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Abstract

Semantic caching enables mobile clients to answer spa-
tial queries locally by storing the query descriptions to-
gether with the results. However, it supports only a limited
number of query types, and sharing results among these
types is difficult. To address these issues, we propose a
proactive caching model which caches the result objects
as well as the index that supports these objects as the re-
sults. The cached index enables the objects to be reused
for all common types of queries. We also propose an adap-
tive scheme to cache such an index, which further optimizes
the query response time for the best user experience. Sim-
ulation results show that proactive caching achieves a sig-
nificant performance gain over page caching and semantic
caching in mobile environments where wireless bandwidth
and battery are precious resources.

1 Introduction

In mobile environments, a user’s common practice to
know about his/her proximity area is to issue spatial queries.
These queries share more common results than they do in
traditional environments because the user moves continu-
ously and thus the areas he/she queries exhibit high spatial
locality. On the other hand, battery and wireless bandwidth
are precious resources of mobile clients. Given these two
facts, caching results at the client side is an attractive tech-
nique for spatial query processing [18].

Semantic caching [7, 16] has been proposed to answer
spatial queries at the mobile client side [14, 15, 20]. It main-
tains both the results and semantic descriptions of some pre-
vious queries. Before a new query is submitted to the server,
it is trimmed against the cached queries. Only the trimmed
part of the query, i.e., the part that does not overlap any
cached queries is submitted. The following example illus-
trates this idea.
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Figure 1. The Semantic Caching Example

Example 1.1 Suppose Joey is driving and looking for a mo-
tel in the neighborhood. He issues a range queryQ0 and
the server returnsM1 ∼ M5 (see Figure 1). As he does not
find a favorite one among them, he issues another queryQ1

with a wider range. Since the query windows ofQ0 andQ1

overlap, the cached results ofQ0 (i.e., M1 ∼ M5) are re-
turned immediately and the client only needs to submitQ′

1,
i.e.,Q1 − Q0.

Semantic caching not only saves the wireless bandwidth
but also reduces the query response time. Nevertheless, we
have observed several problems with semantic caching.

First of all, semantic caching captures the semantics of
the queries only, but not the semantics of the cached objects.
In other words, the granularity of cache reuse is at the query
level. As such, a new query can be answered only by the
queries of the same type, which makes it difficult to share
the cached objects among various query types. Example 1.2
illustrates such a drawback.

Example 1.2 Suppose in Example 1.1, afterQ0 Joey is-
sues a 3-nearest-neighbor (3NN) queryQ2 instead ofQ1.
Semantic caching cannot trim a 3NN query from a range
queryQ0. The client has to submit the completeQ2, al-
though the result objectsM3 andM5 are already cached as
Q0’s results. They are partial results ofQ2 and should have
been returned to the user immediately. The retransmission
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of these objects not only wastes the wireless bandwidth, but
also prolongs the response time.

Furthermore, the types of spatial queries supported by
semantic caching are rather limited. Only simple range
query [15] and nearest neighbor (NN) query [20] have been
studied. It is difficult to support complex queries such as k-
nearest-neighbor (kNN) and spatial join queries. Semantic
caching also entails complicated cache management. When
a new query to be cached overlaps some cached query, a
decision has to be made for whether to coalesce these two
queries or to trim either of them. In addition, the organiza-
tion of a semantic cache is plain. Many operations on the
cache, e.g., query processing or cache replacement, require
a sequential scan in the cache. This drawback is more re-
markable as the cache size gets larger.

With the above drawbacks of semantic caching in mind,
we propose in this paper an innovative caching model,
calledproactive caching. It caches the result objects as well
as the index that supports the objects as the query results.
The cached index helps determine if a cached object is a
result of subsequent queries. In this way, the granularity of
cache reuse is at the object level. The cached index can be
B+-tree nodes in the relational database domain. For spatial
queries, the index consists of the R-tree nodes in the object’s
vicinity. In this sense, the caching model prepares the index
in advance of subsequent queries. This is where the name
“proactive” comes from. Example 1.3 shows how proactive
caching improves performance over semantic caching.

Example 1.3 Suppose proactive caching is adopted in Ex-
ample 1.2 and the whole area shown in Figure 1 is indexed
by one R-tree node. AfterQ0, this node and all its ancestors
in the R-tree are cached according to proactive caching.
The next queryQ2 can utilize the proactively cached in-
dex nodes and be processed locally by an NN search algo-
rithm. Thus,M3 and M5 are returned immediately. Only
M6 needs to be transmitted from the server.

Our contributions in this paper are listed as follows:
• We propose a proactive caching model which ad-

dresses the drawbacks of semantic caching. In par-
ticular, the proposed cache captures the semantics of
cached query results at the object level (c.f., semantic
caching at the query level), thus enabling sharing of
cached objects among different query types.

• We develop a generic spatial query processing tech-
nique on proactive caching to reuse the cached results
among various types of queries.

• We propose an adaptive proactive caching scheme to
further optimize the query response time for the best
user experience.

• We perform extensive experiments which show that the
proactive caching model works better than semantic
caching in resource-constrained mobile environments.

The rest of the paper is organized as follows. The next
section reviews the existing caching models. Section 3 in-
troduces proactive caching and presents its query process-
ing scheme. Section 4 proposes the caching cost model and
an adaptive scheme for caching the index. We study the
cache organization and replacement schemes in Section 5.
The performance is analyzed by simulation results in Sec-
tion 6. Finally, we conclude and show future directions of
this work.

