
Processing Window Queries in Wireless Sensor Networks

Yingqi Xu∗ Wang-Chien Lee∗ Jianliang Xu† Gail Mitchell
Pennsylvania State University Hong Kong Baptist University BBN Technologies
{yixu, wlee}@cse.psu.edu xujl@comp.hkbu.edu.hk gmitchell@bbn.com

Abstract
The existing query processing techniques for sensor net-

works rely on a network infrastructure for query propa-
gation and data collection. However, such an infrastruc-
ture is very susceptible to network topology transients that
widely exist in sensor networks. In this paper, we propose
an infrastructure-free window query processing technique
for sensor networks, calleditinerary-based window query
execution(IWQE), in which query propagation and data
collection are combined into one single stage and executed
along a well-designed itinerary inside a query window. We
study the parameters for setting up an itinerary (e.g.,width
and route) and incorporate into IWQE three data collec-
tion schemes based on different performance trade-offs. Fi-
nally we demonstrate, by extensive simulations, the superior
energy-time efficiency, robustness, and accuracy of IWQE
over the current state-of-the-art techniques in supporting
window queries under various network conditions.

1 Introduction
Wireless sensor networks are revolutionizing the ways of

collecting information from the physical world [3]. Due to
unattended and untethered node deployments, most sensor
network-based applications specify their interests usingge-
ographical predicates (i.e., spatial queries). Window query,
one of the most important types of spatial queries, specifies
a geographical region (e.g., a two-dimensional rectangular
window) for retrieval of the sensed data from the nodes
residing in the specified region. Window queries are of-
ten combined with aggregation functions (e.g., MAX, AVG,
COUNT, etc.) to support analysis of complex phenomena.
An example is “retrieving the average temperature from re-
gionw1”.

The window query processing techniques in traditional
database research typically assume data are available in
a centralized database and focus on improving the disk-
access performance. However, collecting all sensor read-
ings into a database is infeasible for a sensor network
given its scarce resources (including energy, bandwidth,
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storage and processing). Recently, a number of stud-
ies [6, 10, 14, 15, 19, 21] have explored distributed query
execution based on in-network data storage. They typically
split a query execution into two stages:query propagation
in which a query is propagated to the sensor nodes along
some hierarchical infrastructure (e.g., a tree or a cluster),
anddata collectionin which data are aggregated (usually in
a reversed order) along the same infrastructure. Counting
on a network infrastructure, these query processing tech-
niques are classified asinfrastructure-based query execu-
tion. Such techniques are susceptible to network topol-
ogy changes, yet change is the norm (due to node move-
ment or transient switching between active and sleeping
modes for power saving) rather than the exception in sen-
sor networks [25]. Maintaining a stable infrastructure in
a dynamic network incurs excessive update messages and
can cause message collisions, packet losses and transmis-
sion delays. The network dynamics deteriorate the perfor-
mance of infrastructure-based query processing techniques
and shorten the lifetime of a sensor network. These defi-
ciencies call for novel techniques for window query pro-
cessing that are not dependent on any network infrastruc-
ture.

In this paper, we propose such an infrastructure-free
query processing technique for wireless sensor networks,
called Itinerary-based Window Query Execution(IWQE).
In IWQE, data are aggregated with query propagation along
a well-designed itinerary. Specifically, starting from an ini-
tial sensor node in the query window, a query is propagated
to the next node on the itinerary after collecting data from
a current sub-region inside the window. This procedure is
repeated until the last node on the itinerary is reached, from
which the result is returned to the sink node. In contrast to
the infrastructure-based techniques, IWQE does not main-
tain any network infrastructure and hence improves energy
efficiency. It also reduces the query latency by combining
data collection with query propagation.

Many unique and challenging research issues arise in
IWQE, such as itinerary settings (i.e., width and route),
query window coverage, in-network data processing, and
handling of packet losses. This paper provides a thorough
study of these research issues. More specifically, we make
the following contributions in this paper:



• We introduce the IWQE which, to our best knowledge,
is the first infrastructure-free window query process-
ing technique for wireless sensor networks. IWQE,
without relying on any infrastructure, performs query
propagation and data collection in an integrated man-
ner, thus improving the network’s energy efficiency.

• The study reveals profound insights into guidance for
designing an energy-aware and robust IWQE. Two key
parameters for setting up an itinerary, namelyitinerary
width and itinerary route, are studied. Themaximum
itinerary width that ensures a full coverage of a query
window is mathematically derived. Three itinerary
routes with different design goals are explored.

• In order to avoid message collisions during data col-
lection, three data collection schedules are developed
based on the tradeoff between energy efficiency and
query latency.

• We evaluate, with an extensive simulation study, the
performance of IWQE against three existing query
processing techniques. IWQE exhibits a superior per-
formance in terms ofenergy efficiency, query latency
andquery accuracyunder various network conditions.
Indeed, IWQE soundly outperforms all compared pro-
tocols.

The rest of the paper is structured as follows. We review
the related research work in Section 2. Section 3 presents
the basic design of IWQE and Section 4 further explores
IWQE by taking into account adversary network conditions.
We report our performance evaluation and simulation re-
sults in Section 5. Finally, Section 6 concludes the paper
and discusses the future work.

2 Related Work
IWQE, to our best knowledge, is the first infrastructure-

free window query processing technique for sensor net-
works. Nevertheless, our work is inspired by a number of
related research efforts.

