
Selectivity Estimation of Twig Queries on Cyclic

Graphs

Yun Peng, Byron Choi, Jianliang Xu

Department of Computer Science, Hong Kong Baptist University, Hong Kong, China
{ypeng, bchoi, xujl}@comp.hkbu.edu.hk

Abstract—Recent applications including the Semantic Web,
Web ontology and XML have sparked a renewed interest on
graph-structured databases. Among others, twig queries have
been a popular tool for retrieving subgraphs from graph-
structured databases. To optimize twig queries, selectivity es-
timation has been a crucial and classical step. However, the
majority of existing works on selectivity estimation focuses on
relational and tree data. In this paper, we investigate selectivity
estimation of twig queries on possibly cyclic graph data. To
facilitate selectivity estimation on cyclic graphs, we propose a
matrix representation of graphs derived from prime labeling —
a scheme for reachability queries on directed acyclic graphs.
With this representation, we exploit the consecutive ones property
(C1P) of matrices. As a consequence, a node is mapped to a
point in a two-dimensional space whereas a query is mapped
to multiple points. We adopt histograms for scalable selectivity
estimation. We perform an extensive experimental evaluation on
the proposed technique and show that our technique controls the
estimation error under 1.3% on XMARK and DBLP, which is more
accurate than previous techniques. On TREEBANK, we produce
RMSE and NRMSE 6.8 times smaller than previous techniques.

I. INTRODUCTION

Graph-structured databases have a wide range of emerg-

ing applications, e.g., the Semantic Web, eXtensible Markup

Language (XML), biological databases and network topolo-

gies. Up-to-date, there has already been voluminous real-

world (possibly cyclic) graph-structured data [3]. To retrieve

subgraphs from a large graph-structured database efficiently,

various query optimization techniques have been proposed.

Among others, selectivity estimation of queries has been a

crucial support for query optimization technique in databases.

In particular, selectivity estimation has been built into the

query optimizer of all commercial relational databases. In a

nutshell, given a query, we want to determine the number of

results of the query, without invoking potentially costly query

evaluation. However, the majority of previous research on

selectivity estimation, with a few exceptions (see Section II),

focuses on relational and tree-structured data. In this paper, we

propose histogram-based selectivity estimation of twig queries

for possibly cyclic graphs.

Twig queries have been a popular and classical tool for

retrieving subgraphs from a graph-structured database. To

facilitate our technical discussions, let us consider a twig query

over a simplified XMARK (cyclic) graph [18]. The graph

(Fig. 1) encodes auction information, where people watch

over auctions and bidders bid items. Consider a sample query

//person[//open auction//person], which selects the

people

[2x3x5x7x19]

person

watch
watch

[2x3x5x7x19] [2x3x5x7x19]

person person
[17]

[2x3x5x17x19]

person

watches

...

[2x3x5x7x19]

...
... [11]

[13]

site

open_auction

...
open_auction

open_auction

author

[2x19]

person

[19] bidder

[5]

seller

[3x19]

bidder
[2x3x5x7x19]

open_auctions
[2x3x5x7x11x13x19]

[2x3x5x7x11x13x17x19]

[2x3x5x7x19]

bidders

...

open_auction
[7]

[2x3x5x7x19]

...

Fig. 1. An example of auction graph (XMARK) with its prime labeling

persons who watch some auctions that are still open and re-

lated to some other persons. Note that the twig query is recur-

sive, where the query selects persons that have some person

descendants. In XMARK with a scaling factor 1.0, there are

25,500, 12,000, and 13,192 persons, open auctions and

open auction//persons, respectively. Based on selectivity

information, a query optimizer, e.g., [24], may pick an effi-

cient plan that evaluates //open auction//person prior to

//person, to minimize intermediate result size.

Recently, there have been studies on selectivity estimation

of XML data, a.k.a. tree data, and twig queries. In particular,

Wu et al. [24] propose to adopt histograms for selectivity

estimation of XML queries. An advantage of this technique

is that histograms are by far the most popular technique

for query result estimation. The proposed technique relies

on an interval representation of nodes, which presumes tree

data. That is, each node of a tree is associated with one

interval. The challenge in adopting the interval representation

to cyclic graphs (and even directed acyclic graphs) is that

multiple intervals may be associated with a node [2], as there

may be multiple paths between any two nodes. Thus, the

storage requirement of this technique on cyclic graphs can

be prohibitive. In addition, it does not appear straightforward

to extend the existing estimation framework [24] to support

multiple interval representation either.

Regarding cyclic graphs, there has been a work, namely

XSKETCH [16], that exploits (local) minimal bisimulation

of a graph for selectivity estimation of path queries. When

compared to the histogram approach, bisimulation is not yet

available in any commercial database and there has not been

a de facto external representation of bisimulation graphs.

Another drawback of local bisimulation is that the estimation

accuracy relies on a strong statistical assumption (uniform

distribution) of data.

978-1-4244-8958-9/11/$26.00 © 2011 IEEE ICDE Conference 2011960



In this paper, we propose a novel selectivity estimation

technique for twig queries on cyclic graphs. The novelties

of the technique are twofold. First, different from [16],

we undertake a histogram approach to conduct selectivity

estimation; we use auxiliary histograms to tackle possibly

skewed data and do not make any assumption on the data

distribution. To facilitate summarization of data, we propose a

prime number labeling scheme (or simply prime labeling) to

represent (cyclic) graph data, which was originally proposed

for tree data [23]. (We defer the discussion on the drawbacks

of other alternative representations to Section II.) With prime

labeling, the checking of the descendant-ancestor relationship

among nodes of graphs and (later) estimation methods become

very simple. Specifically, previous prime labeling scheme es-

sentially associates each node with an exclusive prime number

and labels each node with the product of its children’s labels

and its own prime number. Reachability between nodes is

simply mapped to divisibility test of labels. Unlike previous

works, our prime labeling requires fewer prime numbers for

labeling and is therefore smaller in size.

A known issue of prime labeling is that it often results in

very large integers. The second novelty lies in a new binary

matrix representation of prime labeling, which further reduces

the labeling size. In this way, we bridge selectivity estimation

to the work on matrices. In particular, we transform a cyclic

graph into a matrix with the Consecutive Ones Property (C1P).

Subsequently, a node of a cyclic graph can be represented

as an interval of column IDs, (start, end).1 Querying is then

done by logical operations on the matrix. Nodes are essen-

tially summarized in a two-dimensional histogram. In matrix

transformations, new columns are often introduced. We store

mappings between equivalent column IDs in a compressed

form. Given a query, we translate it into multiple equivalent

queries (intervals) with the compressed mappings. Such in-

terval representations of data and queries make histograms a

feasible solution for summarization.

The contributions of this paper are as follows.

• To the best of our knowledge, this is the first work on

selectivity estimation of twig queries on cyclic graphs.

Previous works focus on either twig queries or cyclic

graphs but not both.

• We propose a prime labeling scheme and its binary matrix

representation to represent cyclic graphs (Section V).

We transform the matrix in order to map a node of a

graph to an interval and in runtime, a query to possibly

multiple intervals. A two-dimensional histogram is used

to summarize the matrix (Section VI). We propose an

estimation algorithm with the histograms (Section VII).

• We perform a performance evaluation (Section VIII) that

verifies our technique controls the estimation error under

1.3% for XMARK and DBLP datasets. In comparison,

the previous work XSKETCH/TREESKETCH [16], [17]

1Our interval represents the column IDs of a C1P matrix. In contrast,
the multiple intervals of nodes proposed in [2] represents the preorder and
postorder numbers of a traversal on the spanning tree of a DAG and its
connectivity due to non-tree edges.

reports that it controls the error under 5%. On TREEBANK

dataset, our implementation produces RMSE and NRMSE

that are at least 6.8 times smaller than XSEED’s [25].

II. RELATED WORK

There have been some recent works on selectivity estimation

for path or twig queries on trees or cyclic graphs. The tech-

niques can be roughly classified into two categories: graph-

based approach and relational-based approach.

Graph-based approach. While graph-structured data model

has its root at network data model, it was revisited in Tsimmis

project, in which Object Exchange Model (OEM) is proposed.

