
k-Selection Query over Uncertain Data

Xingjie Liu1† Mao Ye2† Jianliang Xu3‡ Yuan Tian4† Wang-Chien Lee5†

†Department of Computer Science and Engineering, The Pennsylvania State University,
University Park, PA 16801, USA

‡Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong
{1xzl106,2mxy177,4yxt144,5wlee}@cse.psu.edu 3xujl@comp.hkbu.edu.hk

Abstract. This paper studies a new query on uncertain data, called k-selection
query. Given an uncertain dataset of N objects, where each object is associated
with a preference score and a presence probability, a k-selection query returns k
objects such that the expected score of the “best available” objects is maximized.
This query is useful in many application domains such as entity web search and
decision making. In evaluating k-selection queries, we need to compute the ex-
pected best score (EBS) for candidate k-selection sets and search for the optimal
selection set with the highest EBS. Those operations are costly due to the ex-
tremely large search space. In this paper, we identify several important properties
of k-selection queries, including EBS decomposition, query recursion, and EBS
bounding. Based upon these properties, we first present a dynamic programming
(DP) algorithm that answers the query in O(k · N) time. Further, we propose a
Bounding-and-Pruning (BP) algorithm, that exploits effective search space prun-
ing strategies to find the optimal selection without accessing all objects. We eval-
uate the DP and BP algorithms using both synthetic and real data. The results
show that the proposed algorithms outperform the baseline approach by several
orders of magnitude.

1 Introduction

Data uncertainty is pervasive in our world. A web search engine returns a set of pages
to a user, but cannot guarantee all the pages are still available. An on-line advertisement
site lists many products with nice discounts, but some of them are already sold out in
store. A GPS navigator may display nearest restaurants, but some of them may be al-
ready full. In presence of data uncertainty, effective queries that facilitate the retrieval
of desired data items are urgently needed. In the past few years, several Top-k query
semantics [14, 10, 11, 7] for uncertain data have been proposed, trying to capture the
possibly “good” items. However, these proposals do not address a very common prob-
lem, i.e., a user is typically only interested in the “best” item that is “available”. For
example, a used car shopper buys the car of his preference that is still for sale. Based on
this observation, in this study, we present a new and novel query operator over uncer-
tain data, namely, k-selection query. Given that the uncertain availability of data items
is captured as a probability, the k-selection query returns a set of k candidate items,
such that the expected score of the best available item in the candidate set is optimized.

To illustrate the k-selection query semantics, let us consider a scenario where John
plans to purchase a used car. Given an on-line used car database D = {d1, d2, · · · , dN}

where each di (1 ≤ i ≤ N) represents a car and di ranks higher than di+1.1 A top-k
query may help by returning k cars based on John’s preference. However, contacting
all these sellers to find the best available car is time consuming since popular cars with
a good deal may be sold quickly. Assuming that the available probabilities of vehicles
can be obtained (e.g., a freshly posted used car has a higher available probability than
a car posted weeks ago), a k-selection query on D takes into account the scores and
availability of the cars to return an ordered list of k candidates that maximizes the
expected preference score of the best available car. Thus, John can be more efficient in
finding the best available car by following the list to contact sellers.

Data Object Scores Probability
d1 4 0.3
d2 3 0.4
d3 2 0.8
d4 1 0.6

(a) Dataset Example

Strategies Results Expected Best Score
Top-2 Scores {d1, d2} 2.04

Weighted Score {d2, d3} 2.16

2-Selection {d1, d3} 2.32

(b) Query Result Example

Fig. 1. A 2-Selection Query Example.

Finding the optimal k-selection to maximize the expected preference score of the
best available object is not trivial. Consider a toy example in Fig. 1(a), where a set of
4 cars D = {d1, d2, d3, d4} along with their available probabilities are shown. Suppose
a user is interested in obtaining an ordered set of two candidates, {di, dj}, where di is
ranked higher than dj . Since di has a higher preference score than dj , the best object of
choice is di as long as it is available. Only if di is unavailable while dj is available, dj
will become the best choice. Based on the above reasoning, we use expected best score
(which stands for expected score of the best candidate) to measure the goodness of the
returned candidates. First, let us consider {d1, d2}, the candidate set obtained based on
the highest scores. Its expected best score is 4 · 0.3 + 3 · (1 − 0.3) · 0.4 = 2.04. Next,
consider {d2, d3} which is obtained based on the highest weighted score. Its expected
best score is 3 ·0.4+2 · (1−0.4) ·0.8 = 2.16. The above two strategies look reasonable
but they do not yield the best selection because the first strategy does not consider
the availability while the second strategy does not consider the ranking order in their
selecting processes. As shown, the {d1, d3}, returned by the proposed 2-selection query,
yields the highest expected best score = 4 · 0.3 + 2 · (1− 0.3) · 0.8 = 2.32.

Accordingly, the expected best score (EBS) for a selection S ⊆ D can be expressed
as in Eq. (1).

EBS(S) =
∑
di∈S

f(di) · P (di is the best available object in S) (1)

where f(di) and P (di) denote the preference score and available probability of object
di, respectively.

Therefore, a k-selection query Q(k,D) aims at returning an ordered subset S∗ ⊆ D,
|S∗| = k such that the EBS of S∗ is maximized. S∗ can be expressed as shown in
Eq. (2): S∗ = arg max

S⊆D,|S|=k
EBS(S) (2)

The k-selection query is a new type of rank queries on uncertain dara that, to our best
knowledge, has not been reported in the literature. Evaluating the k-selection query is

1 For simplicity, we assume that the data items have been sorted in the order of John’s preference.

very challenging because the candidate objects can not be selected individually to form
the optimal solution. As a result, the search space for optimal k-selection is as large as(
N
k

)
, which is significant as N increases. Efficient algorithms for the k-selection query

are needed to tackle the challenge.
The contributions made in this paper are summarized as follows:

– We present a new and novel rank query, called k-selection, for uncertain databases.
– Based on the possible world model for uncertain data, we formalize the presentation

of expected best score (EBS) and propose decomposing techniques to simplify the
calculation of EBS.

