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Abstract—Query processing that preserves both the data pri-
vacy of the owner and the query privacy of the client is a
new research problem. It shows increasing importance as cloud
computing drives more businesses to outsource their data and
querying services. However, most existing studies, including those
on data outsourcing, address the data privacy and query privacy
separately and cannot be applied to this problem. In this paper,
we propose a holistic and efficient solution that comprises a secure
traversal framework and an encryption scheme based on privacy
homomorphism. The framework is scalable to large datasets by
leveraging an index-based approach. Based on this framework,
we devise secure protocols for processing typical queries such
as k-nearest-neighbor queries (kNN) on R-tree index. Moreover,
several optimization techniques are presented to improve the
efficiency of the query processing protocols. Our solution is
verified by both theoretical analysis and performance study.

I. INTRODUCTION

Cloud computing has recently emerged as a new platform

for deploying, managing, and provisioning large-scale services

through an Internet-based infrastructure. Successful examples

include Amazon EC2, Google App Engine, and Microsoft

Azure. As a result, hosting databases in the cloud has become a

promising solution for Database-as-a-Service (DaaS) and Web

2.0 applications.

In the cloud computing model, the data owner outsources

both the data and querying services to the cloud. The data are

private assets of the data owner and should be protected against

the cloud and querying client; on the other hand, the query

might disclose sensitive information of the client and should be

protected against the cloud and data owner. Therefore, a vital

concern in cloud computing is to protect both data privacy and

query privacy among the data owner, the client, and the cloud.

The social networking service is one of the sectors that witness

such rising concerns. For example, in Fig. 1 user Cindy wants

to search an online dating site for friends who share with

her similar backgrounds (e.g., age, education, home address).

While the site or the data cloud should not disclose to Cindy

personal details of any user, especially those sensitive ones

(e.g. home address), Cindy should not disclose the query that

involves her own details to the site or the cloud, either.

More critical examples exist in business sectors, where

queries may reveal confidential business intelligence. For

example, a retail business plans to open a branch in a district.

To calculate the target customer base, it needs to query the

demographic data of that district, which the data owner has

outsourced to a data cloud. While personal details in the

Name Sex Age Education Address

Tim Bridier M 25 College Ellis Ave, Chicago, US

VivianTeper F 26 University Kings Rd, London, UK

Jessica Fox F 18 High School 7 Vox St, L.A., US

Simon West M 35 Graduate  82 5th Ave, N.Y.C, US

... ... ... .... ...

Cindy asks: who matches my profile
"21, College, South Ellis, Chicago, IL" ?

Cloud answers: Tim Bridier
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Fig. 1. Mutual Privacy Protection in Online Friend Matching

demographic data should not be disclosed to the outsourcing

cloud or the business, the district name in that query should

not be disclosed to the cloud or data owner, either.

It is also noted that the cloud computing model worsens

the consequence of privacy breaches in the above scenarios

as a single cloud may host querying services for many data

owners. For example, two queries from the same user, one

on local clinic directory and another on anti-diabetic drugs,

together give a higher confidence that the user is probably

suffering from diabetes. All the above concerns call for a query

processing model that preserves both data privacy and query

privacy among the data owner, the client, and the cloud. The

data owner should protect its data privacy, and does not reveal

any information beyond what the query result can imply. On

the other hand, the client should protect its query privacy so

that the data owner and the cloud know nothing about the

query, and is therefore unable to infer any information about

the client.

Unfortunately, existing privacy-preserving query processing

solutions are not sufficient to solve this new problem arising in

the cloud model. Most research work in the literature addresses

data privacy or query privacy separately. For example, general-

ization techniques have been proposed to protect data privacy

by hiding quasi-identifier attributes and avoiding the disclosure

of sensitive information [3], [29]. Similar techniques are

proposed for query privacy on both relational data and spatial

data [16], [12], [13], [18]. Only very few, such as the Casper∗

framework [5], consider data and query privacy as a whole.

Furthermore, generalization-based solutions like the Casper∗

still disclose the data or query in a coarser and imprecise form.

Not much research work addresses the unconditional privacy

required for this problem. Although some encryption schemes
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are proposed to protect the data hosted on the outsourcing

server [1], [27], [20], [31], [28], they cannot be adopted

in this problem for several reasons. First, accurate query

processing on encrypted data is difficult, if not impossible

at all. Most existing encryption schemes only support some

specific queries. For example, space transformation (e.g., a

space filling curve) used in [20] only supports approximate

kNN queries as it cannot preserve the accurate distances in the

original space. Second, even though suitable encryptions are

found for these queries, they become flawed when applied to

our problem, as these encryptions are not designed for mutual

privacy protection in the first place. In particular, to evaluate

the query on the encrypted data, the client must encrypt the

query by the same scheme and send it to the outsourcing

server, who may then forward it to the data owner, where

the query can be decrypted by her encryption parameters.

Third, some encryptions or transformations are shown to be

vulnerable to certain security attacks. For example, distance-

preserving space transformations are vulnerable to principal

component analysis [22], [25], [28].