In the existing solutions, a window query is typically
processed based upon an infrastructure (e.g., a tree or a clus-
ter based structure [6, 14, 19, 21]) by two steps. First, a
query is propagated toward the specified query window. Af-
ter the query covers the query window, data collection takes
place along the infrastructure. The sensor nodes falling into
the query window recursively report their readings to the
nodes from which they received the query, such that par-
tial results are returned level-by-level up the infrastructure
until reaching the root node. Based on thesizeof the infras-
tructure, this approach can be further divided intonetwork
spanning infrastructure(NSI) andwindow spanning infras-
tructure (WSI). Examples of one NSI and two WSIs are
shown in Figures 1(a) - 1(c).

An NSI is usually built when deploying the network and
is maintained during the entire network lifetime [6, 14].
Due to its large scale, NSI incurs significant construction
and maintenance overhead. For window query, NSI in-
volves many irrelevant sensor nodes outside the query win-

dow for query processing. Moreover, NSI initiates the query
processing from the root node (e.g., tree’s root, or cluster
head), such that queries inserted from other nodes have to
be first routed to the root node, which costs extra resources.
On the other hand, in WSI, the query is first forwarded to the
query window by an end-to-end routing (e.g., geo-routing)
protocol. Once the query reaches the window, an infrastruc-
ture within the query window is built along with the query
propagation [19, 21]. By constructing an infrastructure for
each query, the WSI approach also incurs noticeable over-
head. Moreover, the query latency is long due to the two-
staged query execution.

Geo-routing protocols (e.g., [11, 12, 22]) have been
widely adopted in sensor network design (e.g., [13, 20]).
However, as pointed out in [24], geo-routing, crafted for
end-to-end routing, is not efficient for query propaga-
tion/data collection inside a region.

The itinerary-based idea, although not yet adopted by
existing query processing techniques, has appeared in uni-
cast routing [17], data fusion [18] and network surveil-
lance [7] for sensor networks. Different from those studies,
our proposal explores the nature of an itinerary (in terms
of itinerary width and itinerary route), and investigates re-
search issues in query propagation and data collection, such
as in-network processing and robustness to packet losses.

Many techniques designed for ad hoc and sensor net-
works can complement IWQE. For example, approximate
in-network data aggregation [4, 16] achieves a satisfactory
query accuracy with a reasonable energy consumption for
duplicate-sensitive queries. Such techniques can be used to
enhance IWQE’s resilience to packet losses, as will be dis-
cussed in Section 4.2.

Finally, our definition of query accuracy for window
queries, which provides a strict yet intuitive criterion for
measuring the robustness of a query processing technique
to dynamic network conditions, is inspired by [2].

3 Design of IWQE
In this section, we first describe the assumptions used in

our study, then present the basic idea of IWQE, and finally
discuss the detailed design of IWQE.
3.1 Assumptions

A window query retrieves the sensed data from the sen-
sor nodes falling within aquery window, which is a spa-
tial area of interest specified by the user. In this paper, for
clarity of the presentation, we assume the query window is
shaped as a two-dimensional rectangle; the proposed tech-
niques can be extended for other window shapes and for
three-dimensional space. Thus, a window query is defined
by aspatial predicatethat specifies the location and size of
the query window, anoperational functionthat specifies the
operation over collected sensor readings, and aquery life-
time T during which the query is valid. In this paper, we
consider only snapshot queries, which expect to obtain the
query result only once during its lifetime. The sensor nodes
are location-aware. The network could be dynamic in that
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Figure 1. Window query processing

the sensor nodes may move inside the network and/or may
occasionally enter into a sleep mode to save power. Each
node maintains a neighbor table via periodic exchange of
beacon messages.

3.2 Basic Idea of IWQE
As we pointed out, an infrastructure-based technique

is vulnerable to network dynamics and thus we examine
infrastructure-free window query processing techniques.A
naive infrastructure-free approach is to flood the query to
all sensor nodes inside the network. The nodes inside the
query window, upon receiving the query, report their read-
ings to the sink node by an end-to-end routing (e.g., geo-
routing) protocol. Although not affected by network topol-
ogy changes, the naive approach consumes excessive net-
work resources for query processing and does not support
in-network aggregation.

IWQE incorporates in-network data aggregation while
providing robust and effective query processing under tran-
sient network topologies. To minimize the number of un-
necessary node visits, IWQE forwards the query toward the
query window by a geo-routing protocol (shown in Fig-
ure 1(d)). Inside the query window, a set of sensor nodes
calledQuery nodes(i.e., Q-nodes) are chosen for query dis-
semination. Once receiving a query, a Q-node broadcasts
a probe message that includes the query and information
about the itinerary (e.g., itinerary width and itinerary route).
Upon hearing the probe message, the neighbor nodes that
are qualified to reply the query, calledData nodes(i.e., D-
nodes), report their sensed data back to the Q-node. After
aggregating the data from all D-nodes and the partial re-
sult received from the previous Q-node, the current Q-node
selects the next Q-node based on the itinerary and a query
forwarding heuristic, and forwards this new partial query
result to the selected next Q-node. After the query traverses
the entire query window, the aggregated result is returned
back to the sink node, again by a geo-routing protocol. As
can be seen, by performing data collection along with query
propagation at each Q-node, IWQE does not need any static
network infrastructure.