– We develop a dynamic programming algorithm that solves the k-selection query
over sorted data in O(k ·N) time (where N is the dataset size).

– A bounding-and-pruning (BP) algorithm is developed based on the EBS bounds
and the relationship in their preference scores. Its computational cost is even lower
than the DP algorithm for large datasets.

– We conduct a comprehensive performance evaluation on both the synthetic data
and real data. The result demonstrates that the proposed DB and BP algorithms
outperform the baseline approach by several orders of magnitudes.

The rest of the paper is organized as follows. In Section 2, we review the existing
work and formally formulate the problem. Section 3 addresses the problem by decom-
posing the EBS calculation and identifying the query recursion. Section 4 introduces
the dynamic programming algorithm and the bounding-and-pruning algorithm that ef-
ficiently processes the k-selection query. Section 5 reports the result obtained from an
extensive set of experiments. Section 6 concludes this paper.

2 Preliminaries
In this section, we first briefly review the previous works related to our study. Then, we
present the formal definition of the k-selection problem.

2.1 Related Work
The related work involves two major research areas: 1) uncertain data modeling and 2)
top-k query processing on uncertain data.
Uncertain data modeling. When inaccurate and incomplete data are considered in a
database system, the first issue is how to model the uncertainty. A popular and gen-
eral model to describe uncertain data is the possible world semantic [1, 13, 9]. Our
study in this paper adopts this model. The possible world semantic models the un-
certain data as a set of possible instances D = {d1, d2, · · · , dN}, and the presence of
each instance is associated with a probability P (di) (1 ≤ i ≤ N). The set of possi-
ble worlds PW = {W1,W2, · · · ,WM} enumerates all possible combinations of the
data instances in D, that may appear at the same time (i.e., in a same possible world).
Each possible world Wi has an appearance probability which reflects Wi’s probability
of existence. In this paper, we assume that the appearance of an object is independent
from any other objects. Thus, the appearance probability of a possible world Wi can be
derived from the membership probabilities of the uncertain objects:

P (Wi) =
∏

d∈Wi

P (d) ·
∏

d ̸∈Wi

P (d) (3)

where the first term represents the probability that all the objects belong to Wi exist,
and the second term represents the probability that all objects not in Wi do not exist,
with P (d) = 1− P (d).

In [9, 8], query processing over independent data presence probabilities is studied,
with SQL-like queries on probabilistic databases supported in [8]. Furthermore, since
the presence of one object may depend on that of another, this presence dependency is
modeled as generation rules. The rules define whether an object can present when some
others exist and thus model the correlations between data objects. Query processing
over correlated objects has been discussed in [17, 16].
Top-k query processing over uncertain data. Following the possible world seman-
tics, lots of queries defined in certain databases are revisited in uncertain scenario, such
as Top-k queries [14, 10, 11, 7], nearest neighbor queries [6, 12, 2, 5, 4, 3] and skyline
queries [15, 18].Among different queries over uncertain data, top-k queries have re-
ceived considerable attention [14, 10, 11, 7]. Like the k-selection query, all top-k queries
assume a scoring function that assigns a preference score for each object. Because of
the data uncertainty, various top-k query semantics and definitions have been explored,
including U-Topk and U-kRanks [14], PT-Topk [10], PK-Topk [11], and Expected-
kRanks [7]. However, their goals are essentially different from k-selection query.

The U-Topk introduced in [14] catches the k-object set having the highest accumu-
lated probability of being ranked as top-k objects. Taking the same example in Fig. 1(a),
the U-top2 result is {d2, d3} with top2 probability 0.224. For U-kRanks, the query
tries to find the object with the highest probability to be ranked exactly at position
1, 2, · · · , k, respectively. Therefore, the object d3 has the highest probability of being
ranked first as well as the second. Thus, a U-2Rank returns the result {d3, d3}. The
PT-Topk [10] and PK-Topk [11] define the top-k probabilities for individual objects.
Specifically, the top-k probability measures the chance that an object ranks within the
first k objects. The PT-Topk returns the objects having top-k probability no less than
a threshold, and PK-Topk returns the k objects having the largest top-k probabilities.
Based on the top-2 probabilities calculated for each object, we can find that, given a
threshold of 0.3, PT-Top2 will return objects {d3, d2, d1}; and PK-Top2 will return
{d3, d2}. Most recently, [7] proposed the expected ranking semantics, where each indi-
vidual object is sorted by its expected rank over all the possible worlds. Based on this
definition, the top-2 objects are {d3, d2}. In summary, although existing top-k queries
catch the top scored objects with various semantics, because their optimization prob-
lems are essentially different with k-selection, none of them can be used to answer the
k-selection query.

2.2 Problem Formulation
Given the possible world model, we consider a k-selection query with some possible
world Wi. Assume the selection set is S (S ⊆ D), since a user will only pick objects
from S, the best available object is from the intersection of S and Wi. The expected
best score (EBS) of S is therefore defined as follows:
Definition 1. Expected Best Score: The EBS of a candidate answer set S, EBS(S), is
defined as the expected best score of S over each possible world Wi ∈ PW:

EBS(S) =
∑

Wi

∩
S ̸=∅

max
d∈Wi

∩
S
f(d) · P (Wi) (4)

Definition 2. k-Selection Query: The k-selection query over uncertain dataset D, Q(k,D),
is defined as finding the optimal answer set S∗ consisting of k objects from D such that
the EBS of the k selected objects is maximized (see Eq.(2))

3 Analysis for k-Selection

To process a k-selection query, one straightforward way is to enumerate all possible
selection sets, and for each selection set, enumerate all possible worlds to calculate its
EBS. Finally, a set with maximum EBS is returned. This solution is clearly inefficient
because it involves a lot of unqualified selection sets, and the EBS calculation accesses
a large number of possible worlds one by one. To facilitate the EBS calculation and
develop efficient query processing algorithm, in this section, we identify a set of useful
properties of EBS and the query.

