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Abstract. A location-based service (LBS) provides information based
on the location information specified in a query. Nearest-neighbor
(NN) search is an important class of queries supported in LBSs. This
paper studies energy-conserving air indexes for NN search in a wireless
broadcast environment. Linear access requirement of wireless broadcast
weakens the performance of existing search algorithms designed for
traditional spatial database. In this paper, we propose a new energy-
conserving index, called grid-partition index, which enables a single
linear scan of the index for any NN queries. The idea is to partition
the search space for NN queries into grid cells and index all the objects
that are potential nearest neighbors of a query point in each grid
cell. Three grid partition schemes are proposed for the grid-partition
index. Performance of the proposed grid-partition indexes and two
representative traditional indexes (enhanced for wireless broadcast) is
evaluated using both synthetic and real data. The result shows that the
grid-partition index substantially outperforms the traditional indexes.

Keywords: mobile computing, location-based services, energy-
conserving index, nearest-neighbor search, wireless broadcast

1 Introduction

Due to the popularity of personal digital devices and advances in wireless com-
munication technologies, location-based services (LBSs) have received a lot of
attention from both of the industrial and academic communities [9]. In its report
“IT Roadmap to a Geospatial Future” [14], the Computer Science and Telecom-
munications Board (CSTB) predicted that LBS will usher in the era of pervasive
computing and reshape mass media, marketing, and various aspects of our so-
ciety in the decade to come. With the maturation of necessary technologies and
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the anticipated worldwide deployment of 3G wireless communication infrastruc-
ture, LBSs are expected to be one of the killer applications for wireless data
industry.

In the wireless environments, there are basically two approaches for provision
of LBSs to mobile users:1

– On-Demand Access: A mobile user submits a request, which consists of a
query and its current location, to the server. The server locates the requested
data and returns it to the mobile user.

– Broadcast: Data are periodically broadcast on a wireless channel open to
the public. Instead of submitting a request to the server, a mobile user tunes
into the broadcast channel and filters out the data based on the query and
its current location.

On-demand access employs a basic client-server model where the server is re-
sponsible for processing a query and returning the result directly to the user via
a dedicate point-to-point channel. On-demand access is particularly suitable for
light-loaded systems when contention for wireless channels and server processing
is not severe. However, as the number of users increases, the system performance
deteriorates rapidly. On the other hand, wireless broadcast, which has long been
used in the radio and TV industry, is a natural solution to solve the scalability
and bandwidth problems in pervasive computing environments since broadcast
data can be shared by many clients simultaneously. For many years, compa-
nies such as Hughes Network System have been using satellite-based broadcast
to provide broadband services. The smart personal objects technology (SPOT),
announced by Microsoft at the 2003 International Consumer Electronics Show,
has further ascertained the industrial interest on and feasibility of utilizing wire-
less broadcast for pervasive data services. With a continuous broadcast network
(called DirectBand Network) using FM radio subcarrier frequencies, SPOT-based
devices such as watches, alarms, etc., can continuously receive timely, location-
specific, personalized information [5]. Thus, in this paper, we focus on supporting
LBSs in the wireless broadcast systems.

A very important class of problems in LBSs is nearest-neighbor (NN) search.
An example of a NN search is: “Show me the nearest restaurant.” A lot of
research has been carried out on how to solve the NN search problem for spatial
databases [13]. Most of the existing studies on NN search are based on indexes
that store the locations of the data objects (e.g., the well-known R-tree [13]).
We call them object-based indexes. Recently, Berchtold et. al. proposed a method
for NN search based on indexing the pre-computed solution space [1]. Based
on the similar design principle, a new index, called D-tree, was proposed by
the authors [15]. We refer this category of indexes as solution-based indexes.
Both of object-based indexes and solution-based indexes have some advantages
and disadvantages. For example, object-based indexes have a small index size,
but they sometimes require backtracking to obtain the result. This only works
1 In this paper, mobile users, mobile clients, and mobile devices are used interchange-

ably.
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for random data access media such as disks but, as shown later in this paper,
does not perform well on broadcast data. Solution-based indexes overcome the
backtracking problem and thus work well for both random and sequential data
access media. However, they in general perform well in high-dimensional space
but poorly in low-dimensional space, since the solution space generally consists
of many irregular shapes to index.