DATAGUIDE [14] summarizes the paths of OEM. Graphs are

considered as NFA and their DATAGUIDEs are DFA of the

graphs. DATAGUIDE is extended to support approximate query

processing [8]. Straight-Line Grammar (STL) [6] is a special

form of context-free grammar, for summarizing a data graph.

To reduce the grammar size, [6] proposes to use a wildcard

to simplify some non-terminals in a production.

Another graph-based approach [16], [17] (XSKETCH and

later TREESKETCH) is derived from bisimulation of graphs.

XSKETCH supports only path queries on cyclic graphs.

TREESKETCH, on the other hand, supports twig queries on

acyclic graphs only. In comparison, we support twig queires

on cyclic data. [16], [17] propose to adopt bisimulation as the

synopses of a data graph. To further reduce the size of bisimu-

lation, a notion of local bisimulation [10] has been applied. To

recover the path information from a local bisimulation graph,

graph stability is exploited and uniform distribution of nodes

is assumed. Unlike their techniques, we do not assume the

data exhibits uniform distribution but use auxiliary histograms

to summarize skewed data. A recent survey shows that some

popular graph (XML) benchmarks contain highly skewed data

[13]. Our overall technique adopts histogram, which is by far

the most popular selectivity estimation technique.

Correlated subpath tree (CST) [4] stores the count of small

twigs (branches) in data trees. It has been shown by recent

experiments that [16], [17] outperform [4]. XSEED [25] ini-

tially derives a compact path summary (kernel) from data trees

and adaptively tunes memory budgets of summaries based on

query workload. Its experiment showed XSEED outperforms

TREESKETCH [17] when 1000 queries are considered. In our

experiments, we compare our techniques with XSEED. STATIX

[7] proposes to count subtrees in XML, not cyclic graphs, with

schema information. In contrast, we do not assume schemas.

Relational-based approach. Histograms from relational

databases have been adapted to support selectivity estimation

of queries on graphs. [24] proposes an interval representation

of nodes of a tree. The start and end position of the interval is

used as the x and y coordinates of a point in a two-dimensional

plane. A two-dimensional histogram and auxiliary histograms

are used to summarize the points. Bloom histograms [21], path

trees and Markov tables [1], [12] have been proposed for path

selectivity estimation for tree data. However, it is not clear

how these techniques support cyclic graphs, which contain

infinitely many paths, for selectivity estimation.

961



Alternative representation of graphs. In this work, we adopt

prime labeling [22], [23] as the representation of cyclic graphs,

due to its simplicity. In addition to the interval representation

discussed earlier, there have been alternative representations.

Transitive closure of the graph G consists of an entry (u, v) if

u can reach v in G. However, its storage is prohibitive O(|G|2).

Adjacency matrix has been a classical representation of graphs.

However, determining the ancestor-descendant relationship in

an adjacency matrix is relatively complex, which requires

taking self-products of the matrix. There has been a host of

ad-hoc indexes for reachability queries on graphs, e.g., 2-hop

labeling [5]. However, ad-hoc indexes are often complex and

their summarization does not seem to be straightforward.

III. DEFINITIONS AND PRELIMINARIES

We begin our investigation by presenting the definitions and

notations used in this paper.

A. Data Model and Twig Queries

In this paper, we study directed node-labeled rooted data

graphs, or simply graphs in the subsequent discussions. A

graph can be denoted as G = (V,E, r,Σ, λ, oid), where V is

a set of nodes and E: V × V is a set of edges, r ∈ V is a

root node, Σ is a set of tags and λ: V → Σ is a function that

returns the tag of a node and oid is a function that returns a

unique identifier of a node. For simplicity, we may denote a

graph as (V , E) when other components are irrelevant.

Among the queries on graphs, XPATH has been studied

more extensively recently than others and it has been an

indispensable part of eXtensible Markup Language (XML) —

the de facto standard for electronic data exchange. Hence, we

consider a fragment of structural XPath — twig queries. The

syntax is given in BNF below:

p ::= ǫ | A | ∗ | // | p/p | p[q],

q ::= p | q ∧ q | q ∨ q,

where ǫ, A, ∗ and / denote the self-axis, a tag, a wildcard

and the child-axis, respectively; // stands for /descendant-

or-self::node()/; and q in p[q] is called a filter, in which ∧
and ∨ denote conjunction and disjunction, respectively. For

//, we abbreviate p1/ // as p1// and // /p2 as //p2. For

simplicity, our technical discussion focuses on // axes, while

the extension to / axes can be addressed by introducing an

index on the depth of nodes. Also, we skip data filters, e.g., A
= ”x”, as they are always the last estimation step and classical

estimation technique can simply be adopted. We use r[|p|] to

denote the evaluation of the query p from the node r.

Problem statement. Let R be the set of nodes of the evalua-

tion, where R = r[|p|]. In this paper, given p and r, we want

to determine |R| efficiently and accurately.

B. Consecutive Ones Property

Next, we provide the definition of the Consecutive Ones

Property (C1P), which is useful to summarize the ones (non-

zeros) in a matrix. In this paper, we represent a cyclic graph

with a binary matrix, denoted by M . The u-th row is denoted

M M’

f
−1

f and
G

data

graph

graph contraction

(by Gabow’s algo)
G’ binary matrix

representation of

prime labeling

S
electiv

ity

estim
atio

n

Query q

reduced

graph (DAG)

2−dimensional

histograms

C1P matrix

+

mappings

...

prime labeling

...tag n

data graph
Transformations on

selectivity

heuristics

tag 1

summarization

tag 2
cell

Fig. 2. An overview of our proposed technique

as M [u]. The entry at the u-th row and the v-th column,

denoted as M [u][v], can be either ‘0’ or ‘1’.

Definition 3.1: A matrix M has the weak Consecutive Ones

Property (C1P) if its columns can be permuted such that in

each row, the ones are adjacent. A matrix M has strong C1P

if the ones of each row are adjacent.

For simplicity, we call a matrix with strong C1P a CIP

matrix. Since the ones in a row of a C1P matrix are adjacent,

we can represent the ones in the row with a start and end

column number which can be considered as the x- and y-

coordinates of a data point. In subsequent discussions, we may

use the term intervals and data points interchangeably.

IV. OVERVIEW

In this section, we provide an overview of the design of our

proposed technique to the selectivity estimation problem.

Consider a cyclic data graph G, as shown in Fig. 2. G
is first reduced into a DAG (G′), on which prime labeling

is applied. We design a prime labeling scheme that not only

facilitates simple query processing but also selectivity estima-

tion of twig queries. Furthermore, we propose a new binary

matrix representation M of prime labeling. Its advantages are

twofold. First, prime labeling may require large prime numbers

for labeling large graphs since at least each leaf node needs a

unique prime number. Second, we adopt existing work from

matrices, for summarization. In particular, we transform the

matrix M into a C1P matrix M ′ and represent each nodes

with two-dimensional data points. As a result, a well-known

estimation technique, two-dimensional histogram, can be used

to summarize the data points of each kind of tag, where the

histogram’s cell size ρ can be tuned for space or accuracy.

Regarding estimating the selectivity of a twig query q, we

encounter a unique challenge that data points derived from

the C1P matrix M ′ are often highly skewed. When developing

the estimation algorithm, we observe that there are sometimes

few queries with large errors, which lead to a poor overall

accuracy. Hence, we propose additional auxiliary histograms

for summarizing skewed data points and do not opt to adopt

[24] for selectivity estimation.

In what follows, we present the prime labeling and binary

representation of cyclic graphs, matrix transformations and

selectivity estimation in Sections V, VI and VII, respectively.

V. REPRESENTATION OF CYCLIC GRAPHS

Most labeling techniques on descendant-or-self axis focus

on tree data. It is not clear how these labelings can be modified

962



Input: A data graph G
Output: A data graph with prime labeling

01 G′ = tarjan(G)
02 initialize the prime label of nodes in G′ to 1
03 for each n in G′.V in reverse topological order
04 if n is a leaf node /* Definition 5.1 */
05 n.ℓ = get next()
06 else
07 for each c in n.children
08 n.ℓ = n.ℓ × c.ℓ
09 if ∀ n′ ∈ n.children. n′ has multiple parents
10 n.ℓ = get next() × n.ℓ

Fig. 3. Prime labeling construction prime-construct

to support cyclic graphs. For example, path-based labelings do

not work in cyclic graphs as there are infinitely many paths

and the interval labeling [2] has a high space requirement for

cyclic graphs. In this section, we present a new representation

of cyclic graphs based on prime labeling [23], to efficiently

estimate the descendant-or-self axis on cyclic graphs.