It is a challenge to design such an infrastructure-free
window query processing technique to be robust, yet en-
ergy efficient. Since a query is executed along an itinerary,
the itinerary is extremely important to the performance; thus
the key parameters that determine an itinerary need an in-
depth study. Moreover, data collection from multiple D-
nodes needs to be scheduled to avoid excessive message
collisions and processing delays. The remainder of this sec-

tion addresses these issues in detail. Other research chal-
lenges, including low network density and packet losses,
will be discussed in Section 4.

3.3 Itinerary
Intuitively, an itinerary is one or a set of curves that

pass through the query window. As the network topol-
ogy is not known a priori, the itinerary formed by the Q-
nodes (calledreal itinerary (RI)) may not exactly match
a planned itinerary (calledideal itinerary (II)). Figure 2(a)
shows an example of IWQE, in which nodeQ1 andQ2 are
two adjacent Q-nodes andD1 andD2 are the D-nodes for
Q1. All the arrows connecting the black nodes (i.e., the Q-
nodes) form the RI and the grey dashed plotline is the II.
An II (or RI) can be further split into a set of parallelsub
ideal itineraries(S-II’s) (or sub real itineraries(S-RI’s)).
The distance between two adjacent S-II’s is defined by an
itinerary widthor simplywidth. Furthermore, anS-II zone
is defined as the region with an S-II as the center line and
the itinerary width as the width. Figure 2(a) shows three
S-II zones; they are separated by two black dashed lines.

Given an S-II, IWQE aims to collect all sensor readings
falling into the corresponding S-II zone, such that the query
window is fully covered(i.e., all the sensor readings in-
side the window are collected) when all S-II’s are traversed.
However, the RI may deviate from the II. Without proper
control of the deviation, the RI may not be able to cover
the entire query window, thus hurting IWQE’s query ac-
curacy. This problem can be addressed by carefully plan-
ning the itinerary. In the following, by studying two key
design parameters for planning an itinerary,itinerary width
and itinerary route, we demonstrate this full window cov-
erage can be achieved. Itinerary width reflects the close-
ness between adjacent S-II’s. Generally speaking, a smaller
itinerary width results in denser itineraries and smaller S-II
zones, thus is more tolerant of the deviation of RI from II
and favorable to improve the query accuracy. On the other
hand, a small S-II zone incurs unnecessary transmissions
and message collisions, which obviously defeat the goal of
energy efficiency. The itinerary route represents the shape
of the query processing itinerary, which has an impact on
energy efficiency and query latency.
3.3.1 Itinerary Width
As we argued earlier, the II has to be designed in such a
way that a query propagated along the RI reaches every sen-
sor node in the query window at least once. Although with
this requirement some sensor nodes may receive the query
more than once, the redundancy provides a full coverage
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of the query window. In this section, we derive themaxi-
mum itinerary width(i.e., MIW ) that ensures query win-
dow coverage. WhileMIW is not necessarily the optimal
choice of itinerary width, it provides important guidance for
balancing the tradeoff between energy efficiency and query
accuracy.

In order to deriveMIW , we assume the network is
dense enough such that Q-nodes that make geographical
progress on the itinerary are always available. The sensor
network with reduced node density is considered in Sec-
tion 4.1.
Theorem: Let R denote the transmission range of the
sensor nodes. In order to guarantee full coverage of a
query window, the itinerary width must be less than

√
3R
2

(i.e.,MIW =
√

3R
2

).
Proof: We prove the above theorem by showing: 1) when
itinerary width equalsMIW , all sensor nodes can be cov-
ered; 2) when itinerary width is larger thanMIW , a node
may not be covered.

We assume that inside a rectangular S-II zone, there are
a total ofn Q-nodes for query propagation. Denote these Q-
nodes asQi (with coordinates(xi, yi)), where1 ≤ i ≤ n.
Without loss of generality, we assume that S-II is a vertical
straight line; thus each forwarding progress is made along
the y-axis. Assuming the query is propagated in the order
of Q1, Q2, · · · , Qn, we haveyi < yi+1 and|Qi −Qi+1| =
√

(xi − xi+1)2 + (yi − yi+1)2 ≤ R, where1 ≤ i ≤ n−1.
We also assume the S-II starts atIs ((xs, ys)) and ends atIe

((xe, ye)), whereIs andIe are on the boundary of the query
window (see Figure 2(b)). To ensure the coverage of the
S-II zone, we must have|Q1−Is| ≤ R

2
and|Qn−Ie| ≤ R

2
.

Now suppose there exists a nodeD located at(xd, yd)
within the current S-II zone that does not hear the query
from any Qi (1 ≤ i ≤ n) when the query is propa-
gated. Given the itinerary width

√
3R
2

, the following prop-
erty holds:

|xd − xi| <

√
3R

2
.

Since the nodeD does not receive the query from anyQi,
where1 ≤ i ≤ n, we have

√

(xd − xi)2 + (yd − yi)2 >
R. Combining the above two equations, we obtain for any
1 ≤ i ≤ n:

|yd − yi| >
R

2
. (1)

Sub-
itineraryWidth
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Figure 3. Itinerary Route and Width

Without loss of generality, considerQj (1 ≤ j < n)
whose distance to the nodeD satisfiesR

2
< yd − yj < R.

Sinceyj+1 − yj ≤ R, |yj+1 − yd| < R
2

is true, which
is contradictory to Equation (1). Finally, suppose thatQn

satisfiesyd − yn > R
2

. Since|Qn − Ie| ≤ R
2

, the node
D outside the query window does not need to be covered.
Therefore, we have proved when the itinerary width equals
MIW , all sensor nodes are covered.