The goal of this study is to design a new index tailored for supporting NN
search on wireless broadcast channels. Thus, there are several basic requirements
for such a design: 1) The index can facilitate energy saving at mobile clients; 2)
The index is access and storage efficient (because the index will be broadcast
along with the data); 3) The index is flexible (i.e., tunable based on a weight
between energy saving and access latency; and 4) A query can be answered within
one linear scan of the index. Based on the above design principles, we propose a
new energy-conserving index called Grid-Partition Index which novelly combines
the strengths of object-based indexes and solution-based indexes. Algorithms
for constructing the grid-partition index and processing NN queries in wireless
broadcast channel based on the proposed index are developed.

The rest of this paper is organized as follows. Section 2 introduces air indexing
for a wireless broadcast environment and reviews existing index structures for
NN search. Section 3 explains the proposed energy-conserving index, followed by
description of three grid partition schemes in Section 4. Performance evaluation
of the Grid-Partition index and two traditional indexes is presented in Section 5.
Finally, we conclude the paper with a brief discussion on the future work in
Section 6.

2 Background

This study focuses on supporting the NN search in wireless broadcast environ-
ments, in which the clients are responsible for retrieving data by listening to the
wireless channel. In the following, we review the air indexing techniques for wire-
less data broadcast and the existing index structures for NN search. Throughout
this paper, the Euclidean distance function is assumed.

2.1 Air Indexing Techniques for Wireless Data Broadcast

One critical issue for mobile devices is the consumption of battery power [3,8,11].
It is well known that transmitting a message consumes much more battery power
than receiving a message. Thus, data access via broadcast channel is more energy
efficient than on-demand access. However, by only broadcasting the data objects,
a mobile device may have to receive a lot of redundant data objects on air before
it finds the answer to its query. With increasing emphasis and rapid development
on energy conserving functionality, mobile devices can switch between doze mode
and active mode in order to conserve energy consumption. Thus, air indexing
techniques, aiming at energy conservation, are developed by pre-computing and
indexing certain auxiliary information (i.e., the arrival time of data objects)
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Fig. 1. Data and Index Organization Using the (1, m) Interleaving Technique

for broadcasting along with the data objects [8]. By first examining the index
information on air, a mobile client is able to predict the arrival time of the
desired data objects. Thus, it can stay in the doze mode to save energy most of
the time and only wake up in time to tune into the broadcast channel when the
requested data objects arrive.

A lot of existing research focuses on organizing the index information with
data objects in order to improve the service efficiency. A well-known data and
index organization for wireless data broadcast, called (1, m) interleaving tech-
nique [8]. As shown in Figure 1, a complete index is broadcasted preceding every
1
m fraction of the broadcast cycle, the period of time when the complete set
of data objects is broadcast. By replicating the index for m times, the waiting
time for a mobile device to access the forthcoming index can be reduced. The
readers should note that this interleaving technique can be applied to any index
designed for wireless data broadcast. Thus, in this paper, we employ the (1, m)
interleaving scheme for our index.

Two performance metrics are typically used for evaluation of air indexing
techniques: tuning time and access latency. The former means the period of
time a client staying in the active mode, including the time used for searching
the index and the time used for downloading the requested data. Since the
downloading time of the requested data is the same for any indexing scheme, we
only consider the tuning time used for searching the index. This metric roughly
measures the power consumption by a mobile device. To provide a more precise
evaluation, we also use power consumption as a metric in our evaluation. The
latter represents the period of time from the moment a query is issued until the
moment the query result is received by a mobile device.

2.2 Indexes for NN Search

There is a lot of existing work on answering NN search in the traditional spatial
databases. As mentioned earlier, existing indexing techniques for NN search can
be categorized into object-based index and solution-based index. Figure 2(a)
depicts an example with four objects, o1, o2, o3, and o4, in a search space A. This
running example illustrates different indexing techniques discussed throughout
this paper.
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(a) Object
Distribu-
tion

(b) MBR
Structures

(c) R-tree In-
dex

Fig. 2. A Running Example and R-tree Index

Object-Based Index. The indexes in this category are built upon the loca-
tions of data objects. R-tree is a representative [7]. Figure 2(c) shows R-tree
for the running example. To perform NN search, a branch-and-bound approach
is employed to traverse the index tree. At each step, heuristics are employed
to choose the next branch for traversal. At the same time, information is col-
lected to prune the future search space. Various search algorithms differ in the
searching order and the metrics used to prune the branches [4,13].