In spite of the insufficiency of these prior studies for

our problem, they show us that a secure framework and an

alternate encryption scheme are both indispensable. In this

paper, we propose a holistic and efficient solution that is

based on Privacy Homomorphism (PH). PHs are encryption

transformations which map a set of operations on cleartext

to another set of operations on ciphertext. In essence, PH

enables complex computations (such as distances) based solely

on ciphertext, without decryption. We integrate a provably

secure PH seamlessly with a generic index structure to develop

a novel query processing framework. It is efficient and can

be applied to any multi-level tree index. We address several

challenges in this framework. First, an index consists of

multiple nodes, and query processing on the index involves

traversing these nodes. The cloud or data owner should not

be able to trace the access pattern and hence get any clue

of the query. We propose a client-lead processing paradigm

that eliminates the disclosure of the query to any other party.

Second, to evaluate various types of complex queries, such as

kNN and other distance-based queries, a comprehensive set

of client-cloud protocols must be devised to work together

with a PH that supports most arithmetic operations. Third, we

prove the security and analyze the complexity of the proposed

algorithms and protocols. In particular, we present several

optimization techniques to improve the protocol efficiency

and also show their privacy implications. To summarize, our

contributions in this paper are as follows:

• To the best of our knowledge, this is the first work that

is dedicated to mutual privacy protection for complex

query processing over large-scale, indexed data in a cloud

environment.

• We present a general index traversal framework that

accommodates any multi-level index. The framework can

resist the index trace attempt of the cloud during query

processing. Based on this framework, we present a set of

protocols to process typical distance-based queries.

• We thoroughly analyze the security and complexity of

the proposed framework and protocols. In particular, we

present several optimization techniques to improve the

protocol efficiency.

• An extensive set of experiments are conducted to eval-

uate the actual performance of our basic and optimized

techniques.

The rest of the paper is organized as follows. Section II

reviews existing work on privacy-preserving query processing

on outsourced data. Section III formulates the problem and

Section IV introduces ASM-PH, the privacy homomorphism

used in this paper. Section V overviews the secure processing

framework, followed by detailed discussions on the protocols

in Sections VI and VII, with a focus on distance-based queries.

Section VIII presents three optimization techniques to improve

the protocol efficiency. Section IX analyzes the security and

possible threats of our approach, followed by the performance

evaluation in Section X. Section XI concludes this paper with

some future research directions.

II. RELATED WORK

In this section, we review existing privacy-preserving data

outsourcing techniques for query processing purposes. The

common model is that an untrusted outsourcing server stores

and manages the data on behalf of the data owner, who then

invites trusted users to query the data. The first category of

techniques is based on the generalization principle to minimize

the disclosure of precise information. For relational data,

generalization can protect quasi-identifier attributes and avoid

the disclosure of sensitive information [3], [29]. For spatial

data and query, a similar technique called location cloaking

has been proposed to generalize (i.e., blur) the user or object

locations [16], [12], [13], [18]. However, these techniques still

disclose the data or query in a coarser and imprecise form.

The second category encrypts or transforms both the query

and the data into another space for evaluation, using hash-

ing or space filling curves. Agrawal et al. proposed an

order-preserving encryption scheme (OPES) for 1D numeric

values [1]. SQL statements such as MAX, MIN, COUNT,

GROUP BY, and ORDER BY can then be rewritten and

processed over the encrypted data. However, OPES does not

support SUM or AVG statements, in which the original data

must be decrypted first. Yiu et al. extended this transformation

technique to 2D spatial data points and proposed hierarchical

space-division (HSD) [31]. To protect mutual privacy as in

this paper, Khoshgozaran and Shahabi used space filling

curves as the transformations for nearest neighbor search [20].

However, since distance is not completely preserved in the

transformed space, the results are only approximate kNNs.

Another disadvantage of transformation techniques is the po-

tential disclosure risks. As they are almost distance-preserving,

adversaries may utilize this knowledge and recover the original

data by linear algebra or principal component analysis [22],

[25]. To resolve this issue, Wong et al. recently proposed a

new encryption scheme that only preserves the scalar product

value of two points, which is sufficient to answer accurate
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kNN queries [28].

Our work falls into this category but distinguishes itself

from the others as being the first work that is dedicated to

mutual privacy protection. We propose a secure, encryption-

integrated framework that is suitable for processing complex

queries over large-scale, indexed data. It is noteworthy that

privacy-preserving search on tree-structured data has been

studied in some existing studies [6], [27], [2]; however, these

works either consider one-way privacy or cannot provide

unconditional privacy guarantee.

The third category considers a distributed environment

where the data are partitioned and outsourced to a set

of independent and non-colluding outsourcing servers. The

privacy-preserving query processing requires a distributed and

secure protocol to evaluate the result without disclosing the

data in each outsourcing server. The security foundation of

such protocols originates from secure multiparty computa-

tion (SMC), a cryptography problem that computes a secure

function from multiple participants in a distributed network.