2 Related Work

Caching frequently accessed data at the client side not
only improves the user’s experience of the distributed sys-
tem, but also alleviates the server’s workload and enhances
its scalability. Thepage cachingmodel is widely used in
RDBMS [9]. The cached items are typically disk pages
or tuples, which can be looked up by their identifiers.
OODBMS adopts a similar caching model, except that the
cached items are autonomous objects [8]. Early mobile
broadcasting systems originated from OODBMS and thus
adopted the same page caching model [1]. The mobile
caching model in unicast environments was first studied in
[12], where a dynamic client data replication scheme was
proposed. A datum is cached if the read operations are more
frequent than the write operations for the lastk requests.
Chan et al. further explored this caching model in [6]. They
proposed two caching granularities other than the entire ob-
ject, namely, the attribute level and the hybrid level of object
and attribute. Thus, the spatial and temporal locality of the
client request is more finely exploited.

Since no query information is stored, page caching can
only support equi-select queries on the objects’ keys. The
semantic cachingmodel proposed in [7] organizes the
cache in the granularity of a query. The client maintains
both the semantic descriptions and the associated results
of some previous queries in the cache. A new query from
the user can be totally or partially answered by the cached
queries. In case of being partially answered, the query is
trimmed from the cached ones and a remainder query is
sent to the server. The original semantic caching [7] con-
sidered only selection queries. Ren et al. extended the work
to support selection-projection queries and formally defined
the semantic model of a query and its memory organiza-
tion [16]. Adapting semantic caching to mobile environ-
ments was first attempted by Lee et al. [14], where cache
partitioning schemes were proposed to reduce the granular-
ity of a cached item. Thus, the cache is more adaptive to
the changes in the query pattern. Ren and Dunham elabo-
rated the cache replacement scheme for location-dependent
queries [15]. TheirFARpolicy chooses the region (they call
queries as “regions”) farthest away from the user’s current
location as the victim for replacement.



Zheng and Lee presented a semantic caching scheme for
NN queries in mobile environments [20]. Their idea is to
return a minimum validity time of the query result so that
the same result can answer any subsequent NN query within
this time window. This idea is further explored by Zhang et
al. [19], where the validity of the query result is described
by “influence objects”. Xu et al. investigated cache man-
agement for the validity information of cached query results
[18]. However, in all these semantic caching schemes, the
cached queries can help answer subsequent queries of the
same type only.

The term of “proactive cache” was also used by Cao
in [5]. He studied caching in broadcasting environments
where objects are simply accessed through their keys. His
proactive caching scheme is to prefetch objects on the
broadcast channel based on their access rates, update fre-
quencies, and sizes. Since no queries are involved, his work
is completely different from ours.

3 Proactive Caching and Query Processing

In this section, we first review the R-tree index and spa-
tial query processing. Then, we introduce the overall proac-
tive caching architecture. Finally, we present the generic
spatial query processing algorithm under this architecture.

3.1 Preliminaries: R-tree and Spatial Queries

The predominant access method for a spatial database is
the R-tree and its variations [2, 10]. The R-tree was ex-
tended from the B-tree for multidimensional data. It is a
balanced tree along which the data objects are partitioned.
Each tree node contains a subset of the objects, and its child
nodes further partition this subset into subsets. A child node
corresponds to an entry (MBR, p) in its parent node, where
MBR is the minimum bounding rectangle of the object
subset andp is the physical address of this child node. For
leaf nodes,p points to an actual data object. Figure 2(a)
illustrates the placement of data objectsa, b, ..., h and Fig-
ure 2(b) shows the corresponding R-tree, whereroot, 1 and
2 are the intermediate tree nodes andA ∼ D are the leaf
nodes.

Spatial queries, such as range, kNN, and join queries,
can be processed on the R-tree index. The range queryQ1

shown in light gray in Figure 2(a) is processed as follows.
From the root node, we visit its child nodes whose MBRs
overlapQ1 (shown in gray in Figure 2(b)). The process con-
tinues recursively until it reaches the leaf nodes and returns
the data objects that overlapQ1. In this example, objecte
is returned when leaf nodeC is visited.

For kNN queries, the best known algorithm isbest-first
search (BFS) [11]. It uses a priority queueH to store to-
be-explored entries whose corresponding nodes may con-
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(b) Corresponding R-tree

Figure 2. An Example of R-tree

tain nearest neighbors. The entries inH are sorted by their
MBRs’ minimum distances to the query point. BFS works
by popping up the top entry fromH, pushing its child en-
tries intoH, and then repeating the process all over. When
a leaf entry, i.e., an entry of a leaf node, is popped, the cor-
responding object is returned as a nearest neighbor. The
algorithm terminates ifk objects have been returned. As an
example, BFS processes the 1NN queryQ2 in Figure 2(a)
as follows. It first pushesroot toH, and then pops up entry
2, followed by pushingC andD. Next, it pops upD and
pushesg andh. Finally, h is popped as a nearest neighbor
and the algorithm stops here.

A spatial join on datasetsR andS is to find object pairs
〈a, b〉 (a ∈ R, b ∈ S) that satisfy a spatial predicate, such as
“mutual distance less than a threshold” (i.e., distance join)
and “a intersectsb” (i.e., intersection join). To process such
joins on the R-tree index, the RJ algorithm [3] is the most
commonly used. It visits the two R-trees forR andS si-
multaneously. Starting from the root entry pair, it processes
an entry pair〈r, s〉 by recursively calling itself to process
the pairs ofr ands’s child entries until it reaches leaf en-
tries and then the corresponding object pairs are returned.1

As an example, the intersection self-join (i.e.,R = S) in
Figure 2(b) is processed as follows. Starting from the root
entry pair〈1, 2〉, RJ calls itself to process〈B,C〉 (but not
〈A,C〉 becauseA does not intersectC, neither do〈B,D〉
and〈A,D〉), which finds out eligible pair〈d, e〉. Huang and
Jing improved the RJ algorithm and proposed Breadth-First
R-tree Join (BFRJ) in [13]. BFRJ removes the recursive call
by maintaining anintermediate join index(IJI), which con-
tains all the〈r, s〉 entry pairs to be processed. When BFRJ
processes a pair〈r, s〉 from the IJI, an in-memory join be-
tweenr’s child entries ands’s child entries is performed.
The eligible pairs of child entries for the join predicate are
put into the IJI if they are not leaf entry pairs, and are re-
turned as results if they are. Thus, the IJI resembles the
priority queueH in the BFS algorithm since both of them
contain the entries or entry pairs to be explored.

