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Abstract—The proliferation of geo-textual data gives promin-
ence to spatial keyword search. The basic top-k spatial keyword
query, returns k geo-textual objects that rank the highest ac-
cording to their textual relevance and spatial proximity to query
keywords and a query location. We define, study, and provide
means of computing the reverse top-k keyword-based location
query. This new type of query takes a set of keywords, a query
object q, and a number k as arguments, and it returns a spatial
region such that any top-k spatial keyword query with the query
keywords and a location in this region would contain object q
in its result. This query targets applications in market analysis,
geographical planning, and location optimization, and it may
support applications related to safe zones and influence zones
that are used widely in location-based services.

We show that computing an exact query result requires
evaluating and merging a set of weighted Voronoi cells, which is
expensive. We therefore devise effective algorithms that approx-
imate result regions with quality guarantees. We develop novel
pruning techniques on top of an index, and we offer a series
of optimization techniques that aim to further accelerate query
processing. Empirical studies suggest that the proposed query
processing is efficient and scalable.

I. INTRODUCTION

So-called spatial web objects are objects accessible on the
web that are both geo-tagged and textually annotated. Spatial
web objects may represent different kinds of points of interest
such as restaurants and tourist attractions. Given a set of
keywords, a location, and a number k, a prototypical top-k
spatial keyword query intuitively returns k spatial web objects
that are most textually relevant to the query keywords and
nearest to the query location. For example, this kind of query
enables smartphone users to find nearby points of interest that
are relevant to keywords [1]–[5].

We study a different kind of query that takes a set of
keywords ψ, a spatial web object q, and a number k as
arguments. It then returns a spatial region such that object
q would belong to the result of a top-k spatial keyword query
with query keywords ψ and any location in the region as argu-
ments. We call this the reverse top-k keyword-based location
(RTkKL) query. It targets applications in market analysis and
decision support. For example, a business wants to identify the
geographical region in which a spatial web object (e.g., a hotel)
is highly ranked under some search keywords (e.g., “Free Wi-
Fi” and “Fine food”). Follow-up marketing and promotion

campaigns can then be launched in this region, e.g., budgeting
for billboards or posters required.

The RTkKL query can also support applications that in-
volve the concepts of influence zone [6]–[8] and safe zone [9]–
[15], if the objects being considered are associated with textual
descriptions and locations.

• Studies on influence zones [6]–[8] assume that a
facility has high influence on a location if the facil-
ity is the nearest one to that location, or is among
the k nearest ones. The influence zone of a facility
contains all points that are closer to that facility than
to other facilities. Studies involving influence zones
target applications in spatial planning and location
optimization.

• Studies on safe zones [9]–[15] often consider a mov-
ing query point that continuously requests k nearest
facilities. A safe zone for a top-k result contains the
query location and has the property that the top-k
result is the same for all locations in the zone. Then,
the top-k result needs to be recomputed only if the
query point exits the safe zone.

Voronoi-based concepts are usually used for defining such
kinds of spatial regions. Given a set S of spatial point objects,
the Voronoi cell for object q′ ∈ S is the part of the space
that contains all points in the underlying space that have q′ as
their nearest neighbor. Object q′ is called the cell’s site. This
concept can be extended to k-nearest neighbors. If the site of a
Voronoi cell is a set s of objects (s ⊆ S and |s| = k), the cell
is called order-k Voronoi cell. Every point of the underlying
space in the cell takes s as their k nearest neighbors.

Existing techniques [6]–[15] that work for plain Voronoi
cells cannot be used for computing RTkKL queries because
they take only spatial proximity into account. The textual
relevance is not addressed.

There have also been studies on Voronoi cells for spatial
web objects where textual relevance is modeled as the weight
of an object. In particular, Wu et al. [3] study the order-k
weighted Voronoi cell for a single site (a set of k objects),
and Xie et al. [4] investigate the imprecise version of order-1
weighted Voronoi cells.

There is a substantial difference between computing a
single weighted Voronoi cell and computing the result region



(called a V -region) of a RTkKL query. Specifically, a V -
region is more complex, as it is the union of a set of order-k
weighted Voronoi cells. Even worse, it is difficult to compute
the site of a high-order Voronoi cell. While we know that
its site contains query object q and is of size k, for a given
order, there could be many sites containing q for deriving
the V -region. According to our experiments, when k = 100,
there are more than 5, 000 such sites on average for a V -
region, meaning that the methods based on a single site [3] [4]
have no straightforward application here. Furthermore, even if
we can successfully retrieve those cells, they are delineated
by complex curves, making it difficult to merge them into a
desired V -region.

In this paper, we define the RTkKL query for spatial
web objects and offer a thorough coverage of the concepts,
properties, and algorithms related to the computation of the
V -region returned by the query. To the best of our knowledge,
this is the first study of this problem.

Our contributions are summarized as follows:

• We offer detailed theoretical analysis of the features,
properties, and performance of computing the RTkKL
query.

• We propose an algorithm capable of computing ap-
proximate V -regions with quality guarantees.

• To further accelerate V -region computation, we use a
quad-tree for indexing the solution space and an IR-
tree for indexing the objects, and we show how to use
the two indexes in combination to enable pruning.

• We report on extensive experiments to offer insight
into the efficiency and scalability of our proposals.

The remainder of the paper is organized as follows. Sec-
tion II defines the problem and presents relevant concepts
and properties related to V -regions. Section III covers the
basic method for computing V -regions. Section IV utilizes the
indexing techniques to improve efficiency. Section V reports
on the empirical study. Section VI covers related works, and
Section VII concludes the paper.

II. PROBLEM SETTING AND PRELIMINARIES

We consider a set O of spatial web objects in two-
dimensional Euclidean space Ω. We first define the top-k
spatial keyword query. Based on that, we formally define
reverse top-k keyword-based location query.

A. Problem Definition

Top-k spatial keyword query. Given a point p ∈ Ω, a
set ψ of keywords, and a number k, the top-k spatial keyword
query Sk(p, ψ) returns a set Sk of k spatial web objects with
lowest ranking scores:

∀o ∈ Sk,∀o′ ∈ O− Sk, score(p, ψ, o) < score(p, ψ, o′)

Function score() [2], in Equation 1, combines spatial proxim-
ity and textual relevance. When ψ is clear from the context,
we use |p, o| to represent score(p, ψ, o).

score(p, ψ, o) = ws · |p, o|E + wt · (1− tr(ψ, o.ψ)) (1)

Figure 1: Bisectors and Half-spaces (|γ| < |q, o|E)

Here, parameters ws and wt enable controlling the importance
of two terms. Function |p, o|E denotes the Euclidean distance
between p and o.loc, and function tr(), e.g., cosine similarity,
computes the textual relevance between its two arguments. The
smaller the score of an object is, the more relevant the object
is to the query.