Meanwhile, for the case that itinerary width is larger
than MIW (i.e.,

√
3R
2

), Figure 2(b) shows a simple
example in which a node inside the query window (the grey
node in the figure) could be missed. �

As noted earlier,MIW is not necessarily the optimal
width, but is a conservative setting to ensure the window
coverage. An application can increase the itinerary width to
achieve a higher energy efficiency at the cost of a possibly
lower query accuracy, and vice versa. We further study this
tradeoff in our performance evaluation in Section 5.
3.3.2 Itinerary Route
This section proposes three different routes along which
IWQE processes the query, namelysequential itinerary
(SI), parallel itinerary (PI) andhybrid itinerary (HI), aim-
ing at energy optimization, query latency reduction and a
balance of those, respectively.

The sequential itinerary (SI) implies that the query is se-
quentially propagated along one itinerary (see Figure 3(a)).
The sequential query execution minimizes the communica-
tion collisions since, at any time, only one copy of a query
is processed within the window. However, with a single
itinerary, the query execution along SI could suffer from a
long query latency, especially for a large query window.

In order to speed up query execution, the parallel
itinerary (PI) parallelizes the query propagation inside the
query window. Figure 3(b) shows an example of PI, in
which multiple threads of the query are spread horizontally
and then propagated vertically along S-II’s; the query can
be processed along multiple parallel S-II’s at the same time.
The partial query result collected from a S-II zone is for-
warded to its adjacent S-II zone (see Figure 3(b)), where the
results from both S-II zones are further aggregated. Even-
tually, the final result is collected by the last Q-node on the
rightmostS-II. The PI reduces the query processing delay
by allowing several query executions to take place concur-
rently. However, as multiple copies of a query are processed
simultaneously, communications in adjacent S-II zones may
collide with each other. Thus, PI could require more energy
consumption than SI.



In order to avoid the transmission collisions while main-
taining a low query latency, we combine PI with SI to form
a hybrid itinerary (HI). More specifically, HI divides the
query window into several sectors as shown in Figure 3(c).
Inside each sector, a query is executed along a sequential
itinerary. Meanwhile, by forwarding the query to other sec-
tors, the query execution is parallelized among multiple sec-
tors. Therefore, the size of a sector determines the con-
currency degree of query execution and the possibility for
transmission collisions caused by the concurrent query ex-
ecutions in different sectors. If HI uses fewer sectors with
larger sizes, the SI in each sector is longer, which results
in a longer query latency. On the other hand, if the sector
size is too small, the query executions in two different sec-
tors are more likely to interfere each other. Thus, the sector
size should be carefully selected to avoid the transmission
collisions; its width should be at leastR + itinerary width,
whereR is the transmission range of sensor nodes. In this
way, even if S-RI departs from the S-II by the maximum
deviation (i.e., half the itinerary width), the S-RI’s in two
adjacent sectors are stillR away from each other, thus not
causing interference.

3.4 Itinerary Traversal
Based upon the planned itinerary, this section describes

the detailed query processing algorithm, including data col-
lection schedule and query forwarding scheme.

3.4.1 Data Collection
In IWQE, a query issued by a sink node is first forwarded
toward the query window by a geo-routing protocol (e.g.,
GPSR [11] ). For simplicity, we assume the query forward-
ing is destined to thecorner of the query window that is
closest to the sink. Since a node is not necessarily located
at the corner, with a geo-routing protocol, the query is actu-
ally forwarded to the node (i.e., the first Q-node) inside the
query window that is closest to the corner.

Upon receiving a query, the current Q-node broadcasts a
probe message. The neighbor nodes that are inside the cur-
rent S-II zone but have not received the query before (i.e.,
the D-nodes) report their readings to the Q-node. This re-
quires each sensor node to track the queries it has received
such that no duplicated queries are processed. Since each
Q-node probably has more than one D-node, a schedule is
needed for these D-nodes to avoid collisions when they re-
spond to the Q-node. The schedule is supposed to set a total
order among all these D-nodes, i.e., during a given time pe-
riod, only one D-node reports its readings to the Q-node.
The precedence of a D-node is determined by the following
rule. A line connecting the current Q-node and a geograph-
ical point (randomly chosen by the Q-node and specified in
the probe message) rotates clockwise; the D-node hit by the
line earlier has a higher precedence. We study three differ-
ent implementation schemes based on this idea.

The first scheme is aTDMA-based schemein which the
Q-node obtains a schedule by sequentializing all the D-
nodes in its neighbor table. This schedule is broadcast with

the probe message. Upon receiving the probe, a D-node de-
cides its reply time based on the assigned precedence and
transmission delay. This scheme ensures a collision-free
data collection, but incurs transmission overhead for broad-
casting the schedule. Moreover, this scheme is not robust
to network topology changes. Even though beacon mes-
sages are periodically exchanged between nodes to update
the cached information, the neighbor states cached at Q-
nodes could be still out-of-date.

