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Abstract Qo o
Semantic caching enables mobile clients to answer spa- ~ ~ N B
tial queries locally %y storing the query descriptions to- Ml M4 Ms W
gether with the results. However, it supports only a limited Wl o 0, g Ms .
number of query types, and sharing results among these 4 Joey ~ Qn Q1
types is difficult. To address these issues, we propose a Wz % == B M0
proactive caching model which caches the result objects M3 MS 9

as well as the index that supports these objects as the re-
sults. The cached index enables the objects to be reused
for all common types of queries. We also propose an adap-
tive scheme to cache such an index, which further optimizes
the query response time for the best user experience. Sim-
ulation results show that proactive caching achieves a sig- Example 1.1 Suppose Joey is driving and looking for a mo-
nificant performance gain over page caching and semantictel in the neighborhood. He issues a range quégyand
caching in mobile environments where wireless bandwidth the server returnd/; ~ M5 (see Figure 1). As he does not
and battery are precious resources. find a favorite one among them, he issues another gllery
with a wider range. Since the query windowshf and Q)
overlap, the cached results ¢f; (i.e., My ~ M5) are re-
1 Introduction turned immediately and the client only needs to sulgpit
i.e., Q1 — Qo.

In mobile environments, a user's common practice to  Semantic caching not only saves the wireless bandwidth
know about his/her proximity area is to issue spatial qserie  but also reduces the query response time. Nevertheless, we
These queries share more common results than they do ithave observed several problems with semantic caching.
traditional environments because the user moves continu- First of all, semantic caching captures the semantics of
ously and thus the areas he/she queries exhibit high spatiathe queries only, but not the semantics of the cached objects
locality. On the other hand, battery and wireless bandwidth In other words, the granularity of cache reuse is at the query
are precious resources of mobile clients. Given these twolevel. As such, a new query can be answered only by the
facts, caching results at the client side is an attractivk-te  queries of the same type, which makes it difficult to share
nique for spatial query processing [18]. the cached objects among various query types. Example 1.2

Semantic caching [7, 16] has been proposed to answeillustrates such a drawback.
spatial queries at the mobile client side [14, 15, 20]. Itmaai ] )
tains both the results and semantic descriptions of some preExa@mple 1.2 Suppose in Example 1.1, afte}, Joey is-
vious queries. Before a new query is submitted to the server,SU€S & 3-nearest-neighbor (3NN) quépy instead ofQ; .
it is trimmed against the cached queries. Only the trimmed S€mantic caching cannot trim a 3NN query from a range
part of the query, i.e., the part that does not overlap anyduery Qo. The client has to submit the complefe, al-

cached queries is submitted. The following example illus- though the result objects/s and M; are already cached as
trates this idea. Qq’s results. They are partial results ¢f, and should have

been returned to the user immediately. The retransmission

Q1

Figure 1. The Semantic Caching Example



of these objects not only wastes the wireless bandwidth, but The rest of the paper is organized as follows. The next
also prolongs the response time. section reviews the existing caching models. Section 3 in-
troduces proactive caching and presents its query process-
ing scheme. Section 4 proposes the caching cost model and
an adaptive scheme for caching the index. We study the
cache organization and replacement schemes in Section 5.
The performance is analyzed by simulation results in Sec-

Furthermore, the types of spatial queries supported by
semantic caching are rather limited. Only simple range
query [15] and nearest neighbor (NN) query [20] have been
studied. It is difficult to support complex queries such as k-
near_est-nelghbor_(kNN) ar_ld spatial join queries. Semantlction 6. Finally, we conclude and show future directions of
caching also entails complicated cache management. Whert1his work
a new query to be cached overlaps some cached query, a '
decision has to be made for whether to coalesce these two
queries or to trim either of them. In addition, the organiza- 2 Related Work
tion of a semantic cache is plain. Many operations on the
cache, e.g., query processing or cache replacement, eequir  Caching frequently accessed data at the client side not
a sequential scan in the cache. This drawback is more reonly improves the user’s experience of the distributed sys-
markable as the cache size gets larger. tem, but also alleviates the server's workload and enhances

With the above drawbacks of semantic caching in mind, its scalability. Thepage cachingmodel is widely used in
we propose in this paper an innovative caching model, RDBMS [9]. The cached items are typically disk pages
calledproactive cachinglt caches the result objects as well or tuples, which can be looked up by their identifiers.
as the index that supports the objects as the query resultsOODBMS adopts a similar caching model, except that the
The cached index helps determine if a cached object is acached items are autonomous objects [8]. Early mobile
result of subsequent queries. In this way, the granulafity o broadcasting systems originated from OODBMS and thus
cache reuse is at the object level. The cached index can bedopted the same page caching model [1]. The mobile
B+-tree nodes in the relational database domain. For $patiacaching model in unicast environments was first studied in
queries, the index consists of the R-tree nodes in the dbject [12], where a dynamic client data replication scheme was
vicinity. In this sense, the caching model prepares thexinde proposed. A datum is cached if the read operations are more
in advance of subsequent queries. This is where the namérequent than the write operations for the lastequests.
“proactive” comes from. Example 1.3 shows how proactive Chan et al. further explored this caching model in [6]. They
caching improves performance over semantic caching. proposed two caching granularities other than the entire ob

Example 1.3 Suppose proactive caching is adopted in Ex- ject, nar_nely, the attribute 'e"?' and the hybrid level (_)faoibj
ample 1.2 and the whole area shown in Figure 1 is indexed a'_‘d atfribute. _Thus, th_e spatial aqd temporal locality ef th
by one R-tree node. Afté},, this node and all its ancestors chen_t request is mqre fmely explmted. .