Definition 1: Reverse top-k keyword-based location
query (RTkKL). Given a set ψ of query keywords, a query
object q ∈ O, and a number k, the RTkKL returns the
maximum spatial region Vq such that q is contained in the
result of any top-k spatial keyword query with ψ as the
keywords and any location in Vq as arguments. Formally,

Vq = {p ∈ Ω
∣∣q ∈ Sk(p, ψ) ∧ q ∈ O} (2)

Sk(p, ψ) is the result of a top-k spatial keyword search with
p and ψ as arguments.

B. Problem Analysis and Geometric Preliminaries

Bisector. Given the query object q ∈ O and another object
o ∈ O, the bisector of q with respect to o is defined as:

bq:o = {p ∈ Ω
∣∣|p, q| = |p, o| and q, o ∈ O} (3)

Substituting the score function (Equation 1) into the equation,
we obtain the equation below.

|p, q| = |p, o|
ws · |p, q|E + wt · (1− tr(ψ, q.ψ)) =
ws · |p, o|E + wt · (1− tr(ψ, o.ψ))

|p, q|E − |p, o|E =
wt
ws
· (tr(ψ, q.ψ)− tr(ψ, o.ψ)) (4)

For a given set of query keywords, the textual relevance to an
object is fixed. As exemplified in Figure 1, Equation 4 shows
that the bisector has the shape of a hyperbola branch, where
p and q’s locations are the foci. Let γ denote the right-hand
part of Equation 4.

The bisector is the locus of the points where the difference
of the distances to the two foci equals γ. The bisector partitions
the domain space into two halves. We call the half closer to q
the half space from q to o and denote it by Hq:o. If a point p
belongs to Hq:o, object q is more relevant p than o. According
to Equation 4, when γ < 0, half space Hq:o is convex, i.e.,
as illustrated by the dashed region in Fig. 1(a); when γ > 0,
the half space is concave, as illustrated in Fig. 1(b); when
γ = 0, the bisector degenerates into the perpendicular bisector
between q and o.



The RTkKL query returns a region. Considering the region
for a top-1 query, this is the additively weighted Voronoi cell
of q. It can be formed by the intersection of the half spaces
of q w.r.t. every object o ∈ O. Formally,

V (q) = ∩q 6=o,o∈OHq:o

Next, we extend the region to the top-k case. Given a set
Sk = {s1, s2, ..., sk} of k objects, the region that takes Sk as
the top-k result is an additively weighted order-k Voronoi cell
with the generating site Sk. Formally,

V (k)(Sk) = ∩o6∈Sk
Hs1:o

⋂
∩o 6∈Sk

Hs2:o

⋂
... ∩o 6∈Sk

Hsk:o

= ∩q′∈Sk,o 6∈Sk
Hq′:o (5)

If q is an element of set Sk, object q is in the top-k results
for any point in the region, p ∈ V (k)(Sk). Note that such Sk
may not be unique for a given k. This means that one must
consider multiple order-k Voronoi cells for a given k.

As described above, we can represent the region returned
by the RTkKL query as a V -region, which is essentially the
union of Voronoi cells from order 1 to k with sites containing
q. For example, the order-1 Voronoi cell of q returns the points
having q as the top-1 relevant object. Similarly, an order-2
Voronoi cell V (2)

q returns the points having q as one of its top-
2 relevant objects, and so on. Therefore, the region returned
by the RTkKL query should cover the region of the top-1, top-
2, ..., top-k objects containing q, and it is thus the union of
Voronoi cells of orders from 1 to k.

Definition 2: (V -region) Given an object q ∈ O and a
number k, an order-k V -region of q is the union of the Voronoi
cells from order 1 to order k whose sites contain q, denoted
as Vq (Vq ⊆ Ω). Formally,

Vq =
⋃

i=1,...,k

∪q∈Si,Si⊆OV
(i)
q (Si) (6)

According to Okabe et al. [16], the union of an object’s order-
(i+ 1) Voronoi cells covers that of the order-i Voronoi cells.
So, Equation 6 can be rewritten as:

Vq =
⋃

q∈Sk,Sk⊆O
V (k)
q (Sk) (7)

C. Complexity

An intuitive way of building a V -region is to construct
Voronoi cells incrementally, from the 1-st to the k-th order,
and then take their union. However, this is computationally
challenging.

First, the number of Voronoi cells composing a V -region
can be very large. For high-order Voronoi cells, there can be
more than one Voronoi cells whose sites contain q. Given an
order, say k, the number of sites, or k-subsets, is combin-
atorial, O(nk). Specifically, the average number of k-subsets
is O(k(n − k)) [16]. One may generate a large number of
unnecessary k-subsets before getting those really contributing
to Voronoi cells and then V -regions.

Second, the contour of a V -region consists of curves and
concave shapes that are difficult to store and query in real
applications.

Figure 2: An example of V -
region (k = 1)

Figure 3: Grid Aproximation
with Quality Guarantees

To further enable efficient query processing, it would be
desirable to develop a solution that returns a well-approximated
and error-bounded region composed by simple shapes, e.g.,
orthogonal rectangles. In the sequel, we present efficient al-
gorithms that achieve such a solution.

Table I: A Summary of Notations

Notation Meaning
Ω, p ∈ Ω the spatial domain space, and a point inside

O a set of spatial web objects {o1, . . . , on}
o an spatial web object {o.loc, o.ψ}
q the query web object {Q.loc, Q.ψ}

S, Sk set, k-subset
|a, b|E Euclidean distance between a and b

|a, b|minE , |a, b|maxE lower and upper bound for |a, b|E
|a, b| weighted distance between a and b

|a, b|min, |a, b|max lower and upper bound for |a, b|
|q, o|bd min center-border distance between q and o
bq:o bisector of q with respect to o
Hq:o half space from q to o
≺, ≺(k) domination and k-domination
V (k)
q k-th order Voronoi cell of q
Vq V-region of q, Vq = ∪i=1...kV

i(q)

III. GRID APPROXIMATION: FROM SOLUTION SPACE’S
PERSPECTIVE

From this section on, we investigate how a V -region can be
efficiently constructed. We start with order-1 case, then extend
it to more general cases. An example (k = 1) of V -region Vq
is shown in Fig. 2. We consider half spaces of q with respect
to all other objects, i.e., o1, o2, o3, and o4. Their intersection
is represented by the white area. For order-1 case, such an
intersection is the V -region, Vq , to be rendered.

