as the Olympic Games. 

An effective technique to alleviate these problems is to cache frequently used data at proxies close to 

clients. Specifically, they can reduce load on both the network and the servers (by localizing the traffic) 

and improve access latency (by satisfying the requests from local storage instead of remote servers).  

Nowadays, caching proxy has become one of the vital components in most existing web systems. It is 

no doubt that the management of proxy cache is critical to such a system. Though the cache management 

has been extensively studied in other systems such as memory hierarchies and distributed file sharing 

systems, there are several unique challenges arising from the Web and its vehicle, the Internet [1, 2, 3].  

Large-scale systems: The Internet is by far the largest inter-connected network, and the Web is now 

enjoyed by virtually all the Internet surfers. For example, Google (http://www.google.com) receives more 

than 2,000 search queries a second, more than half of which come from outside the United States.2 The 

large scale of the Internet and Web implies that any solution for cache management must be massively 

scalable, i.e., the proxy cache should be capable of handling a large number of concurrent requests from 

users that may be distributed worldwide.  

Heterogeneous users: In web applications, users exhibit high heterogeneity in hardware and software 

configurations, connection bandwidth, as well as access behaviors. The level of heterogeneity is still 

increasing with the proliferation of new platforms and access technologies, e.g., mobile users with 

wireless access. Hence, a simple one-fits-all solution for cache management might never be feasible. 

Loosely-coupled components: Besides heterogeneity, the consumers (web browsers) and the suppliers 

(web servers) of a proxy cache are loosely coupled, which reflects one of the fundamental design 

principles of the Internet. This loosely coupling nature, unlike that in many distributed file sharing 

systems, leads to the success of the Internet and Web, but also makes the consistency management for 

proxy caches and cooperation among the caches particularly difficult. Moreover, due to the lack of 

centralized administration, achieving security and privacy is far more complicated. 

                                                        
2 From Google Press Center: http://www.google.com/press/funfacts.html 
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Dynamic characteristics: Finally, it is worth noting that the Web and the Internet have been changing 

rapidly both in traffic characteristics and in network structures, which complicates the analysis of this 

computing environment. The dynamics of the Web also easily makes existing products and even research 

findings obsolete in a few years. Hence, a flexible yet extendible interface is necessary for a web-oriented 

product or solution.  

Given these unique characteristics, novel solutions are needed to deploy web caching proxies on the 

Internet. This article puts together important management problems for web proxy caching and presents 

the state-of-the-art solutions to these problems. We mainly focus on the cache management for 

conventional web objects such as HTML pages and images since they dominate the web traffic today; yet 

new issues arising from emerging applications and services such as streaming media will be briefly 

mentioned. We start by an overview of the proxy caching systems in Section II. We present the critical 

cache management issues in Section III. Section IV summarizes the article and outlines some future 

research directions.  

II. OVERVIEW OF PROXY CACHING SYSTEMS 

A. Basic Proxy Caching Architecture 

A proxy is usually deployed at the edge of a network, e.g., at the gateway or firewall for an enterprise 

or campus network, and processes requests from its internal clients either locally or by forwarding the 

requests to a remote server, intercepting the responses, and sending the replies back to the clients. Since 

this proxy is shared by all internal clients with similar interests, it is natural to cache some objects of 

common interest on the proxy, beyond the local caching mechanisms implemented by web browsers.  

More explicitly, to retrieve a web object, a client-side browser can initiate an HTTP GET command 

with a Uniform Resource Locator (URL) for the object. The browser first attempts to satisfy the request 

from its local cache, and if it fails, sends unresolved requests to its proxy. If the proxy finds the requested 

object in its cache, it returns the object to the client; otherwise, the request is forwarded to the object’s 

origin server, which, as the authoritative source of the requested object, will return the object to the proxy. 

The proxy then relays the object to the client, and, if needed, saves a copy of the object in its cache. If a 

request is satisfied from the proxy cache, it is called a cache hit, and otherwise a cache miss. The 

operations for a standalone proxy are depicted in Fig. 1.  
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   Figure 1. Operations for HTTP GET command with proxy caching. (a) Cache miss; (b) Cache hit. 