The second scheme,token ring-based schemeemploying
a virtual token, is designed to remove the schedule broad-
cast in the TDMA-based scheme. As Figure 4(a) shows,
all D-nodes, based on their reply precedences, form a ring.
Although not knowing itsabsolutereply precedence, a D-
node, based on its neighbor table, can derive itsrelative po-
sition on the ring, and figure out the D-node that should
reply immediately before itself. Therefore, a reply message
from one D-node is a virtual token for the next D-node that
should reply. For instance in Figure 4(a), a reply message
from D3, which is immediately in front ofD4 on the ring,
is the token forD4 to reply to the Q-node. However, there
are several problems with this scheme. First, the ring could
be disconnected due to limited transmission ranges of sen-
sor nodes. In Figure 4(a),D6 cannot receive the token from
D5, since it is outsideD5’s transmission range. Second,
the ring could be disordered due to the staleness of cached
neighbor states. Figure 4(b) shows thatD3 stores the lo-
cation ofD2 as the grey node; however upon receiving the
probe,D2 has moved to the new location shown as the black
node. Therefore, bothD3 andD2 believe they should re-
ply afterD1, which causes a transmission collision. Third,
the token could be missing due to transmission collisions,
node dynamics and node failures. In Figure 4(b), the to-
ken fromD4 to D5 is missing sinceD5 moves out ofD4’s
transmission range during the data collection. All the above
problems can be resolved by getting the current Q-node in-
volved. For example, by issuing another token, the Q-node
re-initiates the interrupted data collection. However, the in-
volvement of Q-nodes increases the algorithm complexity
and transmission overhead.

Q-node
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Q-node
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Figure 4. Token Ring-Based Data Collection

The third solution, acontention-based scheme, solves
the problems associated with the TDMA- and token ring-
based schemes. In this scheme, each D-node determines
its reply precedence independently without assistance from
the Q-node or knowledge about its neighbor nodes. Each
D-node, upon receiving the probe message that contains



a reference line emanating from the current Q-node, sets
a timer, which can be calculated by a simple heuristic:
timer = max delay × ( α

2π ), whereα is the angle formed
by the specified reference line and the line connecting the
current Q-node and the current D-node, andmax delay is
the maximum time that the Q-node is allowed to complete
its data collection. A D-node does not respond to the Q-
node until its timer expires. Moreover, to prevent two D-
nodes from having the same timer, a small jitter is added to
each timer, which has been proved to be a simple yet effec-
tive technique by many communication protocols in sensor
networks [10, 11].
3.4.2 Query Forwarding
After the current Q-node receives the data from all its D-
nodes, it calculates a partially aggregated query result and
selects a next Q-node to forward the result. We place two
requirements on the selection of the next Q-node. First, in
order to proceed with query processing, the next Q-node
should make geographical progress along the S-II. Second,
the next Q-node must reside inside the current S-II zone,
which constrains the contour of RI and ensures the coverage
of query propagation. The above two conditions can be de-
termined purely based on the Q-node’s neighbor table (with
cached neighbors’ locations) and the planned itinerary route
and width. Among all sensor nodes that satisfy the above
two requirements, the next Q-node can be determined by
some heuristic. In this study, we consider: 1) Closest to
Itinerary (CTI): in order to minimize the deviation between
RI and II, the node closest to the II is chosen as the Q-node,
which could reduce the potential communication collisions
between adjacent S-RI’s for IWQE with PI and HI routes;
2) Most Progress on Itinerary (MPI): in order to minimize
the total number of Q-nodes and reduce the query propaga-
tion delay, the node that maximizes the spatial progress of
query propagation on the itinerary is chosen as the Q-node.

4 Additional Research Issues
Section 3 discussed the basic design of IWQE with fair

network density and lossless network communications. In
this section, we investigate how IWQE performs without
jeopardizing the performance when the ideal network con-
ditions are not met.
4.1 Itinerary Void

In the previous sections, we assumed that the sensor
network is dense enough that the next Q-node can al-
ways be found for query forwarding. However, considering
such obstacles as non-uniform node distribution and low-
connectivity areas, this assumption is not always valid. The
above problems, generalized asitinerary void, can impact
the performance of IWQE.

We adapt the localized perimeter forwarding algorithm
developed by GPSR [11]1 to handle the itinerary void. The
algorithm operates on a planar graph, which eliminates the
crossing edges. When a Q-node, now calledstuck node, en-

1Similar algorithms can also be found in [5, 12].

counters the itinerary void, the query propagation switches
to a perimeter forwarding mode that forwards the query on
the progressively closer face of the planar graph; each of
such faces is crossed by the S-II. On each face, the relay
node, called B-node, is selected based on theright-hand
rule, a long-known graph traversal that walks a cycle in a
graph. The stop condition of perimeter forwarding is modi-
fied as follows: if a B-node is inside the S-II zone and makes
progress on the itinerary over the stuck node, the perimeter
forwarding ends and query forwarding is resumed. In the
case the itinerary void extends outside the query window
(i.e., the B-node is outside the query window), the perime-
ter forwarding is stopped and the query is forwarded to the
adjacent S-II zone. During the perimeter forwarding, data
collection is not performed since all B-nodes are either out-
side the current S-II or have been queried.
4.2 Robustness to Packet Losses

Considering the harsh and dynamic sensor network en-
vironments, packet losses frequently happen. However, re-
transmitting each lost packet expends energy, while delay-
ing the query response. IWQE takes advantage of the wire-
less broadcast medium to avoid some of the retransmissions
without hurting query accuracy.