It is costly to use the curve-shaped contours for imple-
menting Vq , as analyzed previously. To tackle that, we study
how Vq can be approximated by space division techniques,
particularly, by orthogonal grids.

We illustrate an approximated Vq in Fig. 3. The spatial
domain Ω is discretized into a set of grids uniformly. The
grids can be of three cases.

• Rejected grids are those outside the blue contour and
are not part of Vq;

• Accepted grids are those within the red contour and
are part of Vq;



• Undetermined grids are located between the red and
blue contours and partially belong to Vq .

Then, a V -region can be the union of all accepted and
undetermined grids1. The precision of the approximation can
be tuned by the granularity of grids. With sufficiently small
sized grids, the red and blue contours of Fig. 3 will approach
to each other closely. The two contours would converge using
infinitely small sized grids.

Two issues remain to be studied. First, how to determine
the relationship between a grid g ∈ Ω and V -region Vq ,
i.e., whether g is accepted, rejected, or undetermined? Second,
grids of small granularities yield high precisions but also high
construction overheads. How to design an adaptive method
to achieve a good efficiency yet without compromising a
guaranteed quality?

The first problem is solved by Section III-A. The second
problem is addressed by Section III-B.

A. Dominance Relationship: from 1 to k

1) Starting with order-1 case:

Definition 3: Dominance (≺). Given a grid region g and
two objects q and o, if g is totally covered by Ho:q , we say
that o dominates q w.r.t. g, meaning that o is more relevant
than q for every point of g. Formally,

g ⊆ Ho:q ⇒ o ≺g q (8)

Perfectly but unrealistically, to determine whether grid g
belongs to half space Ho:q is to check whether every point
of g belongs to Ho:q . Next, we introduce a set of practical
alternatives by utilizing the convex or concave geometries of
the half space2.

Convex Half Space. If grid region g and half space Ho:q

are both convex, we can determine that g is contained by Ho:q ,
if each of g’s four vertices is contained by Ho:q . Then, we
reduce the problem of determining the relationship between
two regions into a problem of determining the relationship
between a point and a region. The correctness is guaranteed.

Concave Half Space. However, it is not easy to determine
whether a region is contained by a concave half space.

Method 1: A loose (or sufficient but not necessary) condi-
tion is to use min/max distance comparison that is formalized
as Lemma 1.

Lemma 1: For a region g, we have:

|q, g|min > |o, g|max ⇒ g ⊆ Ho:q ⇔ o ≺g q

Proof:

|q, g|min > |o, g|max ⇒ ∀p ∈ g, |q, p| > |o, p|
⇒ ∀p ∈ g, p ∈ Ho:q ⇒ g ⊆ Ho:q

1A conservative version of a V -region might be the union of all accepted
grids. Which version to be used is application dependent, e.g., whether false
positive results are allowed. Note that our algorithms presented in this work
can support both versions.

2Grid g is of square shapes and thus is convex. The determination of the
dominance relationship between g and Hq:o is the same as between g and
Ho:q and is omitted.

Figure 4: Concave Half Space Decomposition

Method 2: A tighter condition is to approximate the half
space with three convex alternative polygons, as shown in
Fig. 4. The three polygons are composed by cutting the
domain space Ω with the two asymptotic lines, i.e., H1 and
H2, and with the line perpendicular to line segment qo and
internally tangent to Ho:q , i.e., H3. The three polygons satisfy:
1) H1, H2, H3 ⊆ Ho:q; 2) H1 ∪H2 ∪H3 ⊆ Ho:q . The union
of H1, H2, and H3 is a conservative approximation of half
space Ho:q . If region g is within any of the three polygons, g
is within half space Ho:q .

We do not have to explicitly materialize the three polygons.
Instead, we check if a grid is on the “o” side of the three
bisector lines, i.e., two asymptotic lines and one perpendicular
line. In this way, Method 2 takes three distance comparisons
and Method 1 takes one distance comparison.

Note that there is a gap between the approximated polygons
in Method 2 and the concave half space. If a grid falls in such
a gap, the grid will be reported as undetermined. Moreover,
further splitting the grid does not help in determining their
overlapping relationships, as a descendant grid also falls in
the gap. Method 1 has no such limitations. When the grid is
sufficiently small, the dominance relationship can be simply
determined by Method 1. The process of region splitting is
detailed in Section III-B.

In summary, Method 1 is more general and efficient,
whereas Method 2 is more accurate and thus more effective. In
our implementation, we first use Method 1 and then Method
2 for examining the dominance relationship in order to reduce
construction overheads. We stop using Method 2 if the size of
a grid is smaller than the maximum distance between the half
space and its asymptotic lines3.

So far, we have investigated how an order-1 V -region (or a
Voronoi cell equivalently) can be approximated by examining
the dominance relationships between grids and half spaces.
Next, we study how to extend the above to the order-k case.

2) Extension to order-k case:

Definition 4: k-dominance Relationship (≺(k)). Given
region g, object q, and a set S of k other objects,
S = {o1, ..., ok}, if g is totally covered by half spaces

3Although a better approximated half space can be achieved by a larger
number of polygons, it costs more than applying Method 1 for the decomposed
grid, which contradicts our intention. For simplicity, we adopt the heuristic
described above.



Ho1:q, ...,Hok:q , we say that q is dominated by S w.r.t. g,
meaning that there exist k other objects that are more relevant
than q for any point in region g. In other words, g is not a
part of V (k)

q and thus not a part of Vq . Formally,

∀i1≤i≤k, g ⊆ Hoi,q ⇒ S ≺(k)
g q ⇔ g 6⊆ V (k)

q (S)⇔ g 6⊆ Vq (9)

We first extend Lemma 1 to the order-k case and obtain
Lemma 2.

Lemma 2: Consider a region g and a set S of objects.
Let the objects in S be sorted according to their maximum
distances to g in the ascending order and thus |g, ok|max is
the k-th maximum distance. We have:

|q, g|min > |ok, g|max ⇒ S ≺(k)
g q (10)

See the example shown in Figure 2, where p is a point
in the plane. If it is within half-space Ho1:q , it is dominated
by o1 meaning that q cannot be p’s first nearest neighbor. For
another point p′, if it is within half-spaces Ho1:q and Ho3:q .
Thus, object q cannot be p′’s first two nearest neighbors.

In this way, we can render a V -region by excluding those
regions that are dominated by k objects other than q. In
Figure 2, the white region is the V-region of q when k = 1
and the union of the white region and light gray regions is the
V-region of q when k = 2 (the area excluding those regions
marked with (o1, o2), (o1, o3), and (o1, o4)).