Backtracking is commonly used in search algorithms proposed for traditional
disk-access environment. However, this practice causes a problem for the linear-
access broadcast channels. In wireless broadcast environments, index information
is available to the mobile devices only when it is on the air. Hence, when an
algorithm retrieves the index packets in an order different from their broadcast
sequence, it has to wait for the next time the packet is broadcast (see the next
paragraph for details). In contrast, the index for traditional databases is stored
in resident storages, such as memories and disks. Consequently, it is available
anytime.

Since the linear access requirement is not a design concern of traditional index
structures, the existing algorithms do not meet the requirement of energy effi-
ciency. For example, the index tree in Figure 2(c) is broadcast in the sequence of
root, R1, and R2. Given a query point p2, the visit sequence (first root, then R2,
finally R1) results in a large access latency, as shown in Figure 3(a). Therefore,
the branch-and-bound search approach is inefficient in access latency. Alterna-
tively, we may just access the MBRs sequentially (see Figure 3(b)). However, this
method is not the best in terms of index search performance since unnecessary
MBR traversals may be incurred. For example, accessing R1 for q1 is a waste of
energy.
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Fig. 3. Linear Access on a Wireless Broadcast Channel
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Solution-Based Index. The indexes in this category are built on the pre-
computed solution space, rather than on the objects [1]. For NN search, the
solution space can be represented by Voronoi Diagrams (VDs) [2]. Let O =
{o1, o2, · · · , on} be a set of points. V(oi), the Voronoi Cell (VC) for oi, is defined
as the set of points q in the space such that dist(q, oi) < dist(q, oj), ∀ j �= i. The
VD for the running example is depicted in Figure 4(a), where P1, P2, P3, and
P4 denote the VCs for the four objects, o1, o2, o3, and o4, respectively.

With a solution-based index, the NN search problem can be reduced to the
problem of determining the VC in which a query point is located. Our previously
proposed index, D-tree, has demonstrated a better performance for indexing
solution-space than traditional indexes, and hence is employed as a representa-
tive of indexes in this category [15]. D-tree indexes VCs based on the divisions
that form the boundaries of the VCs. For a space containing a set of VCs, D-tree
recursively partitions it into two sub-spaces having similar number of VCs until
each space only contains one VC2. D-tree for the running example is shown in
Figure 4(b).

In summary, existing index techniques for NN search are not suitable for
wireless data broadcast. An object-based index incurs a small index size, but the
tuning time is poor because random data access is not allowed in a broadcast
channel. On the other hand, a solution-based index, typically used for NN search
in a high dimensional space, does not perform well in a low dimensional space
due to the fact that efficient structures for indexing VCs are not available. In the
following, we propose a new energy-conserving index that combines the strengths
of both the object-based and the solution-based indexes.

4v

1P

2P

3P

4P

5P 6P

2v

1v

6v

5v

3v

(a) Divisions

P 1 P 2 P 4P 3

V5V4V1 V3

V2 V3 V4 V6Y

X X

(b) D-tree

Fig. 4. D-tree Index for the Running Example

3 A Grid-Partition Index

In this section, we first introduce the basic idea of our proposal and then describe
the algorithm for processing NN search based on the Grid-Partition air index.

2 D-tree was proposed to index any pre-computed solution space, not only for NN
search.
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3.1 The Basic Idea

In an object-based index such as R-tree, each NN search starts with the whole
search space and gradually trims the space based on some knowledge collected
during the search process. We observe that an essential problem leading to the
poor search performance of object-based index is the large overall search space.
Therefore, we attempt to reduce the search space for a query at the very be-
ginning by partitioning the space into disjointed grid cells. To do so, we first
construct the whole solution space for NN search using the VD method; then,
divide the search space into disjointed grid cells using some grid partition algo-
rithm (three partition schemes will be discussed in Section 4). For each grid cell,
we index all the objects that are potential nearest neighbors of a query point in-
side the grid cell. Each object is the nearest neighbor only to those query points
located inside the VC of the object. Hence, for any query point inside a grid cell,
only the objects whose VCs overlap with the grid cell need to be checked.

Definition 1 An object is associated with a grid cell if the VC of the object
overlaps with the grid cell.

Since each grid cell covers a part of the search space only, the number of
objects associated with each grid cell is expected to be much smaller than the
total number of objects in the original space. Thus, the initial search space for
a NN query is reduced greatly if we can quickly locate the grid cell in which a
query point lies. Hence, the overall performance is improved. Figure 5(a) shows
a possible grid partition for our running example. The whole space is divided
into four grid cells, i.e., G1, G2, G3, and G4. Grid cell G1 is associated with
objects o1 and o2 since their VCs, P1 and P2, overlap with G1; likewise, grid cell
G2 is associated with objects o1, o2, and o3, and so on and so forth.