in the R-tree are cached according to proactive caching. Since no query lnformat|op is stored, page c,achmg can
The next query)s can utilize the proactively cached in- ©MY Support equi-select queries on the objects’ keys. The
dex nodes and be processed locally by an NN search algo-Sémantic cachingmodel proposed in [7] organizes the

rithm. Thus,Ms and Ms are returned immediately. Only cache in the granularity of a query. The client maintains
M; needs to be transmitted from the server both the semantic descriptions and the associated results

of some previous queries in the cache. A new query from
Our contributions in this paper are listed as follows: the user can be totally or partially answered by the cached
e We propose a proactive caching model which ad- queries. In case of being partially answered, the query is
dresses the drawbacks of semantic caching. In par-timmed from the cached ones and a remainder query is
ticular, the proposed cache captures the semantics okent to the server. The original semantic caching [7] con-
cached query results at the object level (c.f., semanticsidered only selection queries. Ren et al. extended the work
caching at the query level), thus enabling sharing of to support selection-projection queries and formally defin
cached objects among different query types. the semantic model of a query and its memory organiza-
e We develop a generic spatial query processing tech-tion [16]. Adapting semantic caching to mobile environ-
nigue on proactive caching to reuse the cached resultsments was first attempted by Lee et al. [14], where cache
among various types of queries. partitioning schemes were proposed to reduce the granular-
e We propose an adaptive proactive caching scheme toity of a cached item. Thus, the cache is more adaptive to
further optimize the query response time for the best the changes in the query pattern. Ren and Dunham elabo-
user experience. rated the cache replacement scheme for location-dependent
¢ We perform extensive experiments which show that the queries [15]. TheiFARpolicy chooses the region (they call
proactive caching model works better than semantic queries as “regions”) farthest away from the user’s current
caching in resource-constrained mobile environments. location as the victim for replacement.



Zheng and Lee presented a semantic caching scheme for

NN queries in mobile environments [20]. Their idea is to . g9 »

return a minimum validity time of the query result so that 0, <[5 Jnode 2
the same result can answer any subsequent NN query within |-a h

this time window. This idea is further explored by Zhang et e .

al. [19], where the validity of the query result is described £ 8 [d - Q2 Eﬁj [o[n] |
by “influence objects”. Xu et al. investigated cache man- * 2 node A node B node C node D

agement for the validity information of cached query result
[18]. However, in all these semantic caching schemes, the
cached queries can help answer subsequent queries of the
same type only.

The term of “proactive cache” was also used by Cao
in [5]. He studied caching in broadcasting environments tain nearest neighbors. The entriesHrare sorted by their

Where_objects are simply ac_cessed through th_elr keys. HISMBRS’ minimum distances to the query point. BFS works
proactive caching scheme is to prefetch objects on the

. by popping up the top entry frori, pushing its child en-
broadcast channel based on their access rates, update fr?r—?/eg ir?t%Hg, agd thenﬁepeaﬁing the %roces% all over. When

guencies, and sizes. Since no queries are involved, his worI%l leaf entry, i.e., an entry of a leaf node, is popped, the cor-

is completely different from ours. responding object is returned as a nearest neighbor. The
algorithm terminates ik objects have been returned. As an
3 Proactive Caching and Query Processing example, BFS processes the 1NN quéryin Figure 2(a)
as follows. It first pushesoot to H, and then pops up entry
In this section, we first review the R-tree index and spa- 2, followed by pushing” and D. Next, it pops upD and
tial query processing. Then, we introduce the overall proac pushes; andh. Finally, & is popped as a nearest neighbor
tive caching architecture. Finally, we present the generic and the algorithm stops here.

(a) Objects Placement (b) Corresponding R-tree

Figure 2. An Example of R-tree

spatial query processing algorithm under this architectur A spatial join on dataset® andS is to find object pairs
o _ _ (a,b) (@ € R,b € S) that satisfy a spatial predicate, such as
3.1 Preliminaries: R-tree and Spatial Queries “mutual distance less than a threshold” (i.e., distance)joi

and ‘e intersectd” (i.e., intersection join). To process such

The predominant access method for a spatial database ifoins on the R-tree index, the RJ algorithm [3] is the most
the R-tree and its variations [2, 10]. The R-tree was ex- commonly used. It visits the two R-trees f&rand .S si-
tended from the B-tree for multidimensional data. It is a multaneously. Starting from the root entry pair, it proesss
balanced tree along which the data objects are partitionedan entry pair(r, s) by recursively calling itself to process
Each tree node contains a subset of the objects, and its childhe pairs ofr ands’s child entries until it reaches leaf en-
nodes further partition this subset into subsets. A childeno tries and then the corresponding object pairs are returned.
corresponds to an entrfy{ BR, p) in its parent node, where  As an example, the intersection self-join (i.&,= S) in
M BR is the minimum bounding rectangle of the object Figure 2(b) is processed as follows. Starting from the root
subset ang is the physical address of this child node. For entry pair(1,2), RJ calls itself to proces&B, C) (but not
leaf nodesp points to an actual data object. Figure 2(a) (A, C) becaused does not intersedf, neither do(B, D)
illustrates the placement of data objeat$, ..., h and Fig- and(A, D)), which finds out eligible paifd, ). Huang and
ure 2(b) shows the corresponding R-tree, whex#, 1 and Jing improved the RJ algorithm and proposed Breadth-First
2 are the intermediate tree nodes afid~ D are the leaf  R-tree Join (BFRJ) in [13]. BFRJ removes the recursive call
nodes. by maintaining anntermediate join indexlJI), which con-