The idea of counting for each region the number of
objects dominating q or equivalently the number of half-spaces
covered also appears in [17], but in a different problem setting.
If the count of a region is greater than k, it means that there
exist more than k objects that are more relevant than q. So, the
region cannot be part of V (k)

q . The correctness is guaranteed
by Lemma 3.

Lemma 3: (Dominance Monotonicity 1.) If g is k + 1-
dominated, g is also k-dominated.

Lemma 4: (Dominance Monotonicity 2.) If g is domin-
ated by a set S of objects w.r.t. q and g′ is a subregion of g,
then g′ must be dominated by S w.r.t. q.

We have discussed how the dominance relationship
between grid regions and objects can be determined. The
process is summarized by Algorithm 1 in Section III-A3.

3) Basic Module: Unqualified grids will be rejected if they
are dominated by k (or more) objects other than q.

For an accepted grid, there might exist some dominating
objects, but such objects must be no more than k− 1. So, for
each grid, a counter, count .min , is set to record how many
objects currently dominate the grid so far. Another counter,
count .max , is set to record the number of dominating objects
plus the number of undetermined objects. Therefore, the sum
indicates the largest possible number of objects that dominate q
w.r.t. the grid. If this number is smaller than k, we can quickly
tell that the grid is accepted.

The undetermined grids are further explored and the cor-
responding V -region will be gradually expanded and approx-
imated based on Lemma 4. The precision of the approximation
depends on the grids’ granularity. The indeterminacy can be

Algorithm 1: GridCheck
Data: query object q, a grid g, a set of objects g.list, k

1 Each grid g has a count which is an interval
representing the minimum and maximum number of
objects dominating g;

2 Use Methods 1 and 2 to detect if o ≺(k)
g q is true;

3 if o ≺(k)
g q is detected to be true or g.count.min ≥ k

then
4 return “rejected”;

5 if o ≺(k)
g q is detected to be false or g.count.max < k

then
6 return “accepted”;

7 if o ≺(k)
g q cannot be determined then

8 Add o to g.list;
9 Update g.count.min, and g.count.max;

10 return “undetermined”;

alleviated if presented with a finer level of grids. In the sequel,
we show how this is achieved in an adaptive manner.

B. An Adaptive Approach

The idea is to use a quad-tree to approximate a V -region
by initially setting the root grid as the entire spatial domain
and the object list as the entire database.

The procedure is described in Algorithm 2. The root is
initially split into 4 child grids and the splitting process is
repeated recursively. At each iteration, we check if a grid can
be rejected or accepted for partially being Vq and if an object
can be rejected or accepted for the dominance determination
with the grid. The splitting of the branch stops if the a grid is
accepted or rejected. Otherwise, for a grid, all elements of
its object list are examined. Once an object is detected to
deterministically dominate a grid, e.g., the top and leftmost
quadrant in Fig. 5(a) is contained by Ho3:q , the object is
removed from the object list and the counter is marked by “1”
indicating that currently the grid is dominated by one object,
i.e., o3. If the dominance cannot be determined, we keep the
object in the list and split the grid into four child grids. In
this case, the counter is an interval with a minimum and a
maximum number of objects dominating q w.r.t. the grid. For
example in Fig. 5, when k = 1, grids with minimum counter
no less than 1 can be rejected. Because there is already one
object dominating q w.r.t. these grids, meaning that they have
no chance for being a part of Vq . The process continues with
enumerating the remaining objects of the list until the finest
granularity specified is reached.

The breadth-first process is implemented by a queue. The
elements, i.e., grids, of the queue are stored in the descending
order of grid areas. In this way, the algorithm tends to explore
a coarser level of grids. In case of equal sized grids, we break
ties by their minimum count of dominating objects. This is
useful, because, intuitively, a grid with higher minimum count
tends to be rejected at an earlier stage.

There remain two issues to clarify: 1) the stopping condi-
tion of the quad-tree splitting at each iteration; 2) the order of



(a) (b)

Figure 5: Quad-tree Approximation

Algorithm 2: GridDecomposition
Data: query object q, an object database D

1 A grid list GridList = ∅;
2 Initialize a quad-tree whose root node covers the

domain Ω;
3 Start with the root level of quad-tree and add its 4 child

grids into GridList;
4 while GridList is not empty do
5 Pop the grid g with the largest area; . breaking tie by

g.count.min;
6 Invoke GridCheck (Algorithm 1) for grid g;
7 if the result is “undetermined” then
8 Split g in to 4 child grids {gi}i≤4;
9 for each gi do

10 Inherit gi.list, gi.count.min, and gi.count.max
from g;

11 Add {gi} into GridList;

12 else
13 Evaluate the current precision lower bound, i.e., ε,

and break if the accuracy requirement is satisfied.

objects being examined. Issue 1) is detailed below. Issue 2) is
addressed in Section IV.

The stopping condition of Algorithm 2 can be set for
different purposes. For example, the condition can be the
maximum splitting depth, or equivalently the minimum size of
a grid. We can also control the quality of the approximation
by considering the portion of the undetermined grids over all
non-rejected cells. In Fig. 3, the grids within the red contour
definitely belong to Vq . The grids between the blue and the red
contours are undetermined ones. If the portion of undetermined
cells is low, it implies the similarity between the exact and
approximated V-region is high. Thus, the precision can be
lower bounded by ε, defined in Equation 11.

ε =

∑
g∈Lacc

area(g)∑
g∈Lud

area(g) +
∑
g∈Lacc

area(g)
(11)

In the equation, Lud represents the list of grids that are
undetermined, and Lacc represents the list of grids that are
accepted as part of Vq . The value range of ε is between 0
and 1. A higher valued precision implies a finer approximated
Vq . Then, a quad-tree splitting can stop if the lower bound
of the precision, i.e., ε, exceeds a user specified precision

threshold, e.g., 0.95. The precision approaches 1 as more and
more undetermined grids are explored.

C. Optimization

1) Reusing Vertices Checking: Considering a parent quad-
tree node gP , for determining the relationship with nP half
spaces, it requires at least 4×nP comparisons in Algorithm 2.
After decomposition, four child nodes are generated that
further require 4×4×nP distance comparisons. Comparing the
four child nodes with gP , only five vertices are new, meaning
only 5× nP comparisons are necessary if the computation of
vertices checking of gP level can be inherited.

2) Quad-tree Root Setting: The recursive grid decomposi-
tion is effective yet incurs considerable overheads, especially
in the first few levels. Because a higher-level grid has a bigger
size and thus has a lower chance to get rejected. A better
efficiency can be achieved if the decomposition starts from a
lower level. In an ideal case, the quad-tree root is set to the
minimum grid covering Vq . The procedure is summarized in
Algorithm 3, followed by the details of estimating the area of
a V -region.