3.1 Expected Best Score (EBS)

One key step to find the optimal k-selection is to reduce the computation of EBS. From
Eqn. (4), we can group the possible worlds based on their best available object. In other
words, instead of enumerating all the possible worlds to find EBS of a selection S,
we enumerate all the data object dSi ∈ S and then accordingly identify those possible
worlds that have the best available object as dSi . Therefore, continuing from Eqn. (4),
we have:

EBS(S) =
k∑

i=1

f(dSi) ·
∑

Wi∈PW

P (Wi | f(dSi) is the largest in Wi ∩ S)

=
k∑

i=1

f(dSi) · P (dSi)
i−1∏
j=1

P (dSj)

(5)

The first step of the above equation eliminates the maximum operator of Eqn. (4)
by considering each selected objects one by one. Therefore, for each object dSi , the
probability that dSi is the best available object is the sum of possible world probabilities
that dSi happens to be the available object with the largest score. In the second step,
we further simplify the best available probability as subject to two conditions: 1) dSi is
available; 2) all the objects within S that have a higher score than dSi are unavailable.
(Note that objects within S are also numbered in score decreasing order.)

3.2 Query Recursion

For a dataset with N objects, there are a total of
(
N
k

)
possible subsets. Thus, to exhaus-

tively enumerate all possible selections is prohibitively expensive for a large dataset.
To develop an efficient algorithm to find S∗, we explore some nice properties of the
k-selection query under the data independence assumption.
Theorem 1. EBS Decomposition: Consider a candidate selection S with objects {dS1 , dS2 ,
· · · , dSk } such that dS1 is the top scored object. We define a partition of selection S as
S = Si−∪S(i+1)+ , with Si− = {dS1 , dS2 , · · · , dSi } and S(i+1)+ = {dSi+1, d

S
i+2, · · · , dSk }.

The expected best score of S is decomposable as follows:

EBS(S) = EBS(Si−) +
i∏

j=1

P (dSj) · EBS(S(i+1)+). (6)

Proof. From Eq. (5), we have:

EBS(S) =
i∑

j=1

j−1∏
l=1

P (dSl)P (dSj) · f(dSj) +
i∏

l=1

P (dSl) ·
k∑

j=i+1

j−1∏
l=i+1

P (dSl)P (dSj) · f(dSj)

= EBS(Si−) +
i∏

l=1

P (dSl) · EBS(S(i+1)+).

From Theorem 1, we find that any partition of S can split its EBS into a linear
relation as b0+ b1x, with b0 and b1 only depending on the head partial selection of Si− .
And the tail selection S(i+1)+ would affect the x value.

Theorem 2. Query Recursion: For any dataset sorted in descending order of the pref-
erence score, Di+ = {di, di+1, · · · , dN}, the optimal k-selection set has the maximum
EBS as Opt(k,Di+). Then, the optimal EBS can be derived recursively as follows:

Opt(k,Di+) = max

{
P (di)f(di) + P (di) · Opt(k − 1, D(i+1)+),

Opt(k,D(i+1)+).
(7)

Proof. Consider the optimal answer set S∗ for k-selection query over Di+ and ∀di, it
is either included in S∗ or not. If di ∈ S∗, then because the slope of Eq. (6) is non-
negative, Si+1+ must also be maximized. By Theorem 1, the corresponding EBS for
S∗ is P (di)f(di) + P (di) · Opt(k − 1, D(i+1)+). Similarly, if di ̸∈ S∗, then S∗ must
also be the optimal set of k-selection query for D(i+1)+ , with EBS Opt(k,D(i+1)+).
Thus, the EBS of S∗ takes the maximum of the above two cases, as in Eq. (7).

Theorem 2 unleashes the recursion of the k-selection query. Armed with this recursion,
we can reduce any k-selection query on Di+ to queries with equal to or smaller than k
over a smaller data set D(i+1)+ .

3.3 Bounding Property

The above recursion property helps us to relate the k-selection query with smaller scale
queries. It also indicates the dependency of the query to smaller scale queries. In other
words, to find the optimal selection for query Q(k,Di+), all the queries with smaller
k and fewer objects than Di+ have to be solved. Since there are still many of these
queries, we further explore the bounding property of the k-selection query.

Theorem 3. EBS Bounding of Optimal Selection: For any dataset Di+ with di as the
top object, the optimal EBS of a k-selection query, Opt(k,Di+), k > 0, is bounded by
[P (di)f(di), f(di)].

Proof. Because all the object scores are positive, any Opt(k − 1, D(i+1)+) is non-
negative. Therefore, from the first case in recursion Eq. (7), we must have Opt(k,Di+) ≥
P (di)f(di). Furthermore, because f(di) is the maximum score in Di+ , it is also the
bound of the maximum score in any set S ⊆ Di+ . Thus, based on Eq. (4), Opt(k,Di+) ≤
max
d∈S

f(d) ·
∑

Wi
∩

S ̸=∅ P (Wi) ≤ max
d∈S

f(d) = f(di).