A. The Original Prime Labeling

Prime labeling was originally proposed for indexing trees.

The main idea of prime labeling is that each node is labeled

with a product of prime numbers such that the ancestor-

descendant relationship between nodes could be determined by

using the division of the prime labels. A node n1 is an ancestor

of another node n2 if and only if the label of n1 is divisible by

that of n2. In [23], a unique prime number is assigned to each

leaf node. The prime label of an internal node is the product

of the prime labels of its children. 2 Such labeling works on

trees only. To extend prime labeling to DAGs, [22] requires a

unique prime number per node.

B. Prime Labeling for Cyclic Graphs

To support cyclic graphs, we follow the standard prepro-

cessing to reduce each SCC into a supernode and apply prime

labeling on the reduced graph. We propose two modifications

on prime labeling: First, the previous work [22] on prime

labeling uses excessive prime numbers (one prime number

per node). We propose to use fewer number of (unique) prime

numbers needed for labeling and hence reduce the overall size

of prime labeling. More specifically, we require a new unique

prime number for labeling a node n in one of the following

scenarios: (i) n is a leaf node; or (ii) all the children of n
have more than one parents. Regarding the second scenario,

if a new prime number is not used for labeling n, then it is

possible to have a node n′ whose label is divisible by n’s label

but n′ is not an ancestor of n, since n′ can be an ancestor of

other parents of n’s children. Second, prime labeling needs

to support possibly multiple strongly connected components

(SCCs) in cyclic graphs. By definition, each node in an SCC

can reach any other node in the SCC. Therefore, the nodes in

an SCC can be associated with the same prime label.

2This is referred to as a bottom-up approach, which produces a small
labeling. A top-down approach [23] has been proposed for simpler updates.

Next, we present the definition of prime labeling for cyclic

graphs. Let get next() be a special function which returns

a prime number that has not been returned before. Assume

that a cyclic graph G has been preprocessed by Tarjan’s

algorithm [20], where each SCC is reduced to a supernode.

Denote the reduced graph to be G′(V ′, E′). Each node n is

associated with a prime label ℓ as defined below.

Definition 5.1: The prime label ℓ of a node n of the reduced

graph G′(V ′, E′) can be defined as follows:

1) If n is a leaf node, then n.ℓ = get next().

2) If n is a non-leaf node and all the children of n have

multiple parents, then n.ℓ = get next() ×
∏

c∈C c.ℓ,
where C is the set of n’s children.

3) Otherwise, n.ℓ =
∏

c∈C c.ℓ.

The prime labels of the nodes of a reduced graph G′

are assigned in a reverse-topological order, i.e., a bottom-up

traversal. The pseudo-code of the prime labeling construction

(prime-construct in Fig. 3) can be readily derived from

Definition 5.1. It assigns prime labels to the reduced graph

(G′). In Line 01, we apply Tarjan’s algorithm to reduce a

cyclic graph G into a DAG G′, where an SCC is reduced to

a supernode. We initialize the prime label of each node to be

1 in Line 02. Then, we assign the prime labels of nodes in a

reverse-topological order (bottom-up traversal). There are two

possible cases. (1) If the node n is a leaf node (Lines 04-05),

we assign a new prime number to the node. (2) If the node

n is not a leaf node, the prime labels of the node is set to

the product of the prime labels of its children in Lines 07-08.

However, if all the children of the node have multiple parents,

we assign an additional new prime number to the prime label

of n (Lines 09-10), as argued earlier.

While prime-construct and [22], [23] assign prime

numbers differently, querying with our prime labeling remains

simple. Assume that we have a set of A-nodes SA and B-nodes

SB . A naive way to determine the number of B-descendants

in SB of the nodes in SA takes O(|Sa| × |Sb|). With prime

labeling, this can be done by first computing the product of

the prime labels of SA, denoted by MA, and then check the

divisibility between MA and the prime label of each node in

SB . This requires O(|Sa|+ |Sb|) only.

Example 5.1: Reconsider the XMARK graph shown in Fig. 1.

The prime label of each node is shown in the square bracket.

We show a strongly connected component whose nodes have

the same label 2×3×5×7×19, as they can reach one another,

by definition. The person with label 19 is both a seller and

an author. We use a new prime label for the author (2) and

seller (3). Since 2×19 and 3×19 are not divisible, author

and seller are not a descendant of each other. Furthermore,

to check the number of persons that are a descendant of some

open auctions, we can simply check the divisibility between

the person’s label, e.g., 17, to the label of open auctions,

i.e., 2×3×5×7×11×13×19.

963



C. Matrix Representation of Cyclic Graphs

Given voluminous graph data, such as biology pathways,

social networks and XML, prime labeling may result in very

large integers. To address this issue, we propose a binary ma-

trix representation of prime labeling and map integer divisions

simply to logical operators of vectors.

Definition 5.2: Suppose that the prime label ℓ of a node n of

a graph G is pi1 ×pi2 × ...×pim , where pij is the ij-th prime

number. ℓ is then presented by a vector ~ℓ where ~ℓ[ij] = 1 if

and only if pij is a factor of ℓ; and ~ℓ[ij] = 0 otherwise. The

vector size is the number of prime numbers used in labeling.

A graph is represented as a set of binary vectors which form

a matrix. Here, we always discuss binary vectors and matrices.

For simplicity, we may omit the term “binary”.

With this representation, divisions and multiplications of

prime labels can be mapped into logical operators on the vector

representation of the prime labels.

Definition 5.3: Given two nodes n1 and n2, n1.ℓ is divisible

by n2.ℓ if and only if ¬(n1.~ℓ) ∧ n2.~ℓ = ~0.

Definition 5.3 can be alternatively understood that the vector

¬(n1.~ℓ) and n2.~ℓ are orthogonal, where the product of the two

vectors is 0.

Definition 5.4: Given a set of nodes V and n2,
∏

n∈V n.ℓ is

divisible by n2.ℓ if and only if ¬(
∧

n∈V n.~ℓ) ∧ n2.~ℓ = ~0.

To end, we remark that prime-construct (presented in

Fig. 3) can be used with minor modifications to compute the

binary matrix representation directly from cyclic graphs.

VI. MATRIX TRANSFORMATIONS

In this section, we present the transformation of the bi-

nary matrix of prime labeling into a C1P matrix for simple

summarization. On one hand, a C1P matrix can be readily

summarized by a set of intervals, as discussed in Section I.

On the other hand, converting a matrix into a C1P matrix

is intractable [19]. Worst still, there is no polynomial time

approximation scheme for determining a C1P submatrix in a

given matrix. Therefore, we propose (i) a heuristic algorithm

for converting a matrix into a C1P matrix and (ii) two practical

optimizations, namely, horizontal decomposition on the matrix

and extraction of the largest common subset of non-zeros in

the decomposed submatrices, to reduce the size of the matrix

passed to the heuristic algorithm.

A. Transforming to C1P Matrix

The heuristic algorithm uses a C1P detection algorithm

proposed by Hsu [9] as a component, which determines if a

matrix is C1P or not and has been known to have simple imple-

mentations. The overall heuristic algorithm heuristic c1p

is presented in Fig. 4.

We assume that the rows of the input matrix M are assumed

to be sorted by the number of non-zeros in descending order.