Algorithm 3: Flooding Algorithm
Data:

1 Calculate the expected area of a V -region, α;
2 Start with level l = dlog4( |Ω|α )e;
3 Let gq be the grid of level l that contains q;
4 Gradually detect gq’s neighboring grids from the inside

out until all grids on the outer layer are k-dominated;
5 Revoke Algorithm 2 to evaluate Vq;

We develop a model for estimating the size of a V -region,
following the assumption that objects are uniformly distributed
in the domain Ω. Let

wq =
wt

ws
· tr(ψ, q.ψ)

wo =
wt

ws
· tr(ψ, o.ψ)

ŵo =
1
k

∑
o∈Sk

wo ≈ 1
n

∑
o∈D wo,

where ŵo is the average textual relevance of all objects to ψ.
With respect to an arbitrary point p ∈ Ω, an object o with
distance |p, o|E < |p, q|E + wq − ŵo can be regarded as a
dominator of q. If q is a top-k result, there must be less than k
objects satisfying the above distance inequality. In other words,
there are less than k objects located inside the circular region
centered at p with radius |p, q|E + wq − ŵo. Since objects
are uniformly distributed, we can get a bound for |p, q|E , i.e.,
π·|p,q|2
|Ω| < k

n . After transformations, we get:

|p, q|E <

√
k · |Ω|
πn

+ wq − ŵo (12)

Vq is composed of all points p ∈ Ω such that Equation 12
holds. Then, we can obtain:

E(Area(Vq)) = π · |p, q|2E = π · [
√
k · |Ω|
πn

+ wq − ŵo]2

(13)



D. Discussion

The grid approximation approach renders a V -region from
the solution space’s perspective and bypasses the difficulties
incurred by bisector curves. Also, the approximation approach
rejects unqualified grids, which enhances the algorithm’s ad-
aptivity; it works regardless of whether or not the V -region is
continuous.

In the sequel, we study how the properties of object space
can be utilized to accelerate the construction process.

IV. SEARCHING ENHANCEMENT WITH AN INDEX

We assume that an IR-tree [2] is built on the set of objects.
The textual relevance of a node can be calculated at runtime
and is guaranteed to be higher than that of any descendant
entries. The correctness follows the monotonicity property [2].

We observe that the accessing sequence of objects has non-
negligible impact over the V -region construction performance.
For example, Vq tends to be contributed by the objects whose
half spaces w.r.t. q are close to q. On the other hand, a half
space rendered by an object close to q tends to cover more
coarser level grids. In such cases, it is preferable to first handle
the objects with bigger impact on building Vq . Moreover, an
index structure enables the dominance relationship checking
against a cluster of objects (vs. a single object). Thus, disqual-
ifying a “rejected” grid can be executed in an earlier phase by
pruning irrelevant index entries.

We present an enhanced Gridcheck method over Al-
gorithm 1 in Section IV-A. We cover pruning techniques in
Section IV-B.

A. Enhanced GridCheck

Sketch. The enhanced grid checking procedure is shown
in Algorithm 4. We utilize a queue to browse the objects in
a best-first search fashion [18] and access the index entries
according to how close their half spaces to object q. Initially,
the index root is inserted into the queue. We expand the index
entries recursively and apply pruning techniques (detailed in
Sections IV-B) to filter unqualified ones. An unvisited entry
can be filtered if each object in the subtree is proved not to
refine the current V -region.

The enhanced module of GridCheck can then be replanted
into the GridDecomposition framework (Algorithm 2). A grid
can be rejected if it is k-dominated. Otherwise, we follow the
splitting strategy developed in Section III until the precision
threshold is met.

At each iteration of examining a grid g, the index is
traversed. An index entry e can be pruned or a grid g can be
rejected if the pruning rules (in Section IV-B) are triggered. If e
is dominated by q w.r.t. g, for g’s sub-grids, e is also dominated
by q, according to the dominance monotonicity (Lemma 4).
With unqualified entries being pruned, only a partial index
(without pruned branches) is passed to g’s sub-grids, to avoid
unnecessary node accessing.

However, it would be costly to explicitly deliver such
partial indexes between two subsequent levels of grids, because
of the extra storage and the computation overheads that are
non-shared between a grid and its slibings. Alternatively, we

Algorithm 4: Enhanced GridCheck
Data: query object q, an IR-tree, a pruned set, a grid g

(list,count.min, count.max), parameter k
1 Add index root to Queuecnd, an initially empty queue;
2 while Queuecnd is not empty do
3 Pop up an entry e from Queuecnd;
4 if e has been pruned, i.e., in the pruned set then
5 continue;

6 else
7 Test the dominance relationship between e and q;
8 if e ≺g q is true then
9 Add e to the pruned set; . e dominates q Update

g.count.min;

10 if q ≺g e is true then
11 Add e to the pruned set; . q dominates e;
12 Update q.count.max by subtracting |e|;
13 . |e| indicates the number of objects in e’s

subtree
14 if e is an object then
15 Add e to g.list; . e is undetermined;
16 Update g.count.min and g.count.max;

17 else
18 Add e’s children into Queuecnd;

19 Break, if q is k-dominated;
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Figure 6: Pruned Set Compression

use a global data structure called pruned set to record index
entries that have been pruned. By doing so, only one index
copy is maintained. Each time visiting an index entry, we look
up the pruned set to see if the current grid or its ancestors have
a determined dominance relationship with it. With the pruned
set, the redundant index entry accessing can be saved.

For illustration, we use Fig. 6 to show the usage of the
pruned set. First, we use quadrant string to identify a grid
by a character string. The four quadrants (or child grids) of a
grid are marked by letters a-d. For example in Fig. 6(a), the
grid labelled “d#” is the fourth grid of the root node (level 0).
The grid labelled “dc#” is the third quadrant of grid “d#” and
so on4. When checking if a grid is a descendant of another
grid, we can simply check if the prefix of the grid’s string
matches that of another grid. Second, for pruned index entries,
we record them by a hash map, as shown in Fig. 6(b). For
a pruned index entry, it is possibly associated with multiple
quad-tree branches. We index these branches represented by
corresponding quadrant strings with a hash set and link it to
the pruned index entry. While inserting an element into the

4Using bit string would be more efficient for string matching. We choose
character string because it is retains scalability for lower levels of the quad-
tree. The whole process is compatible with bit strings by simple modifications.



hash set, they are transformed into equal-length hash codes
and thus enable efficient string prefix matching for determining
whether a grid is a descendant of another. With the two-level
hashing structure, the searching of a pruned entry can be done
in constant time.