1To simplify the presentation, we assume the two R-trees have the same
heights.
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Figure 3. The Architecture of Proactive Caching

3.2 Proactive Caching Architecture

Given a spatial queryQ, a proactive cache stores both
Q’s result objects (denoted as setR) and the R-tree index
nodes (denoted as setI) which support the fact thatR con-
tains the results ofQ and onlyQ. By this definition, the
simplest form ofI is the set of accessed R-tree nodes when
Q is processed. An adaptive scheme to chooseI will be
presented in Section 4.

Figure 3 depicts the architecture for proactive caching,
where the arrows show the processing flow forQ. The pro-
cessing is divided into three stages (labelled as➀➁➂). At
the first stage, the client-side query processor executesQ
based on the cached index. The partial results are called
saved objectsand denoted byRs. If Rs 6= R (see Sec-
tion 3.3 for how to determine this), aremainder query Qr

is submitted to the server. Otherwise, the processing termi-
nates without contacting the server. At the second stage, the
server-side query processor evaluatesQr and sends back
both the result objectsRr and the supporting indexIr.
At the third stage, the client-side query processor returns
R = Rs ∪Rr and the cache manager insertsRr andIr into
the cache. It is noteworthy that semantic caching shares the
same processing flow, butQr is simply a truncation of the
original Q and Ir = Qr (i.e., no more information other
than the query description is stored in the cache).

3.3 Processing Queries with Proactive Caching

To show how the client-side processor executesQ and
constructsQr, we first generalize the processing algorithms
for various queries described in Section 3.1. In general, any
spatial query on the R-tree is processed by descending the
tree from the root and recursively exploring the child nodes
that may contain eligible objects. During the exploration,a
priority queueH is used to store the entries to be explored.2

More specifically,Q is processed by: (1) pushing the root

2For join queries, it stores pairs of entries.

entry intoH; (2) popping up the top entry fromH and push-
ing eligible child entries (with respect to the queryQ) into
H (if the eligible entry is a leaf entry, the corresponding
object is returned as a result); (3) repeating (2) untilH is
empty or a termination condition specific to the query type
of Q is satisfied. For example, the kNN processing termi-
nates ifk objects have been returned.

In proactive caching, when the client-side processor ex-
ecutesQ as described above, the corresponding index node
of a popped intermediate entry or the corresponding object
of a popped leaf entry may miss from the cache. In this
case, the entry (called amissing entry) is pushed back toH
and the next entry is popped fromH.3 If at some moment
all entries inH are missing entries but the processing has
not yet terminated, a remainder queryQr is constructed and
submitted to the server. The content ofQr containsQ and
H. In other words, the execution state ofQ is handed over
to the server, which resumes the processing based on the
missing entries inH. The pseudo-code in Algorithm 1 de-
scribes the complete procedure of processingQ. Note that
for spatial joins,n is a pair of entries rather than a single
entry.

Algorithm 1 Proactive Query Processing
Input: Q: the query

C: the proactive cache
Output: R: the result set forQ
Procedure:
1: build empty priority queueH;
2: put root entry toH;
3: while termination condition is false ANDH has non-

missing entriesdo
4: pop entryn fromH;
5: if n is missing fromC then
6: setn as missing;
7: putn back toH;
8: else if n is a leaf entry representing a cached object

then
9: insertn into Rs;

10: else
11: for each ofn’s child entriesu do
12: if u satisfiesQ then
13: putu intoH;
14: if termination condition is false ORH has missing leaf

entriesthen
15: Qr = {Q,H};
16: submitQr to the server and wait forRr andIr;
17: insertRr andIr into C;
18: returnR = Rs ∪ Rr.

A unique issue for kNN query is that, a leaf entry should

3For spatial joins, an entry pair is a missing entry pair if either entry in
the pair is a missing entry.
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Figure 4. An Example of kNN Search in Proactive
Caching

be returned as a result only if there is no missing non-leaf
entry prior to it inH. Letm andn denote the number of re-
turned objects so far and the number of missing leaf entries
in H. The termination condition for a kNN query changes
from m = k (for normal query processing) tom + n = k
(for query processing with proactive caching). Furthermore,
the remainder query changes to a(k − m)-NN search with
H. Let’s see the following example:

Example 3.1 A 2NN query accesses the root and pushes
entriesA andB into H (see Figure 4). WhenA is popped,
b anda are pushed intoH. Since leaf nodeb is missing from
the cache, it stays inH and thenB is popped (step➁). When
leaf entry 6 is popped at step➃, since entryb is a missing
non-leaf entry prior to 6 inH, 6 is not returned, neither is
entry 5. The client processing terminates at step 5, when
m + n = 0 + 2 = 2 (entries 6 and 5). A remainder 2NN
queryQr is sent. To makeQr concise, we further prune
those entries after the currentkth leaf entry inH because
none of these entries contain objects that are closer to the
query point than thekth leaf entry. In this example, entry5
is the2nd leaf entry, so entriesd anda are pruned.