The heuristic algorithm is to first process the rows that have

more overlapping non-zeros with the first row. The idea is that

Procedure heuristic c1p

Input: A matrix representation of a cyclic graph M [ ][ ],
where the rows of M are sorted by # of non-zeros (descending)

Output: The C1P matrix from M

01 r = M [0] /* 1st row */
02 for each i in [1...m-1], where m is the number of rows of M
03 M [i].overlap = |{ j | M [i][j] ∧ r[j], j ∈ [1...n]}|

04 sort M by the overlap attribute of the rows
05 R = {r}
06 for each i in [1...m-1]
07 if (i) c1p detect(R ∪ {M [i]}) or /* [9]*/
08 (ii) M [i] ∧

∧
R = ∅ or /* non-overlapping row*/

09 (iii) ∃ j s.t. M [i] ∧ R[j] = M [i] /* M [i] in R[j]*/
10 then
11 R = column partition(R, M [i]) /* Section VI-A */

12 return R ⊕ heuristic c1p(M - R)

Fig. 4. Heuristic C1P transformation

there may be a higher chance for such rows to share more

columns containing non-zeros. Subsequently, we may obtain

a smaller C1P matrix.

The details of heuristic c1p are as follows. We first

compute the overlapping between the rows in M with the first

row — the row with the most number of non-zeros (Lines

01-03). Then, we sort the rows by the amount of overlapping

(Line 04) and construct a new C1P submatrix R (Line 05). We

may merge a row M [i] into R if one of the three conditions

is satisfied (Lines 07-09): (i) Hsu’s algorithm (denoted as

c1p detect) reports that M [i] can be merged to R to form

a C1P matrix. (ii) M [i] does not overlap with R. (iii) M [i]
is contained in some rows in R. We remark that Conditions

(ii) and (iii) do not arise in [9]. However, such a row can be

readily merged into the C1P matrix R.

In Line 11, column partition is the COLUMN-

PARTITION algorithm in [9] extended to handle Conditions

(ii) and (iii). In a nutshell, assuming that R and r form a C1P

matrix, column partition(R, r) reorganizes the columns of

R and r in partitions such that a C1P matrix can be trivially

generated from the partitions. Due to space constraints, we opt

to present COLUMN-PARTITION as a black box.

Finally, we recursively call heuristic c1p to process the

remaining rows, until the whole matrix is transformed into a

C1P matrix (Line 12). A subtle note is that the C1P submatrix

R constructed from each heuristic c1p call is often not

mergable to each other. Otherwise, these submatrices may be

returned in a single call. Hence, we append (denote as ⊕) the

submatrix, returned from recursive calls, to R.

The operator ⊕ is a special append operator. Suppose

R1 and R2 is a n1 by m1 matrix and n2 by m2 matrix,

respectively. R1 ⊕ R2 returns a (n1 + n2) by (m1 + m2)

matrix R′, where R1 and R2 are placed at the top-left and

bottom-right corner of R′, respectively. Fig. 5 illustrates ⊕
and the heuristics heuristic c1p with a sketch of the run of

heuristic c1p. (A real example of a C1P matrix produced

by heuristic c1p is presented in Fig. 7.) heuristic c1p

generates a C1P matrix recursively.

Mappings between columns and positions. In general, a

964



f
−1

R in 1st recursion

...

f

R in 2nd recursion

R in nth recursion

C1P of M

heuristic_c1p

M

rows rows

columns positoins

Fig. 5. Schematics of heuristics heuristic c1p

column of a matrix may be duplicated in multiple submatrices

returned by heuristic c1p. To avoid confusions, we refer

the columns of the C1P matrix to positions. Two mappings are

needed to record the relationship between the column and its

positions. In particular, we store the mappings in two binary

relations f and f−1, where f (vi) returns the positions of vi
in V and f−1(p) returns vi where p ∈ f (vi).

Analysis. The runtime of Hsu’s algorithm (c1p detect and

column partition) is O(m+n+r), where m, n and r are

the number of rows, the number of columns and the number

of non-zeros. The loops (Lines 02 and 06) iterate through the

rows of a matrix. There are at most m recursive calls. Thus,

the time complexity of heuristic c1p is O(m2×(m+n+r)).

B. Optimizing Matrix Transformation

This subsection presents two optimizations for matrix trans-

formation that are specific to our approach.

We make two observations on the matrix representation of

a cyclic graph, constructed as in Section V. First, the prime

labels are assigned essentially bottom-up, where the rows (the

nodes) near the root have relatively more non-zeros. That is,

the number of non-zeros of the rows (the nodes) near the

root is often very different from those near the leaf nodes.

Second, since the nodes in an SCC can reach one another,

the rows of an SCC are identical. Hence, we propose two

matrix manipulations to reduce the size of the matrix passed

to heuristic c1p.

1) Horizontal Matrix Decomposition: The patterns in the

rows with many non-zeros are often different from those

with few non-zeros. We propose a simple decomposition to

separate these rows of a matrix M and summarize them

separately. First, note that the order of rows does not carry

any information. We sort the rows by the number of non-

zeros, in descending order. Denote by M̄ and σ, respectively,

the mean and standard deviation of the number of non-zeros

for all rows of M . Second, we scan the sorted matrix. Let R
be the rows scanned thus far and r be the next row in the scan.

If the number of non-zeros of r is beyond R̄ − cσ, where c
is a constant, e.g., 3, this indicates the remaining rows in the

matrix are significantly different from those in R. Hence, we

decompose the matrix at r and then continue the scan.

2) Common Pattern Extraction: A pattern that appears in

all rows of a matrix contains little information. Thus, we

extract the largest common pattern of a matrix in a scan, which

can be incorporated with the decomposition discussed above.

In the scan, we maintain the current common pattern P of the

scanned rows. Assume r is the next row in the scan. The next

largest common pattern is simply defined as P ∧ r.

Fig. 6. Matrix representation of XMARK

Fig. 7. C1P matrix representation of XMARK

Example 6.1: In Fig. 6, we show the matrix representation of

XMARK (with the scaling factor 0.01) after sorting the rows

by the number of non-zeros (prime numbers). A dot ’.’ and a

blank space ’ ’ represent a non-zero and zero, respectively. The

figure shows that there are three distinguishable submatrices

with different non-zero densities. The dotted lines show the

decomposition when R̄−3σ is used. Most of the non-zeros of

the matrix occur in the topmost submatrix. After we locate the

common pattern in the submatrix, we extract it out from the

submatrix. We find that the topmost submatrix has a large

common pattern, containing 10,684 non-zeros. Finally, we

apply heuristic c1p on the decomposed matrices to obtain

a C1P matrix shown in Fig. 7. The number of positions needed

for 13,372 columns is 53,998.

VII. SELECTIVITY ESTIMATION

This section presents the details of using two-dimensional

histograms to summarize the C1P matrix derived in Section VI

and perform selectivity estimation. We first discuss our data

structures associated with the histograms (Section VII-A) and

the overall estimation algorithm (Section VII-B) and then

highlight its technical details (Sections VII-C).

A. Two-dimensional Histograms

As discussed in Section III-B, a C1P matrix can be rep-

resented by a set of (two-dimensional) data points (x, y)’s,

where x and y are the start and end columns of 1’s. We use

a two-dimensional histogram for summarizing the data points

of each kind of tag. The two-dimensional space is covered by

a grid, which consists of non-overlapping cells. An example is

shown in Fig. 8(a). The cell size is controlled by a parameter

ρ. A data point (x, y), where x ≤ y, resides in the upper

diagonal area of the grid. To reduce space, we only consider

the cells with data point(s).

965



���
���
���
���

���
���
���
������
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

����
����
����
����

����
����
����
����

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��
��

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���

���
���
���

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

����
����
����
����
����
����

����
����
����
����
����
����

xmin ymax

ymaxxmin

I

II

III

V

IV

query point count = 15

x−histograms

depth = 5

,

(b) Cell structure

(a) 2−dimensional space (c) Query (case II)

,

Q

Q’

Fig. 8. (a) 2-dimensional histogram; (b) Cell str.; and (c) Intermediate query

Through our experiments, we found that the data points of

our benchmark datasets are not evenly distributed on the two-

dimensional space. First, the data points are skewed towards

the diagonal line. Such phenomenon has also been found in the

data points of the interval approach [24], though the definition

of their interval is different from ours. Second, the estimation

rules in [24] assume data points are uniformly distributed

along the diagonal line, which essentially integrate the area

of possible regions containing some answer. In contrast, we

associate three auxiliary data summaries to each cell to tackle

skewed data. An example of the cell structure is shown in

Fig. 8(b). The auxiliary summaries are discussed below.

