
Answering Why-Not Questions on Spatial Keyword

Top-k Queries

Lei Chen1 Xin Lin2 Haibo Hu1 Christian S. Jensen3 Jianliang Xu1
1Department of Computer Science, Hong Kong Baptist University, Hong Kong, China

{lchen, haibo, xujl}@comp.hkbu.edu.hk
2Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai, China

xlin@cs.ecnu.edu.cn
3Department of Computer Science, Aalborg University, Denmark

csj@cs.aau.dk

Abstract—Large volumes of geo-tagged text objects are avail-
able on the web. Spatial keyword top-k queries retrieve k such
objects with the best score according to a ranking function
that takes into account a query location and query keywords.
In this setting, users may wonder why some known object is
unexpectedly missing from a result; and understanding why may
aid users in retrieving better results. While spatial keyword
querying has been studied intensively, no proposals exist for
how to offer users explanations of why such expected objects
are missing from results. We provide techniques that allow
the revision of spatial keyword queries such that their results
include one or more desired, but missing objects. In doing so, we
adopt a query refinement approach to provide a basic algorithm
that reduces the problem to a two-dimensional geometrical
problem. To improve performance, we propose an index-based
ranking estimation algorithm that prunes candidate results early.
Extensive experimental results offer insight into design properties
of the proposed techniques and suggest that they are efficient in
terms of both running time and I/O cost.

I. INTRODUCTION

With the rapid development of mobile portable devices and
location positioning technologies, the web is acquiring an in-
creasingly prominent geographical flavor. Many web objects or
points of interest, such as shops, hotels, and public services, are
associated with both geographical tags and text descriptions.
These attributes enable spatial keyword queries, such as finding
nearby objects with the keyword “seafood.” More specifically,
a spatial keyword top-k query takes a location and a set of
keywords as arguments and retrieves k objects that score the
best according to a ranking function that takes into account
these arguments [8]. However, users may not understand why
desirable objects are unexpectedly missing from a result, and
it may be difficult for users to ensure that the ranking function
is configured so that the results include desired objects. It is
therefore of high interest to be able to provide explanations of
why desired objects are missing from a query result as well
as suggestions for how to revise the query so that the desired
objects are included in the result.

[Example] Bob visits New York for the first time, and he
wants to find a nearby cafe for a cup of coffee. He issues a top-
10 spatial query with keyword “coffee.” However, surprisingly,
the Starbucks cafe down the street, is not in the result. Bob
wonders why the Starbucks cafe is not in the result? Are there
better options? Is something wrong with the query so that
other good options are also missing? How can the ranking

function be adjusted so that the Starbucks cafe, and perhaps
other relevant cafes, appears on the result?

Several approaches may be taken to support such why-not
questions, including manipulation identification [7], database
modification [14], [15], and query refinement [13], [24]. Chap-
man and Jagadish [7] study why-not functionality for Select-
Project-Join (SPJ) queries that is able to determine the query
operator that prevents a missing object from being included in
a result. Other works [14], [15] study how to update a database
so that SPJ queries and SPJUA (SPJ + Union + Aggregation)
queries revive missing objects. Early work [24] using the query
refinement approach studies how to revise an original query so
that a missing object enters the result. He and Lo [13] adapted
this approach to top-k preference queries and study how to
minimize the overall change of weights in the ranking function
and the parameter k while achieving the inclusion. However,
the existing solutions work for static datasets only, and they
do not apply to spatial keyword queries where query locations
are dynamic and precomputation based on spatial distance is
infeasible.

In this paper, we adopt the query refinement approach
and formally model the why-not spatial keyword problem. To
efficiently answer a why-not question for a query, we project
the objects and weighting vectors onto a two-dimensional
plane and obtain a geometrical model for similarity ranking.
Under this model, a modification of weights is equivalent
to a rotation of a weighting vector. As such, an update to
the ranking for a missing object can be converted to a two-
dimensional geometrical problem. We prove that the best
weighting vector derives from a finite set of candidate vectors.
To further optimize the performance, we propose an index-
based ranking estimation algorithm, which prunes candidate
weighting vectors early during index traversal. In addition,
we extend the proposed algorithms to support why-not spatial
keyword queries for multiple missing objects.

The paper’s contributions are summarized as follows:

• We are the first to model the why-not spatial keyword
query as a query refinement problem.

• We reduce the ranking update needed to include
missing objects to a geometric problem, reduce the
search space to a finite set of candidate vectors, and
present an efficient query processing algorithm.

• We propose an index-based ranking estimation al-
gorithm that prunes candidate weighting vectors and
improves query processing performance.

• We extend the proposed algorithms to support multiple
missing objects.

• We conduct extensive experiments to evaluate the
efficiency of our proposed algorithms. The results
show that our proposed solution is up to 3 times
faster than the baseline algorithm in terms of running
time and reduces the I/O cost by up to an order of
magnitude.

The rest of this paper is organized as follows. Section II
covers the background and related work. Section III describes
some preliminaries and defines the why-not spatial keyword
query. Section IV covers how to convert the ranking update
to a geometric problem and proposes a basic query processing
algorithm. Section V proposes an index-based optimization and
Section VI extends the problem to handle multiple missing
objects. The experimental results are presented in Section VII.
Finally, we conclude in Section VIII.

II. RELATED WORK

To the best of our knowledge, there is no existing work
on the processing of why-not spatial keyword queries. In the
following, we cover studies on spatial keyword queries and
why-not queries separately, and we show their differences in
the context of why-not spatial keyword queries.

A. Spatial Keyword Query Processing

A spatial keyword query retrieves the most relevant spatial
web objects with respect to both spatial distance and textual
similarity. Numerous studies have considered this query, a
number of efficient query processing techniques have been
proposed. Early work proposed a hybrid index structure that
integrates R*-trees and inverted files for the estimation of both
spatial and textual similarities [29]. Martins et al. [21] suggest
computing text relevancy and location proximity independently
and then to combine the two. More recently, the IR-tree, a
hybrid index that estimates the bounds of spatial distance and
textual similarity at the same time, was proposed [8]. Another
hybrid index, the IR2-tree, has also been proposed in [10]. This
index combines an R-tree with superimposed text signatures.
However, it is applicable only when the keywords serve as
a Boolean filter. Rocha-Junior and Nørvåg [22] investigate
the spatial keyword query in road networks. A comprehensive
experimental evaluation of different spatial keyword query in-
dexing and query processing techniques has also appeared [5].

Different variants of the spatial keyword query have been
considered. Chen et al. [6] study a query that retrieves web
pages containing query keywords and whose page footprints
intersect a query footprint. A recently proposed mCK query
retrieves m objects within a minimum diameter that match the
given keywords. The bR*-tree and the virtual bR*-tree [27],
[28], which augment each node with a bitmap and MBRs for
keywords, have been proposed for this query. Cao et al. [3]
introduce a query that retrieves the top-k spatial web objects
ranked according to both prestige-based relevance and location
proximity. Another study [4] proposes a variant that retrieves

a group of spatial web objects whose keywords cover the
query’s keywords and that are the nearest to the query location
and have the lowest inter-object distances. More recently,
spatial keyword similarity search in regions of interest was
studied [11]. Other authors consider a direction-aware spatial
keyword query that finds k nearest neighbors in the search di-
rection that cover all query keywords [17]. Another study [18]
considers a spatial approximate string query that is a range
query augmented with a string similarity predicate. Next, a
study [2] aims to identify pairs of objects from a spatio-textual
database that are both spatially close and textually similar and
a study [25] integrates social influence into traditional spatial
keyword search to improve answer quality. However, none of
the works covered here address the why-not spatial keyword
query problem.

B. Why-Not Query Processing

To improve the usability of database systems, the why-not
problem was first introduced by Chapman and Jagadish [7].
Existing approaches can be classified into three categories.
Chapman and Jagadish used manipulation identification to
identify operations that filter out a missing object. Other
studies [14], [15] adopt a database modification approach that
updates an original database so that missing objects become
part of SPJ and SPJUA query results. Tran and Chan [24]
propose to retrieve missing objects through query refinement.
He and Lo [13] employ query refinement to answer why-not
questions on top-k preference queries. They aim to modify the
original query with the minimum penalty. More recently, two
studies [1], [16] consider how to answer why-not questions in
the contexts of social image search and reverse skyline queries.
However, the why-not problem has not been studied for spatial
keyword queries.

III. PRELIMINARIES AND PROBLEM DEFINITIONS

We first define the problem of answering why-not questions
on spatial keyword queries. Then we present an analysis of the
problem, followed by a baseline algorithm.