2.32

1.72

Data Set :

Height: N

Width: k+1

0.60.60

1.6

0

1.6 2.16

0.4×3+0.6×

0 = 1.2

0.4×3+0.6

×1.6=2.16

1.0×1.72

=1.72

0.3×4+0.7×

1.6 = 2.32

1.0×2.3

=2.3

d1

d2

d3

d4

Decision

Layer :

0.8×2+0.2×

0 = 1.6

1.0×0.6

=0.6

0.8×2+0.2

×0.6=1.72
1.0×0.6

=0.6

Decision for di :

Abandoned

Decision for di :
Recursion

Equation :

Q(2,D4+)Q(1,D4+)Q(0,D4+)

Q(0,D3+) Q(1,D3+) Q(2,D3+)

Q(2,D2+)Q(1,D2+)

Q(2,D)

d1 4.0
Scr

0.3
Pr

d2 3.0 0.4
d3 2.0 0.8

d4 1.0 0.6

D

D3+

D2
_

0.8×2+0.2

×0.6=1.72

0+1.0×1.6

=1.6

Fig. 2. Example of Dynamic Programming Algorithm (k=2, N=4).

4 Query Processing Algorithms

In the previous section, we analyze a set of properties for k-selection queries. Now we
present two efficient k-selection processing algorithms based on these properties.

4.1 Dynamic Programming (DP) Algorithm

According to Theorem 2, the k-selection query can be decomposed into queries with
smaller dataset size and query size. Specifically, a query Q(k,Di+) can be answered in
constant time if the sub-queries Q(k−1, D(i+1)+) and Q(k,D(i+1)+) are solved. Thus,
if we link these sub-queries as Q(k,Di+)’s children, an acyclic recursion graph can
be constructed. A sample recursion graph for a 2-selection query over 4 data objects
is shown in Fig. 2, with the root node representing Q(k,D). In this graph, there are
two scenarios in which the query can be trivially solved: 1) the query size k = 0, thus
the optimal EBS is also 0 because no object can be selected; 2) the remaining dataset
size is 1 (i.e., DN+), which means that the only object must be chosen to maximize
the EBS for query size k > 0. We call these queries the base-case queries. Consider
these base-case queries as leaves, the acyclic graph is similar to a tree with height N
and width k+1 (Fig. 2). Furthermore, the recursion graph can be structured into layers,
with the root query on layer 1 and Q(t,Di+) (0 ≤ t ≤ k) queries on layer i. Based on
Theorem 2, all the sub-queries in layer i need to decide whether to accept or reject di.

Since the evaluation of each sub-query relies on the results of its descendants in the
recursion graph, a dynamic programming algorithm is developed to process the queries
in a bottom-up fashion in Algorithm 1. Firstly, two types of base-case queries are ini-
tialized in line 1. Then, the algorithm recursively determines the optimal selection for
each subproblem from bottom up, with queries for smaller datasets evaluated first (lines
2 through 8). For each sub-query Q(t,Di+), the variable accept gets the optimal EBS
assuming that di is included; otherwise, reject stores the EBS when di is excluded.
By comparing accept and reject, the choice of whether to include di is stored in
the variable trace(t,Di+). Finally, the algorithm traces back the trace array to find
out all accepted objects to obtain the optimal selection (lines 9 through 11). It is not
difficult to see that the running time of the dynamic programming algorithm is O(k ·N)
to traverse the entire recursion graph.

Algorithm 1: Dynamic Programming (DP) Algorithm
Input: Dataset D, query size k
Output: Optimal subset S∗ for k-selection over D
Initialize Opt(0, D(0:N)+)← 0, and Opt(1 :k,DN+)← P (dN)f(dN) + 0;1
for layer i← N−1, N−2 · · · 1 do2

for query size t← 1, 2 · · · k do3
accept← P (di)f(di) + P (di) · Opt(t− 1, D(i+1)+);4
reject← Opt(t,D(i+1)+);5
Opt(t,Di+)← max

(
accept, reject

)
;6

trace(t,Di+)← accept > reject;7

Initialize optimal subset S∗ ← ∅, query size t← k;8
for layer i← 1, 2 · · ·N do9

if trace(t,Di+) = true then10
S∗ ← S∗ ∪ {di}, t← t− 1;11

return S∗, Opt(k,D)12

Take Fig. 2 as an example. At the beginning, the EBS values for the layer 4 nodes
are initialized to 0, 0.6, 0.6, respectively. Then, the recursion procedure starts from layer
3. Consider the sub-query Q(1, D3+) for instance, the left edge from the node repre-
sents the case of accepting d3, with EBS as 0.8 × 2 + 0.2 × Opt(0, D4+) = 1.6;
the right edge represents the choice of rejecting d3, and the corresponding EBS is
1.0 × Opt(1, D4+) = 0.6. Since accepting d3 leads to a higher EBS, d3 will be
included in the optimal set for the sub-query Q(1, D3+) with solid edge. After the
recursion procedure completes, all nodes get their optimal EBS values and decision
edge identified. (di is selected if the solid edge goes left; otherwise to right). The
optimal selection for the root query Q(2, D) can be found by tracing back the de-
cision result of each relevant node. For our running example, the decision path is
Q(2, D) → Q(1, D2+) → Q(1, D3+) → Q(0, D4+), and the corresponding decisions
along the path are ⟨accept,reject,accept⟩ indicating S∗ = {d1, d3}.

4.2 Bounding and Pruning Heuristics
The dynamic programming algorithm proposed in the last subsection needs to access all
the data objects to find the optimal k-selection. However, the optimal k-selection, after
all, tends to include those objects with higher scores. This intuition leads us to consider
an algorithm that can stop without solving all the sub-queries.