4 Adaptive Proactive Caching

As discussed in Section 3.2, the simplest form of the sup-
porting indexIr for the remainder queryQr is the set of
accessed R-tree nodes whenQr is processed at the server
side. However, caching the exact copy of each node is not
a prerequisite: an R-tree node corresponds to a page on the
disk, but the cache is memory-based rather than disk-based.
Furthermore, it is also not optimal in performance because
an entry far away from an object might not help support this
object to be the result of future queries. And this is further
dependent on the type of the query: to support an object as
the result, a range query does not need any other index entry
(other than the one containing the object), whereas a kNN

query needs some surrounding entries. In this section, we
propose to adapt the content of cached index nodes to the
queries to optimize the query response time. The object is
to strike a balance between the overhead and the effective-
ness of the cached index so that the memory of the cache
is fully exploited. In what follows, we first derive the cost
model of query response time, then introduce the notion of
compact formR-tree node, and finally propose the adaptive
indexing algorithm using this form.

4.1 Cost Model

As the user receives the result objects individually, the
query response time(resp(Q)) is defined as the average
response time of each byte of the results, which is the
elapsed time fromQ being issued till this byte being re-
turned to the user. This is a fairer metric than the response
time of the last returned byte, since in practice the user of-
ten wants to access the results as early as possible. On the
other hand, in mobile computing the wireless communica-
tion always dominates in the access delay and the power
consumption cost, outweighing CPU. Under this assump-
tion, those bytes of the objects inRs have a negligible re-
sponse time because they are locally cached. For each byte
of the objects inRr, the response time is the transmission
time forQr plus that for the already transmitted bytes of the
objects inRr.4 As such,resp(Q) is given by:

resp(Q) =
|Rr|(TQr

+ 1
2 |Rr| · Td)

|R|
, (1)

where the operator| | denotes the size of a dataset in bytes,
TQr

is the wireless communication delay to submitQr to
the server andTd is the delay to download a byte. Since
TQr

is relatively small,5 minimizing resp(Q) is equivalent

to minimizing |Rr|
|R| , or maximizing

hitc =
|Rs|

|R|
= 1 −

|Rr|

|R|
.

Thehitc is called thecache hit rate. In the literature, there
is another notion,byte hit rate (hitb) which is the proba-
bility of a requested byte being in the cache. LetC denote
the set of cached objects. We can representhitb as:

hitb =
|R ∩ C|

|R|
.

If we further assume a uniform access pattern and an inde-
pendent reference model, then we have

hitb =
sizec∑

i∈DS sizei

,

4For simplicity, the fixed transmission overhead is ignored as it does
not affect the analysis of minimizingresp(Q).

5In Section 6, we show that the size ofQr is generally one or two
orders of magnitude smaller than that ofRr .



wheresizec is the cache size for storing objects andsizei

is the size of each objecti in the datasetDS. In semantic
caching or proactive caching, the two notionshitc andhitb
are different asR∩C ⊆ Rs, i.e., even if an object is actually
a result and is cached, it is possible that it is not returned as
a saved object if no enough index is cached to support this
fact. This is called afalse missfor the cache. As such, the
cache hit rate can be derived from byte hit rate as:

hitc = hitb · [1 − P (o /∈ Rs|o ∈ R ∩ C)]

=
sizec∑
i sizei

[1 − P (o /∈ Rs|o ∈ R ∩ C)]. (2)

The conditional probabilityP (o /∈ Rs|o ∈ R ∩ C) in
Equation (2) is defined as thefalse miss rate(fmr). It
indicates to what degree the cache supports the cached ob-
jects to answer subsequent queries.fmr depends not only
on the caching models (e.g., semantic caching or proactive
caching) but also on the types and the parameters of the
queries. This is because different queries need different
ranges and precisions of the information around an object
o to confirmo as a result. For a range query, onlyo’s loca-
tion information is needed. For a kNN query issued at point
p, the range of the confirming information is the circle cen-
tered atp with radiusDistance(p, o). And the required
precision of this information is just to show whether or not
there are less thank objects in the circle. For a distance
spatial join with thresholdd, the range is the circle centered
at o with radiusd. But the required precision is specified
on the other dataset, which is to show if there is any ob-
ject of this dataset within this circle. Obviously, given the
same supporting index for the cached objects, the queries
which require large-ranged and highly-precise confirming
information lead to highfmr, and vice versa.

In order to minimizehitc in Equation (2), the page, se-
mantic, and proactive caching models have different trade-
offs betweensizec and fmr. Page caching provides no
auxiliary knowledge for the cached objects and, hence,
fmr = 1 and hitc = 0. But its sizec is equal to the
actual cache size. Semantic caching provides the knowl-
edge by caching the query descriptions. But such knowl-
edge is available to the same type of queries only. Thus,
it is not efficient in lowering the overallfmr. Proactive
caching provides the auxiliary knowledge for all types of
queries by caching the index nodes. But it does so without
knowing if these cached nodes are useful for subsequent
queries. Obviously, if the subsequent queries require only
short-ranged and imprecise confirming information around
the objects, caching the complete index nodes overly sup-
ports them and wastes the cache space. Therefore, in the
following two subsections, we propose anadaptive proac-
tive caching schemewith the objective of striking a balance
betweenfmr andsizec. The basic idea is to represent far-
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(b) The Binary Partition Tree

Figure 5. Binary Partition Tree of R-tree Node

away entries coarser than those entries close to the cached
objects. The degree of the coarseness is adaptive to the cur-
rentfmr so that the cached index just keeps necessary sup-
porting information.

4.2 The Compact Form of R-tree Node

We define thefull form of an R-tree noden asn itself
with all its entries. Since not every entry inn is accessed by
Qr, the non-accessed entries can be combined into “super
entries” to reduce the size ofn. Such a coarse representation
is called acompact form of n with respect toQr, denoted
asCF (n,Qr).