A. Spatial Keyword Top-k Query

Let D denote a database of spatial web objects. Each object
o in D is denoted by a pair (o.loc, o.doc), where o.loc is a
multi-dimensional point location and o.doc is a text document.
A spatial keyword top-k query retrieves k top ranked objects
according to a scoring function that considers both spatial
distance and textual similarity to a query q. We adopt the
scoring function in [8] as follows:

ST (o, q, ~w) = ws · (1− SDist(o, q)) + wt · TSim(o, q), (1)

where SDist(o, q) denotes spatial distance normalized to a
value between 0 and 1 by dividing the Euclidean distance by
the maximum possible distance between two objects in the data
space, TSim(o, q) denotes textual similarity, and ~w=〈ws,wt〉,
where 0<ws,wt<1 and ws + wt = 1, is a weighting vector
on the relative preference between spatial distance and textual
similarity.

As such, a query q is a 4-tuple (loc, doc, k, ~w), where q.loc
is a query point location; q.doc is a set of keywords; q.k
is the number of objects to retrieve; and ~w is the weighting

vector. Without loss of generality, we assume no two objects
or queries are located at the same point, or apart with the
maximum possible distance, and we further assume all scores
are unique. Next, the textual similarity TSim(o, q) can be
computed using an information retrieval model [20], such as
the language model, cosine similarity, or BM25, and is also
normalized. We adopt the language model in this paper, so
the range of TSim(o, q) is (0,1). In the ranking function, the
higher the score computed by Eqn. 1, the higher the rank of
the corresponding object. Objects that rank higher than o are
called o’s dominators under the given weighting vector ~w, and
we define the rank of an object as follows:

R(o, q, ~w) = |{o′ ∈ D | ST (o′, q, ~w) > ST (o, q, ~w)}|+ 1. (2)

With the definition of ranking, the spatial keyword top-k
query is defined as follows:

Definition 1: Spatial Keyword Top-k Query. A spatial
keyword top-k query q returns k objects in D that maximize
the scoring function in Eqn. 1, or in terms of ranking, it returns
the object set {o | R(o, q, ~w) ≤ k}.

B. Why-Not Spatial Keyword Query

When a user issues a spatial keyword top-k query q =
(loc, doc, k0, ~w0), the user may observe that one or more
objects that were expected to be in the result are missing.
The user may then pose a why-not query with a set of missing
objects M = {o1, o2, ..., oj}, asking the system to identify and
process a refined spatial keyword query q′ = (loc, doc, k′, ~w′)
that has a result that contains the missing objects. In devising
the refined query, we consider the modification of the param-
eters k and ~w in the original query. A naive approach is to
increase k until all missing objects appear in the result. This is
not a good approach; rather, we need to evaluate the quality of
a refined query against the original query. In doing so, we adopt
the penalty model proposed in [13], which uses ∆k and ∆w to
measure the degree of modification with respect to the original
query, where ∆k = max(0, k′−k0) and ∆w = ‖~w′ − ~w0‖2.
Based on this, the penalty (i.e., cost) of a refined query from
q is defined as follows:

Penalty(k′, ~w′) = λ · ∆k
R(o,q, ~w0)−k0

+(1− λ) · ∆w√
1+ws2

0
+wt2

0

,
(3)

where λ∈(0, 1) is a user preference of the modification on k
and ~w from the initial query. In the best refined query with
weighting vector ~w′, if R(o, q, ~w′)>k0, k′ should be equal to
R(o, q, ~w′) to achieve the lowest penalty; otherwise, k′ does
not need to be modified. So ∆k=max(0, R(o, q, ~w′)−k0). We
normalize ∆k and ∆w by dividing them by R(o, q, ~w0)−k0
and

√

1 + ws20 + wt20, respectively. As proved in [13], ∆k in
the best refined query is no larger than R(o, q, ~w0)− k0, and

∆w is no larger than
√

1 + ws20 + wt20.

Based on the above, we formally define the why-not spatial
keyword query as follows:

Definition 2: Why-Not Spatial Keyword Query. Given
an object set D, a missing object set M⊂D, an original
spatial keyword query q: (loc, doc, k0, ~w0), the why-not spatial
keyword query returns the refined query with the lowest penalty
according to Eqn. 3, which includes all objects in M in the
query result.

o1
(Target Object)

q
o3

1− SDist(o, q) TSim(o, q)

o 0.5 0.4

o1 0.25 0.5

o2 0.9 0.33

o3 0.55 0.25

o4 0.4 0.9

o2
o4

(a) (b)

o

Fig. 1. An Example of Why-not Spatial Keyword Query

Refined Query ∆k ∆w Penalty

q′1(3,〈0.5, 0.5〉) 2 0.00 0.50

q′2(3,〈0.4, 0.6〉) 2 0.14 0.56

q′3(4,〈0.1, 0.9〉) 3 0.57 1.21

TABLE I. AN EXAMPLE OF REFINED QUERIES (λ = 0.5)

Fig. 1 exemplifies the why-not spatial keyword query. Here
(a) shows the spatial locations of the query and objects, and
(b) lists the 1 − SDist(o, q) and TSim(o, q) values of the
objects in D. In the original query, k0 = 1, w0 = 〈0.5, 0.5〉.
Object o has R(o, q, ~w0) = 3, so it is missing from the top-
1 result. Table I shows some refined queries together with
their penalty values, where λ = 0.5. According to this setting,

R(o, q, ~w0)− k0 = 2 and
√

1 + ws20 + wt20 = 1.22. It is clear
that the refined query q′1, the only modification of which is to
set k = 3, is the refined query with the lowest penalty.

C. Baseline Algorithm

The idea of the baseline algorithm is as follows. After
the user specifies the initial spatial keyword top-k query,
the spatial distance and textual similarity between the query
point and each object in D become two constant values. That
is, each object can be represented by a vector ~v = 〈1 −
SDist(o, q), TSim(o, q)〉, and the scoring function becomes
ST (o, q, ~w) = ~v · ~w. As such, the problem is reduced to “an-
swering why-not questions on 2-dimensional top-k queries,”
which can be solved by an existing algorithm [13] as follows
(for now we only consider a single missing object). We first
calculate the vector ~v for each object in D and find the set I of
objects in D that are incomparable with the missing object o
using an algorithm introduced in [23], where “incomparable”
means that one of two objects is closer to the query point than
the other, while the other has a higher textual similarity. Then
we maintain a weighting vector set S containing the initial
weighting vector ~w0 and the weighting vector ~wi for each
incomparable object i that satisfies ~vi· ~wi = ~vo· ~wi. Finally, for
each weighting vector ~wi in S , we issue a top-k query to obtain
the ranking of the missing object under ~wi. The one with the
lowest penalty is returned as the result. This algorithm can be
adapted to handle multiple missing objects.

However, accessing the whole database and then computing
all these distances and similarities at runtime is very time-
consuming. Furthermore, for each incomparable object of the
missing object o, a top-k query needs to be issued. Therefore,
the time complexity is proportional to the number of incom-
parable objects, which can be high.

IV. PROPERTIES AND BASIC ALGORITHM

We now consider the case of a single missing object and
introduce a basic processing algorithm. In Section VI, we
consider the case of multiple missing objects.

ws

So

C

vto

wt

C

vso

O

po So′

C

vs
o
′

C

vt
o
′

po′

1

1
nw

~w

l~w

Fig. 2. An Example of Fixed-Score Segment

TABLE II. SUMMARY OF NOTATIONS

Notation Meaning

R(o, q, ~w) The ranking of object o under query q and weight-
ing vector ~w.

[~w1, ~w2] The angle interval from ~w1 to ~w2.

l~w The line of weighting vector ~w.

p(l1, l2) The intersection point of lines (or segments) l1
and l2.

So The fixed-score segment of object o.

Ss
o or St

o The intersection point between segment S and the
ws-axis or wt-axis.

We first use the transformation introduced by Chester et
al. [9] to project the objects in D and the weighting vectors
onto a two-dimensional plane, which visualizes the objects’
rankings when varying the weighting vectors. Then we model
the modification of a weighting vector by the rotation of the
vector. Under this modification model, the ranking updates
of a missing object have a two-dimensional, geographical
interpretation. By knowing the initial ranking and the ranking
update rule, the basic algorithm finds the best refined weighting
vector without exhaustively enumerating all weighting vectors.
Table II summarizes notations used in the following.

A. Projection of Objects

From the earlier analysis, after the user specifies an initial
spatial keyword top-k query, the spatial and textual proximities
between an object o and the query point q are constant. As
such, we define a fixed-score segment of o as follows.

Definition 3: Fixed-score Segment. For an object o, with
vso = 1 − SDist(o, q), vto = TSim(o, q), and C being
a randomly selected positive real number, the fixed-score
segment of o in the 2D plane “ws − wt” is defined as the
segment with end points (0, C

vto
) and (C

vso
, 0).

Fig. 2 shows an example of an object o’s fixed-score seg-
ment (labeled by So). The meaning of So is that for any point
po = (wso, wto) on So, it holds that wso ·vso+wto ·vto = C.
Since vs and vt of all objects in D are constant after the
user specifies the initial query, all objects can be represented
by fixed-score segments. Further, the weighting vector ~w in
the query can also be projected into the “ws−wt” plane.
According to the definition of ~w, it must be a vector from
the origin O to some point on nw, where nw is the segment
from (1, 0) to (0, 1).