However, for any sub-query Q(t,Di+) (0 ≤ t ≤ k), finding pruning rules to stop
solving it is not trivial. This is because any of its ancestors above layer i (including the
root query) counts on the exact value of Opt(t,Di+) to make selection decisions. Thus,
to develop efficient pruning heuristics, we start by investigating the relation between the
subproblem Q(t,Di+) and the root k-selection query Q(k,D). Considering a dataset
partition for D as Di− = {d1, d2, · · · , di} and D(i+1)+ = {di+1, di+2, · · · , dN}, then
a k-selection query over D is also partitioned by selecting t objects from Di− and k− t
objects from D(i+1)+ . We define conditional k-selection queries as follows:

Definition 3. Conditional k-Selection: Q(k,D | t,Di−) is defined as a conditional k-
selection query over D, by choosing t objects from Di− and the other k−t objects from
D(i+1)+ . The EBS of the entire selection is maximized as Opt(k,D | t,Di−).

Clearly, the conditional k-selection query is sub-optimal to Q(k,D) because it is
restricted to the condition that exactly t objects are selected from Di− . But, the global
optimal k-selection can be found by solving a group of conditional k-selection queries.

To find the optimal conditional selection query Opt(k,D | t,Di−), t objects St−

are chosen from Di− (hereafter St− is called head selection); the remaining k−t objects
S(t+1)+ will be from D(i+1)+ (hereafter S(t+1)+ is called tail selection). Recall from
Theorem 1, the EBS of S = St− ∪ S(t+1)+ is a linear function as b0 + b1x, where the
intercept and slope depend on head selection (b0 = EBS(St−), b1 =

∏
d∈St−

P (d));
and x is the EBS of tail selection (x = EBS(S(t+1)+)). Thus, to find an optimal con-
ditional k-selection, x must be maximized because the slope b1 is always nonnegative.
Furthermore, after x is known, proper head selection shall also be chosen to maximize
overall EBS of S.

Since we cannot know the optimal x value without solving Q(k−t,D(i+1)+), but
from the bounding property, x’s bounding can be found without much effort. According
to Theorem 3, the optimal x = Opt(k−t,D(i+1)+) must fall within [P (di+1)f(di+1),
f(di+1)]. Combining this value range with all the possible head selection linear func-
tions, we developed two pruning heuristics.

Theorem 4. Intra-Selection Pruning: For a head selection St− with EBS function
represented by L(St− , x) = b0 + b1x. For any value x within the bounding range
[P (di+1)f(di+1), f(di+1)], if there always exists another head selection Sa

t− having
L(St− , x) < L(Sa

t− , x), St− will not result in the optimal conditional selection.

Proof. Suppose the optimal tail selection is S∗(t+1)+ . By combining the alternative
head selection Sa

t− , we have the overall EBS as EBS(Sa
t− ∪ S∗(t+1)+) = L(Sa

t− , x) >

L(St− , x) = EBS(St− ∪ S∗(t+1)+). Thus, St− cannot result in the optimal selection,
and is subject to pruning.

Theorem 5. Inter-Selection Pruning:For a head selection St− and any value x within
the bounding range of [P (dt+1)f(dt+1), f(dt+1)], if there exists another known k-
selection Sa such that L(St− , x) < EBS(Sa). Then, the head selection St− will not
result in the optimal selection.

Theorem 5 is correct because even with the optimal tail selection S∗(t+1)+ , the lin-
ear relation of L(St− , x) will end up with a lower EBS than EBS(Sa). This is called
inter-selection pruning because the pruning selection Sa may come from any other k-
selection without following the restriction of choosing t objects from Di− .

An example illustrating the intra- and inter-selection pruning is shown in Fig. 3,
where we consider a conditional query of Q(2, D | 1, D3−) with

(
3
1

)
= 3 different pos-

sible head selections: {d1}, {d2}, and {d3}. Their EBS linear functions as well as the
bounding range of Opt(1, D4+) are shown in Fig. 3. Here, we can see that L({d3}, x)
is always lower than L({d1}, x) and L({d2}, x) within the value range of [P (d4)f(d4),
f(d4)]. Thus, according to intra-selection pruning, the head selection {d3} can be safely
discarded. In addition, suppose the EBS of Sa = {d1, d2} is already computed, as in
Fig. 3. We can observe that the EBS function of the head selection {d2} is either lower
than EBS({d1, d2}) or head selection {d1}. Therefore, following the inter-selection

Fig. 3. Example Showing Three Combinations for Partial Dataset D4−

pruning, {d2} can be safely discarded. After pruning these redundant head selections,
the remaining head selections are referred to as effective head selections.

Definition 4. Effective Head Selections: Considering a sub-query Q(k,D | t,Di−),
the effective head selections ES(t, i) is head selections remained after the intra- and
inter-selection pruning.

Theorem 6. Effective Head Selection Recursion: The set of effective head selections
ES(t, i), is a subset of ES(t, i− 1) ∪ (ES(t− 1, i− 1) + {di}).2

Proof. Consider any effective head selection St− ∈ ES(t, i), it either contains di or not.
If di ∈ St− , then St− − {di} must be an effective head selection for D(i−1)− because
otherwise St− will not catch the optimal selection either. Similarly, if di ̸∈ St− , St−

must be an effective head selection for D(i−1)− .

Theorem 6 points out that we do not need to run a pruning algorithm for all possible
head selections from Di− all the times. Instead, it is enough to consider the effective
head selections from its predecessors and merging them and apply pruning rules. This
recursion significantly reduces the computation of head selection pruning, and moti-
vates a top-down bounding and pruning algorithm.