Spatial queries, such as range, kNN, and join queries,tains all the(r, s) entry pairs to be processed. When BFRJ
can be processed on the R-tree index. The range ddery processes a pair, s) from the 131, an in-memory join be-
shown in light gray in Figure 2(a) is processed as follows. tweens’s child entries and’s child entries is performed.
From the root node, we visit its child nodes whose MBRs The eligible pairs of child entries for the join predicate ar
overlap@; (shown in gray in Figure 2(b)). The process con- put into the 1JI if they are not leaf entry pairs, and are re-
tinues recursively until it reaches the leaf nodes andmstur turned as results if they are. Thus, the 1JI resembles the
the data objects that overlap,. In this example, objeat priority queueH in the BFS algorithm since both of them

is returned when leaf nodg is visited. contain the entries or entry pairs to be explored.
For KNN queries, the best known algorithmhsst-first
search (BFS) [11]. It uses a priority quetiéto store to- 170 simplify the presentation, we assume the two R-trees havestime

be-explored entries whose corresponding nodes may conheights.
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Figure 3. The Architecture of Proactive Caching

3.2 Proactive Caching Architecture

Given a spatial query), a proactive cache stores both
Q'’s result objects (denoted as s&} and the R-tree index
nodes (denoted as sBtwhich support the fact that con-
tains the results of) and only@. By this definition, the

entry into; (2) popping up the top entry frofi{ and push-
ing eligible child entries (with respect to the quepy into

‘H (if the eligible entry is a leaf entry, the corresponding
object is returned as a result); (3) repeating (2) uhtiis
empty or a termination condition specific to the query type
of Q is satisfied. For example, the KNN processing termi-
nates ifk objects have been returned.

In proactive caching, when the client-side processor ex-
ecuteg) as described above, the corresponding index node
of a popped intermediate entry or the corresponding object
of a popped leaf entry may miss from the cache. In this
case, the entry (calledraissing entryis pushed back té{
and the next entry is popped froha.® If at some moment
all entries inH are missing entries but the processing has
not yet terminated, a remainder quépy is constructed and
submitted to the server. The content@f contains@ and
‘H. In other words, the execution state@fis handed over
to the server, which resumes the processing based on the
missing entries it{. The pseudo-code in Algorithm 1 de-
scribes the complete procedure of procesgng\ote that

Q is processed. An adaptive scheme to chobseéll be
presented in Section 4.

Figure 3 depicts the architecture for proactive caching,
where the arrows show the processing flow@orThe pro-
cessing is divided into three stages (labelledJas). At
the first stage, the client-side query processor exedites

entry.

Algorithm 1 Proactive Query Processing
Input: @Q: the query
C: the proactive cache
Output: R: the result set fof)

based on the cached index. The partial results are called Procedure:

saved objectsand denoted byR;. If R; # R (See Sec-
tion 3.3 for how to determine this),ramainder query Q.
is submitted to the server. Otherwise, the processing termi

nates without contacting the server. At the second stage, th

server-side query processor evaluafgsand sends back
both the result object®?, and the supporting index...

At the third stage, the client-side query processor returns 6:

R = R, U R, and the cache manager inseRtsandI,. into

the cache. It is noteworthy that semantic caching shares the 8:

same processing flow, b}, is simply a truncation of the
original Q and I, = @, (i.e., no more information other
than the query description is stored in the cache).

3.3 Processing Queries with Proactive Caching

To show how the client-side processor execufeand
constructsy,., we first generalize the processing algorithms
for various queries described in Section 3.1. In general, an

spatial query on the R-tree is processed by descending the, ,.
tree from the root and recursively exploring the child nodes .

that may contain eligible objects. During the exploratian,
priority queueH is used to store the entries to be explofed.
More specifically,() is processed by: (1) pushing the root

2For join queries, it stores pairs of entries.

1: build empty priority queué;
2: put root entry tdH;
3: while termination condition is false AND{ has non-
missing entrieslo
pop entryn from H;
if n is missing fromC then
setn as missing;

4:
5:

7: putn back toH;
else if n is a leaf entry representing a cached object
then

9: insertn into R;

10. else

11: for each ofr’s child entriesu do

12: if u satisfiex) then

13: putw into H;

14: if termination condition is false OR has missing leaf

entriesthen
150 Qr ={Q,H};
16:  submit@,. to the server and wait faR,. and/,;
insertR,. and/, into C;
returnR = R, U R,

A unique issue for KNN query is that, a leaf entry should

3For spatial joins, an entry pair is a missing entry pair if eitantry in
the pair is a missing entry.



Legend Priority Queue Status: guery needs some surrounding entries. In this section, we
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Figure 4. An Example of kNN Search in Proactive
Caching

4.1 Cost Model

As the user receives the result objects individually, the
query response time(resp(Q)) is defined as the average
response time of each byte of the results, which is the
elapsed time fronQ being issued till this byte being re-
be returned as a result only if there is no missing non-leaf tyrned to the user. This is a fairer metric than the response
entry prior to itin{. Letm andn denote the number of re-  time of the last returned byte, since in practice the user of-
turned objects so far and the number of missing leaf entriesten wants to access the results as early as possible. On the
in ‘H. The termination condition for a kNN query changes other hand, in mobile computing the wireless communica-
fromm = k (for normal query processing) t@ +n = k tion always dominates in the access delay and the power
(for query processing with proactive caching). Furthernor  consumption cost, outweighing CPU. Under this assump-
the remainder query changes toka— m)-NN search with  tjon, those bytes of the objects i, have a negligible re-

H. Let's see the following example: sponse time because they are locally cached. For each byte
of the objects inR,., the response time is the transmission
time for Q.. plus that for the already transmitted bytes of the
objects inR,..* As such,resp(Q) is given by:

Example 3.1 A 2NN query accesses the root and pushes
entriesA and B into H (see Figure 4). WheHd is popped,

b anda are pushed int@{. Since leaf nodéis missing from
the cache, it_stays ik and thenB i_s popped (s_tem). \_Nh_en IR|(To, + LIR,| - T))

leaf entry 6 is popped at stdp, since entryb is a missing resp(Q) = - R2 ) (2)
non-leaf entry prior to 6 ir{, 6 is not returned, neither is | |. )

entry 5. The client processing terminates at step 5, when'Where the operatdif denotes the size of a dataset in bytes,
m+n =0+2 =2 (entries 6 and 5). A remainder 2NN Tq, is the W|reles_s communication delay to subi®it t(_)
queryQ, is sent. To make), concise, we further prune the server an(Td is the d_el_ay_ tp download_a byt(_e. Since
those entries after the curreit” leaf entry inH because 1@, IS relatively smalf, minimizing resp(Q) is equivalent

. . . s R, L
none of these entries contain objects that are closer to theto minimizing “R‘I , OF maximizing

query point than thé*" leaf entry. In this example, entfy
- nd - LRl R
is the2™¢ leaf entry, so entried anda are pruned. hit, = R - R
Thehit. is called thecache hit rate In the literature, there
4 Adaptive Proactive Caching is another notionbyte hit rate (hit,) which is the proba-

bility of a requested byte being in the cache. Letlenote

As discussed in Section 3.2, the simplest form of the sup- the set of cached objects. We can representas:
porting indexI,. for the remainder querg).. is the set of _ IRNC|
accessed R-tree nodes wh@n is processed at the server hity, = R
side. However, caching the exact copy of each node is not . ,
a prerequisite: an R-tree node corresponds to a page on thif we further assume a uniform access pattern and an inde-
disk, but the cache is memory-based rather than disk-based?€ndent reference model, then we have
Furthermore, it is also not optimal in performance because hitn — size.
an entry far away from an object might not help support this o = >ieps Size;]
object to be the result of future queries. And this is further —— - o o _
dependent on the type of the query: to support an object as 4For simplicity, the fixed transmission overhead is ignoredt atoes

i . not affect the analysis of minimizingesp(Q).

the result, arange query d.O(_ES not nee(_j any otherindex entry s, section 6, we show that the size &, is generally one or two
(other than the one containing the object), whereas a kNNorders of magnitude smaller than that/®f.




wheresize, is the cache size for storing objects aside;

is the size of each objeétin the dataseDS. In semantic
caching or proactive caching, the two notidnig. andhit,

are differentafinNC C Ry, i.e., even if an object is actually
aresult and is cached, it is possible that it is not returrsed a
a saved object if no enough index is cached to support this
fact. This is called dialse missfor the cache. As such, the
cache hit rate can be derived from byte hit rate as:

* noden

(a) Spatial Placement of

hit, = hity - [L — P(o ¢ Rslo € RN C)]
size,

B >, size;

The conditional probabilityP(o ¢ Rs;lo € RN C) in
Equation (2) is defined as tHalse miss rate(fmr). It
indicates to what degree the cache supports the cached ob-
jects to answer subsequent querigsyr depends not only
on the caching models (e.g., semantic caching or proactive
caching) but also on the types and the parameters of the
gueries. This is because different queries need different
ranges and precisions of the information around an object
o to confirmo as a result. For a range query, onlg loca-
tion information is needed. For a kNN query issued at point
p, the range of the confirming information is the circle cen-
tered atp with radius Distance(p,0). And the required
precision of this information is just to show whether or not away entries coarser than those entries close to the cached
there are less thah objects in the circle. For a distance objects. The degree of the coarseness is adaptive to the cur-
spatial join with threshold, the range is the circle centered rent fmr so that the cached index just keeps necessary sup-
at o with radiusd. But the required precision is specified porting information.
on the other dataset, which is to show if there is any ob-
ject of this dataset within this circle. Obviously, givereth 4.2 The Compact Form of R-tree Node
same supporting index for the cached objects, the queries
which require large-ranged and highly-precise confirming  We define thdull form of an R-tree node asn itself
information lead to highfmr, and vice versa. with all its entries. Since not every entrysirnis accessed by

In order to minimizehit. in Equation (2), the page, se- (@, the non-accessed entries can be combined into “super
mantic, and proactive caching models have different trade-entries” to reduce the size af Such a coarse representation
offs betweensize, and fmr. Page caching provides no is called acompact form of n with respect taQ,., denoted
auxiliary knowledge for the cached objects and, hence,asCF(n,Q,).
fmr = 1 andhit. = 0. But its size. is equal to the To efficiently compute the compact form of we build
actual cache size. Semantic caching provides the knowl-a binary partition tree of all the entries inby recursively
edge by caching the query descriptions. But such knowl- partitioning a set of entries into two subsets until the set
edge is available to the same type of queries only. Thus,has only one entry. The partitioning uses the R-tree node
it is not efficient in lowering the overalfmr. Proactive splitting algorithm to assure minimal overlap between the
caching provides the auxiliary knowledge for all types of MBRs of the two subsets of entries. Figure 5 illustrates the
queries by caching the index nodes. But it does so withoutpartition tree for an R-tree node which contains entries
knowing if these cached nodes are useful for subsequent; ~ r5. D, throughD, show the recursive splitting. Each
queries. Obviously, if the subsequent queries require onlyintermediate node in this tree is regarded as a super entry of
short-ranged and imprecise confirming information around n, and is designated by a unique(id code), wherecode is
the objects, caching the complete index nodes overly sup-formed by concatenating the binary digit 0/1 along the path
ports them and wastes the cache space. Therefore, in thérom the root to this intermediate node.
following two subsections, we propose adaptive proac- When @, is processedn or a super entryn, code) is
tive caching schemwith the objective of striking a balance popped from the priority queug. Only its two children
betweenfmr andsize.. The basic idea is to represent far- in the partition tree, i.e.(n, code @ 0) and (n, code & 1)