Given two segments So and So′ , the comparison relation-
ship between the similarity scores of the two correspond-
ing objects under weighting vector ~w, i.e., ST (o, q, ~w) and
ST (o′, q, ~w), can be summarized in Theorem 1.

Theorem 1: Consider a weighting vector ~w in a query and
two objects’ fixed-score segments So and So′ in the “ws−wt”

wt

ws

l ~wo

1

1

O So

~wo

~w1

So2 So1

p1

p2

p3
p4

So3 So4

l ~w1

~w2

l ~w2

Promoted Points

Degraded Points

Fig. 3. An Example of Weighting Vector Rotation and Ranking Updates

plane (see Fig. 2). Let l~w denote the line of ~w and let po
(po′) denote the intersections of l~w and So (So′). It holds that
ST (o, q, ~w)>ST (o′, q, ~w) if |Opo|<|Opo′ | (i.e., po is closer
to O than po′).

Proof. Let (wso, wto) and (wso′ , wto′) denote the co-
ordinates of po and po′ , and let ~w = 〈ws, wt〉. According
to the property of fixed-score segments, wso · vso + wto ·
vto = wso′ · vso′ + wto′ · vto′ = C. Since po and po′ are

located on the line of ~w, both ws

wso
= wt

wto
= |~w|
|Opo|

and
ws

wso′
= wt

wto′
= |~w|
|Opo′ |

hold. Hence, ST (o, q, ~w) = ws · vso +
wt · vto = |~w|

|Opo|
· (wso · vso+wto · vto) = |~w|

|Opo|
·C. Similarly,

ST (o′, q, ~w) = |~w|
|Opo′ |

· C. As we assume |Opo| < |Opo′ |, it

holds that ST (o, q, ~w) > ST (o′, q, ~w). �

If the condition |Opo|<|Opo′ | in Theorem 1 holds, we also
say So is closer to the origin than So′ in the ~w direction. By
Theorem 1, we obtain the following proposition.

Proposition 1: Let ~w be the weighting vector in a query.
For a given object o, if in the “ws−wt” plane, there are k
objects with fixed-score segments closer to the origin than So

in the ~w direction, the spatial keyword similarity ranking of o
must be k + 1.

Proposition 1 provides a straightforward method to deter-
mine the ranking of o for a given query q. First, we compute
the fixed-score segments of objects in object set D. Then we
draw the line l~w and intersect it with all objects’ fixed-score
segments. The distances of these intersections to the origin
determine the rankings of the objects.

B. Query Modification and Ranking Updates

Proposition 1 also implies how we update the ranking of
a given object when the weighting vector is modified. Since a
weighting vector must correspond to a vector from the origin
to a point on the line segment nw, the modification can be
regarded as a vector rotation in the “ws−wt” plane, in which
the end point of the vector must be on nw. Take Fig. 3 as
an example. Here ~w0 is the initial weight, and ~w1 is obtained
from ~w0 by increasing wt and decreasing ws . In the “ws−wt”
plane, we can obtain ~w1 by counterclockwise rotating ~w0 and
keeping the endpoint on segment nw. Accordingly, the line of
weighting vector rotates by the same angle.

The rotation of line l~w changes its intersection points with
the fixed-score segments, which means that the rankings of
objects also change. In Fig. 3, after l~w rotates counterclockwise
across the intersection point of So and So1 (labeled by p1),
So1 becomes closer to the origin than So in the ~w direction.
Thus o now ranks lower than o1, and its ranking should be

decremented by 1. Similarly, as l~w continues to rotate across
the intersection point of So and So2 (labeled by p2), o now
ranks higher than o2 and its ranking should be incremented by
1. The case is similar for clockwise rotation. That is, after l~w
encounters p3, the intersection point of So and So3 , the ranking
of o should be decremented by 1, while after l~w encounters
p4, the ranking should be incremented by 1.

If two objects’ fixed-score segments So and So′ do not
intersect, they will not affect the ranking of each other as the
weighting vector rotates. In other words, the ranking updates
of o occur if and only if l~w encounters the intersections of So

and other objects’ fixed-score segments. To formally define
this condition, we categorize intersections on So as: promoted
points and degraded points.

Definition 4: Promoted Points and Degraded Points. Let
p be an intersection point of So and another object’s fixed-score
segment. If, after rotating the weighting vector, l~w encounters
p and the ranking of So is promoted, we call p a promoted
point; otherwise, if the ranking of So is degraded, p is called
a degraded point.

In the example of Fig. 3, p1 and p3 are degraded points,
while p2 and p4 are promoted points. We observe that all
promoted points are contributed by the fixed-score segments
of the dominators of o under ~w0. Based on the promoted
and degraded points, we can derive an alternative method to
compute the ranking of a given o from any weighting vector.
Let the ranking of o under the original weighting vector ~w0

be n, and let the refined weighting vector be ~w1. We first
compute all promoted and degraded points in [l ~w0

, l ~w1
]. Let

the numbers of promoted and degraded points be np and nd,
respectively. Thus, the ranking of o under weighting vector l ~w1

is n− np + nd. For example, in Fig. 3 the ranking of o under
the original weighting vector ~w0 is 3, and the rankings under
~w1 and ~w2 are 4 and 3, respectively.

The above observations yield the following theorem.

Theorem 2: The weighting vector of the best refined query
for a missing object o must be either the original weighting
vector or must go through a promoted point of So.

Proof. To prove the theorem by contradiction, let the weighting
vector of the best refined query be ~wb and assume that ~wb

is neither the original weighting vector nor goes through a
promoted point of So. There are then only two cases: There is
no promoted point within angle interval [~w0, ~wb]; or promoted
points exist within this angle interval. In the former case,
R(o, q, ~wb)≥R(o, q, ~w0). Since the modification of ~wb in the
weight dimension is larger than that of ~w0, the penalty of ~wb is
higher than that of ~w0, which contradicts the assumption that
~wb is the best refined weight. In the latter case, let ~wb′ denote
the promoted point nearest to ~wb in [~w0, ~wb]. Since there is no
promoted point in [~wb, ~wb′], R(o, q, ~wb)≥R(o, q, ~wb′) holds.
On the other hand, since ~wb′ is in [~w0, ~wb], the modification
of wb is larger than that of wb′ . As such, the penalty of ~wb is
larger than that of ~wb′ , which contradicts the assumption that
~wb is the best refined weight. �

C. Basic Algorithm for Why-Not Spatial Keyword Query

Theorem 2 suggests a basic query processing algorithm
that involves four steps. 1) We compute the ranking of o under

the original weighting vector by adapting an existing spatial
keyword top-k algorithm (e.g., [8]), get all dominators of o
under the original weighting vector, and identify the promoted
point produced by each such object. 2) We compute the fixed-
score segments of all other incomparable objects of o in D
except the dominators under ~w0, and we intersect them with
So. These intersection points are degraded points. An incom-
parable object o′ of o can be obtained by two range queries:
SDist(o′, q) < SDist(o, q)∧TSim(o′, q) < TSim(o, q) and
SDist(o′, q) > SDist(o, q) ∧ TSim(o′, q) > TSim(o, q).
3) We compute the rankings under all promoted points that
are introduced by these promoted and degraded points. 4) We
compute the penalty values for all promoted points and the
original weighting vector, and we select the one with the lowest
penalty value.

As an example, let us revisit Fig. 3. 1) We compute
R(o, q, ~w0) (=3) and find all dominators of o under ~w0

({o2, o4}). We then compute the fixed-score segments of the
dominators (So2 and So4) and intersect them with So to obtain
p2 and p4 as promoted points. 2) We intersect the fixed-score
segments of the remaining incomparable objects (So1 and So3)
with So, and we identify the intersections p1 and p3 that are
degraded points. 3) Using these promoted points and degraded
points, we compute the rankings of o under the weighting
vectors going through p2 and p4. 4) Since the ranking of both
promoted points is 3, which is not higher than that under the
original weighting vector, the best refined query is obtained
by enlarging k without changing the weighting vector.

V. BOUND AND PRUNE ALGORITHM

The basic processing algorithm avoids exhaustively enu-
merating an infinite number of candidate weighting vectors by
searching only those going through promoted points. However,
it still requires the use of two range queries to find degraded
points. Since the number of degraded points can be large,
the algorithm still has high computation cost. We proceed to
present an optimized algorithm that uses a new index structure,
the BIR-tree (Bounded IR-tree), to prune unnecessary accesses
to objects and promoted points, thus improving efficiency. The
essence of the BIR-tree is that by accessing high-level nodes,
we can estimate the number of degraded points in some range
without actually accessing them.

Section V-A introduces the BIR-tree, and Section V-B gives
an overview of our optimized algorithm and discusses how
to use upper and lower bounds to estimate the number of
degraded points. Then Section V-C describes how to compute
the upper and lower bounds using a BIR-tree.