B. Pruning Techniques

In this section, we investigate pruning techniques that
help in achieving better efficiency. For a grid, we expect to
retrieve only a small subset of objects which render an overall
picture about its dominance relationship with all objects in
the database. It is realized by: 1) accessing qualified objects
first (Section IV-B1); 2) rejecting unqualified objects early
(Section IV-B2). The purpose is to reduce the iterations of
both grid and object accessing and to yield a fine-gained V -
region at a rapid pace.

1) Minimum Border Distances: We define minimum border
distance, which is the minimum Euclidean distance between
query object q and half space Ho:q . Intuitively, half spaces
closer to q would contribute more to Vq . Hence, their corres-
ponding objects are preferable to be accessed first.

Lemma 5: Minimum Border Distance (|q, o|bd). The
minimum distance between q to a half-space Hq:o is |q,o|E+γ

2 .

Take Fig. 1 as an example, the intersection between bo:q
and x-axis yields the minimum distance between q and Ho:q .
The minimum border distance equation can be derived with
simple transformation from Equation 4 and is omitted due to
space limits. Note that both cases of γ > 0 and γ < 0 have
been incorporated in the equation.

The minimum border distance between an index entry e
and q can be defined by considering the entry as a virtual
object. The virtual object’s coordination is the closest point
on e to q with the relevance as the highest one between e’s
descendant objects to keyword set ψ.

Lemma 6: For query object q, its minimum border distance
with respect to an index entry is a conservative estimation of
the minimum border distance to any objects in e’s subtree.

∀o ∈ e, |q, e|bd ≤ |q, o|bd (14)

Proof: The way we define the virtual object for e un-
derestimates the Euclidean distance between q and e and
overestimates the relevance between e.ψ and ψ. Therefore, the
weighted distance from q to He:q is underestimated, meaning
that border distance |q, e|bd is smaller than |q, o|bd(o ∈ e).

The minimum border distances are of two purposes: 1)
for ordering the elements in the queue in an ascending order
according to their border distances. It is proved by Lemma 6
and used in Algorithm 4; 2) for enabling a quick stopping
condition for accessing index entries.

Given a partially constructed V -region, V ′q , if the max-
imum distance between q and V ′q is smaller than the border
distance |q, e|bd, then it is also smaller than the border distance
from q to any object in e. Then, it is not possible for half spaces
Ho:q(o ∈ e) to overlap with V ′q and hence the entry can be
rejected. Moreover, the queue can be emptied because the rest
entries have longer maximum distances.

(a) e+ (b) e−

Figure 7: Dominance Relationship with an Index Entry

2) Dominance Relationship with an Index Entry: Now
we investigate how to determine the dominance relationship
between an object and an index entry, which enables pruning
on an index level.

We summarize the pruning techniques into three categories
in Table II, according to the value of the textual relevance of
a given entry.

Table II: Category

Category Condition Determination
e+ tr(ψ, q.ψ) > mino∈etr(ψ, o.ψ) e ≺g q, tighter bound
e− tr(ψ, q.ψ) < maxo∈etr(ψ, o.ψ) q ≺g e, tighter bound

Other general conditions e ≺g q or q ≺g e

“e+”case. We define distance |p, e+| = |p,e|maxE

mino∈etr(ψ,o.ψ)
which overestimates the distance between point p ∈ Ω to entry
e. Then, we can draw a bisector be+:q = {p ∈ Ω

∣∣|p, q| =
|p, e+|}. The e part of the bisector is denoted as He+:q , such
that for any point inside, e is more relevant than q.

Lemma 7: ∀o ∈ e, He+:q ⊆ Ho:q .

Proof: It is equivalent to prove that p ∈ He+q implies
p ∈ Ho:q(∀o ∈ e), where p ∈ Ω is a point.

p ∈ He+:q ⇔ |p, q| > |p, e+|
|p, e+|maxE ≥ |p, o|E(o∈e)
tr(e+.ψ, ψ) ≤ tr(o.ψ, ψ)(o∈e)

}
⇒ |p, e+| ≥ |p, o|(o∈e)


⇒ |p, q| > |p, o|(o ∈ e)⇒ p ∈ Ho:q(o ∈ e)

Lemma 7 can be used for k-dominance checking. If a grid
is in He+:q , it must also be in Ho:q(∀o ∈ e), meaning that
o ≺g e(∀o ∈ e) if e ≺g q. Then, if e is an entry with no less
than k objects and it is detected that e ≺g q, then grid g can
be rejected, since g is dominated by no less than k objects.

Lemma 8: He+:q is convex.

Proof: We first choose two points B and C on the bisector
be+:q as shown in Fig. 7(a). Let D be the middle point of line
segment BC. If we can prove D is in He+:q , we can prove
He+:q is convex. Let A be the point of e yielding the maximum



distance from D to e. We have:

|B,A|E ≤ |B, e|maxE and |C,A|E ≤ |C, e|maxE
⇒ |B,A|E ≤ |B, q|E and |C,A|E ≤ |C, q|E (B,C ∈ be+:q)

⇒ |D,A|E ≤ |D, q|E (Lemma 10 in [19]) ⇒ D ∈ He+:q

Hence, the lemma is proved.

A grid is convex. If He+:q is also convex, the determination
of e ≺g q can be reduced to checking if every vertex of g is
inside He+:q .

“e−” case. We define distance |p, e−| = |p,e|minE

maxo∈etr(ψ,o.ψ)
which underestimates the distance between point p ∈ Ω to
entry e. A bisector bq:e− = {p ∈ Ω

∣∣|p, q| = |p, e−|} splits the
domain space into two halves. The part closer to q is denoted
as Hq:e− , such that for any point inside, q is definitely more
relevant than e. It is exemplified in Fig. 7(b).

Lemma 9: ∀o ∈ e,Hq:e− ⊆ Hq:o.

Lemma 10: Hq:e− is convex.

With Lemma 9, we can prove that if q ≺g e then q ≺g
o(∀o ∈ e). Lemma 10 enables determining the dominance
relationship by checking if the four vertices of a grid are within
a convex half space Hq:e− . They can be proved in a similar
way as Lemmas 7 and 8 and are omitted due to space limits.

Other cases. In more general cases, we can determine
the dominance relationship by comparing the minimum and
maximum distances as detailed by Lemmas 11 and 12.

Lemma 11: maxp∈g|p, q| < minp′∈g|p′, e| ⇒ q ≺g
o(o∈e).