4.3 Bounding and Pruning (BP) Algorithm

Having introduced the pruning heuristics, now we present the top-down bounding and
pruning algorithm to solve the k-selection query (see Algorithm 2)

The main frame of this algorithm is similar to the dynamic programming algo-
rithm 1, except that the sub-queries here are accessed in a top-down fashion. For each
sub-query, the algorithm first determines whether the sub-query Q(k − t,Di+) is a
base-case query (line 7). If so, the optimal EBS for the tail selection Opt(k − t,Di+)
is trivially solved (line 9,10). This result can be combined with every effective head se-
lection to find the exact optimal conditional selection EBS. If this conditional selection
is better, then the best found k-selection is updated in line 11. For those sub-queries
that cannot be trivially solved, we only use constant time to obtain its EBS value bound
of Opt(k − t,Di+) in line 13, then all the successors’ effective head selections are
collected and filtered using inter-/intra-selection pruning rules (Theorem 4, 5, 6). Con-
sequently, if no effective head selection is left, the scenario is captured in line 4 and the
entire algorithm terminates, asserting the found best k-selection as the global optimal.

Algorithm 2: Bounding and Pruning (BP) Algorithm
Input: Dataset D, query size k
Output: Optimal Subset S∗ for k-selection over D
Initialize effective head selection ES(0 : k, 1 : N) = ∅, ES(0, 1) = {∅};1
Initialize found best kselection as bestEMS← 0, S∗ ← ∅;2
for layer i← 1, 2 · · ·N do3

if ∀ ES(0 : k, i) = ∅ then /* No effective head selections. */4
break;5

for query size t← k, k−1 · · · 0 and ES(t, i) ̸= ∅ do6
if t = k or i = N then /* Tail selection basecases. */7

for ∀St− ∈ ES(t, i) do8
if t = k then EBS(S)← EBS(St−);9
if i=N then EBS(S)← EBS(St−) +

∏
d∈S

t−
P (d) · P (di)f(di);10

if EBS(S) > bestEMS then bestEMS← EBS(S) and S∗ ← S11

else /* Inter-and intra-selection pruning */12
TailBound← [p(di)f(di), f(di)];13
ES(t, i)← MERGEPRUNE

(
ES(t, i−1),ES(t−1, i−1)

)
;14

return S∗, bestEMS15

L({ }) =

0+x

[1.2, 4]

[1.2, 3][1.2, 3]

[1.6, 2][1.6, 2][0, 0]

[0.6, 0.6][0, 0]

L({d1}) =

1.2+0.7x

L({ }) =

0+x

L({d1}) =

1.2+0.7x L({ }) =

0+xL({d2}) =

1.2+0.4x

L({d1, d2}) =

1.2+0.7×(0.4×3

)= 2.04

L({d1, d3}) =

1.2+0.7×(2×0.

8)= 2.32

L({d1,d4}) =

1.2+0.7×0.6=

1.62

ES Propagation :

ES Propagation

Stopped :

EBS function for

Head Selection :

Data Set :

d1 4.0
Scr

0.3
Pr

d2 3.0 0.4
d3 2.0 0.8
d4 1.0 0.6

D

D3+

D2
_

Q(2,D4+)Q(1,D4+)Q(0,D4+)

Q(0,D3+) Q(1,D3+) Q(2,D3+)

Q(2,D2+)Q(1,D2+)

Q(2,D)

Height: N

Width: k+1

d1

d2

d3

d4

Decision

Layer :

L({d1}) =

1.2+0.7x

Fig. 4. Example for Bounding and Pruning Algorithm (k=2, N=4).

A running example for the bounding and pruning algorithm is shown in Fig. 4. The
EBS bounding range for each tail selection is shown under each node in the figure (e.g.
[1.2, 3] for sub-query Q(2, D2+) because f(d2) ∗ P (d2) = 1.2 and f(d2) = 3). For
the head selection St− , the root query Q(2, D) initializes its effective head selection as
ES(0, 1) = {∅}, and then propagates it to its child nodes Q(1, D2+) and Q(2, D2+)
with ∅ ∪ {d1} and ∅, respectively. The pruning operation becomes effective on layer
3. For the sub-query Q(1, D3+), the before-pruning head selections are {d1} and {d2}.
Since these two head selections have the EBS functions as 1.2+0.7x and 1.5+0.5x, re-
spectively, and given tail selection EBS range as [1.6, 2], the head selection {d1} always
has a higher EBS (Theorem 4). Thus, {d2} is pruned according to intra-selection prun-
ing. The inter-pruning happens at the node Q(2, D3+). Since the only head selection
for this node is ∅ with EBS function 0 + 1x and tail selection EBS range [1.6, 2]. But
at the time, node Q(0, D3+) already found a conditional 2-selection S = {d1, d2} with
bestEMS = 2.04. This 2-selection is always superior to Q(2, D | 2, D3+) because the
maximum value of 0+1x over [1.6, 2] is only 2. Thus, after this only head selection ∅ is

2 The “+” means that di is added to each head selection in ES(t−1, i−1).

pruned, the node has no remaining head selection propagated. Therefore, its child node
Q(2, D4+) is ignored during the next layer’s processing for empty effective front selec-
tion. The stopping node is highlighted in orange in Figure 4, and the optimal selection
is actually found at node Q(0, D4+) with its head selection {d1, d3}.

The bound and pruning algorithm is guaranteed to find the optimal k-selection be-
cause all the head selections are kept until it is guaranteed not to catch the optimal
selection. And solving the tail selection has always been postponed by using the bound-
ing properties until it is trivial base case.