A. A Hybrid Index: BIR-Tree

The BIR-tree is a hybrid data structure that indexes both
the spatial and textual attributes of spatial web objects. It is a
variant of the IR-tree [8] and Fig. 4 illustrates an example.
A leaf node contains a number of entries of the form of
(o,mbr, di), where o represents an object, mbr is the minimum
bounding rectangle (MBR) of the object, and di is a document
identifier of the object. A non-leaf node contains a number of
entries of the form (cp,mbr, di), where cp is a pointer to a
child node, mbr is the MBR of the child node, and di is an
identifier of a pseudo document that represents all documents

in the child node’s subtree. In addition, each node in the BIR-
tree stores a cnt value, which is the number of objects in the
node’s subtree, and a pointer (shown as an arrow in the figure)
to an inverted file for these objects. In the inverted file, we
maintain for each term t two bounds on its weight. ŵ(t) is the
maximum weight of t and is used to estimate the upper bound
of textual similarity for the objects in the entry’s subtree, while
w̌(t) is the minimum weight and is used for the estimation
of the lower bound of textual similarity. For example, in R3’s
inverted file, the term “Chinese” has its ŵ(t) = 5 and w̌(t) = 0
for estimating the bounds on textual similarities for objects
in R1. For clarity of presentation, here we use the keyword
frequency to represent a weight.1

o1 o2 o3

R1 R2

R1 : R2 :

R3 :

Inverted file

Inverted file

Chinese 〈o2, 5〉〈o3, 2〉
restaurant 〈o1, 7〉〈o2, 5〉〈o3, 6〉

cnt= 5

cnt=3

Chinese 〈R1, 5, 0〉
Spanish 〈R2, 5, 3〉

restaurant 〈R1, 7, 5〉〈R2, 4, 4〉

o4 o5

Spanish 〈o4, 3〉〈o5, 5〉
restaurant 〈o4, 4〉〈o5, 4〉

Inverted file

cnt=2

Fig. 4. Structure of a BIR-Tree

B. Optimized Query Processing by Estimated Bounds

The optimized algorithm estimates the number of degraded
points instead of actually accessing them. Algorithm 1 shows
the pseudo-code of this algorithm. According to Theorem 2,
the final best refined query must go through a promoted point
or be the initial weighting vector. As such, our aim is to effi-
ciently compute the ranking of o under each weighting vector
going through a promoted point. Let PP (e) and DP (e) denote
the number of promoted points and the number of degraded
points located between a promoted point e and p(l ~w0

, So).
For points located exactly in the same place, the number
is counted multiple times. As discussed in Section IV-B,
R(o, q, ~we)=R(o, q, ~w0)−PP (e)+DP (e). We first compute
all promoted points based on the dominators under the initial
weighting vector (Lines 1–6). We maintain TH , the current
minimal upper bound on the penalty value, and we initialize
it to the penalty value of the initial weighting vector (Line 7).
Next, we traverse the BIR-tree by starting from the root. By
sorting the promoted points, PP(e) of each promoted point e
can be obtained directly (Line 9). The next task is to compute

DP(e) of each e. We estimate their upper bound D̂P (N, e)
and lower bound ĎP (N, e) (Section V-C provides the details).
By these bounds, we get the upper bound p̂n(e) and lower
bound p̌n(e) on the penalty value (Lines 10–12). If the lower
bound p̌n(e) of a promoted point exceeds TH , this promoted
point cannot be the best refined query and is pruned from the
candidate list (Lines 13). After that, we recursively access the
BIR-tree nodes (Lines 14–32). If a node cannot tighten the
bounds for any promoted point, we prune it (Lines 18–19).
Similar to the case of the root, we may prune a promoted
point if its lower bound p̌n(e) on the penalty value exceeds
TH (Lines 20–31). By pruning nodes and promoted points, we
obtain the promoted point with the minimum penalty value

1The literature (e.g., [20]) explains how to compute the weight of a keyword
from keyword frequencies.

Algorithm 1 Optimized Why-Not Spatial Keyword Query
Processing Algorithm by Estimation

INPUT: BIR-tree T , original query q = (loc, doc, k, ~w0), missing object o
OUTPUT: Best refined query qb = (loc, doc, kb, ~wb)

1: determine R(o, q, ~w0) and compute o’s dominators under the original query
2: Pro ← ∅ // set of promoted points
3: for each dominator o′ of o under the original query
4: intersect So′ with So

5: if there is an intersection of So and S′

o then

6: Pro ← Pro ∪ {p(So, So′)}
7: TH ← penalty of ~w0 // the threshold recording the minimum penalty
8: for each element e in Pro

9: PP(e) ← # promoted points between e and p(l ~w0
, So)

10: R̂(e) ← R(o, q, ~w0) - PP(e) + D̂P (T .root, e) // Section V-C
11: Ř(e) ← R(o, q, ~w0)- PP(e)+ĎP (T .root, e) // Section V-C

12: use R̂(e) and Ř(e) to compute the lower bounds and upper bounds of penalty
of e, i.e., p̌n(e) and p̂n(e)

13: if p̌n(e) > TH then prune e from Pro

14: Q ← an empty queue
15: insert T .root into Q
16: while Q is not empty do

17: N ← Dequeue(Q)
18: if N has no degraded part or no existing promoted point on N ’s degraded and

promoted part
19: then continue

20: for each existing promoted point e on N ’s degraded part

21: D̂P
′

← 0
22: ĎP

′

← 0
23: for each child c of N do

24: D̂P
′

← D̂P
′

+ D̂P (c, e)
25: ĎP

′

← ĎP
′

+ ĎP (c, e)
26: R̂(e) ← R̂(e)− (D̂P (N, e)− D̂P

′

)
27: Ř(e) ← Ř(e) + (ĎP

′

− ĎP (N, e))
28: use R̂(e) and Ř(e) to compute p̌n(e) and p̂n(e)
29: if p̂n(e) < TH then TH ← p̂n(e)
30: for each existing promoted point e in N ’s degraded part
31: if p̌n(e) > TH then prune e from Pro

32: insert each child c of N into Q
33: for each remaining promoted point e
34: R(o, q, ~e)← Ř(e)
35: compute pn(e) by R(o, q, ~e)
36: b← the remaining promoted point with the minimum penalty
37: if pn(b) < penalty of ~w0 then return (loc, doc, R(o, q, ~wb), ~wb)
38: else return (loc, doc, R(o, q, ~w0), ~w0)

(Lines 33–36). If this penalty value is less than the penalty
of the initial weighting vector, the corresponding promoted
point is returned as the answer (Line 37). Otherwise, the initial
weighting vector is returned (Line 38).

Given a BIR-tree node N and a promoted point e, bound
estimation is accomplished as follows. Let DP (N, e) de-
note the number of degraded points produced by the ob-
jects under node N and located between e and p(l ~w0

, So).
Then DP (e) can be expressed as

∑

N∈S DP (N, e), where
S is a set of disjoint nodes fully covering all objects in
D. The upper and lower bounds of DP (e) are initialized

to D̂P (T .root, e) and ĎP (T .root, e), respectively. As we
traverse the BIR-tree downwards and access more nodes, the
bounds will gradually be tightened by D̂P (N, e)−∑

D̂P (c, e)
and

∑

ĎP (c, e)−ĎP (N, e), where c denotes a child of N
(Lines 21–27). In Section V-C3, we prove that a promoted
point can tighten the bounds only if it is located in the
degraded part of the node.

C. Derivation of D̂P (N, e) and ĎP (N, e)

As mentioned, the estimations of D̂P (N, e) and ĎP (N, e)
are key points in the optimized algorithm. Here we first identify
the properties of promoted and degraded points and the BIR-

tree, then present derivations of D̂P (N, e) and ĎP (N, e).

1) Properties of Promoted and Degraded Points: Intu-
itively, whether the fixed-score segment So′ of an object o′

produces a promoted or degraded point on So depends on two
relations: the relation between So and So′ and the relation
between the intersection point and the initial weighting vector.

Definition 5: Relations of Fixed-Score Segments. Two
objects’ fixed-score segments So and So′ have four possible
relations, determined by the relations of their intercepts in the
ws and wt dimensions (C

vso
vs. C

vso′
and C

vto
vs. C

vto′
):

1) If C
vto′

< C
vto

and C
vso′

< C
vso

, o′ always ranks higher

than o and o′ is a dominator of o under all candidate
weighting vectors (denoted by Dom(o));

2) If C
vto′

≥ C
vto

and C
vso′

≥ C
vso

, o′ never ranks higher

than o and o′ is a dominatee under all candidate
weighting vectors (denoted by DomBy(o)) ;

3) If C
vto′

≥ C
vto

and C
vso′

< C
vso

, So and So′ have an

intersection point, and o′ is called a steeper object of
o (denoted by Stp(o));

4) If C
vto′

< C
vto

and C
vso′

≥ C
vso

, So and So′ also have

an intersection point, and o′ is called a gentler object
of o (denoted by Gent(o)).