Besides the basic GET command, HTTP also provides a conditional GET command, which combined 

with header if-modified-since date can be used by the proxy to request the remote server to return a copy 

only if it has been modified since the specified date (with the granularity of a second). Another important 

header is expires, which indicates the time after which a respective object is not fresh. In HTTP 1.1 [5], 

the latest version of HTTP, a richer set of controls over proxy caches is provided by means of 

cache-control headers. A cache-control header includes a list of directives to declare which objects can be 

cached, as well as modifications of the expiration mechanism and revalidation or reload controls. 

Specifically, header no-cache disables caching of a web object at either proxy or browser and, hence, 

every request for the object has to go to the origin server. The must-revalidate header informs a cache that 

it must validate the cached object before using it, possibly through a conditional request to the origin 

server. And the proxy-revalidate header is similar to must-revalidate yet only applies to proxy caches. In 

addition to these, some caching proxies also permit the administrator to specify a sets of URLs or object 

types for which to apply special rules, e.g., never to cache URLs containing a suffix “.cgi”, since this 

directs to a CGI (Common Gateway Interface) script which can create dynamic objects. All the above 

headers and policies are very useful in cache replacement and prefetching, consistency management, and 

proxy cooperation, which are discussed in the next section. Finally, HTTP 1.1 also provides a via header, 

which requires that each proxy processing the request must append an entry including the proxy name and 
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the protocol used to receive the request. Hence, the information of all the proxies lying between the client 

and the server can be obtained.  

B. Alternative Architectures  

The above proxy caching architecture is by far the most widely employed. It however requires that all 

the client-side web browsers be manually configured to direct their requests to the dedicated proxy cache. 

Subsequently, if the proxy is no longer available, all clients have to reconfigure their browsers, which is 

clearly cumbersome. One solution to this problem is the browser auto-configuration using script files. In 

addition, the Internet Engineering Task Force (IETF) is actively developing the Web Proxy 

Auto-Discovery Protocol (WPAD) [6]. WPAD relies on resource discovery mechanisms, including 

domain name service (DNS) records and Dynamic Host Configuration Protocol (DHCP), to automatically 

locate a proxy configuration file.  

Yet a more sophisticated solution is transparent caching [7, 8], which filters all HTTP requests from all 

outbound Internet traffic, and redirects them to appropriate proxies. It not only solves the proxy 

configuration problem, but also enables additional administrative controls, e.g., adaptively distributing 

requests among multiple caches. Transparent caching can be implemented either at the switch level or at 

the router level, both being transparent to the application-level HTTP. A router-level implementation is 

more flexible, as various policy-based routing policies can be employed; a switch-level implementation, 

on the other hand, is less expensive and incurs lower processing overhead. Even so, HTTP filtering is still 

computation-intensive, resulting in higher latency for web browsing. More importantly, it violates the 

end-to-end principle as the clients’ requests to the origin server are now unconsciously intercepted by the 

transparent proxies. This might be a problem when a client requires states to be maintained throughout 

successive requests or during a logical request involving multiple objects. 

Other interesting proxy caching architectures include reverse proxy caching and push caching [9, 10]; 

in both mechanisms the web server is activity involved. In the reverse proxy caching scheme, caches are 

deployed near the origin server instead of near clients. This is an attractive solution for a server that 

receives a high number of concurrent requests and expects to ensure a high degree of quality-of-service. 

On the other hand, the push caching scheme keeps objects of interest close to its clients by dynamically 

mirroring objects to the proxy near the clients. Since the origin server has the knowledge of the global 
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request pattern, it can easily identify where requests originate from and hence decide which proxy to push 

the objects. To date, the deployment of the above alternative architectures remains quite limited, however. 

Hence, in the rest of this paper, we mainly focus on the basic architecture for proxy caching, though many 

of the solutions for cache replacement, prefetching, and consistency management can be applied to other 

architectures as well. 

III. CACHE MANAGEMENT ISSUES 

We now proceed to discuss several important cache management issues including cache replacement 

and prefetching, consistency management, and cooperative management. The provenances of these issues 

dated back to the traditional memory hierarchies and file sharing systems. However, as mentioned in the 

Introduction, the distinctive features of the Web and the Internet often call for different solutions. 