The index structure for the proposed grid-partition index consists of two
levels. The upper-level index is built upon the grid cells, and the lower-level
index is upon the objects associated with each grid cell. The upper-level index
maps a query point to a corresponding grid cell, while the lower-level index
facilitates the access to the objects within each grid cell. The nice thing is that
once the query point is located in a grid cell, its nearest neighbor is definitely
among the objects associated with that grid cell, thereby preventing any rollback

o1

o4

o2

o3

G1 2G G3 G4

gx

Sx

Sy
gy

x

x1

(a) FP

o 1 o 2
o 1 o 4 o 3 o 4o 3o 3o 3

o 2 o 2

G2 G4G31G

xS xg yg

To Data Buckets

upper−level index

lower−level index

(b) Index Structure

Fig. 5. Fixed Grid Partition for the Running Example
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operations and enabling a single linear access of the upper-level index for any
query point. In addition, to avoid rollback operations in the lower-level index, we
try to maintain each grid cell in a size such that its associated objects can fit into
one data packet, which is the smallest transmission unit in wireless broadcast.
Thus, for each grid cell a simple index structure (i.e., a list of object and pointer
pairs) is employed. In case that the index for a grid cell cannot fit into one
packet, a number of packets are sequentially allocated. In each grid cell, the list
of object and pointer pairs are sorted according to the dimension with the largest
scale (hereafter called sorting dimension), i.e., the dimension in which the grid
cell has the largest span. For example, in Figure 5(a), the associated objects for
grid cell G2 are sorted according to the y-dimension, i.e., o1, o3, and o2. This
arrangement is to speed up the nearest neighbor detecting procedure as we will
see in the next subsection.

3.2 Nearest-Neighbor Search

With a grid-partition index, a NN query is answered by executing the following
three steps: 1) locating grid cell, 2) detecting nearest neighbor, and 3) retrieving
data. The first step locates the grid cell in which the query point lies. The second
step obtains all the objects associated with that grid cell and detects the nearest
neighbor by comparing their distances to the query point. The final step retrieves
the data to answer the query. In the following, we describe an efficient algorithm
for detecting the nearest neighbor in a grid cell. This algorithm works for all
the proposed grid partition schemes. We leave the issue of locating grid cell to
Section 4. This allows us to treat the problems of partitioning grid and locating
grid cells more coherently.

In a grid cell, given a query point, the sorted objects are broken into two
lists according to the query point in the sorting dimension: one list consists of
the objects with coordinates smaller than the query point, and the rest form the
other. To detect the nearest neighbor, the objects in those two lists are checked
alternatively. Initially, the current shortest distance min dis is set to infinite.
At each checking step, min dis is updated, if the distance between the object
being checked and the query point, cur dis, is shorter than min dis. The checking
process continues until the distance of the current object and the query point in
the sorting dimension, dis sd, is longer than min dis. The correctness is justified
as follows. For the current object, its cur dis is longer than or equal to dis sd and,
hence, longer than min dis if dis sd is longer than min dis. For the remaining
objects in the list, their dis sd’s are even longer and, thus, it is impossible for
them to have a distance shorter than min dis.

Figure 6(a) illustrates an example, where nine objects associated with the
grid cell are sorted according to the x-dimension since the grid cell is flat. Given
a query point shown in the figure, nine objects are broken into two lists, with one
containing o6 to o1 and the other containing o7 to o9. The algorithm proceeds
to check these two lists alternatively, i.e., in the order of o6, o7, o5, o8, · · · , and
so on. Figure 6(b) shows the intermediate results for each step. In the first list,
the checking stops at o4 since its dis sd (i.e., 7.5) is already longer than min dis
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Fig. 6. An Example for Detecting Nearest Neighbor

(i.e., 6). Similarly, the checking stops at o8 in the second list. As a result, only
five objects rather than all nine objects are evaluated. Such improvement is
expected to be significant when the scales of a grid cell in different dimensions
differ greatly.

4 Grid Partitions

Thus far, the problem of NN search has been reduced to the problem of grid
partition. How to divide the search space into grid cells, construct the upper-level
grid index, and map a query point into a grid cell are crucial to the performance
of the proposed index. In this section, three grid partition schemes, namely,
fixed partition, semi-adaptive partition, and adaptive partition, are introduced.
These schemes are illustrated in a two-dimensional space, since we focus on the
geospatial world (2-D or 3-D space) in the real mobile environments.