To efficiently compute the compact form ofn, we build
a binary partition tree of all the entries inn by recursively
partitioning a set of entries into two subsets until the set
has only one entry. The partitioning uses the R-tree node
splitting algorithm to assure minimal overlap between the
MBRs of the two subsets of entries. Figure 5 illustrates the
partition tree for an R-tree noden which contains entries
r1 ∼ r5. D1 throughD4 show the recursive splitting. Each
intermediate node in this tree is regarded as a super entry of
n, and is designated by a unique id(n, code), wherecode is
formed by concatenating the binary digit 0/1 along the path
from the root to this intermediate node.

WhenQr is processed,n or a super entry(n, code) is
popped from the priority queueH. Only its two children
in the partition tree, i.e.,(n, code ⊕ 0) and (n, code ⊕ 1)



(⊕ is the string concatenation operator) are considered as
child entries. For example, to process the NN queryQr

in Figure 5(a) onn, we first pushn’s two children, i.e.,
(n, 0) and (n, 1) to H. Then, (n, 1) is popped, andr5

and (n, 11) are pushed intoH. Finally, popping upr5

terminates the processing. Only the grey nodes in Fig-
ure 5(b) are accessed byQr. The compact form ofn with
respect toQr comprises the leaf entryr5 and all the grey
nodes whose child nodes are not in grey, i.e.,CF (n,Qr) =
{(n, 0), (n, 11), r5}. Compared with the full form of 5 en-
tries, i.e.,{r1, r2, r3, r4, r5}, the compact form saves stor-
age space by40%.

The compact form is efficient to compute because the
computation is embedded in the query processing. LetN
denote the number of entries inn. The number of interme-
diate nodes in the binary partition tree isN−1. The original
query processing accesses all theN entries; the new algo-
rithm in the worst case accesses all theN − 1 intermediate
nodes and all theN entries, which doubles the processing
time. Nonetheless, the average processing time is expected
to be much shorter since, in most cases only a small portion
of the intermediate nodes and entries are accessed, as will
be demonstrated in the experiments (Section 6.4). Building
the binary partition tree for each R-tree node is an offline
and one-time operation. Each tree hasN − 1 entries plus
2 ∗ (N − 1) pointers. Therefore, the additional space re-
quired to store the binary partition trees for all the R-tree
nodes is no more than two times that of the R-tree index
itself.

4.3 Adaptive Proactive Caching

The full form has the most entry information around
each result object, whereas the compact form (callednor-
mal compact form hereinafter) only provides sufficient en-
try information to support result objects for queryQr, thus
leading to a higherfmr but a largersizec. To obtain a bal-
ance between these two metrics, we first generalize the two
forms into thed+-level compact form. It is obtained by
replacing each entry in the compact form with itsd level
descendant nodes or the entries whichever come first in
the binary partition tree. For example, in Figure 5(b), the
1+-level compact form of a normal form{(n, 0), (n, 1)} is
{r1, r2, r5, (n, 11)}. In general, ad+-level compact form is
approximately2d times finer than the normal compact form.
Suppose the height of the binary partition tree ish, the0+-
level compact form is the normal compact form and theh+-
level compact form is the full form. Therefore, the choice of
d determines how fine and how proactively the cache stores
the supporting entry information around the cached objects.

The remaining problem is to determine the value ofd
so that the cached index sufficiently but not overly sup-
ports the cached objects for subsequent queries. We adapt

d to the client’s currentfmr, which indicates not only how
much confirming information the recent queries need, but
also how well the currentd provides such information. The
adaptive scheme works as follows. The client periodically
submits its recentfmr to the server. If the value is higher
than the last recordedfmr by s percent (s is the sensitiv-
ity parameter), it means that the recent queries require finer
entry information around the cached objects; so the value
of d for this client is increased by 1. On the contrary, if it
is lower than lastfmr by s percent,d is decreased by 1.
Otherwise,d remains its last value.

5 Proactive Cache Management

The cache manager views both index nodes and objects
asitemswhich support to answer queries locally. The man-
ager is responsible for choosing victims from these items
for cache replacement. In this section, we derive an optimal
replacement schemeGRD3 for proactive caching.

LetM denote the size of cacheC, size(i) the size of item
i, andbenefit(i) the benefit of cachingi. The cache re-
placement problem is, given the incoming items of sizeM ′,
to find a victim setC′ ⊂ C such that

∑
i∈C−C′ size(i) ≤

M−M ′ and
∑

i∈C−C′ benefit(i) is maximized. This prob-
lem is the0/1 Knapsackproblem, except that for cache
replacement, the victims are removed from, instead of
filled into the knapsack. The greedy algorithm (denoted
as GRD1), which removes the worst items in terms of
benefit(i)/size(i) from C, has been proved to be a 2-
approximation algorithm.

5.1 The Constrained Knapsack Problem

By the definition of proactive caching, if a cached in-
dex node is removed, all its descendants including the index
nodes and the objects are no longer accessible and, thus,
should also be removed. Therefore, the proactive caching
replacement problem is aconstrained knapsack problem
with the constraint that if itemi is removed, all its descen-
dants must be removed altogether.

¿From Section 4.1, the benefit of a cached itemi is the
response time saved from retransmitting it on the wireless
channel for subsequent queries, i.e.,benefit = prob(i) ×
size(i)×Td, whereprob(i) is the access probability of item
i. As Td is a constant for every item, we omit it for sim-
plicity. Hence,benefit = prob(i)× size(i). Since remov-
ing i presumes removing alli’s descendants from the cache,
benefit(i) must count fori as well asi’s descendants. That
is,

benefit(i) =
∑

j∈D(i)

prob(j) × size(j)+prob(i)×size(i),

xujl
Rectangle



whereD(i) denotes the set of descendants ofi. The met-
ric benefit(i)/size(i), by which GRD1 picks victims, now
has a physical meaning ofexpected bitwise response time
saving(EBRS(i)),

EBRS(i) =

∑
j∈D(i) prob(j)size(j) + prob(i)size(i)

∑
j∈D(i) size(j) + size(i)

.