Privacy-preserving nearest neighbor queries have been studied

in this context for data mining. Shaneck et al. presented a

solution [24] for point data on two parties. Qi and Atal-

lah improved this solution by applying a blind-and-permute

protocol, together with a secure selection and a multi-step

kNN protocol [23]. For approximate aggregation queries, Li

et al. proposed randomized protocols based on probabilis-

tic computations to minimize the data disclosure [30]. For

vertically-partitioned data, privacy-preserving top-k, kNN and

join queries are studied in [26], [19], [21]. More recently,

Ghinita et al. proposed a private-information-retrieval (PIR)

framework to evaluate kNN queries in location-based ser-

vices [14]. Thanks to oblivious transfer, a common primitive

in SMC, the user can retrieve the results without being

pinpointed. However, solutions in the third category typically

suffer from heavy CPU, communication and storage overhead,

as most SMC-based protocols do. As such, they cannot scale

well to large-scale databases.

III. PROBLEM FORMULATION

We consider a cloud computing model of three parties: the

data owner, the querying client, and the cloud service provider

(or simply the cloud). The data owner owns a voluminous

dataset D, and outsources its query processing service to the

cloud. The dataset contains some proprietary and sensitive

attributes θ (e.g., salary, date of birth, social security number)

that need to be protected from the cloud and the querying

client. On the other hand, the client queries on the same

sensitive attributes θ to retrieve the identifiers of qualified

objects in D. After the query processing, these identifiers

can be used to retrieve non-sensitive contents (e.g., name,

sexuality) of these objects. The query q needs to be protected

against both the data owner and the cloud. To summarize,

the problem in this paper is to process queries on sensitive

attributes θ while protecting both data and query values on θ.

There are several remarks about the problem definition.

First, without loss of generality, in this paper we assume θ

e1 p1 e2 p2 e3 p3

e10p10 e11 p11 e12p12 e13p13 e14 p14 e15p15 e16p16 e17 p17 e18 p18

id

}entry

root node

leaf node

e4 p4 e5 p5 e6 p6

p1 p2 p3

...

...
id id id id id id id id

Fig. 2. Illustration of Multi-Level Index

are a set of attributes whose values are indexed by a multi-

dimensional hierarchy. For ease of presentation, we assume it

is an R-tree as illustrated in Fig. 2. The index has a hierarchy

of nodes, each of which is composed of many entries. An

entry corresponds to a child node, and it consists of a pointer p
pointing to the child node together with a minimum bounding

box (MBB) e of all data objects that belong to the child node.

An entry in a leaf node has its p store the identifier of a

data object and its e store the values of sensitive attributes θ.

Second, this paper focuses on queries that involve a complex

value function between the query q and the attribute values in

θ. Typical example of function is the Euclidean distance. In the

rest of this paper, we use two typical distance-based queries

as illustration, namely, the kNN query and distance range

query. The latter returns result objects whose distances from

the query are within a specified threshold. Third, while the

cloud and data owner should know absolutely nothing about

the query, the client can always know about the data values

on θ that are implied in the query. As such, our problem is to

prevent the client from knowing beyond what the query tells.

A malicious client may attempt to narrow down or pinpoint the

θ values of returned objects by exhaustively sending distance-

range queries with extremely small thresholds. Depending on

the business model, this threat can be prevented by access

control, query parameters screening, or imposing penalties or

charges on heavy users; however, this topic is beyond the scope

of this paper.

A. Adversary Model

In this paper, we assume the three parties follow a semi-

honest model. That is, they follow the protocol properly except

that they may record all intermediate results and try everything

they can to deduce about the other parties [8], [15]. The cloud

and data owner may collude to share their information about

the client, as they normally do in practice. However, the client

does not collude with the cloud or data owner, as they have

no common interests.

The adversary may represent the client, data owner, or the

cloud. The client adversary attempts to obtain the values of

proprietary attributes θ from the owner during query process-

ing. The data owner adversary attempts to obtain the query

value on θ from the client during query processing. The cloud

adversary attempts to obtain both the values of proprietary

attributes θ from the owner during data outsourcing and the

client’s query value on θ during query processing. We assume

that an adversary knows all the protocols and algorithms

except for the secret keys of other parties. However, he/she
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does not have a-priori knowledge of the data or query, in

the form of sample values or distributions. Furthermore, the

capability of an adversary is bounded by both computational

power and storage space.

IV. PRELIMINARY

Before we present the secure processing framework, we in-

troduce privacy homomorphisms (PH), the internal encryption

scheme. PH are encryption transformations which map a set of

operations on cleartext to another set of operations on cipher-

text. Formally, they are encryption functions Ek : T ′ −→ T
that allow a set of operations F on encrypted data without

knowledge of the decryption function Dk. The following is a

simple illustration.

Let p and q be two large and secret primes. m = pq is

public. The cleartext set T ′ = Zm = {0, 1, ...,m − 1} and

the set of cleartext operations F ′ = {+m,−m,×m}, which

are addition, subtraction and multiplication modulo m. The

ciphertext set T = Zp × Zq. The set of ciphertext operations

F are the same as in F ′ except that they are componentwise.