Before presenting grid partition algorithms, we first introduce an important
performance metric, indexing efficiency η, which is employed in some of the
proposed grid partition schemes. It is defined as the ratio of the reduced tun-
ing time to the enlarged index storage cost against a naive scheme, where the
locations of objects are stored as a plain index that is exhaustively searched
to answer a NN query. The indexing efficiency of a scheme i is defined as
η(i) =

(
(Tnaive − Ti)/Tnaive

)α

/
(
(Si − Snaive)/Snaive

)
, where T is the aver-

age tuning time, S is the index storage cost, and α is a control parameter to
weigh the importance of the saved tuning time and the index storage overhead.
The setting of α could be adjusted for different application scenarios. The larger
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the α value, the more important the tuning time compared with the index stor-
age cost. This metric will be used as a performance guideline to balance the
tradeoff between the tuning time and the index overhead in constructing the
grid-partition index.

4.1 Fixed Partition (FP)

A simple way for grid partition is to divide the search space into fixed-size grid
cells. Let Sx and Sy be the scales of the x- and y-dimensions in the original
space, gx and gy be the fixed width and height of a grid cell. The original space
is thus divided into Sx

gx
· Sy

gy
grid cells. With this approach, the upper-level index

for the grid cells (shown in Figure 5(b)) maintains some header information
(i.e., Sx, gx, and gy) to assist in locating grid cells, along with a one-dimensional
array that stores the pointers to the grid cells. In the data structure, if the header
information and the pointer array cannot fit into one packet, they are allocated
in a number of sequential packets.

The grid cell locating procedure works as follows. We first access the header
information and get the parameters of Sx, gx, and gy. Then, given a query point
(qx, qy), we use a mapping function, adr(qx, qy)=� qy

gy
� · �Sx

gx
� + � qx

gx
�, to calculate

the address of the pointer for the grid cell in which the query point lies. Hence,
at most 2-packet accesses (one for the header information and maybe additional
one for the pointer if it is not allocated in the same packet) in locating grid cells
are needed, regardless of the number of grid cells and the packet size.

Aiming to maximize the packet utilization in the index, we employ a greedy
algorithm to choose the best grid size. Let num be the number of expected
grid cells. We continue to increase num from 1 until the average number of
objects associated with the grid cells is smaller than the fan-out of a node.
Further increasing num will decrease the packet occupancy and thus degrade
the performance. For any num, every possible combination of gx and gy such
that Sx

gx
· Sy

gy
equals num, is considered. The indexing efficiency for the resultant

grid partition with width gx and height gy is calculated. The grid partition
achieving the highest indexing efficiency is selected as the final solution.

While the fixed grid partition is simple, it does not take into account the
distribution of objects and their VCs. Thus, it is not easy to utilize the index
packets efficiently, especially under a skewed object distribution. Consequently,
under the fixed grid partition, it is not unusual to have some packets with a low
utilization rate, whereas some others overflow. This could lead to a poor average
performance.

4.2 Semi-Adaptive Partition (SAP)

To adapt to skewed object distributions, the semi-adaptive partition only fixes
the size of the grid cells in either width or height. In other words, the whole space
is equally divided into stripes along one dimension. In the other dimension, each
stripe is partitioned into grid cells in accordance with the object distribution.
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Fig. 7. Semi-Adaptive Partition for the Running Example

The objective is to increase the utilization of a packet by having the number
of objects associated with each grid cell close to the fan-out of the node. Thus,
once the grid cell is identified for a query point, only one packet needs to be
accessed in the step of detecting nearest neighbor.

Figure 7 illustrates the semi-adaptive grid partition for our running example,
where the height of each stripe is fixed. Similar to the FP approach, the root
records the width of a stripe (i.e., sx) for the mapping function and an array of
pointers pointing to the stripes. In each stripe, if the associated objects can fit
into one packet, the objects are allocated directly in the lower-level index (e.g.,
the 1st and 4th pointers in the root). Otherwise, an extra index node for the
grid cells within the corresponding stripe is allocated (e.g., the 3rd pointer in the
root). The extra index node consists of a set of sorted discriminators followed
by the pointers pointing to the grid cells. However, if there is no way to further
partition a grid cell such that the objects in each grid cell can fit the packet
capacity, more than one packet is allocated (e.g., the 2nd pointer in the root).