1) We introduce a tight bounding rectangle, defined by

(xmin, ymax), of the data points of a cell, where xmin

is the smallest x-coordinate and ymax is the largest y-

coordinate of the data points in the cell.

2) We build equi-depth histograms based on the x-

coordinate, where the depth of the histograms can be

specified by a parameter ϕ. In addition, we keep the

largest and smallest x and y values for each bin of the

equi-depth x-histogram.

3) For the cells on the diagonal line, we further keep their

data points, for partial query evaluation.

B. The Overall Estimation Algorithm

The estimation exploits a property of data points, which

can be readily derived from Definition 5.4. A node v is a

descendant of another node u if and only if the interval of v
is contained in that of u. This is equivalent to say that v is

a descendant of u if and only if the data point of v is at the

bottom-right region of the data point of u. Fig. 8(a) shows

the region containing the descendants of a query point. While

the region is divided into five cases as in [24], our detailed

estimation exploits the auxiliary structures to handle skewed

data points each of the region.

With the above, we are now ready to present the overall

estimation algorithm top down, shown in Fig. 9. In a nutshell,

top down estimates the path of the twig query top-down

and invokes bottom up to estimate the filters (branches) of

the query bottom-up. Some important technical details of

top down are given in Section VII-C.

Procedure top down

Input: A twig query p, a set of query points Q, a data graph G
Output: the count of p in G

01 case of p:
02 (i) //A/p′ /* A is a tag */
03 Q′ = estimate intermediate(//A, Q) /*Sec. VII-C.1*/
04 return top down(p′, equiv(Q′), G)

05 (ii) //A
06 return estimate count(//A, Q) /* Sec. VII-C.2 */

07 (iii) //A[q]/p′

08 Cq = bottom up(q, G, G)
09 Q′ = estimate intermediate(//A, Q)
10 Q′ = {g | g ∈ Q′ ∧ at right bottom(g, Cq)}
11 return top down(p′, equiv(Q′), G)

12 (iv) //A[q]
13 Cq = bottom up(q, G, G)
14 return estimate count with Qf(//A, Q, Cq)

Fig. 9. The overall estimation algorithm top down

Procedure bottom up

Input: A filter query q, a set of query points P , a data graph G
Output: the points that have some data points that satisfy q
01 case of q:
02 (i) //A
03 return estimate intermediate reverse(//A, P , G)

04 (ii) /p′//A
05 P ′ = estimate intermediate reverse(//A, P , G)
06 return bottom up(p′, equiv(P ′), G)

07 (iii) //A[q′]
08 P ′ = bottom up(q′, P , G)
09 P = {p | p ∈ P ∧ ∃ p′ ∈ P ′ p′ is a descendant of p}
10 return estimate intermediate reverse(//A, P , G)

11 (iv) /q′//A[q′′]
12 P ′ = bottom up(q′′, P , G)
13 P = {p | p ∈ P ∧ ∃ p′ ∈ P ′ p′ is a descendant of p}
14 P ′′ = estimate intermediate reverse(//A, P , G)
15 return bottom up(//q′, equiv(P ′′), G)

Fig. 10. Auxiliary procedure for handling filters bottom up

The input of top down is a twig query p, a set of query

points Q and a data graph G. Initially, Q contains the root

node, at where the evaluation starts. top down proceeds

according to the structural form of the query as follows (We

omitted ∧ and ∨ for presentation simplicity):

(i) If the query is //A/p′ (Lines 02-04), where //A is an

intermediate query, we compute the next queries (i.e., points)

Q′ from Q with estimate intermediate (to be detailed

in Section VII-C.1). Then, we proceed to estimate p′. Since

columns may be represented by multiple positions, we need

to process all the equivalent query points of Q′ determined by

equiv (to be detailed in Section VII-C.1).

(ii) If the query is the last step (Lines 05-06), we generate

the selectivity count with estimate count (to be detailed in

Section VII-C.2).

(iii) Suppose the query contains a filter q (//A[q]/p′) (Lines 07-

11). We determine the points Cq whose bottom-right region

contains some points satisfying q (Line 08). In a nutshell,

bottom up is mostly symmetric to top down and returns a set

966



��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
����
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��

��
��
���
�
�
�

�
�
�

�
�
�

�
�
�

�
�
��
�
�

�
�
�

�
�
�
�

�
�
�
�

Key: A query pointCell with some result points A data point

a−histogram b−histogram c−histogram

est: //a... est: //a//b... est: //a//b//c

(a) (b) (c)

query: //a//b//c

a b−node

estimate_intermediateestimate_intermediate
an a−node an b−query

an c−query

estimate_count

root: an a−query

Fig. 11. A schematics of the overall estimation algorithm

of points that satisfy the filter q. (Its details will be presented

in the next subsection.) Then, we estimate the next query

points Q′ (Line 09) as in Case (i) but we only keep the query

points that have some points in Cq in their bottom-right region

(Line 10). Next, we estimate p′ recursively, as in Case (i).

(iv) If the filter occurs in the last step (//A[q]), we need to

generate the selectivity count, similar to Case (ii). However,

we invoke bottom up to find the query points Cq , similar to

Case (iii). The difference between Line 06 and Line 14 is that

when we generate the count, we only include the points that

have some points in Cq in their bottom-right region.

Example 7.1: A partial run of top down on an example

query //a//b//c is shown in Fig. 11. The estimation starts

with the root node (Fig. 11(a)). The root node becomes

a query point that searches for a-descendant nodes, with

estimate intermediate. The shaded cells illustrate the

cells that contain some a-nodes. The selected a-nodes become

the next query points — b-queries. Fig. 11(b) shows a b-
query. Similarly, we determine the cells that contain some b-
descendant nodes and subsequently c-queries. Fig. 11(c) shows

a c-query. estimate count is invoked to count the number

of c-descendant nodes of the last step //c in the shaded cells.

1) Details of bottom-up: This subsection provides the

details of the handling of filters in the overall estimation algo-

rithm top down (Fig. 9). The filters are handled by Algorithm

bottom up shown in Fig. 10. The input of bottom up is a

filter q specified in the form of twig query, a set of intermediate

query points P and a data graph G.

We first discuss estimate intermediate reverse,

which is used in bottom up. We skip its pseudo-code because

it is straightforward. estimate intermediate reverse(q,

P , G) returns a set of points that satisfy q in a graph G and

has a point p ∈ P in its bottom-right region.

Next, we focus on the structural recursion in bottom up.

(i) If the filter query is //A, i.e., the last step (Lines 02-03),

we simply return the set of points (of cells) that contain some

A-nodes which have some p ∈ P in their bottom-right region.

(ii) If the filter query is not the last step (//p′//A), we first

determine the points that satisfy //A (Line 05). Then, we

recursively determine the points that satisfy //p′ based on the

result of //A (Line 06).

(iii) If the filter query contains yet another filter query q′, we

invoke bottom up recursively to first determine the points P ′

that satisfy q′ first (Line 08). We keep only the points in P that

Procedure estimate intermediate

Input: A query step //A, a set of query points Q
Output: the next query points Q′

01 Q′ = {}
02 for each (xq , yq) in Q

for each cell c in A-hist. at the bottom-right region of (xq ,yq)
03 if c is either in Cases I, II or III (visualized in Fig. 8(a))
04 Q′ = {(max(xq , c.xmin), min(yq , c.ymax)} ∪ Q′

05 if c is either in Cases IV or V (visualized in Fig. 8(a))
06 Q′ = {(c.xmin, c.ymax)} ∪ Q′

07 return Q′

Fig. 12. Procedure estimate intermediate

have some points in P ′ in their bottom-right region (Line 09).

Then, we determine the points of //A as in Case (i) (Line 10).

(iv) This case (Lines 11-15) is similar to Case (iii). The

difference is that after we determine the points P ′′ for //A[q′],
we use P ′′ to determine the points for //p′ recursively.

Example 7.2: Recall from Algorithm top down that

bottom up is invoked as bottom up(q, G, G) (at Lines 08

and 13) and consider an example where q = //a//b. Note

that bottom up processes q bottom-up. Initially, we encounter

Case (ii). We determine the nodes that satisfy //b and has a

descendant in G. We obtain all B-nodes in G as P ′ (Line 05).