Take Fig. 3 as an example. Here, o3 is in DomBy(o2),
while o2 is in Dom(o3). Both o3 and o2 are in Stp(o), while
both o4 and o1 are in Gent(o). As mentioned above, only the
fixed-score segments of Stp(o) and Gent(o) intersect with So.

The following lemma shows how the second relation,
i.e., the relation between the intersection point and the ini-
tial weighting vector, determines the promoted and degraded
points.

Lemma 1: A fixed-score segment So′ produces a promoted
point on So if and only if: either 1) o′ is a steeper object of o
and p(So′ , So) is to the left of the intersection p(l ~w0

, So); or
2) o′ is a gentler object of o and p(So′ , So) is to the right of
the intersection p(l ~w0

, So). Similarly, So′ produces a degraded
point on So if and only if: either 1) o′ is a steeper object of
o and p(So′ , So) is to the right of the intersection p(l ~w0

, So);
or 2) o′ is a gentler object of o and p(So′ , So) is to the left of
the intersection p(l ~w0

, So).

The proof is straightforward and thus omitted. In the
example of Fig. 3, if the initial weighting vector is ~w0, So1

and So3 produce promoted points on So, while So2 and So4

produce degraded points.

2) Properties of the BIR-Tree: As the name suggests, the
information stored in each node N of the BIR-tree summarizes
the spatial and textual similarity bounds between a query q
and the objects in its subtree. With the spatial bounds, we can

compute the maximum distance (denoted by ŜDist(N, q)) and
minimum distance (denoted by ŠDist(N, q)) from the objects
in N to the location of a query q. With the similarity bounds of

each keyword, we can compute the upper bound (T̂ Sim(N, q))
and lower bound (Ť Sim(N, q)) of textual similarities between
the objects in N and a query q. Let v̂sN = 1− ŠDist(N, q),
v̌sN = 1 − ŜDist(N, q), v̂tN = T̂ Sim(N, q), and v̌tN =
Ť Sim(N, q). We can draw two boundary segments ŜN and

ŠN for each node N and q, where ŜN is the segment with
ends (C

v̌sN
, 0) and (0, C

v̌tN
), and ŠN is the segment with ends

(C
v̂sN

, 0) and (0, C

v̂tN
). The region enclosed by the vt-axis, ŜN ,

the vs-axis, and ŠN is called the boundary region of N and

BA(N)ŠN

ŜN

O ws

wt

So

St

o

So1

So2
Ŝt

N

Št

N

St

o2

St

o1

Ŝs

N
Ss

oŠs

N
Ss

o2
Ss

o1

Fig. 5. An Example of the Boundary Region of a Node N

TABLE III. RELATIONS BETWEEN NODE N AND OBJECT o

St
o

Ss
o (Ŝs

N ,∞) [Šs
N , Ŝs

N] (0, Šs
N)

(Ŝt
N ,∞) ♣1 ♣♦2 ♦3

[Št
N , Ŝt

N] ♥♣4 ♥♦♣♠5 ♦♠6

(0, Št
N) ♥7 ♥♠8 ♠9

♥ = Stp(o), ♦ = Gent(o), ♣ = Dom(o), ♠ = DomBy(o)

is denoted by BA(N) (see the shaded region in Fig. 5). The
following theorem establishes a desirable property of BA(N).

Theorem 3: For any node N in the BIR-tree, the fixed-
score segments of all objects in N must be covered by BA(N).

Proof. Fig. 5 illustrates the theorem. Since ŠDist(N, q) is
the lower bound of the distance from the objects in N to q,
for any object o in N , SDist(o, q) ≥ ŠDist(N, q). So, vso ≤
v̂sN , from which C

vso
≥ C

v̂sN
follows. Similarly, C

vso
≤ C

v̌sN
.

This means that one end of So is on the segment from (0, C
v̂sN

)

to (0, C
v̌sN

), which is an edge of BA(N). Likewise, another

end of So on the wt-axis is also on the edge of BA(N) on
the wt-axis. Since BA(N) is convex, the full segment So is
covered by BA(N). �

Next, the relation between a node N and an object not
in N can be divide into nine cases, according to the relation
between the intercepts of So and the edges of BA(N) on the
ws-axis and the wt-axis. For ease of presentation, let Ss

o (St
o)

denote the intersection point between segment So and the ws-
axis (wt-axis).

Combining the properties of BIR-tree and the promoted and
degraded points, we can also identify the relations between the

objects in N and So as follows. If both Ss
o ∈ (Ŝs

N ,∞) and
St
o ∈ (0, Št

N) hold, all objects in N are steeper objects of o

(like N and o1 in Fig. 5); likewise, if both St
o ∈ (Ŝt

N ,∞)
and Ss

o ∈ (0, Šs
N) hold, all objects in N are gentler objects

of o (like N and o2 in Fig. 5). Other relations between N
and o are summarized in Table III, and we number the cases
through 1 to 9 for latter reference. The column and row headers
indicate the intervals that Ss

o and St
o belong to. The symbols

used are explained in the last row. For example, ♥ means that

the objects in N belong Stp(o). If Ss
o ∈ [Šs

N , Ŝs
N] and St

o ∈
(Ŝt

N ,∞) hold, symbols ♣♦ apply meaning that the objects in
N belong to Dom(o) or to Gent(o).

3) Estimation of D̂P (N, e) and ĎP (N, e): The bounds on
DP (N, e) depend on two factors: the characteristic of N and
the location of the promoted point e. The former determines
the total number of degraded points in N , while the latter
determines the number of degraded points among them that are
located between e and p(l ~w0

, So), i.e., DP (N, e). We proceed

Degraded Partwt

ws
O

BA(N)~w0

So

Ss
o

St
o
(pl)

Ŝt
N

Ŝs
NŠs

N

Št
N

p0
pr

wt

BA(N)

Ŝt
N

Št
N

So

St
o

Šs
N Ŝs

N
Ss
o

ws
O

pr

p0pl

~w0

(a) (b)wt

ws
O

BA(N)~w0

So

Ss
o
(pr)

St
o

p0

pl

(c)

wt

ws
O

~w0

So

Ss
o

St
o

p0

pl

(d)

BA(N)pr

Promoted Part
Influnced Part

Fig. 6. An Example of # Degraded Point Estimation

to analyze these two factors.

As discussed earlier in this section, a node not contain-
ing o contains 4 kinds of objects, i.e., objects in Dom(o),
DomBy(o), Gent(o), or Stp(o). Formally,

N.cnt = |N.Dom(o)|+|N.DomBy(o)|+|N.Gent(o)|+|N.Stp(o)|. (4)

Since the fixed-score segments of Stp(o) and Gent(o) must
intersect with that of the missing object o and produce pro-
moted or degraded points on So, we can deduce that:

|N.Gent(o)|+ |N.Stp(o)| = PP (N) +DP (N), (5)

where PP (N) (DP (N)) denotes the number of promoted
(degraded) points produced by the objects in the subtree of
entry N and located on the segment So. Substituting Eqn. 5
into Eqn. 4, the number of degraded points on So produced
by the objects in N ’s subtree can be expressed as:

DP (N) = N.cnt− |N.Dom(o)| − |N.DomBy(o)| − PP (N). (6)

Based on these equations and the nine different relations
between a node and the missing object’s segment in Table III,
we estimate bounds on DP (N, e) for each relation as follows.

For relation 1 in Table III, all objects are in Dom(o), i.e.,
N.Gent(o) = ∅ and N.Stp(o) = ∅. According to Eqn. 5, we
can deduce that DP (N) = ∅. That is to say, this kind of node
can never produce degraded points on So; thus, they can be
pruned. This also applies to relation 9, where only DomBy(o)
is non-empty.

For relation 5, a node covers all of segment So, and may
contain all four kinds of objects. Since we can only get the in-
formation about Dom(o), the promoted points in So (denoted
by PP (So)), and part of the degraded points, we cannot esti-
mate the cardinality of DomBy(o). That is to say, in Eqn. 6,
we only know |N.Dom(o)|≤|Dom(o)|, PP (N)≤PP (So).
As such, we can only conclude that DP (N)∈[0, N.cnt], and
therefore wherever e is located, we set the bounds of DP (N, e)
to [0, N.cnt].