In essence, we only allow retransmissions between Q-
nodes; the messages for data collection between a Q-node
and D-nodes are not retransmitted in the case of packet
losses. When a D-node replies its data to the Q-node, all
its neighbor nodes can overhear the packet. The neighbor
nodes, instead of ignoring the packet, cache the data and
aggregate it partially with their own readings. Thus, the
data sent by a D-node is the aggregated partial result from
multiple sensor nodes. As such, when data from a D-node
to the Q-node is lost, its reading can still be collected from
other D-nodes which cached and aggregated the reading,
thus greatly improving the robustness to the packet losses.

For duplicate-insensitive queries (e.g., MAX and MIN),
the above robust approach is able to improve IWQE’s re-
silience to packet losses without deteriorating the energy
efficiency. However, this approach may lead to errors for
duplicate-sensitive queries (e.g., SUM, COUNT and AVG).
Fortunately, recent research work [2, 4, 16] has proposed
several algorithms which, with minor energy overhead, are
able to acquire theapproximatelycorrect query results with-
out double-counting the duplicate (redundant) sensor read-
ings. In this paper, we focus on evaluation of duplicate-
insensitive queries, and will report the performance for
duplicate-sensitive queries in future work.

5 Performance Evaluation
We have developed a simulator based on ns-2 [1] (with

the CMU wireless extensions). In this section, we study the
impact of different protocol design choices (i.e., itinerary
width, itinerary route and data collection method) on the
performance of IWQE and examine IWQE’s sensitivity to
various system parameters, such as window size, node mo-
bility, and packet loss rate.



Parameters Values Parameters Values
R (m) 40 Number of nodes 100
Window size (m2) 90× 90 Number of trials 25
Network size (m2) 160× 160 Vmax (m/s) 15
Packet size(bytes) 32 Pause time (s) 0
Number of queries 40 Node degree 15
Sector width in HI (m) 69.2 Beacon interval (s) 1.0

Table 1. Default Parameter Settings

5.1 Metrics and Settings
Similarly to [10, 11], we implemented IWQE atop the

ns-2 802.11 MAC layer. Initially, the sensor nodes are ran-
domly distributed in the simulated field. The mobility of
sensor nodes is modeled by therandom waypoint(RWP)
model: the node selects a destination at random in the field,
and moves to the destination at a speed randomly chosen
from a configured range [0, Vmax]; upon arrival, it pauses
for a random period and selects a new destination. Because
the original RWP model fails to achieve a stable mobility
pattern, our simulator adopts an improved RWP model [23],
which ensures a stable average moving speed during the
simulation period. In our simulation, the pause time is set at
zero so that sensor nodes move constantly. The mobility of
sensor nodes is controlled by varying the maximum moving
speedVmax. By default,Vmax = 15m/s.

Given a transmission rangeR of 40m [9], and an aver-
age node densityρ, the average number of neighbors for
each sensor node (callednode degree) can be obtained as
ρπR2. By fixing the number of sensor nodes (i.e., 100 sen-
sor nodes) and varying the simulated field from 160m ×
160m to 317m × 317m, the node degree ranges from 5 to
20. The queries are issued from 10 sink nodes which are
randomly distributed in the network and do not move dur-
ing the simulation. A duplicate-insensitive aggregate func-
tion (e.g., MAX) is used by the queries. Each simulation
run lasts for 100 seconds of simulated time. The results are
obtained by averaging the performances over 25 simulation
runs. Table 1 summarizes the default parameters used in
our simulations. The following three metrics are employed
in our evaluation:
Energy consumption: The average amount of energy con-
sumed by a window query.
Query Latency: The average elapsed time between the
time a query is issued by a sink and the time that the sink
receives the query result.
Query Accuracy: Similar to [2], we define thevalid nodes
for a window query as the nodes that reside inside the query
window and are reachable by the sink during the query life-
time T . A window query processing technique expects to
collect data fromall valid nodes. Thus, we define thequery
accuracyas the ratio of the number of valid nodes involved
in the query result to the total number of valid nodes. To
make a fair comparison, we setT with the longest query
latency among all processing techniques under study such
that no queries are dropped due to query expiration.

We compare IWQE to thenaiveapproach (described in
Section 3), a NSI approach (denoted asGRT) [6] and a WSI

approach (denoted as WSI:Tree) [19]. For the query for-
warding heuristics in IWQE, our experimental results show
that MPI is more effective than CTI in terms of energy
consumption and query latency, and has a similar query
accuracy to CTI. Due to space limitation, the results are
not shown here. The rest of the experiments use MPI as
the default forwarding heuristic. Moreover, we use the
contention-based approach as our default data collection al-
gorithm, which demonstrates better performance than other
schemes (will be shown in Section 5.2.2). Themax delay
in contention-based approach is set to 0.15s by default.

In GRT, a network-spanning tree, similar to R-tree [8],
is built for query execution. Each sensor node maintains a
minimum bounding rectangle (MBR), the smallest rectan-
gle which encloses all the sensor nodes in the subtree rooted
at the node itself. Given a window query, if the query win-
dow intersects with its MBR, the node sends the query to
the child nodes; otherwise, the query is dropped. To sup-
port multiple sinks by one tree, all queries are forwarded to
the root node which in turn initiates the query processing.
Unlike GRT, WSI:Tree first forwards the query toward the
query window by GPSR protocol [11].2 Once the query ar-
rives, a tree infrastructure is builtinsidethe window along
the query propagation. The detailed query processing has
been described in Section 2. GRT and WSI:Tree both face
a problem that the timer for a parent node to collect data
may have expired before it hears from all its child nodes.
There are two ways to deal with the late data reports from
the child nodes: 1) the parent node discards these late data
reports, which conserves the energy but impedes the query
accuracy; 2) the parent forwards the late data reports to its
parent, which improves the query accuracy at the cost of
higher energy expense. In our implementation, GRT adopts
the first method, while WSI:Tree uses the latter. As all the
compared query processing techniques (including the naive
approach) require a beacon mechanism for sensor nodes to
maintain information about their neighbor nodes, we do not
measure the cost of beacon messages, which is usually of
lower order than the application data traffic [20].