[1-P(o¢ Rsloc RNC)]. 2)

(b) The Binary Partition Tree

Figure 5. Binary Partition Tree of R-tree Node



(@ is the string concatenation operator) are considered asi to the client’s currenfmsr, which indicates not only how

child entries. For example, to process the NN qu@ry
in Figure 5(a) onn, we first pushn’s two children, i.e.,
(n,0) and (n,1) to H. Then, (n,1) is popped, and-
and (n,11) are pushed intd<. Finally, popping uprs;

terminates the processing. Only the grey nodes in Fig-

ure 5(b) are accessed 1B).. The compact form ofr with
respect taR, comprises the leaf entrys and all the grey
nodes whose child nodes are not in grey, (& (n, Q)
{(n,0), (n,11),r5}. Compared with the full form of 5 en-
tries, i.e.,{r1,r2, 73, 74,75}, the compact form saves stor-
age space by0%.

The compact form is efficient to compute because the

computation is embedded in the query processing. N et
denote the number of entriesqin The number of interme-
diate nodes in the binary partition treeNs- 1. The original
query processing accesses all fiieentries; the new algo-
rithm in the worst case accesses all fiie- 1 intermediate
nodes and all theV entries, which doubles the processing

much confirming information the recent queries need, but
also how well the current provides such information. The
adaptive scheme works as follows. The client periodically
submits its recentfmr to the server. If the value is higher
than the last recordefimr by s percent § is the sensitiv-

ity parameter), it means that the recent queries require fine
entry information around the cached objects; so the value
of d for this client is increased by 1. On the contrary, if it
is lower than lastfmr by s percent,d is decreased by 1.
Otherwised remains its last value.

5 Proactive Cache Management

The cache manager views both index nodes and objects
asitemswhich support to answer queries locally. The man-
ager is responsible for choosing victims from these items
for cache replacement. In this section, we derive an optimal

time. Nonetheless, the average processing time is expecteteplacement schem@R D3 for proactive caching.

to be much shorter since, in most cases only a small portion

Let M denote the size of caclde size(i) the size of item

of the intermediate nodes and entries are accessed, as will, andbenefit(i) the benefit of caching. The cache re-
be demonstrated in the experiments (Section 6.4). Buildingplacement problem is, given the incoming items of sizg
the binary partition tree for each R-tree node is an offline to find a victim setC’ C C such thaty ;. ., size(i) <

and one-time operation. Each tree hés- 1 entries plus
2 x (N — 1) pointers. Therefore, the additional space re-
quired to store the binary partition trees for all the R-tree

M—M"and},; .. benefit(i) is maximized. This prob-
lem is the0/1 Knapsackproblem, except that for cache
replacement, the victims are removed from, instead of

nodes is no more than two times that of the R-tree indexfilled into the knapsack. The greedy algorithm (denoted

itself.
4.3 Adaptive Proactive Caching

The full form has the most entry information around
each result object, whereas the compact form (cailed
mal compact form hereinafter) only provides sufficient en-
try information to support result objects for quepy., thus
leading to a higheyfmr but a largerize.. To obtain a bal-

as GRD1), which removes the worst items in terms of
benefit(i)/size(i) from C, has been proved to be a 2-
approximation algorithm.

5.1 The Constrained Knapsack Problem

By the definition of proactive caching, if a cached in-
dex node is removed, all its descendants including the index
nodes and the objects are no longer accessible and, thus,

ance between these two metrics, we first generalize the twoshould also be removed. Therefore, the proactive caching

forms into thed*-level compact form It is obtained by
replacing each entry in the compact form with dtdevel

replacement problem is@nstrained knapsack problem
with the constraint that if item is removed, all its descen-

descendant nodes or the entries whichever come first indants must be removed altogether.

the binary partition tree. For example, in Figure 5(b), the
1*-level compact form of a normal forf(n, 0), (n, 1)} is
{r1,ra,75,(n,11)}. In general, al*-level compact form is
approximatel\2? times finer than the normal compact form.
Suppose the height of the binary partition treé,ishe0+-
level compact form is the normal compact form and/ite
level compact form is the full form. Therefore, the choice of

,From Section 4.1, the benefit of a cached itemthe
response time saved from retransmitting it on the wireless
channel for subsequent queries, itenefit = prob(i) x
size(i) x Ty, whereprob(i) is the access probability of item
i. As Ty is a constant for every item, we omit it for sim-
plicity. Hence bene fit = prob(i) x size(:). Since remov-
ing 7 presumes removing al descendants from the cache,

d determines how fine and how proactively the cache storesycy. fit (i) must count fori as well as’s descendants. That
the supporting entry information around the cached objects jg_

The remaining problem is to determine the valuedof
so that the cached index sufficiently but not overly sup-

ports the cached objects for subsequent queries. We adapt

benefit(i) = Z prob(j) x size(j)+prob(i)x size(i),
JjeD(i)
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where D(i) denotes the set of descendants.ofThe met-
ric benefit(i)/size(i), by which GRD1 picks victims, now
has a physical meaning ekpected bitwise response time
saving(EBRS(1)),

sep(iy brob(j)size(j) + prob(i)size(i
EBRS(i) = > jen(i Prob(j) | (j) P (’) ().
> jep size(f) + size(i)
EBRS(i) has the following two features:

Corollary 5.1 LetCh(i) denote the set of child items of
If Ch(i) = (0,1 is called aleaf item and EBRS(i) = prob(i).