EBRS(i) has the following two features:

Corollary 5.1 Let Ch(i) denote the set of child items ofi.
If Ch(i) = ∅, i is called aleaf item and EBRS(i) = prob(i).

Corollary 5.2 The recursive definition ofEBRS(i):

EBRS(i) =
∑

j∈Ch(i)

SIZE(j)

SIZE(i)
EBRS(j) +

size(i)

SIZE(i)
prob(i).

(3)

Here SIZE(i) is the total size ofi and D(i), i.e.,
SIZE(i) =

∑
j∈D(i) size(j) + size(i). The recursive

formula shows that, after the removal of an item together
with its descendants, only theEBRS of its ancestors are
changed.

Therefore, the greedy algorithm, GRD2, for the con-
strained knapsack problem is the same as GRD1, except
that: (1) the metric for finding the victims isEBRS; (2)
after the removal of victimi, its ancestors’EBRS values
should be updated according to Equation (3).

There are two problems associated with GRD2: (1) the
EBRS update is costly because the derivation ofEBRS(i)
is recursive according to Equation (3); (2) GRD2 loses the
approximation bound with GRD1. In the following, we ex-
tend GRD2 to GRD3 which is proved to yield the same out-
come as GRD2, but is more efficient and has an approx-
imation bound of 2. To derive it, we need the following
lemmas:

Lemma 5.3 If item j is item i’s descendant,prob(i) ≥
prob(j).

Lemma 5.4 ∀ item i, minj∈Ch(i) EBRS(j) ≤
EBRS(i) ≤ prob(i).

Proof: We prove the inequality by mathematical induction.
(1) For the leaf items, by Corollary 5.1,EBRS(i) =
prob(i), and sincei has no children, the inequality holds.
(2) Suppose that for any itemi whose deepest descen-
dants is fewer than or equal tok (k ≥ 0) levels away
from i, minj∈Ch(i) EBRS(j) ≤ EBRS(i) ≤ prob(i).
Thus, for any itemi whose deepest descendants isk +
1 levels away, we haveEBRS(j) ≤ prob(j). From
Lemma 5.3,prob(j) ≤ prob(i). Therefore,prob(i) ≥
maxj∈Ch(j) EBRS(j). On the other hand, according to
Corollary 5.2,

EBRS(i) =
∑

j∈Ch(i)

SIZE(j)

SIZE(i)
EBRS(j) +

size(i)

SIZE(i)
prob(i)

In other words,EBRS(i) is the weighted arithmetic av-
erage of allEBRS(j) andprob(i). Therefore,EBRS(i)
is between the minimum and the maximum of these values,
which areminj∈Ch(i) EBRS(j) andprob(i), respectively.
Therefore, the inequality holds fork + 1.
From (1) and (2),∀ item i, minj∈Ch(i) EBRS(j) ≤
EBRS(i) ≤ prob(i). ¤

Lemma 5.4 shows that GRD2 chooses the victim only
from the leaf items. And Corollary 5.1 shows that for any
leaf item i, EBRS(i) = prob(i). Thus, GRD2 is equiv-
alent to picking the leaf items with the lowestprob values.
As such, it is unnecessary to maintainEBRS anymore. We
call the following enhanced algorithmGRD3.

Definition 5.1 Algorithm GRD3: Efficient Replacement
Algorithm for Proactive Caching
(1) scanC and discard anyi, s.t.size(i) > M − M ′;
(2) put all leaf items in a priority queueG whose key is
prob;
(3) pop itemi fromG and remove it fromC;
(4) if i is its parentp’s last child, pushp into G;
(5) if

∑
i∈C size(i) > M − M ′, goto (3);

(6) denote the most recently removed itemi as B. If
prob(B) × size(B) >

∑
j∈C prob(j) × size(j), remove

everything remained inC and insertB back toC.

GRD3 is much more efficient than GRD2 because it does
not computeSIZE, benefit andEBRS. Furthermore, the
following theorem shows that GRD3 is a 2-approximation
algorithm for the constrained knapsack problem.

Theorem 5.5 GRD3 is a 2-approximation algorithm for
the constrained knapsack problem.

Proof: Let KP denote the original knapsack problem and
CKP denote the constrained knapsack problem where items
must be removed with their descendants. LetOPT (·) de-
note the optimal algorithm for a problem. We have,
(1) GRD1(KP ) ≥ 1

2OPT (KP ), by the proof from the
literature.
(2) GRD3(CKP ) = GRD1(KP ), because Lemma 5.4
guarantees that ifGRD1(KP ) is executed, it always
chooses leaf items with the lowestprob values, which is
exactly the same asGRD3(CKP ).
(3) OPT (KP ) ≥ OPT (CKP ), because a non-
constrained problem must have a better optimal solution
than its constrained counterpart.
From (1)(2)(3), we haveGRD3(CKP ) = GRD1(KP ) ≥
1
2OPT (KP ) ≥ 1

2OPT (CKP ). ¤

5.2 Implementation Issues for GRD3

To make GRD3 to work, each item is associated with
somemetadata. More specifically, the metadata includes



the following properties of the item: (1) physical address,
(2) size, (3) time of insertion (in terms of the sequence id of
the query when it is inserted), (4) number of hit queries, (5)
parent item id, (6) number of cached children.

Metadata (5) provides a pointer to look up the parent
item, which is missing from the common indexes such as
theR-tree and theB+-tree. Metadata (6) indicates whether
an item is a leaf item. This value is updated when its child
nodes are inserted and removed from the cache.