5 Performance Evaluation
To test k-selection queries, we use both synthetic data and real-world dataset. Real
datasets include three data sets named FUEL, NBA and HOU, respectively. FUEL is a
24k 6-dimensional dataset, in which each point stands for the performance of a vehicle.
NBA contains around 17k 13-dimensional data points corresponding to the statistics of
NBA players’ performance in 13 aspects. And HOU consists of 127k 6-dimensional
data points, each representing the percentage of an American familys annual expense
on 6 types of expenditures.3 In our experiments, we arbitrarily choose two dimensions
from each data set for testing, and assign uniform distributed probability between [0, 1]
for each data point. These real-world datasets are used to validate the k-selection perfor-
mance effectiveness for practical applications. On the other hand, we use the synthetic
data to learn insights of k-selection queries and proposed algorithms. For synthetic
data, the membership probability of an object is modeled by P (di) = µ+ δu(i), where
µ > 0, δ > 0, and u(i) uniformly distributed between [−0.5, 0.5]. Thus, with default
value µ = 0.5 and δ = 1, P (di) is a uniform distribution between [0, 1]. To gener-
ate the ranking score for each object, we set f(di) = 0.5 + βu(i) + (1 − |β|)u′(i),
with u(i) the same random variable as in P (di) but u′(i) another identical indepen-
dent random variable. Therefore, β models the covariance between f(di) and P (di) as
η = Cov(f(di), P (di)) = δβ. In addition to data modeling, we model the data access
I/Os by concerning the object size. We set the page size at 4 KB. Therefore assuming
one object occupies θ bytes, it will need one I/O operation every 4000/θ object access.
The experiment parameters are summarized in Figure 5.All the experiments are imple-
mented and conducted on a Window Server with Intel Xeon 3.2 GHz CPU and 4 GB
RAM. The results presented in this section are averaged over 100 independent runs.

Parameter Setting Default
Dataset Size (N) 100 ∼ 100, 000 10, 000

Query Selection Size (k) 1 ∼ 1, 000 100

Probability Mean (µ) 0.2 ∼ 0.8 0.5

Probability Range (δ) 0.2 ∼ 1 1

Probability Score Covariance (η) −0.8 ∼ 0.8 0

Object Size (θ) 10 ∼ 1000 100

Fig. 5. Experiment Parameters

3 Those datasets are collected from www.nba.com, www.ipums.org and www.fueleconomy.gov

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

N=50
k=2

N=50
k=5

N=100
k=2

N=100
k=5

Average Query Execution Time (sec.)

DP
BP
Naive

(a) Synthetic Data

10
−3

10
−2

10
−1

10
0

10
1

N=500
k=10

N=500
k=100

N=10,000
k=10

N=10,000
k=100

Average Query Execution Time (sec.)

DP
BP

(b) Subset of Real Data

10
−2

10
−1

10
0

10
1

Fuel
N=24081

NBA
N=16739

HOU
N=127931

Average Query Execution Time (sec.)

DP
BP

(c) Real Data

Fig. 6. Algorithm Performance

We evaluate the performance of different k-selection algorithms, including dynamic
programming algorithm (DP), the bounding and pruning algorithm (BP), and a naive
algorithm that examines all

(
N
k

)
candidate selections. Since the naive algorithm cannot

scale up to a large dataset, we first compare these algorithms under small datasets. As
shown in Fig. 6(a), with 100 objects and 5-selection, the execution time of the naive
algorithm is already raised to 100 seconds, which is 106 times to the DP algorithm, and
105 times to the BP algorithm. For these small datasets, we also find that the BP has
a worse performance than the DP algorithm. This is because building a small k by N
recursion graph for DP is fast, but the pruning overhead for BP is relatively costly while
not much objects can be pruned for a small dataset.

We now proceed to compare the performance of DP and BP under larger datasets.
Fig. 6(b) and (c) shows the results using real data. In Fig. 6(b), we find DP is better
than BP for a small dataset, which is consistent with what we observed in Fig. 6(a).
However, for all other large dataset settings, BP performs much better than DP because
of its effective pruning: most of the sub-queries are pruned and left out of computation.

100 316 1000 3162 10000 31622 100000
10

−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Data Set Size (N)

Average Query Execution Time (sec.)

DP: k=10
BP: k=10
DP: k=1,000
BP: k=1,000

(a) Dataset Size (N)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

−4
10

−3
10

−2
10

−1
10

0
10

1
10

2
10

3

Probability Mean (µ)

Average Query Execution Time (sec.)

DP: k=10
BP: k=10
DP: k=1,000
BP: k=1,000

(b) Probability Mean (µ)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
10

−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Score Probability Covariance (η)

Average Query Execution Time (sec.)

DP: k=10
BP: k=10
DP: k=1,000
BP: k=1,000

(c) Score Prob. Covariance (η)

Fig. 7. Query Response Time under Synthetic Data

To gain more insight into these two algorithms, we further evaluate them using
synthetic data under different workload settings. Fig. 7(a) plots the performance results
for two series of tests (k = 10 and k = 1, 000) as the dataset size varies from 100 to
10,000. For both of the algorithms, it is found that the query execution time increases
with increasing the dataset size or the selection size. This is because the larger is N or k,
more sub-queries need to be solved before finding the optimal selections (see Fig. 8(a)).
Comparing these two algorithms, again, only when the selection size is small and the
dataset size is small, DP outperforms BP. On the other hand, BP outperforms DP by
more than an order of magnitude for most of the larger-scale cases. Next, we examine

100 316 1000 3162 10000 31622 100000
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10

Data Set Size (N)

Average Number of Sub−Queries Solved

DP: k=10
BP: k=10
DP: k=1,000
BP: k=1,000

(a) Dataset Size (N)

0.2 0.3 0.4 0.5 0.6 0.7 0.8
10

0
10

1
10

2
10

3
10

4
10

5
10

6
10

7
10

8
10

9
10

10

Probability Mean (µ)

Average Number of Sub−Queries Solved

DP: k=10
BP: k=10
DP: k=1,000
BP: k=1,000

(b) Probability Mean (µ)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
10

1

10
3

10
5

10
7

10
9

Score Probability Covariance (η)

Average Number of Sub−Queries Solved

DP: k=10
BP: k=10
DP: k=1,000
BP: k=1,000

(c) Score Prob. Covariance (η)

Fig. 8. Number of Sub-Queries Solved under Synthetic Data

the performance of the two algorithms under different data distribution settings. As
for the setting of the membership probabilities, Fig. 7(b) shows that the DP algorithm,
again, exhibits a similar performance with various settings. However, the BP algorithm
shows a significant decrease in cost when the probability mean is high. The reason is
that with a higher probability mean, the optimal k-selection favors to include high-score
objects such that the inter-selection pruning could terminate the BP algorithm earlier
(as observed in Fig. 8(b)). In Fig. 7(c), a similar trend is found when the score and
probability covariance are increased. This is because when the score and probability are
correlated, many high-score objects will be selected, thereby making the BP algorithm
to explore less objects before termination.