Proof:

maxp∈g|p, q| < minp′∈g|p′, e| ⇒ ∀p ∈ g, |p, q| < |p, e|
⇒ ∀p ∈ g, p ∈ Hq:o ⇒ g ⊆ Hq:o ⇒ q ≺g e⇔ ∀o ∈ e, q ≺g o

Lemma 12: minp∈g|p, q| > maxp′∈g|p′, e| ⇒ o ≺g
q(o∈e).

The lemma can be proved similarly to Lemma 11.

V. RESULTS

We cover the experimental setup in Section V-A, report
the performance results of our algorithms in Section V-B, and
provide a detailed analysis in Section V-C.

A. Experiment Setup

Datasets. We use two real geo-location datasets, EURO
and CAR. EURO is a dataset of POIs, such as hotels, ATMs,
and stores in Europe5. CAR is a dataset which combines
the spatial data in California6 and a real collection of short
abstracts from DBpedia7. Table III summarizes the statistics
of each dataset. We formulate the query keywords by ran-
domly selecting keywords from each dataset. For all queries
examined, 8 to 14% (10% on average) of all objects have

5http://www.allstay.com
6http://www.usgs.gov
7http://wiki.dbpedia.org

non-zero textual relevance. To evaluate the scalability of our
proposed algorithms, we also generate 4 synthetic datasets
with cardinalities of 2, 4, 6, and 8 millions, respectively.
In synthetic datasets, the locations are randomly generated
and the keywords are randomly extracted from the extended
abstracts of DBpedia.

Table III: Dataset Statistics
EURO CAR

Total # of objects 162,033 2,249,727
Total unique words in dataset 35,315 688,087

Competitors. To comprehensively evaluate our proposals,
we consider three competitors: Basic, Quad-tree, and Dual-
tree. The Basic solution is given by Algorithm 2, GridDecom-
pose, but without using any optimization techniques, meaning
that only Method 1, i.e., Lemma 1, is used in dominance
checking. The Quad-tree solution improves Basic by: 1) using
Method 2 for dominance checking; 2) using the flooding
algorithm, i.e., Algorithm 3, for the quad-tree root setting; 3)
using vertex caching for determination acceleration. The Dual-
tree based solution improves Quad-tree by further speeding up
the processing by means of an IR-tree. Each reported value is
the average of 50 runs. We also offer a detailed analysis of the
effect of each specific optimization technique.

Parameters. We test the performance of our proposals by
varying different parameters, including the expected maximal
ranking of the query object (k), the preference weight in
scoring function (ωs and ωt), the precision setting of an
approximate solution (ε), and the textual relevance between
query keywords and query object q’s textual part (tr(ψ, q.ψ)),
as summarized in Table IV.

Table IV: Parameter Settings
Value Range Default Setting

k 5 – 1,000 40
ωs 0 – 1 0.5
ε 0.8 – 0.99 0.9
tr(ψ, q.ψ) 0 – 1 0.5

The experiments were executed on a laptop (Intel Core
i5 2.5GHz CPU and 8GB RAM) running Mac OS X 10.8.5
operating system. The codes were written in Java (JDK 1.6).

B. Performance Results

The query performance is evaluated in terms of both effi-
ciency and scalability. The efficiency is measured by counting
the clock time elapsed. In particular, we consider the effect of
different parameter settings. The scalability is measured using
datasets of different sizes.

Effect of k. We first test the efficiency of the three solutions
by varying the parameter k. As shown in Fig. 8, both Quad-tree
and Dual-tree outperform Basic. Dual-tree performs the best.
It improves on Basic by up to 80% and on Quad-tree by up
to 15%. This demonstrates the effectiveness of our proposed
techniques. As expected, the performance of all algorithms
degrades as k grows. A larger k makes it more difficult to
reject a higher level grid, because a rejected grid needs to be
dominated no less than k times. Thus, it incurs more overhead
during grid splitting.
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Figure 11: Effect of Relevance

When k is small, e.g., k = 5 in Fig. 8(a), Dual-tree costs
slightly more than Quad-Tree. This is because Dual-tree uses
an IR-tree whose fanout is much larger than k, meaning that
the benefits gained in Dual-tree’s pruning phase are small
when compared with Quad-tree. However, as k increases, the
advantages of IR-tree based pruning become more significant.

The advantage of Dual-tree over Quad-tree is more signi-
ficant for the CAR dataset, as shown in Fig. 8(b). In particular,
for a larger dataset, more objects can be rejected in the index
level in Dual-tree to avoid excessive dominance checking.
Therefore, these techniques have more significant effects. It
also implies Dual-tree scales well.

Effect of weights (ωs and ωt). We vary parameter ωs and
therefore the value of ωt to see how the algorithms perform
with different settings of the weighted distance function. As
shown in Fig. 9, when ωs varies from 0 to 0.75, the elapsed
time of all algorithms increases as ωs grows. In particular, if
ωs is set to 0, the ranking of an object is decided only by the
textual relevance. In other words, the ranking is independent
of spatial attributes. Therefore, there is no need to decompose
the grid in order to determine the dominance relationship.

As ωs grows, the weight of the textual dimension decreases,
and grids of finer granularities are needed to determine the
dominance relationship. If ωs is set to 1, the elapsed time
drops compared to the setting of 0.75. The reason is two-
fold: 1) if ωs = 1, all half spaces are convex, which helps
to efficiently check dominance; 2) as it ignores the effect of
textual dimension, the textual relevance computation can be
avoided.

Effect of ε. In this section, we vary the value of ε to eval-
uate the performance of each algorithm, as shown in Fig. 10.
If ε is less than 0.9, the increase of ε leads to a significant
degradation of the performance. The reason is that a higher
precision threshold leads to more grid checks in the query
processing. However, when ε is over 0.9, the performance
degradation is slower. This occurs because although the grid
is decomposed into lower levels, there are very few remaining
undetermined objects here. So the extra time cost in a low-level
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Figure 12: The Scalability Experiment

grid is low.

Effect of textual relevance. Next, we adjust the tex-
tual relevance between query keywords and query objects,
i.e., tr(ψ, q.ψ). The effect is shown in Fig. 11. Dual-Tree
dominates the other two competitors in all settings. Further,
the performance of all algorithms degrades when tr(ψ, q.ψ)
decreases. The reason is that when tr(ψ, q.ψ) is large, the
query object has a better chance of being a top-k object,
which results in a bigger V -region. Then, more grids must
be examined, which causes more overhead. Note that the cost
of Dual-tree increases moderately w.r.t. the relevance, meaning
that our algorithms are of good adaptivity to different valued
relevance.