Define the encryption key k = (p, q) and the encryption

Ek(a) = [a mod p, a mod q]. The decryption is by the

Chinese remainder theorem, which says for k positive integers

n1, ..., nk that are pairwise coprime, there exists a unique

solution x in ZN (N = n1n2...nk) that satisfies: x ≡ ai
mod ni, ∀1 ≤ i ≤ k. Furthermore, x can be found in polyno-

mial time by applying the extended Euclidean algorithm.

Obviously, this encryption is privacy homomorphism under

the operations defined by F ′ and F , because m = pq. How-

ever, this encryption suffers from known-plaintext attacks [4],

which means p and q could be found if a pair of cleartext and

ciphertext is known to an adversary.

A. A Provably Secure Privacy Homomorphism

In [7], Domingo-Ferrer enhanced the above simple PH and

proposed a provably secure privacy homomorphism under the

same set of operations, i.e., modular addition, subtraction

and multiplication. We name it ASM-PH after its supported

operations. It works as follows. The public parameters are a

positive integer t > 2 and a large integer m. t controls how

many components a cleartext is split into (t = 2 in the above

PH). m should have many small divisors (compared to t).
Further, many integers smaller than m should be invertible

modulo m. That is, ∃r ∈ Zm such that there is r−1 and

r × r−1 ≡ 1 mod m. The private parameters are such an r
and a divisor m′ > 1 of m. Thus, the secret key is k = (r,m′).

The set of cleartext is T ′ = Zm′ . The set of ciphertext is

a t-tuple, i.e., T = (Zm)t. The set F ′ of cleartext operations

is formed by addition, subtraction and multiplication in T ′.

Similar to the simple PH, the set F of ciphertext operations

are the corresponding componentwise operations in T . Finally,

the encryption and decryption of this PH can be described as

follows.

• Encryption. Randomly split a cleartext a ∈ Zm′ into

secret a1, ..., at such that a =
∑t

j=1
aj mod m′, where

aj ∈ Zm. Then the ciphertext of a is:

Ek(a) = (a1r mod m, a2r
2 mod m, ..., atr

t mod m)

• Decryption. Obtain r−1. Compute the scalar product of

the j-th component by r−j mod m to get aj mod m.

Then compute
∑t

j=1
aj mod m′ to get cleartext a.

The set F ′ of ciphertext operations consists of:

• Addition and Subtraction. They are done component-

wise, i.e., between terms with the same r degree.

• Multiplication. All terms are cross-multiplied in Zm,

which means t1-th degree term by a t2-th degree term

yields a t1+ t2-th degree term. Terms that have the same

degree are added up.

While ASM-PH can perform addition, subtraction and

multiplication directly on the ciphertexts, these operations

still cost considerable computations. Let η+ denote the cost

of a modular sum and η× denote the cost of a modular

multiplication.1 Then the costs of these three operations are

tη+, tη+, and t2η× + (t2 − t)η+, respectively. It is also

noteworthy that the multiplication will double the size of the

ciphertext from t components to 2t components, with the first

component being zero.

As for the computation cost of encryption, it is tη× as each

component requires a modular multiplication with rj .2 The

cost of decryption is similar, except that all components are

summed up in the end. As such, the cost is tη× + (t− 1)η+.

It is noteworthy that the encryption will increases the size

of the cleartext from 1 component to t components. Since

each component is a positive integer in Zm, the size of the

ciphertext is thus t · l(m), where l(m) denotes the number of

bits in m.

In practice, the cost of modular addition is dominated by

that of modular multiplication [9] and thus can be omitted

when the latter presents. Modular multiplication, especially for

large modulus, also becomes extremely efficient (in the mag-

nitude of 10−5 second) since the introduction of Montgomery

Reduction [11].

ASM-PH is shown to be secure against known-plaintext

attacks. Analytically, the size of the subset of keys that

are consistent with n known cleartext-ciphertext pairs grows

exponentially with s−n, where s = logm′ m. This means the

genuine key could be from an arbitrarily large key set. More

security aspect of ASM-PH is analyzed in Section IX.

V. OVERVIEW OF SECURE QUERY PROCESSING ON

R-TREE INDEX

In essence, processing distance-based queries over a multi-

dimensional index can be regarded as a traversal on the tree

nodes. More specifically, it can be separated into two alternate

procedures: node traversal and distance access. The distance

access determines the next node to traverse based on the

distances computed from the current node and query point. To

preserve query and data privacy, both procedures must remain

secure in the outsoucing model of three parties. That is, during

1In a more accurate sense, the computational cost of any modular operation
depends on the modulus. However, we omit this discrepancy as a unique
modulus m or m′ is chosen for encryption or decryption throughout the
ASM-PH.