We now focus on the remaining cases. For relations 2 and
4, N.DomBy(o) = ∅. According to Eqn. 6, the number of
degraded points produced by the objects in such a node N is:

DP (N) = N.cnt− |N.Dom(o)| − PP (N). (7)

In one extreme, we set the cardinality of Dom(o) (denoted
by |Dom(o)|) as the upper bound of |N.Dom(o)|, and the total
number of promoted points on the promoted part (denoted by
PP (S+

o,N) and to be defined in Definition 6) as the upper

bound of PP (N). According to Eqn. 7, the lower bound of
DP (N) can be estimated as:

ĎP (N) = max{0, N.cnt− PP (S+

o,N
)− |Dom(o)|}. (8)

In the other extreme, we assign 0 as the lower bound of
PP (N) and |N.Dom(o)|. By Eqn. 7, we can derive the upper
bound of DP (N) by the following equation:

D̂P (N) = N.cnt. (9)

For relations 3 and 7, nodes only contain objects
that belong to Gent(o) or Stp(o), i.e., N.Dom(o) =
N.DomBy(o) = ∅. According to Eqn. 6, DP (N) = N.cnt−
PP (N). As PP (N) ∈ [0, PP (S+

o,N)], the range of DP (N)

is [max{0, N.cnt− PP (S+
o,N)}, N.cnt].

For the remaining two relations 6 and 8, N.Dom(o) = ∅.
According to Eqn. 6,

DP (N) = N.cnt− |N.DomBy(o)| − PP (N), (10)

where we only know PP (N) ∈ [0, PP (S+
o,N)], but not

|D.DomBy(o)|. We therefore set DP (N) to be [0, N.cnt].

Now we take the next step to derive DP (N, e) based on
the location of e. We first introduce three concepts, promoted
part, degraded part, and influenced part.

Relations 1 and 9 never produce degraded points, and for
relation 5, we have shown that wherever e locates, DP (N, e) ∈
[0, N.cnt]. This leaves us with 6 relations, some of which are
shown in Fig. 6. For example, Fig. 6(a) corresponds to relation

4, i.e., Ss
o ∈(Ŝs

N ,∞) and St
o∈[Št

N , Ŝt
N]. According to Table III,

each object o′ in N must be in Dom(o) or Stp(o). If o′ is
in Stp(o), So′ must intersect with So on the segment plpr,
where plpr is the part of So covered by BA(N) and pl (pr) is
the left (right) most end of this subsegment. For simplicity, we
denote p(l ~w0

, So) as p0. According to Lemma 1, if p(So, So′)
lies to the left of p0 (i.e., on the subsegment plp0), it must be a
promoted point; otherwise, if p(So, So′) lies on the subsegment
p0pr, it must be a degraded point. We call plp0 the promoted
part of So and p0pr the degraded part of So.

Definition 6: Promoted Part and Degraded Part. For
a given object o, node N in relations 2, 3, 4, 6, 7, 8, the
subsegment of So covered by BA(N) can be divided into
two disjoint parts: a promoted part (denoted by S+

o,N) and a

degraded part (denoted by S−o,N). For any object o′ in N ,

if p(So, So′) is on the promoted part, it must be a promoted
point; and if p(So, So′) is on the degraded part, it must be a
degraded point.

Fig. 6 illustrates the promoted and degraded parts, which
are denoted by dotted and dashed segments, respectively. If

Ss
o ∈ (Ŝs

N ,∞), either St
o ∈ [Št

N , Ŝt
N] (see Fig. 6(a)) or

St
o ∈ (Ŝt

N ,∞) (see Fig. 6(b)), the promoted part is to the
left of p0, and the degraded part is to the right. Conversely,

if St
o ∈ (Ŝt

N ,∞), either Ss
o ∈ [Šs

N , Ŝs
N] (see Fig. 6(c)) or

Ss
o ∈ (Ŝs

N ,∞) (see Fig. 6(d)), the promoted part is to the
right, and the degraded part is to the left. Note that there will
be no promoted (see Fig. 6(d)) or degraded part (see Fig. 6(c))

So1

So2

So3

wt

wsO

~w1

~w2

l ~w1

l ~w2

Working parts

So4

Fig. 7. An Example of Multiple Missing Objects

if the part of So covered by BA(N) lies totally to the right
or left of p0.

The influenced part denotes the part of So on the same
side as the degraded part, but outside BA(N). In Fig. 6, the
influenced part is denoted by a bold line. Note that if there is
no degraded part, there will be no influenced part, as shown in
Fig. 6(c). And for relations 6 and 8, there will be no influenced
part, either.

As such, the location of a promoted point e can fall into
one of four parts: 1) the influenced part; 2) the degraded part;
3) the promoted part; or 4) the remaining part. For case 1), if
e is located on the influenced part of N , DP (N, e) = DP (N)
because all degraded points produced by the objects in N
are located in the interval (p0, e). According to the previous
estimation of DP (N), we have:

ĎP (N, e) = ĎP (N) =











max{0, N.cnt− PP (S+

o,N
)− |Dom(o)|} for 2&4

max{0, N.cnt− PP (S+

o,N
)} for 3&7

D̂P (N, e) = D̂P (N) = N.cnt.

For case 2), if e is located on the degraded part of N ,
since we do not know the objects in N , an object in N may
intersect with So either inside or outside the interval (e, p0).
In extreme cases, all or no objects in N are degraded points
in the interval (e, p0). Hence, we set the bounds on DP (N, e)
to be [0, N.cnt], which is looser than the bounds in case 1).

For cases 3) and 4), there is no degraded point in the
interval (e, p0). Thus, the bounds on DP (N, e) are set to [0, 0].

Since the degraded part of a parent node N must contain
those of its child nodes, if a promoted point e lies on such
a part, it can be located on the degraded or influenced part
of its child nodes. Only in the latter case can the bounds
of DP (N, e) be tightened because the bounds of case 1) are
tighter than those of case 2). As such, in the optimized query
processing algorithm, we only need to observe the promoted
points on the degraded part of an accessed node, and we then
gradually tighten the bounds as we access child nodes (Lines
20–27 in Algorithm 1).

VI. HANDLING MULTIPLE MISSING OBJECTS

We proceed to extend the algorithms to deal with queries
with multiple missing objects. Recall that the goal of a why-
not spatial keyword query is to refine the query so that all
missing objects are in the result. To achieve when there are
multiple missing objects, we first identify the lowest-ranked
missing object under arbitrary weighting vectors. To do so,
we project the missing objects to the two-dimensional plane.
Fig. 7 shows an example with four missing objects o1, o2,

Algorithm 2 Identification of Working Parts
INPUT: Missing object set M
OUTPUT: Working parts of missing objects WP

1: WP ← ∅
2: intersect the fixed-score segments of the objects in M with the wt and ws axises
3: IS ← the ws-intercept set (in ascending order)
4: denote the ith element in IS by isi
5: denote the fixed-score segment producing the intercept isi by S(isi)
6: n ← |M |
7: sp ← isn
8: while true do

9: for i =1 to n-1 do

10: intersect S(isi) with S(isn)
11: if there is no intersection then

12: S(isn)
t ← the intersection of S(isn) and the wt-axis

13: insert sub-segment (sp, S(isn)
t) into WP

14: break

15: else

16: pc ← the intersection nearest to sp
17: S(isc) ← the object segment producing pc

18: insert sub-segment (sp, pc) into WP

19: sp ← pc

20: n ← c
21: reture WP

o3, and o4 with fixed-score segments So1 , So2 , So3 , and So4 .
If the weighting vector is ~w1, o1 is the lowest-ranked missing
object because the intersection of So1 and the weighting vector
line l ~w1

is the farthest from the origin. Similarly, if ~w2 is the
weighing vector, o2 is the lowest-ranked missing object. Given
an arbitrary weighting vector ~w, we define the intersection of
the line l~w and the farthest fixed-score segment as a working
point. The working points that correspond to a missing object
constitute a sub-segment, which we call a working part (e.g.,
the bold segments for o1, o2, and o3 in Fig. 7). The promoted
points in the working parts are called promoted working points.
The following theorem shows an important property of the
promoted working points.

Theorem 4: Given a set of missing objects, the weighting
vector of the best refined query must be either the initial
weighting vector or must go through a promoted working
point.

Proof. The proof is similar to that of Theorem 2. �

Based on this property, we first identify the working parts
in Section VI-A, and then we describe how to use the working
parts to process why-not spatial keyword queries with multiple
missing objects in Section VI-B.

A. Identifying Working Parts

Algorithm 2 computes the working parts. First, we sort the
fixed-score segments of the missing objects in ascending order
of their intercepts with the ws axis (Lines 2–3). Obviously,
if the weighting vector follows the ws axis, the fixed-score
segment with the largest ws-intercept (denoted by isn) is the
farthest one. Thus, we initialize this intercept as the starting
point sp of the working part for this fixed-score segment (Line
7). Next, we find the intersections between this fixed-score
segment and all other fixed-score segments with smaller ws-
intercepts (Lines 9–10). The nearest intersection point pc is
regarded as the ending point of the working part. The working
part (sp, pc) is then inserted into the result set WP (Lines
16–18). The fixed-score segment producing pc is denoted by
S(isc), where isc is the ws-intercept of S(isc). Since isc is
smaller than isn, S(isc) is steeper than S(isn). Therefore,
if the weighting vector rotates counterclockwise across pc,
S(isc) will be farther farthest from the origin than S(isn), so

it becomes the farthest fixed-score segment. pc becomes the
starting point of the working part for S(isc). Then we set n
to c and repeat the above operations to identify the remaining
working parts. The procedure terminates when no intersection
exists between S(isn) and the other fixed-score segments with
smaller ws-axis intercepts (Line 11). In that case, there is no
farther fixed-score segment if the weighting vector rotates from
sp to the wt-axis. Hence, the sub-segment (sp, S(isn)

t) is the
last identified working part, and it is inserted into the result
set, where S(isn)

t is the intersection of S(isn) and the wt-
axis. The time complexity of Algorithm 2 is O(n2), where n
is the number of missing objects.