To locate the grid cell for a query point (qx, qy), the algorithm first locates the
desired stripe using a mapping function, adr(qx, qy)= � qx

sx
�. If the stripe points

to an object packet (i.e., only contains one grid cell), it is finished. Otherwise,
we traverse to the extra index node and use the discriminators to locate the
appropriate grid cell. Compared with FP, this partition approach has a better
packet occupancy, but takes more space to index the grid cells.

4.3 Adaptive Partition (AP)

The third scheme adaptively partition the grid using a kd-tree like partition
method [12]. It recursively partitions the search space into two complementary
subspaces such that the number of objects associated with the two subspaces
is nearly the same. The partition does not stop until the number of objects
associated with each subspace is smaller than the fan-out of the index node.

The partition algorithm works as follows. We partition the the space hori-
zontally or vertically. Suppose that the vertical partition is employed. We sort
the objects in an increasing order of the left-most x-coordinates (LXs) of their
VCs. Then, we examine the LXs one by one beginning from the median ob-
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Fig. 8. Adaptive Partition for the Running Example

ject. Given a LX, the space is partitioned by the vertical line going through
the LX. Let numl and numr be the numbers of associated objects for the left
subspace and the right subspace, respectively. If numl=numr, the examination
stops immediately. Otherwise, all the LXs are tried and the LX resulting in the
smallest value of |numl-numr| is selected as the discriminator. Similarly, when
the horizontal partition is employed, the objects are sorted according to the
lowest y-coordinates (LYs) of their VCs and the discriminator is selected much
the same way in the vertical partition. In selecting the partition style between
the vertical and horizontal partitions, we favor the one with a smaller value of
|numl+numr|. Figure 8 shows the adaptive grid partition for the running exam-
ple, where each node in the upper-level index stores the discriminator followed
by two pointers pointing to two subspaces of the current space.

In this approach, the index for the grid cells is a kd-tree. Thus, the point
query algorithm for the kd-tree is used to locate the grid cells. Given a query
point, we start at the root. If it is to the left of the discriminator of the node, the
left pointer is followed; otherwise, the right pointer is followed. This procedure
is not stopped until a leaf node is met. However, as the kd-tree is binary, we
need some paging method to store it in a way to fit the packet size. A top-down
paging mechanism is employed. The binary kd-tree is traversed in a breadth-first
order. For each new node, the packet containing its parent is checked. If that
packet has enough free space to contain this node, the node is inserted into that
packet. Otherwise, a new packet is allocated.

4.4 Discussion

For NN search, the VD changes when objects are inserted, deleted, or relocated.
Thus, the index needs to be updated accordingly. Since updates are expected to
happen infrequently regarding NN search in mobile LBS applications (such as
finding nearest restaurant and nearest hotel), we only briefly discuss the update
issue here.

When an object oi is inserted or deleted, the VCs around oi will be affected.
The number of affected VCs is approximately the number of edges of the VC
for oi, which is normally very small. For example, in Figure 2(a) adding a new
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object in P1 changes the VCs for o1, o2, and o3. Assuming the server maintains
adequate information about the VCs, the affected VCs can be detected easily.

For all the proposed grid partitions, we can identify the grid cells that over-
lap with the affected VCs and update the index for the objects associated with
each of them. When updates are rare, the partition of the grid cells is not mod-
ified. On the other hand, partial or complete grid re-partition can be performed
periodically.

5 Performance Evaluation

To evaluate the proposed grid-partition index, we compare it with D-tree [15]
and R-tree, which represent the solution-based index and the object-based index
for NN search respectively, in terms of tuning time, power consumption, and
access latency. Two datasets (denoted as UNIFORM and REAL) are used in the
evaluation (see Figure 9). In the UNIFORM dataset, 10,000 points are uniformly
generated in a square Euclidean space. The REAL dataset contains 1102 parks in
the Southern California area, which is extracted from the point dataset available
from [6].

Since the data objects are available a priori, the STR packing scheme is em-
ployed to build R-tree [10]. As we discussed in Section 2.2, the original branch-
and-bound NN search algorithm results in a poor access latency in wireless
broadcast systems. In order to cater for the linear-access requirement on air, we
revise it as follows. R-tree is broadcast in a width-first order. For query pro-
cessing, no matter where the query point is located, the MBRs are accessed
sequentially, while impossible branches are pruned similarly in the original algo-
rithm [13].