A. Cache Replacement and Prefetching 

A natural question for a proxy is to decide, when a new object arrives, which object(s) is to be purged 

if the available disk space is insufficient to store the new object. This problem is addressed by a cache 

replacement policy. The classical cache replacement policy is the Least Recently Used (LRU) policy, 

which purges the oldest among the cached objects. There were significant research efforts towards more 

intelligent cache replacement strategies in the late 90’s. However, recent studies have argued that, for 

several reasons, replacement policies are not the dominating factor in proxy performance [1]. First, 

intelligent replacement policies typically come at the cost of accurately estimating access patterns and 

network characteristics, which are usually difficult to obtain in the dynamically changing web 

environments; second, with the rapid growth of disk capacity, cache replacement becomes less important; 

finally and perhaps most importantly, a large fraction of web objects are not cachable and many others are 

dynamically updated, thus even an ideal cache with infinite space would achieve a hit ratio of 40-50% 

only [11]. The room for possible improvement over the LRU is quite limited. Therefore, in practice, the 

simple LRU policy dominates in the cache products. For new applications such as video object caching, 

cache replacement however remains as an important problem, which we will address in Section IV. 

A related issue is cache prefetching. While data caching, as a side-product of object requests, is passive 

in nature, prefetching on the other hand proactively preloads the data from the server into the cache to 

facilitate near-future accesses. Existing studies have showed that prefetching combined with caching can 
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potentially improve the latency by up to 60%, whereas caching alone can improve the latency at best by 

26% [11]. However, a cache prefetching policy must be carefully designed. If it fails to predict the user’s 

future accesses, it would waste network bandwidth and cache space in addition to imposing additional 

load to both the server and the network. Thus, the prediction mechanism plays an important role in the 

design of a cache prefetching policy. Based on the type of information used in the prediction mechanism, 

we can classify the prefetching policies into three categories: mixed access pattern based, per-client 

access pattern based, and object structural information based. Note that access patterns can be collected 

at the server, the proxy, or the client and exchanged among them for the purpose of prediction.  

Mixed access pattern based: Prediction makes use of aggregate access pattern from different clients 

but does not explore which client makes the request. A typical example is the Top 10 proposal [12], 

which employs popularity-based predictions. Specifically, the scheme determines how many objects to 

prefetch from which servers by using two parameters: M, the number of times the client must have 

contacted a server before it can prefetch, and N, the maximum number of objects it would prefetch from a 

server. If to some server, the number of objects fetched in the previous measurement period, denoted by L, 

reaches the threshold M, the client will prefetch the K most popular objects from that server, where K = 

min{M, L}.  

 

 

 

Figure 2. A Markov Graph. 

Per-client access pattern based: This kind of policies first analyze access patterns on a per-client 

basis and use the aggregated access patterns for prediction. A popular analysis tool is called Markov 

modeling [13]. The basic idea is to establish a Markov graph based on access histories and make 

prefetching predictions based on the graph. In the Markov graph, a set of web objects (usually one or two 

objects) is represented as a node; if the same client accesses two sets of objects A and B in order within a 

certain period of time, a direct link is drawn from A to B and its weight is assigned with the transition 

probability from A to B. Fig. 2 gives an example, where the probability of accessing B after A is 0.3 and 

the probability of accessing C after A is 0.7. To make a prefetching prediction, a search algorithm 
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traverses the graph starting from the current set of objects and computes the access likelihood for its 

successors; the prefetching algorithm can then decide how many of the successors to preload, depending 

on various factors such as the access likelihood and the amount of bandwidth available for prefetching.  

Object structural information based: While the previous two categories of policies rely on access 

histories, object structural information based prefetching schemes exploit the local information contained 

in objects themselves. Hyperlinks are good indictors of future accesses because the users tend to access 

objects by clicking on the links instead of typing new URLs [14]. Such information can also be combined 

with the access pattern based policies to further improve the predication efficiency and accuracy. 