Fig. 7 exemplifies the algorithm. Initially, the fixed-score
segments are sorted as {So1 , So2 , So4 , So3} according to their
ws-axis intercepts, and So3 is the initial, farthest fixed-score
segment. We intersect So3 with So1 , So2 , and So4 ; the nearest
intersection point is p(So2 , So3). Consequently, the working
part for So3 is the sub-segment (p(So3 , ws), p(So3 , So2)). Sisn

becomes So2 , and p(So2 , So3) is the starting point of its
working part. Since the ws-intercept of So4 exceeds that of So2

and p(So4 , So3) is farther from p(So3 , ws) than p(So2 , So3),
there is no working part for So4 . Now So1 is the only fixed-
score segment with smaller ws-intercept. Thus, we intersect
So1 with So2 and get an intersection point p(So1 , So2) that
serves as the ending point of the working part for So2 . Finally,
since there is no fixed-score segment with ws-intercept smaller
than So1 , the sub-segment (p(So1 , So2), S

t
o1
)) is the working

part for So1 .

B. Why-Not Spatial Keyword Query Processing for Multiple
Missing Objects

Following Theorem 4, query processing for multiple miss-
ing objects can be divided into three steps: 1) Finding all
promoted working points; 2) computing the rankings of the
farthest fixed-score segments under the weighting vectors that
go though the promoted working points; 3) computing the
penalty values under the above weighting vectors and selecting
the best refined query.

The first step starts right after identifying the working
parts. We call those missing objects that contain working parts
working missing objects. We first compute the dominators
of the working missing objects under the initial weighting
vector. Then we identify the dominators that will produce
promoted points on the working parts of the working missing
objects. Next, we intersect the fixed-score segments of these
dominators with those of the corresponding working missing
objects. If the intersections are located on the working parts,
they become the promoted working points.

The second step is done by slightly modifying the basic
algorithm for a single missing object. Specifically, we intersect
all incomparable objects in D with each working missing
object and compute the number of degraded points between
each promoted working point and the initial weighting vector.
Using these degraded points and previously computed pro-
moted points, the ranking of each weighting vector can be
obtained by the algorithm described in Section IV-B. This step
can also be accomplished using a modification of the optimized
algorithm. After accessing a node N , for each promoted
working point, we compute the bounds of degraded points

caused by the objects under N and the corresponding working
missing objects. With these bounds, we can also estimate the
total bound of the ranking for each promoted working point.

After obtaining these rankings, the penalty values can be
derived by Eqn. 3 in the third step.

VII. EMPIRICAL STUDY

A. Experimental Setup

1) Algorithms for Comparison: We implemented four algo-
rithms for study. The first is the baseline algorithm (Baseline,
Section III-C), the second is the basic algorithm (BS), the
third is the optimized algorithm, which employs the bound
and prune strategy (BP), and the fourth is an algorithm
based on a principle developed by He and Lo [13] (TM).
This last algorithm computes the rankings of the missing
objects under all candidate weighting vectors. As stated by
Theorem 2, the candidate weighting vectors are either the
initial weight vector or go through a promoted point of So. The
ranking of a missing object is derived by slightly modifying
a typical spatial keyword top-k query processing algorithm
(i.e., [8])—instead of finding k objects with the largest scores,
the algorithm stops when the missing object is popped from
the max heap that sorts the accessed IR-tree nodes and
objects. For fairness, we also implemented two optimizations
in TM. First, deriving the ranking of the missing object stops
earlier, namely when the number of popped objects leads to a
penalty value exceeding the current minimum penalty. Second,
we adopt the properties in Section V to estimate the upper
bound of the ranking under some weighting vector, i.e., when
R(o, q, ~w1) is being computed with another weighting vector
~w2, R(o, q, ~w1) − R(o, q, ~w2) will not exceed the number of

promoted points between them.

2) Datasets: We use the real datasets EURO and GN in the
experiments.2 Both are commonly used in the spatial keyword
query research [3], [4], [19], [26]. Each dataset contains a
number of objects with location coordinates and a set of
keywords. EURO is a dataset of points of interest such as
ATMs, hotels and stores in Europe; and GN is a set of
geographic objects obtained from the US Board on Geographic
Names. Their characteristics are given in Table IV.

TABLE IV. DATASET CHARACTERISTICS

EURO GN

total # objects 162,033 1,868,821

distinct words 35,315 222,407

Avg. # words per object 18 4

3) System Setup and Metrics: Our experiments were con-
ducted on a PC with an Intel Core i7 3.4GHz CPU and 16GB
memory running Windows 7. All programs were implemented
in Java, and the maximum main memory of the Java Virtual
Machine is set to 4GB. The BIR-trees used are disk-resident.
The page size is set to 4KB, and the fanout of the BIR-tree is
set to 100. The buffer size is set at 4MB. For all algorithms,
we measure the total query time (including the CPU time and
IO time) and the IO cost. For each experiment, we randomly
generate 1,000 queries and report the average performance.

2EURO — http://www.allstays.com; GN — http://geonames.usgs.gov

4) Parameters: We vary different system parameters. These
parameters together with their default values (highlighted in
bold) are shown in Table V. In the default setting, we select
the object ranked (10·k0+1)st under ~w0 as the missing object.

TABLE V. PARAMETER SETTINGS

Parameters Settings

k0 3,10,30,100,300

keywords 2,4,8,16,32

~w0
<0.1, 0.9>,<0.3, 0.7>,

<0.5,0.5>,<0.7, 0.3>,<0.9, 0.1>
λ 0.1, 0.3,0.5, 0.7, 0.9

missing objects 1,3,10,30

B. Empirical Results

1) Scalability: To determine the scalability of our proposed
algorithms, we randomly select different numbers, from 0.2M
to 1.8M, of objects from the GN dataset to test the query
performance under different dataset sizes. Fig. 8 shows that
the BS and BP are superior to Baseline and TM in terms of
both the total query time and IO cost. Moreover, BS and BP
scale very well to large dataset sizes; the increase in their query
time is sublinear when the dataset is enlarged. On the other
hand, the IO cost of Baseline is several orders of magnitude
higher than that of the other algorithms. Therefore, we omit it
in the remaining experiments.

 0

 4000

 8000

 12000

 16000

2 6 10 14 18

q
u
e
ry

 t
im

e
 (

m
s
)

Data size(100K)

Baseline
TM
BS
BP

(a) Total Query Time

 100

 1000

 10000

 100000

 1e+006

2 6 10 14 18

#
p
a
g
e
s
 a

c
c
e
s
s

Data size(100K)

Baseline
TM
BS
BP

(b) Page Accesses (log-scale)

Fig. 8. Varying Dataset Size

2) Varying k0: In this set of experiments, we evaluate the
effect of varying the parameter k0 in the initial spatial keyword
top-k query. Note that the ranking of the missing object varies
along with the change of k0. For instance, when a top-3 spatial
keyword query is posed initially, the corresponding why-not
question is to ask why the object ranked 31 is missing; whereas
a top-10 spatial keyword query corresponds to a why-not
question for the object ranked 101. Fig. 9 plots the performance
for the EURO dataset,3 showing that our algorithms are robust
to changes in k0. Also, we can see that TM has less IO than
BS, but that its query time is much higher. As a result, TM is
significantly worse than BS in terms of the total query time.

3) Varying the number of query keywords: This experiment
evaluates the effect of varying the number of query keywords.
Theoretically, having more query keywords increases the CPU
time needed to compute the similarity between the query
keywords and the objects. However, as shown in Fig. 10,
increasing the number of query keywords has little impact on
the performance of BS and BP. This is because the textual
similarity computations are simple for these two algorithms.
On the other hand, in TM, as we need to process a progressive

3In the interest of space, we omit the results for the GN dataset as they are
similar.

 10

 100

 1000

 10000

 100000

3 10 30 100 300

q
u
e
ry

 t
im

e
 (

m
s
)

k0

TM

BS

BP

(a) Total Query Time (log-scale)

 0

 300

 600

 900

 1200

 1500

 1800

3 10 30 100 300

#
p
a
g
e
 a

c
c
e
s
s

k0

TM

BS

BP

(b) Page Accesses

Fig. 9. Varying k0

spatial keyword top-k query many times, the computation of
textual similarity becomes a dominating factor. This is why
the query time of TM increases more noticeably with more
query keywords.