Next, we evaluate //a with P ′ (Case (i)). We obtain a set of

A-nodes that have some B-descendant nodes. These nodes are

returned to top down for filtering.

C. Estimation Details with Histograms

This subsection provides the technical details of the

overall algorithm, specifically, estimate intermediate,

estimate count and equiv.

1) Generation of Intermediate Queries: Given a query

point, estimate intermediate generates a set of next query

points from five distinguishable cases in the bottom-right

region of the query point. The five cases are visualized in

Fig. 8(a). With these cases, we present the pseudo-code of

estimate intermediate in Fig. 12.

To illustrate how estimate intermediate works, we

present the estimation details with an example query

a//b//.... Suppose the query point in Fig. 8(a) is an a-

query and the histogram summarizes b-nodes. With reference

to Fig. 8(a), we present the generation of b-queries below:

• Cases I, II and III (Lines 03-04 of Fig. 12). Suppose an

a-query point is (xq, yq) and (xmin, ymax) represents the

bounding rectangle of a cell of these cases. The b-query

point is (max(xq, xmin), min(yq, ymax)).

• Cases IV and V (Lines 05-06 of Fig. 12). The b-query

point is simply (xmin, ymax) of a cell of these cases.

2) Generation of Result Count: estimate count gen-

erates a count from the histogram. Similarly, assume that

the query dot in Fig. 8(a) is an a-query (generated from

estimate intermediate) and the histogram summarizes b-
nodes. We present the generation of the count of b-nodes of

the query a//b, while skipping its pseudo-code:

• Cases I. The count of the result points of a query point

(xq , yq) in the cell is estimated to be the the sum of

967



B1 B2
B
3

B
4

q,x yq

(a) Est. with x-histograms in grid

0
q

(b) Query point generation

Fig. 13. Estimation with x-histograms and query point generation

the count of the bins that contain data points with an x-

coordinate larger than xq and a y-coordinate smaller than

yq. We illustrate this with Fig. 13(a). The estimated count

is 10 (from B2 and B3).

• Case II. The count is estimated to be the sum of the count

of the bins with some data point whose x-coordinate is

larger than xq .

• Case III. This is similar to the above case except that we

check the y-coordinates and yq .

• Case IV. We simply return the count of the cell.

• Case V.I. If the query point is not in the diagonal cell,

we simply return the count of the cell.

• Case V.II. If the query point is in the diagonal cell, we

check the bins with some data point whose x-coordinate

is larger than xq as follows: (i) If the bin’s largest y is

smaller than yq, we simply include the count of the bin.

(ii) If the bin’s smallest y is larger than yq , we skip the

bin. (iii) Otherwise, we evaluate the query with the bin.

Evaluation is invoked because as (xq, yq) approaches the

diagonal line, there are fewer data points in the bottom-

right region, where the error introduced can be relatively

large. Suppose Fig. 13(a) is a diagonal cell. The estimated

count is 5 (from B2) + 4 (from B3) = 9.

estimate count with Qf is similar to estimate count

except that it checks a set of points Cq , which satisfy a

filter q. The bins are included only if they are included by

estimate count and some nodes in Cq are in the bottom-

right region of some nodes of the bins.

3) Generation of Equivalent Query Points: A query point

(xq, yq) in general has many equivalent query points in the two

dimensional space, since a column may be mapped to multiple

positions (at the end of Section VI-A) with equiv. We now

discuss the details of equiv. The equivalent query points are

generated in two steps. First, we determine the set of column

IDs that involve the query point:

C = {c | i ∈ [xq, yq], f
−1(i) = c} (1)

Second, we compute the intervals that can be constructed

by the column IDs:

Q = {(x′, y′) | ∀j ∈ [x′, y′]. ∃j = f(c), c ∈ C}. (2)

To optimize the generation of query points, i.e., Q, we

propose to skip generating query points that have empty

results. The main idea is illustrated with Fig. 13(b). First

we assume that the positions of a column ID are sorted in

ascending order offline. We sort C obtained from Equation (1).

We scan through the positions of C in parallel. When we

obtain a query q0: (x0, y0) that has empty result, we probe

the histogram to obtain the grid that contains the data point

with the next xmin, where ∄x. x0 < x < xmin and (x, y) is a

data point. Finally, we skip all positions of columns in C that

are smaller than xmin.

Compression of mappings between columns and positions.

The mappings f and f−1 between column IDs and posi-

tions can be potentially large. In query point generation, the

mappings are scanned, as just discussed. We compress the

mappings such that the scan can be efficiently supported in

the compressed domain. In essence, instead of storing the

equivalent positions of column IDs, we store the difference

(delta) between each pair of adjacent positions. We replace

repetitive deltas with an ID and their occurrence. For example,

the positions (2,3,4,6,8,10,12,14) are compressed to (2,#1×2

,#2×5), where #1=1 and #2=2. The positions can be trivially

regenerated in a scan through the compressed deltas.

Offline equiv computation. The next optimization on f
and f−1 is to precompute equiv for all data points and use

histograms to summarize the equivalent points, as opposed to

computing equiv on-the-fly. It is possible because f and f−1

depend only on the data graph, not query workloads. In this

case, a node is represented by multiple intervals.

VIII. EXPERIMENTAL EVALUATION

In this section, we present an extensive experimental eval-

uation that verifies the accuracy of our proposed technique

and the effectiveness of proposed optimizations. We performed

an experimental comparison with XSEED [25] on tree data.

Since the implementation of XSKETCH/TREESKETCH [16],

[17] is not supported by recent operating systems, we perform

an indirect comparison with them.

Experimental settings. We ran our experiments on a server

with a Dual 4-core 2.93GHz CPU and 30GB memory running

SOLARIS OS (CENTOS release 5.4). Our implementation

was written in Java JDK 1.6. We implemented equi-depth

histograms for grid cells. The default value of the depth of a

bin is 10% of the points in a grid cell. We tested equi-width

histograms as well but they exhibited a similar performance

to equi-depth histograms in our preliminary experiments.

Benchmark datasets. We used XMARK [18], DBLP [15] and

TREEBANK [11] to obtain a set of large graphs for evaluation.

The scaling factor (s.f.) of XMARK was ranged from 0.4 to

1.0. We set the default s.f. value at 1.0. The DBLP graph

used contains 3.3 million nodes. We note that XSEED supports

TREEBANK by extracting up to 5-percentile vertices and hence

we followed such an extraction. In addition, since XSEED

supports trees only, we ignore the IDREFs, which contributes

to approximately 15% of the edges in XMARK. Before C1P

transformation, the graphs are stored as adjacency matrices,

which store the non-zeros in the matrices. In contrast, after

C1P transformation, we stored the intervals for each row. The

size of the (auxiliary) histograms is linearly proportional to

the number of rows but inversly proportional to the cell size.

The mappings f and f−1 were implemented with B+trees.

The storage statistics of the graphs is summarized in Table II.

968



TABLE I

XMARK CHARACTERISTICS

XMARK s.f. 0.1 0.4 0.7 1.0 DBLP TREEBANK

Avg. # of results 3.1k 14.1k 22.9k 35.4k 338k 3k

TABLE II

STORAGE REPRESENTATION OF THE BENCHMARKED GRAPHS

XMARK DBLP TREEBANK

Adajency matrix (non-zeros) 3.4 × 10
10

9.0 × 10
6

1.2 × 10
7

# of intervals 1.2 × 10
7

3.3 × 10
6

2.4 × 10
6

Auxiliary mappings (entries) 3 × 10
6

6.1 × 10
6

1.3 × 10
7

Definitions of metrics. In our experiments, we used the

error metrics used in [16] and [25]. The definitions of these

metrics can be described as follows. Let n be the number of

positive queries, a be the real result count of a query and e
be the estimation value. The estimation error is defined to

be (
∑n

i=1

|ai−ei|
ei

)/n. Similar to [16], we applied a sanity

bound s to avoid high percentages of low-count queries.

We set s to 10-percentile as in [16]. Two alternative error

definitions, root mean square deviation (RMSE) and normalized

RMSE (NRMSE), were also adopted [25]. RMSE is defined

as
√

(
∑n

i=1
(ei − ai)2)/n and NRMSE is defined as RMSE/ā,

where ā is (
∑n

i=1
ai)/n.