In practice,prob(i) can be estimated by the ratio of
metadata (4) to the total number of queries thati has lived
through:

prob =
#hit queries

T − time of insertion
,

whereT denotes the sequence id of the current query.

6 Performance Evaluation

6.1 Simulation Model

The simulation emulates a mobile client issuing spatial
queries about its neighborhood. The client moves according
to two mobility models: therandom waypoint(RAN) and
the directed movement(DIR). Under RAN [4], the client
selects a random point as its destination and moves to it at
a randomly chosen speedspd; upon arrival, it pauses for a
random period and selects a new destination. DIR restricts
the selection of the next destination so that the moving di-
rection is roughly reserved. This is a better model for on-
purpose movements [15].

The event of client issuing queries is modeled as aPois-
sonprocess. More specifically, the client waits for an expo-
nentially distributed random period (calledthinking time)
to issue a new query after the current query completes. In
each experiment run, the client issues 10,000 queries. We
use two large-scale datasets,NE which contains 123,593
postal zones of New York, Philadelphia, and Boston of the
United States, andRD which contains 594,103 railroads
and roads in US, Canada, and Mexico [17]. The coordinate
systems of both datasets are normalized to unit squares. The
average object size|o| is 10KB. The sizes of individual
objects follow a Zipf distribution with the skewness param-
eterθ being0.8. The sizes of the R*-tree indexes (with a
page capacity of 4KB) for these two datasets are 3.8MB and
18.5MB, respectively. The query type is randomly selected
from range, kNN, and join. The window of a range query
is centered at client’s current position with an average size
Areawnd = 10−6 . The join query is a distance self-join
which returns pairs of objects whose distances are lower
than a thresholdDistjoin. Thek for a kNN query is ran-
domly chosen from 1 toKmax. The client has a 384Kbps
wireless channel, which is the standard for a 3G network.

Parameter Value Parameter Value
spd 0.0001 think time 50s
Areawnd 10−6 Distjoin 5×10−5

Kmax 5 bandwidth 384Kbps
|C| 0.1%∼5% |o| 10KB
θ 0.8 s 20%

Table 6.1. System Parameters Settings

The cache size is varied from 0.1% to 5% of the total dataset
size with 1% as the default value.

The server is implemented on a Pentium 4 1GB PC run-
ning Win2000 Server and IIS 5.0, and the client is simulated
on a Pentium 4 512MB PC running WinXP. The client and
the server communicate through the SOAP/HTTP protocol.
We set the system sensitivity parameters for the adaptive
proactive caching at 20%. Table 6.1 summarizes the param-
eter settings for the simulation study.

We implement the semantic caching for range and kNN
queries according to [15, 20]. No semantic caching tech-
niques are available for join queries. When the client re-
ceives a join query, it directly passes it to the server. To have
a fair performance comparison, we choose the state-of-the-
art cache replacement scheme for each of the three cache
models: FAR for semantic caching [15],LRU for page
caching, andGRD3 for adaptive proactive caching. The
metrics for performance comparison are the query-wiseup-
link bytes, downlink bytes, response time(defined in Section
4.1), and the overallcache hit rate(hitc) andbyte hit rate
(hitb). Theuplink bytesanddownlink bytesmetrics imply
the query cost on wireless communication and power con-
sumption, which are the major concerns in mobile environ-
ments. To simplify the notation, in the sequel,PAG repre-
sents page caching,SEM represents semantic caching, and
APRO represents adaptive proactive caching.

6.2 Overall Performance Comparison

Figure 6 shows the measured performance for the three
caching models when the mobility model isDIR and|C| =
1% of the size of datasetNE.6 For better legibility, the
values from the three models for each metric are normalized
to [0, 1] and the maximum value is shown in the parenthesis
following the metric label.

PAG always has the highest uplink bytes since it needs
to submit the identifiers of all cached objects to the server.
As a reward, it downloads the fewest bytes. However, since
PAG does not store any supporting information for these
objects, the cache hit rate is zero. As a result, the re-
sponse time is rather poor.SEM downloads the highest

6Similar results were observed for theRD dataset; they are omitted in
this paper due to space limitations.
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Figure 6. Overall Performance Comparison
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Figure 7. Performance under Different Mobility Models

number of bytes, because range and kNN queries cannot
share cached objects. The same reason explains why its
cache hit rate is only one-third that ofAPRO. APRO ad-
dresses this problem by sharing the cached objects among
all query types. The result is a51% cache hit rate, and yet
the downlink bytes is just slightly larger than that ofPAG.
All these factors explain whyAPRO achieves the shortest
response time among the three cache models in Figure 6.
It is noteworthy that the achievement sacrifices none or lit-
tle in the uplink and downlink bytes metrics, which implies
thatAPRO is also efficient in terms of the power and band-
width consumption.

We also compare them under different mobility models
and show the results in Figure 7. The response time for
DIR is larger than that forRAN in all cache models as
shown in Figure 7(a). This is expected asRAN exhibits
better query locality thanDIR; so the benefit of caching
is more prominent. An interesting observation is that for
APRO, the response time increases very little when the
mobility model changes toDIR. This is becauseAPRO
proactively retrieves entry information for cached objects;
hence, even if the client visits a new place, the cached index
information may already cover this area in supportive of the
cached objects. Figure 7(b) justifies this explanation: the
false miss rate ofAPRO almost remains the same under
the two mobility models.
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6.3 Impact of Cache Sizes and Replacement
Schemes

In this set of experiments, we measure the response time
under four cache size (|C|) settings: 0.1%, 0.5%, 1%, and
5%. The mobility model isRAN . From Figure 8, we ob-
serve that when|C| increases from 1% to 5%,PAG’s re-
sponse time even increases. This is because its uplink bytes
is proportional to|C| and the performance gain of caching
no longer compensates the increased uplink overhead for
|C| > 1%. For SEM , the response time also saturates
when|C| > 1%. This is due to the fact that its performance
gain is separate for each query type, and when|C| > 1%,
caching range queries and caching kNN queries have both
reached their performance limits.APRO overcomes this
drawback by sharing the cached index nodes and objects
among all query types. Therefore, it still achieves notable
performance gain after|C| > 1%.