2Since r is part of the encryption key and thus known in advance, all rj

mod m can be precomputed.
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query processing neither the data owner nor the cloud can

identify the traversed nodes or obtain any information that

can pinpoint the query point (such as the exact distances to

the query point). Meanwhile, the client should have no access

to the actual node contents during distance access and node

traversal.

In this section, we present the overview of a secure query

processing framework that can achieve these requirements.

Figure 3 shows the framework overview. The key idea is

to let the client lead in the distance access and keep track

of the traversal path, i.e., the query processing state, so that

neither the data owner nor the cloud knows the exact node

the client is accessing, let alone the query point. On the

other hand, to protect data privacy, the client has only access

to an encrypted version of the index, and must proceed the

query processing together with the cloud who can decrypt the

distances it computes locally. As such, the distance access is

a joint process of the client and data cloud, in which neither

party has access to the actual distances.

The detailed process flow of this framework is as follows.

During initialization (step 0), the data owner sends to the

client a shadow index — an encrypted version of the index

I (denoted by E(I)). Specifically, in each index node i, the

key range of each entry (e.g., e1, e2, e3) is encrypted by

encryption scheme E(·), while the pointers (e.g., p1, p2, p3)

are not encrypted. In other words, the shadow index has

the same topology as the original index, but all the key

values are encrypted. The shadow index is then stored at the

client side for future access. Meanwhile, the data owner sends

the decryption scheme E−1(·) to the data cloud for future

distance decryption. It is worth noting that the data owner only

involves in this initialization step and she can further reduce its

involvement by delegating the shipping task of shadow index

to the cloud. In this case, the shadow index kept at the cloud

must be further encrypted by the owner’s privacy key through

any public-key cryptography. Then during initialization, she

only needs to send her public key to the client, who then

retrieves and decrypts the shadow index from the cloud.

Next, during the traversal, each time the client is to access

an index node i, it retrieves the shadow node E(i) locally

and computes the local distances between the entries in E(i)
and E(q) (step À). These distances are then sent to the data

cloud, who decrypts and recodes them for the client (step Á)

for the client. The recoding ensures the client only receives

an encrypted version of the actual distances that are only

sufficient for the query processing. On the other hand, to

prevent the cloud from accessing the actual distances after

decryption, the client needs to scramble the local distances

before sending them to the cloud. After the distance access, if

the node is a leaf node, the client will update the query result C.

The client then finds the next node to traverse (step Â), which

will go through the same steps ÀÁÂ. It is noteworthy that

step Â is the only step that depends on the query type, based

on which the decision will be made to find the next node to

traverse. Alg. 1 shows the complete pseudo-code of this secure

query processing on a multi-level index. The traversal starts

Cloud

Query Client
distance recoding

next i

2

3
0

e1 p1 e2 p2 e3 p3

E(e1) p1 E(e2) p2 E(e3) p3

Data Owner

0

send E-1(.)
0 send E(I)



seeds initializationlocal distance

1

Index I

i

Shadow Index

E(i)

Fig. 3. Privacy-Preserving Query Processing Framework

from the root node, and the node access process repeats until

the query is completed.

Algorithm 1 Privacy-Preserving Processing Framework for

Distance-based Queries

Input: q: the query at the client
I: the index at the data owner
E(·): the encryption known to the data owner and cloud

Output: C: the query result
Procedure:

1: data owner sends shadow index E(I) to the client;
2: data owner sends the decryption E−1(·) to the cloud;
3: client initializes a set of seeds S with cloud;
4: client initializes the root of E(I) as i, the next node to access;
5: while q is not completed do
6: client retrieves shadow index node E(i), computes and scrambles the

local distances from E(q); // step À

7: server receives the scrambled local distances, decrypts and recodes
them; // step Á

8: client updates i and C according to the recoded distances; // step Â

A. Encryption Schemes

The framework above requires the actual distances between

the original node i and any query point q can be restored from

local distances — the distances between the encrypted version

of the node E(i) and E(q). This calls for the encryption

scheme E(·) a homomorphic one so that the distances in

the encrypted space equal to the encrypted distances in the

original space. That is, dist(E(i), E(q)) = E(dist(i, q)).
Without loss of generality, we assume in this paper that the

distance metric is Euclidean distance: given two d-dimensional

points −→x and −→y , the distance is the sum of square distance in

each dimension, i.e., dist2(−→x ,−→y ) =
∑d

i=1
(xi − yi)

2. Since

the Euclidean distance only involves addition, subtraction and

multiplication, an arithmetic homomorphic encryption on these

three operations, like the ASM-PH introduced in Section IV,

is sufficient for E(·).
However, several issues must be solved before ASM-PH

can be applied in this framework. The first is the domain

of the cleartext. In ASM-PH, the set of cleartext is Zm′ =
{0, 1, ...,m′ − 1}. As such, the original space must be dis-

cretized into this integer domain and this process could lose

precision. Second, the operations defined in ASM-PH are

modular operations while the distance operation is not. To

ensure the arithmetic addition, subtraction and multiplication

do not overflow in ASM-PH, we need to restrict its cleartext

domain and revise it to allow negative values. The new domain
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is denoted as Zm′ and is formally defined as below:

1) Zm′ = {−⌈m′/2⌉+ 1, ..., 0, ..., ⌊m′/2⌋}.