Corollary 5.2 The recursive definition df BRS(i):

SIZE(j)
SIZE(i)

size()

EBRS@) = > S1ZE®0)"

Jj€Ch(i)

EBRS(j) +

r0ob(7).
3)

Here SIZE(i) is the total size ofi and D(i), i.e.,
SIZE(i) = X ;ep( size(j) + size(i). The recursive
formula shows that, after the removal of an item together
with its descendants, only thE BR.S of its ancestors are
changed.

Therefore, the greedy algorithm, GRD2, for the con-

In other words,EBRS (i) is the weighted arithmetic av-
erage of allEBRS(j) andprob(i). Therefore,EBRS (%)

is between the minimum and the maximum of these values,
which aremin ¢ o) EBRS(j) andprob(i), respectively.
Therefore, the inequality holds far+ 1.

From (1) and (2),V item 4, minjcconiy) EBRS(j) <
EBRS(i) < prob(i). O

Lemma 5.4 shows that GRD2 chooses the victim only

from the leaf items. And Corollary 5.1 shows that for any
leaf itemi, EBRS(i) = prob(i). Thus, GRD2 is equiv-
alent to picking the leaf items with the lowestob values.

As such, itis unnecessary to maintdii RS anymore. We
call the following enhanced algorith@RD3.

Definition 5.1 Algorithm GRD3: Efficient Replacement
Algorithm for Proactive Caching

(1) scanC and discard any, s.t.size(i) > M — M’;

(2) put all leaf items in a priority queué&’ whose key is
prob;

(3) pop itemi from G and remove it front;

(4) if i is its parentyp’s last child, pusty into G;

(5)if >, size(i) > M — M’, goto (3);

(6) denote the most recently removed itéras B. |f

strained knapsack problem is the same as GRD1, excepprob(B) x size(B) > > . . prob(j) x size(j), remove

that: (1) the metric for finding the victims iEBRS; (2)
after the removal of victim, its ancestorsE BR.S values
should be updated according to Equation (3).

There are two problems associated with GRD2: (1) the
EBRS update is costly because the derivatiotd? RS (4)
is recursive according to Equation (3); (2) GRD2 loses the
approximation bound with GRDL1. In the following, we ex-
tend GRD2 to GRD3 which is proved to yield the same out-
come as GRD2, but is more efficient and has an approx-
imation bound of 2. To derive it, we need the following
lemmas:

Lemma 5.3 If item j is item+’s descendantprob(i) >
prob(j).
Lemmab5.4V item 4, minjcon) EBRS()) <

EBRS(i) < prob(i).

Proof: We prove the inequality by mathematical induction.
(1) For the leaf items, by Corollary 5.1 BRS(4)
prob(i), and since has no children, the inequality holds.
(2) Suppose that for any itemh whose deepest descen-
dants is fewer than or equal to (¢ > 0) levels away
from 4, min;ccp, ) EBRS(j) < EBRS(i) < prob(i).
Thus, for any iteni whose deepest descendantskis-
1 levels away, we havdEBRS(j) < prob(j). From
Lemma 5.3,prob(j) < prob(i). Therefore,prob(i) >
max;ccp;) EBRS(j). On the other hand, according to

Corollary 5.2,
. SIZE(j . ) ] .
EBRS(i)= Y MTE((QEBRS(JH;;;—%WW)

JjECh(3)

everything remained i@ and insertB back toC.

GRD3 is much more efficient than GRD2 because it does
not computeS1Z F, bene fit andEBRS. Furthermore, the
following theorem shows that GRD3 is a 2-approximation
algorithm for the constrained knapsack problem.

Theorem 5.5 GRD3 is a 2-approximation algorithm for
the constrained knapsack problem.

Proof. Let KP denote the original knapsack problem and
CKP denote the constrained knapsack problem where items
must be removed with their descendants. Q&t7'(-) de-

note the optimal algorithm for a problem. We have,

(1) GRD1(KP) > $OPT(KP), by the proof from the
literature.

(2) GRD3(CKP) = GRD1(KP), because Lemma 5.4
guarantees that ilGRD1(KP) is executed, it always
chooses leaf items with the lowestob values, which is
exactly the same aSRD3(CKP).

(3) OPT(KP) > OPT(CKP), because a non-
constrained problem must have a better optimal solution
than its constrained counterpart.

From (1)(2)(3), we hav& RD3(CK P) = GRD1(KP) >
1OPT(KP) > JOPT(CKP). O

5.2 Implementation Issues for GRD3

To make GRD3 to work, each item is associated with
somemetadata More specifically, the metadata includes



the following properties of the item: (1) physical address, | Parameter | Value Parameter | Value

(2) size, (3) time of insertion (in terms of the sequence id of | spd 0.0001 think_time | 50s

the query when it is inserted), (4) number of hit queries, (5) | Area,nq 1076 Distjoin 5x10~°

parent item id, (6) number of cached children. Ko 5 bandwidth | 384Kbps
Metadata (5) provides a pointer to look up the parent le] 0.1%~5% H 10KB

item, which is missing from the common indexes such as [ 0.8 5 20%

the R-tree and theB*-tree. Metadata (6) indicates whether
an item is a leaf item. This value is updated when its child
nodes are inserted and removed from the cache.

In practice, prob(i) can be estimated by the ratio of
metadata (4) to the total number of queries thaas lived
through:

Table 6.1. System Parameters Settings

The cache size is varied from 0.1% to 5% of the total dataset
size with 1% as the default value.