The system model in the simulation consists of a base station, a number of
clients, and a broadcast channel. The available bandwidth is set to 100K bps.
The packet size is varied from 64 bytes to 2048 bytes. In each packet, two bytes
are allocated for the packet id. Two bytes are used for one pointer and four bytes
are for one coordinate. The size of a data object is set to 1K bytes. The results

(a) UNIFORM (b) REAL

Fig. 9. Datasets for Performance Evaluation
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presented in the following sections are the average performance of 10, 000, 000
random queries.

5.1 Sensitivity to Indexing Efficiency

Indexing efficiency has been used in the FP and SAP grid partition schemes
as guidance for determining the best cell partition. The control parameter α of
indexing efficiency, set to a non-negative number, weighs the importance of the
saved packet accesses and the index overhead. We conduct experiments to test
the sensitivity of tuning time and index size to α.

Figure 10 shows the performance of grid-partition index for the UNIFORM
dataset when the FP partition scheme is employed. Similar results are obtained
for the REAL dataset and/or other grid partitions and, thus, are omitted due to
the space limitation. From the figure, we can observe that the value of α has a
significant impact on the performance, especially for small packet capacities. In
general, the larger the value of α, the better the tuning time and the worse the
index storage cost since a larger α value assigns more weight to reducing tuning
time. As expected, the best index overhead is achieved when α is set to 0, and
the best tuning time is achieved when α is set to infinity. The setting of α can
be adjusted based on requirements of the applications. The index overhead for
air indexes is also critical as it directly affects the access latency. Thus, for the
rest of experiments, the value of α is set to 1, giving equal weight to the index
size and the tuning time.
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Fig. 10. Performance under Different α Settings (UNIFORM, FP)

5.2 Tuning Time

This subsection compares the different indexes in terms of tuning time. In the
wireless data broadcast environment, improving the tuning time generally saves
power consumption. Figures 11(a) and (b) show the tuning time performance of
compared indexes under UNIFORM and REAL datasets, respectively.
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Fig. 11. Tuning Time vs. Packet Size

Two observations are obtained. First, the proposed grid-partition indexes
outperform both D-tree and R-tree in most cases. As an example, let’s look
at the case when the packet size is 512 bytes. For D-tree, the tuning time is
0.59ms and 0.43ms for UNIFORM and REAL datasets, respectively. For R-
tree, it needs 3.12ms and 0.43ms, respectively. The grid-partition indexes have
the best performance, i.e., no larger than 0.27ms for UNIFORM dataset and no
larger than 0.19ms for REAL dataset.

Second, among the three proposed grid partition schemes, the SAP has the
best overall performance and is the most stable one. The main reason is that the
SAP scheme is more adaptive to the distribution of the objects and their VCs
than the FP scheme, while its upper-level index (i.e., the index used for locating
grid cells) is a simpler and more efficient data structure than that of the AP
scheme. As a result, in most cases the SAP accesses only one or two packets to
locate grid cells and another one to detect the nearest neighbor.

We notice that the grid-partition indexes with FP and SAP work worse than
D-tree when the packet size is 64 bytes. This is caused by the small capacity of
packet, which can fit in very limited objects information. Hence, the small size
of the packet results in a large number of grid cells and causes duplications.
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We also measure the performance stableness of the compared indexes. Fig-
ure 12 shows the variance of their tuning time for the UNIFORM dataset. It
can be observed again that the grid-partition indexes outperform both D-tree
and R-tree in nearly all the cases. This means the power consumption of query
processing based on grid-partition index is more predictable than that based
on other indexes. This property is important for power management of mobile
devices.

In order to evaluate the scalability of the compared indexes to the number
of data objects, we measure the tuning time of indexes by fixing the packet
size to 256 bytes and varying the number of objects from 1,000 to 50,000 (all
uniformly distributed). As shown in Figure 13, the larger the population of the
objects, the worse the performance as expected. The performance ratings among
different indexes under various numbers of data objects are consistent. However,
it is interesting to note that the performance degradation of the grid-partition
indexes is much more gracefully than that of D-tree and R-tree, as the number
of data objects increases. This indicates that the proposed grid-partition indexes
are more pronounced for large databases.