Query workload. We implemented a query generator based

on the description in Polyzotis et al. [17]. However, since

our proposed technique does not involve the synopses of

XSKETCH/TREESKETCH, our query generator generates twig

queries by sampling the data graph, as opposed to the syn-

opses. On the XMARK, DBLP and TREEBANK datasets, we

generated 1,000 positive twig queries, where the query results

are larger than 0. The twig queries have one branch on average.

The length of the main path ranges from 2 to 5. The number

of branches ranges from 1 to 3. This workload is similar to the

CP workload reported in [25]. Some characteristics of query

workloads are shown in Table I.

A. Experiments on overall performance

Scalability tests. The estimation errors of the queries on

various XMARK graphs are shown in Figs. 14(a)-(e). The x-

axis of Figs. 14(a)-(c) is the cell size. From Fig. 14(a), we note

that the estimation error increases as the cell size increases

(from 0% to 0.7%), as fewer details are captured by larger

cells. Our technique is less accurate in DBLP and TREEBANK

but the error is still lower than 1.3% and 6%, respectively.

Fig. 14(b) shows that RMSE of our implementation increases

with the data graph size. However, the normalized RMSE of

our implementation is roughly a constant as the data graph size

increases, shown in Fig. 14(c). This is because the absolute

result counts are larger in XMARK datasets with larger s.f.’s.

Next, unless otherwise specified, we set the cell size to

800 and use XMARK s.f. 1.0, where the runtimes of our

implementation and XSEED’s are both roughly 0.1 seconds.

We ran the query workload with our implementation and

XSEED’s. The results given in the two error metrics are

presented in Figs. 14(d)-(e). Regarding XMARK, our method’s

RMSE and NRMSE are more accurate than XSEED’s by a factor

of 7.1 and 6.9, respectively. On TREEBANK, our method is

roughly 6.8 times more accurate than XSEED, in terms of

both RMSE and NRMSE. XSEED’s evaluation does not finish

on DBLP, which is needed for computing XSEED’s errors. Our

implementation gives a large RMSE on DBLP since the average

number of results of DBLP is relatively large (Table I).

Experiment on estimation time. Figs. 14(f)-(g) show the

estimation time with and without evaluation on diagonal cells.

In any case, the estimation time is less than 0.12 seconds.

On average, the estimation with evaluation on diagonal cells

is (on average) 2.8 times slower than the estimation without

evaluation. However, due to evaluation on diagonal cells, the

estimation error reduces from 5% to 0.3% when the cell size

is 300 (Fig. 14(h)). In Figs. 14(f) and (g), we did not include

the time for equiv as it is the same for both methods.

For example, the time for equiv on XMARK s.f. 1.0 was

approximately 0.01 seconds among various cell sizes.

B. Experiments on optimizations

Optimizations on diagonal cells. In Fig. 14(h), the error

reduction due to evaluation on diagonal cells is large. In

this experiment, we analyze how much evaluation is there

in the overall estimation. We computed the ratio between

the number of points involved in evaluation and those in

estimation. Fig. 14(j) shows the ratio is smaller than 1%. The

reasons are that most of the points involved in estimation are

not in diagonal cells and the evaluation is not performed on

the entire diagonal cell, due to x-histograms.

Experiment on evaluation vs estimation ratio. To support

the argument that the x-histograms in diagonal cells effectively

reduce the amount of evaluation, we tested the ratio between

the number of points involved in evaluation and that in

estimation when the x-histograms in cells are not even used.

The result is shown in Fig. 14(i). Without the x-histograms, the

ratio reaches 16%, when the cell size is 300. In comparison,

Fig. 14(j) shows that the ratio does not reach 1% when x-

histograms in cells are used.

Matrix transformations. We tested the size of the C1P matrix

obtained from the transformation proposed in Section VI-A

with and without the optimizations in Sections VI-B.1-VI-

B.2. With the optimizations, Fig. 14(k) shows that the ratio

of the increase of the matrix size is approximately 4.1 as s.f.

increases. While the size of the matrix increases by a constant

factor, the C1P matrix is much simpler (recall Figs. 6-7).

In contrast, without optimizations, the ratio increases linearly

with the s.f. as shown in Fig. 14(l).

Query point generation. We determined the ratio between

the number of query points in estimation with and without the

query point optimization proposed in Section VII-C.3. The

result is shown in Fig. 14(m). It shows that we reduce the

number of query points generated by a factor over 100. That

is, given a query, there are many equivalent query points that

do not contribute the result counts.

Compression of f and f−1. Next, we tested the compression

performance presented in Section VII-C.3. The size of f and

f−1 is important to estimation time as each generation of

equivalent query points requires a scan on the compressed f

969



 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  100  200  300  400  500  600  700  800

E
s
t.
 e

rr
o
r

Cell size

s.f. 0.4
s.f. 0.7
s.f. 1.0
DBLP

Treebank.05

(a) Estimation error of our method

 0

 100

 200

 300

 400

 500

 600

 0  100  200  300  400  500  600  700  800

R
M

S
E

Cell size

s.f. 0.4
s.f. 0.7
s.f. 1.0

(b) RMSE of our method (XMARK)

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0  100  200  300  400  500  600  700  800

N
R

M
S

E

Cell size

s.f. 0.4
s.f. 0.7
s.f. 1.0

(c) NRMSE of our method (XMARK)

 0

 50

 100

 150

 200

 250

XMark Treebank.05 DBLP

R
M

S
E

DNF

1918XSeed
Ours

(d) RMSE comparison

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

XMark Treebank.05 DBLP

N
R

M
S

E

DNF

XSeed
Ours

(e) NRMSE comparison

0

4

8

12

 0  100  200  300  400  500  600  700  800

E
s
t.
 t
im

e
 (

0
.0

1
 s

e
c
o
n
d
s
)

Cell size

s.f. 1.0
s.f. 0.7
s.f. 0.4

(f) Est. time with eval. on diagonal grid cells

0

4

8

12

 0  100  200  300  400  500  600  700  800

E
s
t.

 t
im

e
 (

0
.0

1
 s

e
c
o

n
d

s
)

Cell size

s.f. 1.0
s.f. 0.7
s.f. 0.4

(g) Est. time w/o eval. on diagonal cells

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0  100  200  300

E
s
t.
 e

rr
o
r

Cell size

with
without

(h) w. vs w/o eval. on diagonal cells

 0

 0.04

 0.08

 0.12

 0.16

 0  100  200  300

C
e
ll 

b
a
s
e
d
 e

v
a
lu

a
ti
o
n
 r

a
ti
o

Cell size

s.f. 0.4
s.f. 0.7
s.f. 1.0

(i) Cell-based eval. to est. ratio

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0  100  200  300

B
in

 b
a
s
e
d
 e

v
a
lu

a
ti
o
n
 r

a
ti
o

Cell size

s.f. 0.4
s.f. 0.7
s.f. 1.0

(j) Bin-based eval. to est. ratio

 0

 2

 4

 6

 8

 10

0.1 0.4 0.7 1.0

N
o

. 
o

f 
p

o
s
it
io

n
s
 p

e
r 

c
o

lu
m

n
 I

D

s.f.

(k) C1P matrix size w. optimization

 0

 2000

 4000

 6000

 8000

 10000

 12000

0.1 0.4 0.7 1.0

N
o

. 
o

f 
p

o
s
it
io

n
s
 p

e
r 

c
o

lu
m

n
 I

D

s.f.

(l) C1P matrix size w/o. optimization

 20

 40

 60

 80

 100

 120

0.1 0.4 0.7 1.0

Q
u

e
ry

 d
o

t 
g

e
n

. 
o

p
t.

 r
a

ti
o

s.f.

(m) Optimization on query dot generation

 0

 1

 2

 3

 4

0.1 0.4 0.7 1.0

C
o

m
p

re
s
s
io

n
 r

a
ti
o

s.f.