B. Consistency Management 

After the proxy caches a copy of an object, the origin server may update this object. This makes the 

cached copy stale. A cache consistency algorithm is to ensure that the copy cached on the proxy is 

consistent with the original object. Different applications have diverse consistency requirements. For 

some applications like news and reports, users can tolerate a certain degree of staleness on the received 

data. However, for time-critical applications like traffic information and stock prices, users often expect 

to receive the most up-to-date information. To this end, existing cache consistency algorithms can be 

classified into two categories: weak consistency and strong consistency. Let t be the delay between the 

proxy and the server, a strong consistency algorithm returns the object outdated by t at most. If a cache 

algorithm fails to provide such guarantee, it falls into the category of weak consistency. 

Weak Consistency: Weak cache consistency is generally supported by validation, in which proxies 

verify the validity of their cached objects with the origin server. There are two basic validation 

approaches: TTL-based validation and proactive polling. With the TTL-based approach, when the proxy 

caches an object, it assigns a value of time to live (TTL) to the object. The value of TTL can be explicitly 

supplied by the origin server or implicitly assigned by the proxy based on some heuristic. A popular 

heuristic to compute the TTL value is based on a predefined threshold and the weighted object age, which 

is the time interval from the object’s last update to the current time [15]: 

TTL = min{(k × (current_time – last_update_time), threshold)}, 

where k is a constant typically set to 0.1 or 0.2. The TTL-based approach carries out validation in an 

on-demand manner. When a request comes to the proxy, if the lifetime of the cached object has not 
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expired, the cached copy is used to serve the request; otherwise, the proxy sends to the server a 

conditional request to download a newer version of the object, if exists.  

Despite its simplicity and effectiveness, the TTL-based approach suffers from a major drawback: if an 

object expires but has yet not updated on the origin server, the proxy still needs to verify with the server, 

though only a simple “Not Modified” message is returned. This introduces extra access delay, reducing 

the effectiveness of proxy caching. An improvement is for the proxy to proactively poll the server to 

check the validity of the cached copies, either at a fixed interval or an adaptive interval. With such 

asynchronous validations, the proxy can answer all cache-hit requests immediately from the proxy; 

thereby effectively reducing the latency overhead for all objects including those expired but still valid. 

Unfortunately, the proactive polling approach may waste the network bandwidth if the cached copy is 

rarely accessed after validation. To alleviate this problem, one may batch the validation requests and 

responses, or piggyback them over normal HTTP traffic [16].   

Strong Consistency: Strong cache consistency can be enforced either by server-driven invalidation or 

client-driven validation [17]. The server-driven invalidation approach requires the server to invalidate the 

copies on the proxies before the objects can be updated. Since the server sends out invalidation messages 

as needed, the message exchange between the server and the proxies is minimal. However, to notify the 

proxies of object updates, the server needs to maintain for each object a state record of the list of the 

proxies that cache the object. The extra space required for maintaining the states of all objects can be 

significant for a popular web server. Moreover, this approach does not work if the proxy is not reachable 

from the server when invalidation messages are delivered. The client-driven validation, on the other hand, 

does not require any state to be maintained on the server. Instead, the proxy validates the freshness of the 

cached copies with the server for every cache-hit access. However, similar to the TTL-based approach, it 

introduces unnecessary access delay for valid cache-hit objects. In addition, if the object is accessed more 

frequently than updated, this approach can generate tremendous amount of unnecessary messages for 

validity checking.  

To strike a balance between the space usage for maintaining the states and the message volume required 

for validations, a hybrid approach is developed, called leases [18, 19]. The server and the proxy agree on 

a lease such that the server will notify the proxy if the leased object is updated during the lease. The 

server can grant a lease to an object for every proxy request, or cache-hit requests only based on the 
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observation that invalidations are useful only for frequently accessed objects. Upon clients’ requests, the 

proxy can immediately serve them from the cache if the lease has not expired. Otherwise, the proxy must 

validate the cached object and renew the lease on the first access after lease expiration. Clearly, the 

duration of a lease is crucial to the system performance. The shorter the lease duration, the less the states 

maintained on the server, but potentially the larger the network messages for validity checking. Interested 

reader is referred to [17] for the optimization analysis of lease duration. 