5.2 Parameter and Heuristic Selection of IWQE
Our first set of experiments studies the itinerary width

and various query execution heuristics. To be focused, we
create an ideal network scenario for the following two ex-
periments in which sensor nodes are stationary and trans-
missions are reliable, unless explicitly mentioned.3

5.2.1 Selection of Itinerary Width
Figure 5 compares the performance of IWQE with sequen-
tial itinerary (denoted by IWQE:SI), IWQE with parallel
itinerary (denoted by IWQE:PI) and IWQE with hybrid
itinerary (denoted by IWQE:HI) by varying the itinerary
width from 20m (i.e., R

2
) to 100m (i.e., 2.5R), which is

longer than the window’s width(i.e., 90m).

2Instead of thedirectional floodproposed by [19], we adopt GPSR for
query forwarding which is more energy efficient.

3The transmission losses caused by the collisions are included.
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Figure 5. Study of Itinerary Width

Figure 5(a) shows the energy consumption. When the
itinerary width is very small (i.e., 20m), all approaches
have noticeably high energy consumption because of the
excessive overlap of transmission ranges between adjacent
S-RI’s, causing transmission overhead and collisions (es-
pecially for IWQE:PI). As the itinerary width is increased
to 30m, the energy consumption of IWQE drops dramat-
ically ((because of fewer S-II’s used and less overlap of
data transmissions between adjacent S-RI’s). After that,
the energy consumption continuously decreases, since the
window coverage of query propagation decreases and fewer
sensor nodes participate in query execution. A similar trend
is observed for query latency as shown in Figure 5(b). Fig-
ure 5(c) plots the query accuracy. All approaches main-
tain a very high and competitive query accuracy when the
itinerary width is smaller than 40m. However, when the
itinerary width is larger than 60m, the query accuracy dra-
matically decreases, since the window is not fully covered
and not all the sensor nodes inside the window receive the
query (recall that the transmission range is 40m). Accord-
ing to the derivation in Section 3.3.1,MIW = 34.6m. The
experimental results demonstrate that IWQE withMIW is
able to achieve very high query accuracy due to its full win-
dow coverage. Thus, in the following experiments, we set
the itinerary width toMIW . Nevertheless, the setting of
itinerary width can be adapted to application requirements
based on performance objectives.

5.2.2 Data Collection Heuristics
We study the data collection heuristics proposed in Sec-
tion 3.4.1 by varyingVmax from 0m/s to 20m/s and vary-
ing the node degree from 5 to 15. The energy consump-
tion and query accuracy are shown in Figures 6(a) and 6(b),
where IWQE:HI is used.

Several observations can be made. First, the TDMA-
based and token ring-based approaches are noticeably af-
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Figure 6. Data Collection Heuristics

fected by the network dynamics, since cached neighbor
states, which determine the data collection schedule, could
be inaccurate due to network topology changes. Second, the
performance of token ring-based approach deteriorates in a
sparse network, due to ring disconnection and missing to-
kens. Furthermore, the TDMA-based approach works best
in sparse and static networks, owing to less overhead for
broadcasting the data collection schedule; the token ring-
based approach consumes the least energy with a compet-
itive query accuracy in static and dense networks. The
contention-based approach works fairly well under all con-
ditions, especially in dynamic networks, since the D-nodes
decide the timing of response based only on their current
locations, instead of the knowledge about their neighbors.
Therefore, we choose the contention-based approach as our
default data collection algorithm.
5.3 Impact of Querying Load

We now compare the IWQE family of approaches to
the naive, GRT and WSI:Tree. We vary the total number
of snapshot queries issued during the experiment from 20
to 100 to simulate different network traffic loads. Again,
in this set of experiments, sensor nodes are stationary and
transmissions are reliable.

Figure 7(a) shows the energy consumption of all ap-
proaches under comparison, except the one for the naive
approach, which has very high energy consumption (i.e.,
ranging from 364mJ to 1784mJ) due to its query flood-
ing scheme. The energy consumption of GRT is higher
and grows faster than that of IWQE, since GRT incurs
many unnecessary node visits. As more queries are is-
sued, WSI:Tree, suffering from late data reports (discussed
in Section 5.1), quickly increases its energy consumption,
which eventually exceeds GRT’s. Among the IWQE ap-
proaches, IWQE:PI costs more energy than IWQE:HI and
IWQE:SI, due to more collisions between adjacent S-RI’s.
However, IWQE:PI shows the lowest query latency among
all the IWQE approaches in Figure 7(b). The query latency
of GRT increases dramatically as more queries are prop-
agated along the same tree structure, which incurs exces-
sive message collisions and retransmissions. As a result of
more late data reports from child nodes, the query latency
of WSI:Tree worsens when query load increases.