5.3 Power Consumption

According to [8], a device equipped with the Hobbit chip (AT&T) consumes
around 250mW power in the active mode, and consumes 50µW power in the
doze mode. Hence, the period of time a mobile device staying in doze mode
during query processing also has an impact on the power consumption. To have
a more precise comparison of the power consumption based on various indexes,
we calculate the power consumption of a mobile device based on the periods of
active and doze modes obtained from our experiments. For simplicity, we neglect
other components that consume power during query processing and assume that
250 mW constitutes the total power consumption. Figure 14 shows the power
consumption of a mobile device under different air indexes, calculated based on
the formula: P = 250 × Timeactive + 0.05 × Timedoze.
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As shown in the figure, the grid-partition indexes significantly outperform
other indexes. For UNIFORM dataset, the average power consumptions of D-
tree are 0.23mW , and that of R-tree is 0.69mW . The power consumptions of
grid-partition indexes are 0.17mW , 0.14mW , and 0.14mW for FP, SAP, and
SP, respectively. For the REAL dataset, the improvement is also dramatic. The
power consumptions of D-tree and R-tree are 0.13mW and 0.14mW , while the
grid-partition indexes consume 0.09mW , 0.08mW , and 0.06mW . Although D-
tree provides a better tuning time performance when the packet size is 64 bytes,
that does not transform into less power consumption than the grid-partition
index. This is caused by the large index overhead of D-tree, compared with that
of grid-partition indexes (see Figure 15).

In summary, the grid-partition indexes can reduce the power consumption by
the efficient search performance and small index overhead. Hence, it can achieve
the design requirement of energy efficiency without any doubt and is extremely
suitable for the wireless broadcast environments in which the population of users
is supposed to be huge while the resources of mobile devices are very limited.

5.4 Access Latency

The access latency is affected by the storage cost of the index and the interleaving
algorithm to organize data and index. Since index organization is beyond the
scope of this paper, we count the access latency using the well-known (1, m)
scheme to interleave the index with data [8], as explained in Section 2.1. Figure 15
shows the access latency for all the index methods. In the figures, the latency
is normalized to the expected access latency without any index (i.e., half of the
time needed to broadcast the database).

We can see that the D-tree has the worst performance because of its large
index size. The performance of those proposed grid-partition indexes is similar
to that of the R-tree. They only introduce little latency overhead (within 30%
in most cases) due to their small index sizes.

When different grid partition schemes are compared, the FP performs the
best for a small packet capacity (< 256 bytes), whereas the SAP and the AP
perform better for a large packet capacity (> 256 bytes). This can be explained
as follows. When the packet capacity is small, the number of grid cells is large
since we try to store the objects with a grid cell in one packet in all the three
schemes. Thus, the index size is dominated by the overhead for storing the grid
partition information (i.e., the upper-level index). As this overhead in the FP is
the least (four parameters plus a pointer array), it achieves the smallest overall
index size. However, with increasing packet capacity, the overhead for storing the
upper-level index becomes insignificant. Moreover, with a large packet capacity
the FP has a poorer packet occupancy than the other two. This is particularly
true for the REAL dataset, where the objects are highly clustered. As a result,
the index overhead of the FP becomes worse.
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Fig. 15. Access Latency vs. Packet Capacity

6 Conclusion

Nearest-neighbor search is a very important and practical application in the
emerging mobile computing era. In this paper, we analyze the problems associ-
ated with using object-based and solution-based indexes in wireless broadcast
environments, where only linear access is allowed, and enhance the classical
R-tree to make them suitable for the broadcast medium. We further propose
the grid-partition index, a new energy-conserving air index for nearest neighbor
search that combines the strengths of both the object-based and solution-based
indexes. By studying the grid-partition index, we identify an interesting and
fundamental research issue, i.e., grid partition, which affects the performance of
the index. Three grid partition schemes, namely, fixed partition, semi-adaptive
partition, and adaptive partition, are proposed in this study.

The performance of the grid-partition index (with three grid partition
schemes) is compared with an enhanced object-based index (i.e., R-tree) and
a solution-based index (i.e., D-tree) using both synthetic and real datasets. The
results show that overall the grid-partition index substantially outperforms both
the R-tree and D-tree. As the grid-partition index (SAP) achieves the best overall
performance under workload settings, it is recommended for practical use.

Although the grid-partition index is proposed to efficiently solve NN search,
it can also serve other queries, such as window queries and continuous nearest
neighbor search. As for future work, we plan to extend the idea of the grid-
partition index to answer multiple kinds of queries, including k-NN queries. As
a first step, this paper only briefly addresses the update issue in a general discus-
sion. We are investigating efficient algorithms to support updates. In addition,
we are examining generalized NN search such as “show me the nearest hotel
with room rate < $200”.
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