C. Cooperation among Proxy Caches 

So far we consider the design of a standalone proxy only. Notice that one disadvantage of this design is 

that the proxy represents a single point of failure and performance bottleneck. In other words, it lacks 

robustness and scalability. Cooperative caching, where caching proxies collaborate with one another in 

serving requests, has emerged as an approach to overcome this limitation [20]. Conceptually, cooperation 

among proxies is based on the premise that it would be faster and cheaper to fetch an object from another 

proxy nearby rather than the origin server. In terms of scalability and availability, one can expect that 

multiple cooperated proxies can accommodate a large volume of concurrent client requests, survive 

failures of some caches, and perhaps can evenly distribute their workloads.   

  ...... ... ...   

...

...

...

......

...... ... ...  

(a) Hierarchical                    (b) Distributed                  (c) Hybrid 

Client Proxy Cache Cache Communication Path  
Figure 3. Examples of different cooperative cache organizations. 

Since the Internet topology is in general hierarchically organized, a popular technique to make caches 

cooperate is by setting up a caching hierarchy, i.e., defining a parent-child relationship between proxy 

caches; see Figure 3(a) for an example. Each cache in the hierarchy is shared by a group of clients or 

children caches. A request for a web object is processed as follows: if the client cannot locate the object 

in its local cache, it sends the request to the leaf proxy to which it directly connects. If this leaf cache 
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contains the object, it returns the object to the client. Otherwise, the cache forwards the request to its 

parent. This process recursively proceeds up the hierarchy until the object is located on some proxy or the 

origin server, which then returns the object down the hierarchy and each cache along the path may cache 

the object.  

Such hierarchical cache cooperation, originated from the famous Harvest project [21], is already 

adopted in plenty of Internet ISPs or enterprise networks. However, a simple hierarchy as illustrated 

above has several problems. First, top-level caches have to handle all the cache-miss requests from 

downstream caches and thus easily become the performance bottlenecks. Second, the recursive 

request-response process introduces additional delay as well as data redundancy, i.e., the copies of some 

objects are stored at every hierarchy level. Finally and most importantly, organization of the caches in a 

hierarchy is often static and manually configured that not only requires significant coordination among 

participating proxies but also is vulnerable to inappropriate configurations and topology changes. Due to 

the above reasons, the depth of a hierarchy is often limited — most operational hierarchies have only 

three levels, namely, institutional, regional, and national levels. 

A number of recent studies have proposed to set up a fully distributed cache architecture, where the 

participating proxy caches are peers, as illustrated in Figure 3(b) [22]. A simple yet popular distributed 

cooperation model is based on broadcast queries: If a proxy cannot satisfy a client’s request for an object 

from its own cache, it will broadcast the request to all other proxies it cooperates with, trying to resolve 

the request without contacting the origin server. It is however well known that the overhead of large-scale 

broadcast is prohibitively high, even if multicast is used. A more intelligent and efficient way is to 

forward an object request to only the proxies that may contain the object. Many methods have been 

devised to achieve this objective, e.g., maintaining a centralized directory for the objects [23], distributing 

the digests of the cached objects to peer caches [24, 25], and hash-partitioning of the object namespace 

among proxies [26].  

Distributed caching is particularly suitable for cooperation within regional networks, where the nodes 

are well connected with abundant bandwidth. With the proxy caches at the same level, it can achieve 

shorter transmission delay as well as higher disk space utility. It also enables better load sharing and 

higher degree of fault tolerance. Nonetheless, a large-scale deployment of distributed caching may 

encounter several problems, such as the high bandwidth demands and the complex administrative policies 
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to ensure that all the proxies fully cooperate. Thus, a hybrid scheme is often used to combine the 

advantages of both hierarchical and distributed caching, and to mitigate their respective disadvantages. 

For example, Harvest [21] and its descendants, such as Squid [27], also allow a proxy to query its 

neighbors at the same level (called siblings) using multicast before sending a cache-miss request to a 

parent, thereby not only reducing the workload of upper level proxies but also improving the access 

latency; see Figure 3(c) for an example. In the Adaptive Web Caching [28], all the origin servers and 

proxies are self-organized into multiple overlapping local groups, which altogether form a tight mesh. 