 0

 200

 400

 600

 800

 1000

2 4 8 16 32

q
u
e
ry

 t
im

e
 (

m
s
)

number of query keywords

TM

BS

BP

(a) Total Query Time

 0

 100

 200

 300

 400

2 4 8 16 32

#
p
a
g
e
 a

c
c
e
s
s

number of query keywords

TM

BS

BP

(b) Page Accesses

Fig. 10. Varying Number of Query Keywords

4) Varying the initial weighting vector ~w0: Next we investi-
gate the effect of varying the weighting vector ~w0 in the initial
spatial keyword top-k query. As shown in Fig. 11, varying
~w0 has almost no impact on BS and BP. However, the query

time of TM increases dramatically when the weight of ws is
decreased. This indicates that BS and BP scale much better
than TM w.r.t. the changing of initial weighting vector ~w0.

 0

 400

 800

 1200

 1600

 2000

0.9 0.7 0.5 0.3 0.1

q
u
e
ry

 t
im

e
 (

m
s
)

ws in initial weight vector

TM

BS

BP

(a) Total Query Time

 0

 100

 200

 300

 400

0.9 0.7 0.5 0.3 0.1

#
p
a
g
e
 a

c
c
e
s
s

ws in initial weight vector

TM

BS

BP

(b) Page Accesses

Fig. 11. Varying Initial Weighting Vector ~w0

5) Varying λ: Parameter λ allows the user to indicate the
preference of modifying k0 or the weighting vector ~w0. When
varying λ, we observe from Fig. 12 that BS and BP are almost
unaffected. The reason is that in BS, λ is only used in the last
step when all promoted points are considered to compute the
penalty. Changes to λ do not affect the range query in BS
or the number of promoted points. In BP, different λ settings
do not affect the pruning efficiency significantly. However, in
TM, as the very basic refined query is to keep ~w0 and change
k0 to R(o, q, ~w0), the penalty of this query is λ according to
Eqn. 3. Thus, a larger λ causes a larger initial penalty in TM.
This further influences the optimizations of TM mentioned in
Section VII-A1. Thus, TM is quite sensitive to changes in λ
and the query time increases dramatically with λ.

 0

 500

 1000

 1500

 2000

 2500

 3000

0.1 0.3 0.5 0.7 0.9

q
u
e
ry

 t
im

e
 (

m
s
)

λ

TM

BS

BP

(a) Total Query Time

 0

 50

 100

 150

 200

 250

 300

0.1 0.3 0.5 0.7 0.9

#
p
a
g
e
 a

c
c
e
s
s

λ

TM

BS

BP

(b) Page Accesses

Fig. 12. Varying λ

6) Varying the number of missing objects: Finally, we vary
the number of the missing objects. In this experiment, the
original query is a top-10 query, and the missing objects are
chosen at random from the objects ranking between 11 and 301
under the original query. Fig. 13 shows that the query time of
BS is quite stable as the number of missing objects increases.
BP increases linearly in both query time and IO cost, but at
a faster rate than BS. This is because after we identify all the
working parts of the missing objects, the range query in BS
still works well; but in BP, a node can only be pruned when
it does not affect all the working parts, and hence the pruning
efficiency is degraded when more objects are missing. Yet, BP
is still much better than TM in terms of the query time.

 0

 500

 1000

 1500

 2000

 2500

1 3 10 30 100

q
u
e
ry

 t
im

e
 (

m
s
)

number of missing objects

TM

BS

BP

(a) Total Query Time

 0

 100

 200

 300

 400

 500

1 3 10 30 100

#
p
a
g
e
 a

c
c
e
s
s

number of missing objects

TM

BS

BP

(b) Page Accesses

Fig. 13. Varying Number of Missing Objects

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we studied how to answer why-not questions
on spatial keyword top-k queries using query refinement. We
reduced ranking updates to a geometrical problem, and based
on this and the proposed BIR-tree, we developed basic and
optimized bound-and-prune algorithms. Extensive empirical
study on real datasets demonstrates that the proposed algo-
rithms substantially outperform the existing ones in terms of
both the query time and IO cost.

So far we considered modifying the parameters k and ~w0

when refining the original spatial keyword query. In future
work, we plan to also consider the query keywords and the
query location in why-not queries.

ACKNOWLEDGEMENTS

This work is partially supported by HK-RGC GRF grants
HKBU211512 & HKBU12202414 and HKBU FRG2/12-
13/081. The work of Xin Lin was supported by China Post-
doctoral Science Foundation, Shanghai Postdoctoral Scientific
Program and Shanghai Pujiang Program. The authors thank
Prof. Eric Lo for providing the source code of [13].

REFERENCES

[1] S. S. Bhowmick, A. Sun, and B. Q. Truong. Why Not, WINE?: Towards
answering why-not questions in social image search. In MM, pp. 917-
926, 2013.

[2] P. Bouros, S. Ge, and N. Mamoulis. Spatio-textual similarity joins. In
PVLDB, pp. 1-12, 2012.

[3] X. Cao, G. Cong, and C. S. Jensen. Retrieving top-k prestige-based
relevant spatial web objects. In PVLDB 3(1): 373-384, 2010.

[4] X. Cao, G. Cong, C. S. Jensen, and B. C. Ooi. Collective spatial
keyword querying. In SIGMOD pp. 373-384, 2011.

[5] L. Chen, G. Cong, C. S. Jensen, and D. Wu. Spatial keyword query
processing: An experimental evaluation. In PVLDB, pp. 217-228, 2013.

[6] Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in
geographic web search engines. In SIGMOD, pp. 277-288, 2006.

[7] A. Chapman and H. V. Jagadish. Why not?. In SIGMOD, pp. 523-534,
2009.

[8] G. Cong, C. S. Jensen, and D. Wu. Efficient retrieval of the top-k most
relevant spatial web objects. In PVLDB, 2(1):337-348, 2009.

[9] S. Chester, A. Thomo, S. Venkatesh and S. Whitesides. Indexing for
vector projections. In DASFAA, pp. 367-376, 2011.

[10] I. De Felipe, V. Hristidis, and N. Rishe. Keyword search on spatial
databases. In ICDE, pp. 656-665, 2008.

[11] J. Fan, G. Li, L. Zhou, S. Chen, and J. Hu. SEAL: Spatio-textual
similarity search. In PVLDB, 5(9):824-835, 2012.

[12] A. Guttman. R-trees: A dynamic index structure for spatial searching.
In SIGMOD, pp.47-57, 1984.

[13] Z. He and E. Lo. Answering why-not questions on top-k queries. In
ICDE, pp. 750-761, 2012.

[14] M. Herschel and M. A. Hernández. Explaining missing answers to
SPJUA queries. In PVLDB, 3(1-2):185-196, 2010.

[15] J. Huang, T. Chen, A. Doan, and J. F. Naughton. On the provenance of
non-answers to queries over extracted data. In PVLDB, 1(1):736-747,
2008.

[16] M. S. Islam, R. Zhou, and C. Liu. On answering why-not questions in
reverse skyline queries. In ICDE, pp. 973-984, 2013.

[17] G. Li, J. Feng, and J. Xu. DESKS: Direction-aware spatial keyword
search. In ICDE, pp. 474-485, 2012.

[18] F. Li, B. Yao, M. Tang, and M. Hadjieleftheriou. Spatial approximate
string search. In TKDE, 25(6):1394-1409, 2012.

[19] J. Lu , Y. Lu, and G. Cong. Reverse spatial and textual k nearest
neighbor search. In SIGMOD, pp. 349-360, 2010.

[20] C. Manning, P. Raghavan, and H. Schütze. Introduction to Information
Retrieval. Cambridge University Press, 2008.

[21] B. Martins, M. J. Silva, and L. Andrade. Indexing and ranking in geo-IR
systems. In GIR, pp. 31-34, 2005.

[22] J. B. Rocha-Junior and K. Nørvåg. Top-k spatial keyword queries on
road networks. In EDBT, pp. 168-179, 2012.

[23] Y. Tao, X. Xiao, and J. Pei. Efficient skyline and top-k retrieval in
subspaces. In TKDE, 19(8):1072-1088, 2007.

[24] Q. T. Tran and C. Chan. How to ConQueR why-not questions. In
SIGMOD, pp. 15-26, 2010.

[25] D. Wu, Y. Li, B. Choi, and J. Xu. Social-aware top-k spatial keyword
search. In MDM, 2014.

[26] D. Wu, M. Yiu, C. S. Jensen, and G. Cong. Efficient continuously
moving top-k spatial keyword query processing. In ICDE, pp. 541-552,
2011.

[27] D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa.
Keyword search in spatial databases: Towards searching by document.
In ICDE, pp. 688-699, 2009.

[28] D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources
in web 2.0. In ICDE, pp. 521-532, 2010.

[29] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma. Hybrid index
structures for location-based web search. In CIKM, pp. 155-162, 2005.