2) m′ must be sufficiently large, in particular, m′ >
∑d

i=1
(max xi −min xi)

2, where max xi and minxi are

the maximum and minimum values in the i-th dimension.

The last issue is the encryption of the query point q. It

appears to be a hard problem if E(·) is a general encryption

scheme: the client owns the query point but has no access

to the encryption key; on the other hand, the data cloud has

the encryption key but has no access to the query point. Fortu-

nately, ASM-PH enables us a convenient solution to this issue.

By integer decomposition algorithms (a classic one based on

the extended Euclidean algorithm was proposed by Gallant

et al. [10]), the query q can be decomposed into an integer

form q = q1 + q2λ mod m. By choosing a set of cleartexts

including q1, q2 and λ as “seeds” and sending them to the

cloud for encryption, the client can compute the encrypted

value of q by E(q) = E(q1)+E(q2)E(λ) mod m. In addition

to obtaining E(q), as will be discussed in Section VI-C, these

seeds will also be used for the scrambling process.

B. Overhead and Challenges

The framework imposes computational and communication

overhead on top of the conventional query processing. As

for the computational overhead, in each node traversal, there

is a local distance computation on the client side followed

by a decryption and recoding on the server side. As for the

communication overhead, in each node traversal, both sides

send and receive a set of distances for the node entries.

There are several challenges regarding security and ef-

ficiency in this framework that will be addressed in the

following sections:

1) The core of this framework is distance access. It com-

prises local distance computation, decryption and recod-

ing, and client scrambling, all of which will be presented

in Section VI.

2) Since each node traversal and distance access incur both

computational and communication overhead, optimiza-

tion techniques will be designed in Section VIII to prune

unnecessary distance computation and node traversal.

3) Regarding the security, we will prove in Section IX that

this framework preserves both data privacy and query pri-

vacy, based on the security of ASM-PH. Nonetheless, we

admit certain amount of privacy loss in this framework,

such as the disclosure of index topology to the client.

VI. DISTANCE ACCESS OVER R-TREE INDEX

In this section, we study the problem of distance access

on R-tree indexed data. Specifically, given the query point q
and an encrypted index node (E(e1), E(e2), ..., E(en)) at the

client, and the decryption E−1(·) at the data cloud, we study

how to find for the client the index entry (or entries) p to

traverse next for query q without the cloud knowing either

q or p. The challenge arises from several aspects. First, the

client only holds an encrypted version of the node, whose

decryption is only known to the cloud. This creates barriers

for both parties to compute the distances between q and node

q l u

ql u

ql u

(q < l < u)

(l < q < u)

(l < u < q)

Fig. 4. Illustration of Minimum Distance

entries. Second, to decide the next node to traverse, the client

should have access to the distances computed. However, the

disclosure of such distances to either party may compromise

the data or query privacy. As such, a minimum disclose of the

distance information should be designed that is only sufficient

for the client to proceed with the index traversal. This process

is through distance recoding at the cloud. At the client side,

the local distances are scrambled to prevent the cloud from

accessing the actual distances after decryption.

In the rest of this section, we start with local distance

computation, and then present the distance recoding scheme

and scrambling process, and finally summarize the overall

distance access protocol.

A. Local Distance Computation of Minimum Square Distance

According to Euclidean distance, given two d-dimensional

points −→x and −→y , the square distance dist2(−→x ,−→y ) is
∑d

i=1
(xi − yi)

2. Distance-based queries on indexes usually

involve computing the minimum distance between the query

point −→q and an index entry [
−→
l ,−→u ], where

−→
l are the lower

bounds and −→u are the upper bounds in all dimensions. In each

dimension, the minimum distance between value q and range

[l, u] is defined in Eqn. 1 (see Fig. 4). More specifically, if

q > u, the distance is u − q; if q < l, the distance is l − q;

otherwise the distance is 0.

2 ·min dist(q, [l, u]) = |u− q|+ |l − q| − (u− l) =

sign(u− q) ∗ (u − q) + sign(l− q) ∗ (l − q)− (u− l) (1)

Here sign denotes the sign function. By applying the encryp-

tion scheme E(·) on both sides of the equation and using the

property of ASM-PH, we have

E(2 ·min dist(q, [l, u])) = sign(u− q) ∗ (E(u)− E(q))

+ sign(l− q) ∗ (E(l)− E(q)) − (E(u)− E(l)) (2)

It is noteworthy that the equation above treats sign(u − q)
and sign(l − q) as constants of −1 or 1. While all other

terms E(q), E(u), E(l) are available at the client, these two

constants need to be determined by the data cloud. As such, we

introduce a two-phase distance computation method in which

the first phase determines the signs of u − x and l − x and

the second phase computes the minimum distance according

to Eqn. 1. Specifically, in the first phase, the client computes

E(u) − E(q) = E(u − q) and E(l) − E(q) = E(l − q) and

sends both to the cloud for decryption. But in order to hide

u − q and l − q from both sides, the client need to scramble

these values before sending them to the cloud. The general

scrambling process will be discussed in Section VI-C. The

cloud, on the other hand, only sends back the sign results. In

the second phase, after restoring sign(u− q) and sign(l− q),
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the client computes the E(2·min dist) as in Eqn. 2. The local

distance between E(−→q ) and an entry E([
−→
l ,−→u ]), denoted by

local dist(E(q), E([
−→
l ,−→u ])) is simply the sum of the square

of the minimum distance over all dimensions (see Eqn. 3).