The server is implemented on a Pentium 4 1GB PC run-
ning Win2000 Server and I1S 5.0, and the client is simulated
on a Pentium 4 512MB PC running WinXP. The client and
the server communicate through the SOAP/HTTP protocol.
We set the system sensitivity parametdor the adaptive
proactive caching at 20%. Table 6.1 summarizes the param-
eter settings for the simulation study.

We implement the semantic caching for range and kNN
gueries according to [15, 20]. No semantic caching tech-
nigues are available for join queries. When the client re-

The simulation emulates a mobile client issuing spatial ¢egjves ajoin query, it directly passes it to the server. Teha
queries about its neighborhood. The client moves accordingy fajr performance comparison, we choose the state-of-the-
to two mobility models: theandom waypoin{RAN) and  art cache replacement scheme for each of the three cache
the directed movemen(DIR). Under RAN [4], the client  models: FAR for semantic caching [15]L.RU for page
selects a random point as its destination and moves to it alcaching, andaRD3 for adaptive proactive caching. The
a randomly chosen speegld; upon arrival, it pauses for a  metrics for performance comparison are the query-wise
random period and selects a new destination. DIR restrictsjink hytes downlink bytesresponse timédefined in Section
the selection of the next destination so that the moving di- 4.1), and the overattache hit rate(hit.) andbyte hit rate
rection is roughly reserved. This is a better model for on- (hit,). Theuplink bytesanddownlink bytesmetrics imply
purpose movements [15]. the query cost on wireless communication and power con-

The event of client issuing queries is modeled #B-  sumption, which are the major concerns in mobile environ-
sonprocess. More specifically, the client waits for an expo- ments. To simplify the notation, in the sequBIAG repre-
nentially distributed random period (callédinking timg sents page caching,EM represents semantic caching, and

to issue a new query after the current query completes. In4 p RO represents adaptive proactive caching.
each experiment run, the client issues 10,000 queries. We

use two large-scale dataseféF which contains 123,593
postal zones of New York, Philadelphia, and Boston of the
United States, and?D which contains 594,103 railroads
and roads in US, Canada, and Mexico [17]. The coordinate
systems of both datasets are normalized to unit squares. Th
average object sizp| is 10K B. The sizes of individual
objects follow a Zipf distribution with the skewness param-
eterd being0.8. The sizes of the R*-tree indexes (with a
page capacity of 4KB) for these two datasets are 3.8MB and
18.5MB, respectively. The query type is randomly selected
from range, kNN, and join. The window of a range query
is centered at client’s current position with an average siz
Areayng = 1076 . The join query is a distance self-join
which returns pairs of objects whose distances are lower
than a thresholdist;.i,. Thek for a KNN query is ran-
domly chosen from 1 td<,,.,. The client has a 384Kbps 8Similar results were observed for tiieD dataset; they are omitted in
wireless channel, which is the standard for a 3G network. this paper due to space limitations.

#hit_queries

rob = )
b T — time_of _insertion

whereT" denotes the sequence id of the current query.

6 Performance Evaluation

6.1 Simulation Model

6.2 Overall Performance Comparison

Figure 6 shows the measured performance for the three
aching models when the mobility modelld R and|C| =
% of the size of dataseN E.® For better legibility, the
values from the three models for each metric are normalized
to [0, 1] and the maximum value is shown in the parenthesis
following the metric label.

PAG always has the highest uplink bytes since it needs
to submit the identifiers of all cached objects to the server.
As a reward, it downloads the fewest bytes. However, since
PAG does not store any supporting information for these
objects, the cache hit rate is zero. As a result, the re-
sponse time is rather pootlSEM downloads the highest
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6.3 Impact of Cache Sizes and Replacement

. Dran moiR o Schemes
£ 1 E m In this set of experiments, we measure the response time
§ 2 2., under four cache size(|) settings: 0.1%, 0.5%, 1%, and
€, o 5%. The mobility model isRAN. From Figure 8, we ob-
e e R serve that whenC'| increases from 1% to 5% AG's re-
() Response Time (b) False Miss Rate sponse time even increases. This is because its uplink bytes

is proportional toC| and the performance gain of caching
Figure 7. Performance under Different Mobility Models no longer compensates the increased_ uplink overhead for
|C| > 1%. For SEM, the response time also saturates
when|C| > 1%. This is due to the fact that its performance
gain is separate for each query type, and wi@&h> 1%,
caching range queries and caching kNN queries have both

number of bytes, because range and kNN queries Canno]Leached their performance limitsA P RO overcomes this

share cached objects. The same reason explains why it§ . o1 b ; . :

) . i y sharing the cached index nodes and objects
cache hit “f“e is only one-thqu that 4iPRO. APRO ad- among all query types. Therefore, it still achieves notable
dresses this problem by sharing the cached objects amon%erformance gain afte’| > 1%

all query types. The result is@ % cache hit rate, and yet To further justify theAPRO caching model, we also

mftﬂownlfmktbytes 'sljl.JSt srlllgr;%(lslrger:_than iﬂaﬂéfci' ¢ show in Figure 9 the client CPU processing time per query
ese factors explain why achieves the snorest -\ jer various cache sizes. It is measured by subtracting

Irfiss,pr?gtse?/vgrr?r? ?rr?egr:ﬁetgir:?é\?:gjr?th:acmri(;idczlss r']r:):;g:rrﬁfthe network transmission time from the whole processing
y time for each query. Therefore, it includes the time cost

:Iﬁ '&t;%qu.lmkl andf?ownltlpktbytes n;z:rlcs, which (ljrr;)plleds for all necessary CPU operations such as query process-
a IS also efficient in terms ot the power and band- ing and cache maintenanceAPRO is more expensive

width consumption. than PAG and SEM in most cases, since it partially pro-
cesses the queries, especially the spatial joins which are
CPU-intensive. But its sensitivity to cache size is much
lower, thanks to the cached index structure. In other words,
APRO does not need to search sequentially in the cache,
which is the case for botl?AG and SEM. Thus, it is