100 316 1000 3162 10000 31622 100000
10

−3

10
−2

10
−1

10
0

10
1

Dataset Size (N)

Average Query Execution Time (sec.)

DP: Obj/Page=10
BP: Obj/Page=10
DP: Obj/Page=100
BP: Obj/Page=100
DP: No I/O
BP: No I/O

Fig. 9. Impact of Object Size under Various Dataset Sizes

Finally, the impact of the object size is shown in Fig. 9. Although both algorithms
need to access more data when a larger dataset is concerned, the BP algorithm performs
similarly when the object size is varied. This is because BP only accesses a small portion
of objects with few I/Os and, hence, even if the object size is large, BP does not suffer
from it. On the other hand, however, it is shown that the query execution time of DP
increases significantly when the object size increases. This, from another angle, implies
that more objects are accessed in DP than BP.
6 Conclusion
In this paper, we introduce a new k-selection query operation over uncertain data, which
finds a subset of objects, that yields the highest expected best score (EBS). While the
query is very useful for various applications, it may incur very high processing cost due
to the extremely large search space. To address this problem, we first analyze the char-
acteristics of the k-selection query and identify a number of properties. Then, we pro-
pose two efficient k-selection query processing algorithms. The Dynamic Programming

(DP) algorithm, which employs the EBS decomposition and query recursion properties,
evaluates sub-queries in a bottom-up fashion recursively. Bound-and-Pruning (BP) al-
gorithm, however, utilize a linear relation of EBS decomposition and bounding, to effi-
ciently reduce the problem search space. Through a set of comprehensive evaluations,
we demonstrate that our proposed algorithms are superior to the naive brute-force ap-
proach, and are efficient for on-line applications.

Acknowledgement
This research was supported by the National Science Foundation under Grant No. IIS-
0328881, IIS-0534343 and CNS-0626709, and also supported in part by HK RGC
grants HKBU211307 and HKBU210808.

References
1. S. Abiteboul, P. Kanellakis, and G. Grahne. On the Representation and Querying of Sets of

Possible Worlds. In Proceedings of SIGMOD’87.
2. G. Beskales, M. A. Soliman, and I. F. Ilyas. Efficient search for the top-k probable nearest

neighbors in uncertain databases. In Proceedings of VLDB’08.
3. M. A. Cheema, X. Lin, W. Wang, W. Zhang, and J. Pei. Probabilistic Reverse Nearest

Neighbor Queries on Uncertain Data. TKDE, 99(1).
4. R. Cheng, L. C. 0002, J. Chen, and X. Xie. Evaluating probability threshold k-nearest-

neighbor queries over uncertain data. In Proceedings of EDBT’09.
5. R. Cheng, J. Chen, M. F. Mokbel, and C.-Y. Chow. Probabilistic Verifiers: Evaluating Con-

strained Nearest-Neighbor Queries over Uncertain Data. In Proceedings of ICDE’08.
6. R. Cheng, D. V. Kalashnikov, and S. Prabhakar. Querying Imprecise Data in Moving Object

Environments. TKDE, 16(9).
7. G. Cormode, F. Li, and K. Yi. Semantics of ranking queries for probabilistic data and ex-

pected ranks. In Proceedings of ICDE’09.
8. N. Dalvi and D. Suciu. Efficient Query Evaluation on Probabilistic Databases. In Proceed-

ings of VLDB’04.
9. N. Fuhr and T. Rölleke. A Probabilistic Relational Algebra for the Integration of Information

Retrieval and Database Systems. ACM Transaction on Information System, 15(1).
10. M. Hua, J. Pei, W. Zhang, and X. Lin. Ranking queries on uncertain data: a probabilistic

threshold approach. In Proceedings of SIGMOD’08.
11. C. Jin, K. Yi, L. Chen, J. X. Yu, and X. Lin. Sliding-window top-k queries on uncertain

streams. Proceedings of the VLDB Endowment, 1(1).
12. H.-P. Kriegel, P. Kunath, and M. Renz. Probabilistic Nearest-Neighbor Query on Uncertain

Objects. In Proceedings of DSFAA’07.
13. L. V. S. Lakshmanan, N. Leone, R. Ross, and V. S. Subrahmanian. ProbView: a Flexible

Probabilistic Database System. ACM Transaction on Database System, 22(3).
14. I. F. I. Mohamed A. Soliman and K. C.-C. Chang. Top-k Query Processing in Uncertain

Databases. In Proceedings of ICDE’07.
15. J. Pei, B. Jiang, X. Lin, and Y. Yuan. Probabilistic skylines on uncertain data. In Proceedings

of VLDB’07.
16. S. Prithviraj and A. Deshpande. Representing and Querying Correlated Tuples in Probabilis-

tic Databases. In Proceedings of ICDE’07.
17. A. D. Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working Models for Uncertain Data.

In Proceedings of ICDE’06.
18. W. Zhang, X. Lin, Y. Zhang, W. Wang, and J. X. Yu. Probabilistic Skyline Operator over

Sliding Windows. In Proceedings of ICDE’09.