Requested objects are first queried within a local group using multicast. In case of a cache-miss within the 

group, the request is then forwarded toward the origin server along some implicit hierarchy of groups 

defined on the global mesh. More configurations for hybridization can be found in the Internet Cache 

Protocol (ICP) [27], a generic protocol for intercache communications. ICP was originally designed by 

the Harvest group and its variations were later implemented in many other cooperative caching systems. 

In a cooperative caching environment, cache replacement and consistency management is clearly more 

complex as compared to the standalone proxy case. In fact, many of the proxies cooperate only in serving 

a request, but not in cache replacement. However, existing studies revealed that if the proxies are 

cooperative in making cache replacement decisions, more benefits can be gained when the client accesses 

are intensive and the requests are highly clustered to a relatively small set of hot objects, as in the Content 

Distribution Networks (CDNs) [28]. For consistency management, the simple TTL-based schemes are 

still widely used for cooperative caches such as Harvest and Squid to ensure weak consistency [29, 30]. 

Recently, multicast-based invalidation for cache hierarchies [31] and cooperative leases for distributed 

caches [32] have also been developed. 

IV. SUMMARY AND FUTURE DIRECTIONS 

Nowadays, web proxies play a vital role in efficient distribution of web contents over the Internet. This 

article presents an overview of the proxy cache design and management and examines the proposed 

solutions, many of which are mature enough and have been deployed in commercial products and systems. 

This article by no means covers all aspects of the proxy cache management. With emerging new 

applications (e.g., streaming media) and service models (e.g., QoS-oriented services), cache management 

for web proxies remains a fertile research area, and many newly arising issues have not been well 

addressed. To conclude this article, we list several possible research directions: 
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Caching dynamic content: A large portion of web traffic today is dynamic content, e.g., dynamically 

generated data and personalized data, which contributes up to 30-40% of the total traffic. These types of 

data are normally marked as “uncachable.” To further improve web performance, reverse caching has 

been suggested to make more dynamic content cachable and manageable [9]. However, challenge remains 

for how to efficiently maintain consistency between the cached content and the dynamically changing 

source data. Another important issue is the analysis of query semantics to evaluate a complex query over 

the cached content. 

Caching streaming objects: It is predicted that streaming media like music or video clips will 

represent a significant portion of web traffic over the Internet. Due to the distinct features of streaming 

objects, such as large size, long duration, intensive use of bandwidth, and interactivity, conventional 

proxy caching techniques do not perform efficiently in this case, if not entirely inapplicable. To address 

these problems, many partial caching algorithms have been proposed in recent years [33, 34]. These 

algorithms demonstrated that, even if a small portion of the video is stored on the proxy, the network 

resources consumed could be significantly reduced. Yet how to optimally choose the portions to cache 

and how for the proxy and the origin server to jointly deliver streaming objects to clients remains a 

difficult task. The problem is further complicated by the fact that streaming objects often have variable bit 

rate and have stringent demands on transmission delay or delay jitter.  

Security and integrity: The initial deployment of proxies is indeed for security reasons, i.e., as 

firewalls. On the other hand, the use of proxies also complicates the task of maintaining the security. For 

example, for a standalone cache, how to protect against various attacks including invasion and 

denial-of-service? For cooperative caches, how to establish a trust model among the participants? In 

addition, the Secure Socket Layer (SSL) protocol is generally used to provide the end-to-end security for 

data transmissions between the client and the server, but the existence of an intermediate proxy largely 

violates the functionality of the SSL and thus a remedy is needed. Finally, to alter data, an attacker can 

now target a proxy in addition to the origin server; it is thus crucial to ensure the integrity of the cache 

content in a proxy.  

Other interesting issues include non-data caching (e.g., TCP contentions), cache management with 

mobile Internet accesses, and optimal proxy placement in the wide-area networks [7, 8, 35]. In summary, 

the aforementioned issues offer a number of interesting research topics, and their solutions become 
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increasingly imperative with the exponential growth of web applications and users. 
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