To further justify theAPRO caching model, we also
show in Figure 9 the client CPU processing time per query
under various cache sizes. It is measured by subtracting
the network transmission time from the whole processing
time for each query. Therefore, it includes the time cost
for all necessary CPU operations such as query process-
ing and cache maintenance.APRO is more expensive
thanPAG andSEM in most cases, since it partially pro-
cesses the queries, especially the spatial joins which are
CPU-intensive. But its sensitivity to cache size is much
lower, thanks to the cached index structure. In other words,
APRO does not need to search sequentially in the cache,
which is the case for bothPAG and SEM . Thus, it is
expected to outperformPAG andSEM for larger cache
sizes. On the other hand, the figure also justifies our as-
sumption that the response time is predominantly incurred
on wireless communication.7

In the next set of experiments, we evaluateAPRO under
various replacement schemes, namelyLRU , MRU , FAR

7The actual mobile CPU may work much slower than the CPU where
the simulation is carried on, but the gap between the CPU time and the
communication delay is still larger than one order of magnitude.
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[15], and GRD3. SinceMRU is always the worst of all,
Figure 10 shows the rest three only.LRU outperforms
FAR and GRD3 under theDIR mobility model. This
is because underDIR, an object no longer accessed can be
more quickly detected and removed byLRU . ForGRD3,
the object is dropped only when itsprob value becomes the
lowest, which takes a longer time thanLRU . ForFAR, the
object replacement depends on its distance to the user; thus
the performance is less predictable. However, the result un-
der theRAN model is just the opposite. Due to the random
movement,LRU might erroneously remove the objects that
are to be requested by the near future queries. SinceFAR
andGRD3 are both independent of the very recent access
history, they perform much better. On the whole,GRD3
behaves more stable than the other two considering both
mobility models, because theprob value is accumulated and
less vulnerable to the movement changes.

6.4 Effectiveness of Adaptive Proactive Caching

This set of experiments compares the performance of
adaptive proactive caching (APRO) with its non-adaptive
counterparts, i.e., caching full form index (FPRO) and
normal compact form index (CPRO). We simulate the

change of queries by exclusively issuing kNN queries and
controlling the averagek. The averagek decreases grad-
ually from 10 to 1 for the first 5,000 queries, and then in-
creases gradually up to 10 for the second 5,000 queries. We
measure the false miss rate, the index size in the cache (in
terms of the ratio of index size to total cache size,i/c) and
the response time for every 500 queries and plot them in
Figures 11(a), 11(b), and 11(c), respectively. In order to
highlight the performance change, we choose a small cache
size 0.1% and the less predictable mobility modelRAN .

As known from Section 4.1, the higher thek value, the
less precise the confirming information is needed and, thus,
the lower thefmr. From Figure 11(a), the false miss rate
of CPRO is the most vulnerable to the changes ofk; actu-
ally its trend almost reflects the opposite trend of changing
k. This is expected asCPRO caches only the necessary
entry information to support the query being processed. A
high fmr may it lead to,CPRO consumes the least cache
size. FPRO, on the contrary, achieves the least and the
most stablefmr, but it almost consumes half of the cache
size. As a result, whenk is large,FPRO has the longest
response time; and whenk is small or moderate,CPRO
has the highest.APRO maintains a steadyfmr through-
out the experiment, and it increases index cache size only
whenk is small, i.e., more precise entry information around
the cached object is needed. Therefore, its response time is
the best among the three almost all the time. However, it is
noteworthy that in response to the changes ofk, the adaptive
scheme has certain degree of delay (see Figure 11(b)), since
it takes time to fade out those old cached index nodes in
order to decrease the index cache size. Therefore,APRO
is expected to work fine when both the cache size and the
changing pace of the query impact on thefmr are small or
moderate.

Regarding the price ofAPRO over the nonadaptive
schemes, the sizes of the binary partition trees for datasets
NE and RD are 4.2MB and 23.7MB, respectively. The
query processing time of the server is even reduced from
0.0081s (forFPRO) to 0.0067s (forAPRO), which coin-
cides with our analysis in Section 4.2 that the average CPU
cost for the adaptive scheme is low because, in most cases
only a small portion of the intermediate nodes and entries
in a binary partition tree are accessed.

7 Conclusion and Future Work

In this paper, we propose the proactive caching model for
spatial queries in mobile environments. Proactive caching
captures the semantics of queries by caching the index that
is responsible for answering them. The merits of proactive
caching over semantic caching are two-folded: (1) the gran-
ularity of cache reuse is at the object level, finer than that at
the query level; (2) the cached objects can be easily shared
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Figure 11. Performance Time Series under Adaptive and Nonadaptive Schemes

among common types of spatial queries. Furthermore, we
propose the adaptive proactive caching which further opti-
mizes the query response time. Empirical results show that
proactive caching achieves a significant performance gain
over page caching and semantic caching in terms of various
performance metrics.

For the future work, we plan to investigate the impact
of server updates on proactive caching and devise efficient
cache invalidation schemes. We also plan to extend proac-
tive caching so that the cached index is shared not only
among various types of queries on the same client, but also
among various clients in the neighborhood. Since these
clients exhibit high query locality, such cache collaboration
is beneficial in terms of cache reuse and bandwidth sav-
ing. This is particularly useful in a mobile ad-hoc network,
where the bandwidth of local connections is much broader
and cheaper than that of remote connections.
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