Scalability. We observe the scalability of the three solu-
tions with different sized synthetic datasets. As shown in
Fig. 12, when the dataset size increases, all three solutions cost
more. Compared with Basic and Quad-Tree, which degrade
significantly, Dual-tree increases only moderately. When the
data cardinality is 6 million objects, Dual-tree costs less than
half of that of Quad-tree, thus offering good scalability. The
good performance is achieved by using an index that enables
pruning at the index entry level.

C. Analysis

We have reported the performance of our proposals. Next,
we conduct a detailed analysis to understand how the efficiency
is achieved. We report results on EURO; similar observations
are found with CAR.
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Figure 13: Analysis

Fig. 13(a) shows the benefits gained by reusing vertex
checking (Section III-C1). To exclude the effect of other
factors, we compare the performance with and without reusing
the computation of Basic. We can see that the technique
(labeled “ReusingVC”) saves up to 60% elapsed time com-
pared to Basic. Note that the y-axis has a logarithmic scale.

Fig. 13(b) demonstrates the effect of the convexification
(Section III-A1) that decomposes a concave half space into
a set of convex polygons, thus facilitating the dominance
determination. Again, we compare the results with and without
convexification using Basic. We see that the efficiency gained
from our technique is significant. It saves up to 97% elapsed
time compared to Basic.

Fig. 13(c) reports the effect of the pruning techniques based
on the IR-tree (Section IV-B). The pruning techniques exploit
the convex properties of half spaces defined between an object
and an index entry. Without them, only distance comparisons
can be used (Lemmas 11 and 12), yielding a loose pruning
bound. We compare the results using Dual-tree while including
or excluding the derived pruning rules, labelled by Dual-tree
and Non-4PIs, respectively. The result shows that the pruning
techniques improves the performance significantly. When k =
40, they save up to an order of magnitude.

Fig. 13(d) covers the compression techniques for the
pruned set, which plays as a key role in reducing the space
costs. We compare the compressed and non-compressed ef-
fects, i.e., with ids of all pruned nodes being recorded for each
grid. The figure shows that our compressed solution saves up
to 99% space compared to the non-compressed one.

Fig. 13(e) evaluates the effectiveness of the flooding al-
gorithm (Algorithm 3). Instead of decomposing the quad-tree
from the root, we start from an appropriate level and retrieve a
super region of the V -region where the decomposition starts.
By doing so, we skip the first few quad-tree levels where the
object rejection is prone to be affected by coarse-size grids.
The technique significantly improves the computation time.
Specifically, when k = 40, up to 60% of the cost can be
saved.

The flooding algorithm is supported by estimating the size
of a V -region. We have tested the accuracy of the estimation
model (Equation 13). When k = 100, the estimation accuracy
is up to 60%, and the accuracy is even higher if k increases.
For example, when k = 1000, the accuracy is up to 90%.
Hence, the assessment of the model is very positive: 1)
the effectiveness of the model is reflected by the efficient
results of the flooding algorithm; 2) the correctness can be
guaranteed even if the accuracy is extremely high; 3) the
flooding algorithm has a bigger effects for large k when the
need for efficiency improvement is higher.

Fig. 13(f) reports the number of k-subsets per V -region,
which increases sharply as k increases. The result is consistent
with our complexity analysis. It also shows that it is not
impractical to invoke single Voronoi cell computations multiple
times for computing a V -region.

VI. RELATED WORK

A spatial keyword query retrieves the most relevant objects
with respect to a given location and a set of keywords. Efficient
evaluation of such queries with varying query semantics has
been studied, for example, top-k queries [2], reverse top-k
queries [5], [20], spatio-textual joins [21], continuous quer-
ies [1], [3], [4], why-not queries [22], etc. This paper considers
a new problem of reverse keyword-based location search which
returns a region where an object always ranks as one of the top-
k most relevant objects to the query keywords. It differs from
existing works on spatial keyword queries, e.g., reverse top-k
queries [5], in the sense that it returns a spatial region instead
of a set of objects. The solution of [5] cannot be adapted to
our problem since a spatial region has an infinite number of
points, which cannot be enumerated. Another study [20] targets
a different problem, that is of finding the query keywords that
rank a target object as one of the top-k results w.r.t. a given
query location.

The reverse location search of non-textual version has been
addressed in [7], [17]. However, with different problem set-
tings, the geometric properties and corresponding techniques



are fundamentally different. In [7], [17], a half space is
enclosed by straight lines yielding a convex region which is
easy for distance comparison and topological operations, e.g.,
intersection. In our problem, the boundary of a half space
is often curved which results in concave regions and thus
makes the problem computationally challenging. We avoid
the disadvantage by: 1) decomposing Ω space into convex
grids; 2) replacing a concave half space with multiple con-
vex polygons; 3) enabling the dominance relationship as an
alternative of complex topological relationship between curve
shaped regions.

The technique of space decomposition is also mentioned
in [4], [23]. However, the problems considered are essentially
different from our case. In particular, [23] handles retrieving
an uncertain Voronoi cell and [4] handles a weighted uncertain
Voronoi cell. They both target on a case of a single Voronoi cell
of order-1, whereas a V -region refers to a union of many order-
k weighted Voronoi cells. As we have analyzed, the V -region
studied in our work is of novel geometric properties. Further,
we investigate how such properties, e.g, convexification, can
in turn facilitate the space decomposition techniques.

The work relates to Voronoi-based techniques that are
widely used in location-based services [8], [11], [24]. However,
these works only consider plain Voronoi cells. As we have
covered, the features considered in our problem are only
partially addressed by them. It is thus not clear on how to
extend their work to our scenarios. We summarize the related
works in Table V.

Table V: Related Works
Work weights order-k result as spatial keyword

Voronoi cell a region
V-region X X X X

[7] 7 X X 7
[9] 7 7 X 7

[3], [25] X 7 7 X
[1] X 7 7 X
[11] 7 7 7 7
[8] 7 7 X 7
[24] 7 X 7 7
[5] 7 7 7 X
[4] X 7 X X
[17] 7 X X 7

VII. CONCLUSIONS

We study the problem of reverse keyword-based location
search, covering the concepts, geometric properties, and al-
gorithms needed for deriving the result region, V -region. It is
computationally expensive to render such a region. To over-
come it, we propose an error-bounded approximate solution
using space decomposition techniques, i.e., by a quad-tree. We
further utilize an IR-tree based method and thus come up with
a dual-tree based solution which evaluates the result region
with both efficiency and quality. Empirical performance on
real datasets offer insights into the efficiency and scalability
of our proposals.

In future research, it is of interest to study how to utilize the
techniques for advanced applications, such as modeling safe
zones in a mobile setting, influence analysis and progagation
in geo-social scenarios, and how to extend the proposal in a
constrained space, e.g., road networks.
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