We also compare them under different mobility models
and show the results in Figure 7. The response time for
DIR is larger than that foRAN in all cache models as
shown in Figure 7(a). This is expected BAAN exhibits
better query locality tharDIR; so the benefit of caching
is more prominent. An interesting observation is that for expected to outperfori? AG and SEM for larger cache

APRO, the response time increases very little when the sizes. On the other hand, the figure also justifies our as-
mobility model changes t&IR. This is becausel PRO sumption that the response time is predominantly incurred
proactively retrieves entry information for cached obgect ©ON Wireless communicatioh.

hence, even if the client visits a new place, the cached index N the next set of experiments, we evaludte RO under
information may already cover this area in supportive of the Various replacement schemes, nameU, M RU, FAR

CaChed_ObJeCtS' Figure 7(b) justlfles _thIS eXpIanatlon' the "The actual mobile CPU may work much slower than the CPU where
false miss rate o PRO almost remains the same under e simulation is carried on, but the gap between the CPU tirdetias

the two mobility models. communication delay is still larger than one order of magnitude
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Figure 10. Performance under Different Cache Replace-
ment Schemes

[15], and GRD3. Sincé/ RU is always the worst of all,
Figure 10 shows the rest three onlyLRU outperforms
FAR and GRD3 under theDIR mobility model. This

is because unddpI R, an object no longer accessed can be
more quickly detected and removed bYRU. For GRD3,

the object is dropped only when itsob value becomes the
lowest, which takes a longer time thaU. For F AR, the

change of queries by exclusively issuing kNN queries and
controlling the averagé. The averageé: decreases grad-
ually from 10 to 1 for the first 5,000 queries, and then in-
creases gradually up to 10 for the second 5,000 queries. We
measure the false miss rate, the index size in the cache (in
terms of the ratio of index size to total cache size) and
the response time for every 500 queries and plot them in
Figures 11(a), 11(b), and 11(c), respectively. In order to
highlight the performance change, we choose a small cache
size 0.1% and the less predictable mobility moBel V.

As known from Section 4.1, the higher tkevalue, the
less precise the confirming information is needed and, thus,
the lower thefmr. From Figure 11(a), the false miss rate
of CPRO is the most vulnerable to the changescpactu-
ally its trend almost reflects the opposite trend of changing
k. This is expected a8’ PRO caches only the necessary
entry information to support the query being processed. A
high fmr may it lead to,C PRO consumes the least cache
size. FPRO, on the contrary, achieves the least and the
most stablefmr, but it almost consumes half of the cache
size. As a result, wheh is large, FPRO has the longest
response time; and whenis small or moderate(’ PRO
has the highestAP RO maintains a steadyms through-
out the experiment, and it increases index cache size only
whenk is small, i.e., more precise entry information around
the cached object is needed. Therefore, its response time is
the best among the three almost all the time. However, it is
noteworthy that in response to the changefs, diie adaptive
scheme has certain degree of delay (see Figure 11(b)), since
it takes time to fade out those old cached index nodes in
order to decrease the index cache size. TherefbfeRO
is expected to work fine when both the cache size and the
changing pace of the query impact on ther are small or
moderate.

Regarding the price oAPRO over the nonadaptive
schemes, the sizes of the binary partition trees for dataset

object replacement depends on its distance to the user; thu®V E and RD are 4.2MB and 23.7MB, respectively. The
the performance is less predictable. However, the result un query processing time of the server is even reduced from

der theRAN model is just the opposite. Due to the random
movementL RU might erroneously remove the objects that
are to be requested by the near future queries. Sihd&

0.0081s (forF' PRO) to 0.0067s (forAP RO), which coin-
cides with our analysis in Section 4.2 that the average CPU
cost for the adaptive scheme is low because, in most cases

andGRD3 are both independent of the very recent accessonly a small portion of the intermediate nodes and entries

history, they perform much better. On the wholéRD3

in a binary partition tree are accessed.

behaves more stable than the other two considering both

mobility models, because theob value is accumulated and
less vulnerable to the movement changes.

6.4 Effectiveness of Adaptive Proactive Caching

7 Conclusion and Future Work

In this paper, we propose the proactive caching model for
spatial queries in mobile environments. Proactive caching
captures the semantics of queries by caching the index that

This set of experiments compares the performance ofis responsible for answering them. The merits of proactive

adaptive proactive cachingA(P RO) with its non-adaptive
counterparts, i.e., caching full form index¥'PRO) and
normal compact form index{PRO). We simulate the

caching over semantic caching are two-folded: (1) the gran-
ularity of cache reuse is at the object level, finer than that a
the query level; (2) the cached objects can be easily shared
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Figure 11. Performance Time Series under Adaptive and Nonadaptive Schemes

among common types of spatial queries. Furthermore, we [8] D. Dewitt, P. Futtersack, D. Maier, and F. Velez. A study of
propose the adaptive proactive caching which further opti-
mizes the query response time. Empirical results show that
proactive caching achieves a significant performance gain

over

page caching and semantic caching in terms of various

performance metrics.

For the future work, we plan to investigate the impact
of server updates on proactive caching and devise efficient
cache invalidation schemes. We also plan to extend proac-
tive caching so that the cached index is shared not only [11]
among various types of queries on the same client, but also
among various clients in the neighborhood. Since these
clients exhibit high query locality, such cache collabinat
is beneficial in terms of cache reuse and bandwidth sav-
ing. This is particularly useful in a mobile ad-hoc network,
where the bandwidth of local connections is much broader
and cheaper than that of remote connections.
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