Note that to align with Eqn. 2, we leave the constant factor 4
inside the definition.

local dist(E(q), E([
−→
l ,−→u ])) = E(4·min dist2(−→q , [

−→
l ,−→u ]))

=

d
∑

i=1

E2(2 ·min dist(qi, [li, ui])) (3)

It is noteworthy that rather than iterating the two phases for

each dimension, all dimensions can proceed simultaneously

in each phase, as dimensions are independent of each other.

For each dimension, the client computational costs in each

phase are 2dtη+ and 5dtη+, respectively. These costs are

dominated by the self-multiplication in Eqn. 3. So the total

client computation is approximately dt2η× plus the scrambling

cost. On the other hand, the cloud computational cost in

each phase is 4dtη× and 2tη×, respectively.3 So the cloud

computation is approximately(4d + 2)tη× plus the recoding

cost. As for the bandwidth, the client sends 4dt and 2t
components in both phases, so the client bandwidth cost is

(4d+ 2)tl(m).

B. Distance Recoding Scheme

The local distances computed above are encrypted by E(·).
They must be sent to the cloud for decryption. This process

is similar to the first phase of local distance computation: the

client scrambles the encrypted distances and the cloud decrypts

them. However, rather than sending the sign results directly,

the cloud must encrypt the distances to prevent the client

from accessing the actual distances. This process is distance

recoding and it sends back a recoded version of the distances

that are only sufficient for distance comparison. To this end,

the recoding scheme should at least satisfy the following two

properties.

1) Strictly monotonic: This property guarantees the recoded

distances can still be compared with each other.

2) Immune to chosen ciphertext attack: This property is

required because the client can issue any chosen plain-

text distance and obtain its recoded value.

In the following, we propose a recoding scheme that satisfies

both properties. The key idea is to record at the cloud side all

existing recoded value pairs to guarantee strict monotonicity.

At any time, two recoded values are always farther away

than their original values so that it is always possible to

find for a new value its recoded value while still maintaining

monotonicity. On the other hand, this recoded value is random

to guard against chosen-ciphertext attacks. Alg. 2 shows the

pseudo-code of the procedure. It first locates the input value

x in the set of recoded pairs as before value s and after t.
Then it finds a proper and random recoded value x′ based on

3After the scrambling process, the scrambled distance received by the server
has 2t components.

s′ and t′. It is noteworthy that to guarantee the future recoding

between s and x still affords to be random, x′ − s′ is set to

be at least ⌊(t′−s′)/3⌋ larger than x−s, and so is t′−x′. As

such, the random values generated by rand() must be large

enough to ensure ⌊(t′ − s′)/3⌋ > 0 throughout the lifetime of

a query, i.e., the duration for the monotonicity.

Algorithm 2 recode: Distance Recoding Scheme

Input: x: the decrypted distance at the cloud
X : the recoded value pairs
rand(): a random function

Output: x′: the recoded value of x
Procedure:

1: locate x in X such that s, t are adjacent in X and s < x < t;
2: if t does not exist (i.e., x is the largest) then

3: t is the largest value in X ;
4: x′ = t′ + (x− t) + rand();
5: else if s does not exist (i.e., x is the smallest) then

6: s is the smallest value in X ;
7: x′ = s′ − (s− x)− rand();
8: else

9: choose x′ from range [s′ + 1, t′ − 1] such that x′ − s′ > x − s +
⌊(t′ − s′)/3⌋ and t′ − x′ > t− x+ ⌊(t′ − s′)/3⌋;

10: insert (x, x′) into X ;

C. Scrambling

In general, the scrambling process is invoked by the client

on the set of encrypted values E(ξ) (e.g., the local distances)

before they are sent to the cloud for operation F (e.g.,

decryption and recoding). It prevents the cloud from obtaining

the actual values of ξ by modifying values in E(ξ) into

E′(ξ). As such, the actual operation result F(E(ξ)) needs

to be restored (or called “descrambled”) based on the result

F(E′(ξ)) that is returned from the cloud. There are two levels

of scrambling: permutation Π(·) and deviation dev(·). The

former changes the order of a set of encrypted values, which

are otherwise in the same order of the entries. The latter

changes every value E(ξ) by arithmetic operations with the

seeds. To enable the restoration of the operation result of F ,

however, the deviation should depend on F . In this framework,

F can be either of the following two:

1) F = sign(E−1(·)): The deviation multiplies E(ξ) with

a seed E(s) and sends E(s) · E(ξ) = E(s · ξ) to the cloud.