Figure 7(c) depicts the query accuracy. With a heav-
ier network traffic load, the naive approach has a decreas-
ing query accuracy, since more data packets are dropped
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Figure 7. Impact of Querying Load

due to the increasing number of collisions. Under GRT,
more late data reports from child nodes are discarded as
network traffic increases, which leads to less accurate query
results. Nevertheless, WSI:Tree maintains a much more sta-
ble query accuracy at the cost of transmitting the late data
reports individually. For IWQE, the retransmission mecha-
nism between Q-nodes and the caching mechanism used for
D-nodes make its query accuracy stable as well.

5.4 Impact of Query Window Size
This section investigates the impact of window size on

the performance. We vary the window size from 40m ×
40m to 160m × 160m. Since a query window may not
be fully contained in the simulated field, we consider only
the part falling inside the field for such a query. The sensor
nodes move with a maximum speed of 15m/s.

As shown in Figure 8(a), the energy consumption of
GRT increases with a larger window almost as fast as that
of the naive approach. This is because more MBRs inter-
sect with the query window and more nodes are involved
in query propagation. In the worst case, GRT involves all
the sensor nodes in query propagation, which is the same
as query flooding in the naive approach. However, with in-
network aggregation, GRT receives less communication in
the data collection stage than the naive approach. Due to
more late data reports with an expanding query window, the
energy consumption of WSI:Tree increases even faster than
that of GRT. Among the three routes of IWQE, as before,
IWQE:PI has the highest energy cost.

Figure 8(b) plots the query accuracy. All query process-
ing techniques have a decreasing query accuracy as the win-
dow increases. This is reasonable since the larger the region
covered by the query, the higher the probability of trans-
mission errors and packet losses. However, the IWQE ap-
proaches are less affected due to the robust error resilience
techniques proposed in Section 4.2. It is interesting to
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Figure 8. Study of Query Window Size

observe that the naive approach becomes worse than the
IWQE approaches when the query window expands. The
reason is that when a larger region is queried, more sensor
nodesindependentlyreply their readings to the sink node
in the naive approach, which results in significant message
collisions. This leads to a decreasing query accuracy as ex-
plained in Section 5.3.

5.5 Impact of Network Dynamics
In this section, we evaluate the impact of network dy-

namics on the performance of query processing techniques
by varyingVmax from 0m/s to 25m/s.

Figure 9(a) shows that all query processing techniques
tend to consume more energy when sensor nodes move
faster. However, compared with the naive, WSI:Tree and
IWQE approaches, GRT is affected most by this dynam-
ics, since many more MBR update messages are created
network-wide to maintain the up-to-date tree infrastructure.
For a similar reason, as explained in Section 5.4, the in-
creasing amount of update messages degrades GRT’s query
accuracy as shown in Figure 9(b). The accuracy of IWQE is
also affected by the network dynamics. However, by inte-
grating the data collection with query propagation, IWQE,
not relying on any network infrastructure, is much more sta-
ble than GRT in dynamic networks.
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5.6 Impact of Packet Losses
In this section, we examine the impact of packet losses.

We simulate stationary sensor nodes and vary the rate of a
packet being lost during transmission from 0.0 to 0.9. The
maximum number of retransmissions at the MAC layer is 7.
We show the simulation results of IWQE:HI only; IWQE:SI
and IWQE:PI have similar performance to IWQE:HI.

As shown in Figure 10(a), all processing techniques con-
sume more energy when the packet loss rate increases.
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Since IWQE constrains the retransmissions between two Q-
nodes only (not between a Q-node and a D-node), its en-
ergy consumption increases much more slowly than GRT
and WSI:Tree, which retransmit all the lost packets. Fig-
ure 10(b) shows that IWQE is more robust to the packet
losses than GRT, as IWQE allows D-nodes to cache and
aggregate the data they overhear from other D-nodes. For
GRT, considering its inherent packet losses caused by
excessive communication collisions, retransmitting each
lost packet deteriorates its performance. A higher packet
loss rate results in more retransmissions and more late
data reports in WSI:Tree; thus the energy consumption of
WSI:Tree quickly increases and surpasses that of GRT.

6 Summary and Future Work
Existing techniques for processing window queries rely

on network infrastructures and thus are very vulnerable
to network dynamics. Our proposal, IWQE, conducts
query propagation and data collection along a well-designed
itinerary in an integrated manner that does not require the
support of a network infrastructure. We derived an upper
bound for itinerary width for achieving a full window cover-
age and studied three different designs for itinerary routes.
In addition, three data collection schemes were explored.
An extensive performance evaluation was conducted to
compare the performance of IWQE and other competing
protocols, including naive, GRT-based approach [6] and
WSI tree approach [19]. The experimental results showed
that IWQE exhibits a superior performances in terms of en-
ergy consumption, query latency, and query accuracy, and
soundly outperforms all the compared protocols under var-
ious network conditions. IWQE with itinerary width as
MIW is able to ensure window coverage and achieves a
very high query accuracy. IWQE with HI route shows a
satisfactory tradeoff between energy efficiency and query
latency. Moreover, the contention-based data collection
scheme works fairly well with various degrees of network
density and dynamics.

IWQE has been shown as a promising window query
processing algorithm for wireless sensor networks. As for
the future work, we will investigate approximate spatial
queries that trade query accuracy for energy efficiency. We
plan to extend our design of IWQE in support of more com-
plicated spatial queries combined with selection functions
(e.g., range selection). Finally, we plan to implement IWQE
on real sensor motes.
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