(n) Compression ratio of f and f−1

0

0.02

0.04

0.06

0.08

0.10

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

E
s
t.

 e
rr

o
r

Bin depth

s.f. 0.4
s.f. 0.7
s.f. 1.0

(o) Estimation error as a function of ϕ

0

0.04

0.08

0.12

0.16

0.20

0.24

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

N
R

M
S

E

Bin depth

s.f. 0.4
s.f. 0.7
s.f. 1.0

(p) NRMSE as a function of ϕ

0

0.004

0.008

0.012

0.016

0.020

0.024

 0  100  200  300  400  500  600  700  800

E
s
t.

 e
rr

o
r

Cell size

(q) Path queries on XMARK graph

 0.012

 0.016

 0.02

 0  100  200  300  400  500  600  700  800

E
s
t.
 e

rr
o
r

Cell size

s.f. 1.0

(r) Twig queries on XMARK tree

Fig. 14. Performance results on synthetic dataset (XMARK) and real datasets (DBLP and TREEBANK)

970



and f−1. The result is plotted in Fig. 14(n). The figure shows

that the compression ratio is roughly 3.1 for various s.f.’s.

The depth of the bin in x-histograms. In previous experi-

ment, we set the depth to be 10% of the number of dots of a

cell. To show the effect of the depth of x-histograms on the

estimation accuracy, we performed an experiment by varying

the bin’s depth from 10% to 100%. The cell size is 800. The

results are shown in Figs. 14(o)-(p). As expected, when the

depth increases, the estimation error and NRMSE gradually

increase. Due to space constraints, we skip the results on RMSE

as we observed a similar trend.

C. Indirect comparison with XSketch and TreeSketch

XSKETCH/TREESKETCH [16], [17] has been a closely

related work although it does not support the problem studied

in this paper. Their implementation was developed on a legacy

gcc, which is no longer supported. Therefore, we could only

compare the numbers reported from [16], [17]. We compared

the estimation error of XSKETCH/TREESKETCH and ours on

XMARK dataset s.f. 1.0.

As discussed, XSKETCH supports path queries only. XS-

KETCH generates queries based on the popularity of tags in

their synopses, which is absent in our method. Thus, we

generated path queries based on the popularity of tags in data

graphs. As shown in Fig. 14(q), our estimation error has not

reached 2% when the cell size is smaller than 800. When the

cell size is smaller than 200, our estimation error is controlled

under 1%. In comparison, the estimation error of XSKETCH

is well-controlled under 10%.

Next, we compared the results reported from

TREESKETCH [17]. TREESKETCH estimates the selectivity of

twig queries but on acyclic graphs only. As in TREESKETCH,

we did not consider IDREF in XMARK. The twig queries

were generated as described in the beginning of this section.

Fig. 14(r) shows that our technique controls the estimation

error around 1.6%. In comparison, TREESKETCH controls the

estimation errors of twig queries on XMARK tree under 5%.

IX. CONCLUSION

In this paper, we propose a histogram-based selectivity

estimation of twig queries on cyclic graphs. To the best of

our knowledge, previous works only focus on either twig

queries or cyclic graphs but not both. Specifically, we propose

a new matrix representation of cyclic graphs by our prime

labeling scheme. Next, we derive a heuristic transformation

of the matrix to a C1P matrix for summarization. As a result,

a data node is represented by an interval and subsequently

a two-dimensional data point. A query is then represented

by multiple points in runtime. Two-dimensional histograms

are used to summarize data points and auxiliary structures

are introduced to tackle skewed data points. We present a

selectivity estimation algorithm on the histograms. Our experi-

ments with XMARK and DBLP show that the estimation error

is well-controlled under 1.3%, which is more accurate than

XSKETCH/TREESKETCH and XSEED. On TREEBANK, we

produce RMSE and NRMSE 6.8 times smaller than XSEED’s.

As for future works, (i) we are incorporating this technique

with queries with filters on data values and queries with

negations; and (ii) we are investigating graph partitioning

to optimize the computation of the binary matrix, which is

currently maintained in the main memory.

Acknowledgements. We are grateful to Neoklis Polyzotis for

providing the implementation of [16], [17] and Ning Zhang for

providing the implementation of [25]. This is supported by

GRF/HKBU210409, FRG2/08-09/091 and FRG/07-08/I-59.

REFERENCES

[1] A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton. Estimating the
selectivity of xml path expressions for internet scale applications. In
VLDB, pages 591–600, 2001.

[2] R. Agrawal, A. Borgida, and H. V. Jagadish. Efficient management of
transitive relationships in large data and knowledge bases. In SIGMOD,
pages 253–262, 1989.

[3] V. Batagelj and A. Mrvar. Pajek datasets. http://vlado.fmf.uni-
lj.si/pub/networks/data/.

[4] Z. Chen, H. V. Jagadish, F. Korn, N. Koudas, S. Muthukrishnan, R. Ng,
and D. Srivastava. Counting twig matches in a tree. In ICDE, pages
595–604, 2001.

[5] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick. Reachability and
distance queries via 2-hop labels. SIAM J. Comput., 32(5):1338–1355,
2003.

[6] D. K. Fisher and S. Maneth. Structural selectivity estimation for xml
documents. In ICDE, pages 626–635, 2007.

[7] J. Freire, J. R. Haritsa, M. Ramanath, P. Roy, and J. Siméon. Statix:
making xml count. In SIGMOD, pages 181–191, 2002.

[8] R. Goldman and J. Widom. Approximate dataguides. In In Proceedings

of the Workshop on Query Processing for Semistructured Data and Non-

Standard Data Formats, volume 97, pages 436–445, 1999.
[9] W.-L. Hsu. A simple test for the consecutive ones property. J.

Algorithms, 43(1):1–16, 2002.
[10] R. Kaushik, P. Shenoy, P. Bohannon, and E. Gudes. Exploiting local

similarity for indexing paths in graph-structured data. In ICDE, page
129, 2002.

[11] Language and Information in Computation at Penn. Penn treebank
project. Available at http://www.cis.upenn.edu/ treebank/.

[12] L. Lim, M. Wang, S. Padmanabhan, J. S. Vitter, and R. Parr. Xpath-
learner: an on-line self-tuning markov histogram for xml path selectivity
estimation. In VLDB, pages 442–453, 2002.

[13] Z. Lin, B. He, and B. Choi. A quantitative summary of xml structures.
In ER, pages 228–240, 2006.

[14] J. McHugh and J. Widom. Query optimization for xml. In VLDB, pages
315–326, 1999.

[15] G. Miklau. UW XML repository. Available at
http://www.cs.washington.edu/research/xmldatasets/.

[16] N. Polyzotis and M. Garofalakis. Xsketch synopses for xml data graphs.
ACM Trans. Database Syst., 31(3):1014–1063, 2006.

[17] N. Polyzotis, M. Garofalakis, and Y. Ioannidis. Approximate xml query
answers. In SIGMOD, pages 263–274, 2004.

[18] A. Schmidt, F. Waas, M. Kersten, M. J. Carey I. Manolescu, and
R. Busse. Xmark: A benchmark for xml data management. In VLDB,
pages 974–985, 2002.

[19] J. Tan and L. Zhang. The consecutive ones submatrix problem for sparse
matrices. Algorithmica, 48(3):287–299, 2007.

[20] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal

on Computing, 1(2):146–160, 1972.
[21] W. Wang, H. Jiang, H. Lu, and J. X. Yu. Bloom histogram: Path

selectivity estimation for xml data with updates. In VLDB, pages 240–
251, 2004.

[22] G. Wu, K. Zhang, C. Liu, and J.-Z. Li. Adapting prime number labeling
scheme for directed acyclic graphs. In DASFAA, pages 787–796, 2006.

[23] X. Wu, M. L. Lee, and W. Hsu. A prime number labeling scheme for
dynamic ordered xml trees. In ICDE, page 66, 2004.

[24] Y. Wu, J. M. Patel, and H. V. Jagadish. Using histograms to estimate
answer sizes for xml queries. Inf. Syst., 28(1-2):33–59, 2003.

[25] N. Zhang, M. Ozsu, A. Aboulnaga, and I. Ilyas. Xseed: Accurate and
fast cardinality estimation for xpath queries. In ICDE, pages 168–197,
2006.

971


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Byron Choi
	Also by Jianliang Xu
	----------