Upon receiving sign(s · ξ), the client can restore sign(ξ) by

checking the sign of s.

2) F = recode(E−1(·)): The deviation generates two

values s1 and s2 from the set of seeds by any combination

of multiplication, addition and subtraction. Then it sends

E(s1)·E(ξ)+E(s2) = E(s1·ξ+s2) to the cloud. To ensure the

scrambled distance is consistent over the dimensions, entries

and nodes, s1 and s2 must be kept the same throughout the

lifetime of a query. Upon receiving recode(s1 · ξ + s2), the

client can compare it with other recoded distances based on

the sign of s1. This deviation works as both itself and the

recoding scheme are monotonic.

Note that to strengthen the anonymity of seeds against the

cloud, composite seeds are used in the deviation process. They

are generated by arithmetic operations (addition, subtraction,

and even multiplication) on a set of initial seeds. In addition,

while deviation operations effectively protect the query, they
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incur a multiplication, which costs the client t2η× computation

for a t-component ciphertext.

D. Distance Access Protocol

Now we describe the node access protocol for distance-

based queries. This access involves the client with query
−→q = (q1, q2, ..., qd) and the cloud with entries −→e =

(e1, e2, ..., en) = ([
−→
l1 ,

−→u1], ..., [
−→
ln ,

−→un]). Alg. 3 summarizes

the procedures in pseudo-code. As for the computational cost,

the client involves in n local distance computations (which

costs dnt2η×) and scrambles of 2dn t-component and n 2t-
component ciphertexts (which costs (2d + 4)nt2η×). So the

total computation cost is (3d + 4)nt2η×. The cloud involves

in n local distance computations, so the cost is (4d+2)ntη×.

The communication cost of this protocol is (4d+2)ntl(m).

Algorithm 3 dist access: Node Access Protocol for Distance

Input: −→q : the query value at client
Π(·): the permutation by the client
dev(·): the deviation by the client
−→e : the entries at cloud
recode: the distance recoding scheme by cloud

Output: D(−→q , ei)): the recoded minimum

square distance between −→q and ei;
Procedure:

1: for each entry ei, client sends E(−→ui) − E(−→q ) and E(
−→
li ) − E(−→q ) to

cloud, scrambled by Π(·) and dev(·); // Phase 1
2: cloud decrypts them and sends back their sign values;

3: client restores them and computes local dist(E(−→q ), E([
−→
li ,

−→ui])) ac-
cording to Eqns. 2 and 3;

4: client scrambles them by Π(·) and dev(·), sends to cloud; // Phase 2
5: cloud decrypts and recodes them;
6: client restores the distances as D(−→q , ei));

VII. PROCESSING DISTANCE-BASED SPATIAL QUERIES

In this section, we present the complete query processing

protocols for distance range and k-nearest neighbor queries,

using the above node access protocol for distance.

A. Processing Distance Range Queries

In a distance range query, the client searches for records

whose distances are within r away from the query point −→q .

Alg. 4 shows the pseudo-code of the distance range search

protocol. The search at the client starts from the root entry of

the shadow index and traverses every node whose minimum

square distance to −→q is less than or equal to 4r2 (“4” aligns

with Eqn.3). To enable the comparison, 4r2 is sent to the server

for recoding when query starts.

B. Processing k-Nearest Neighbor Queries

We base the kNN search protocol (shown in Alg. 4) on

the best-first search (BFS) [17], a state-of-the-art kNN search

algorithm on R-trees. BFS uses a priority queue Q to store

entries to be explored during the search. The entries are sorted

by their minimum square distances. BFS pops up the top

entry in the queue, pushes its child entries into the queue and

then repeats the process. When a leaf entry is popped, the

corresponding record is retrieved as the nearest neighbor. This

protocol proceeds to search k nearest neighbors and terminates

when all kNNs are retrieved.

Algorithm 4 Complete Query Processing Protocol

Input: −→q : the query point at client
r: the threshold for distance range query at client
k: for kNN query at client
root: the root entry of the shadow index at client

Output: C: the set of result objects
Procedure:

1: client initializes queue Q and C = ∅;
2: client enqueues root into Q;
3: while Q is not empty do

4: client dequeues entry p from Q;
5: if p is a leaf entry then
6: C = C ∪ p;
7: kNN query : if |C| == k, return C;
8: else
9: client retrieves shadow index node −→e = (e1, e2, ...) pointed by p;

10: client gets D(−→q ,−→e ) = dist access(−→q ,−→e );
11: client enqueues (ei,D(−→q , ei)) of qualified ei into Q as below;
12: Range query : those ei whose D(−→q , ei)) ≤ recode(4r2);
13: kNN query : all ei;

VIII. PERFORMANCE OPTIMIZATION

In previous sections, we introduce the basic framework and

protocols for privacy-preserving distance-based queries. In this

section, we further propose several optimization techniques on

the basic protocols to further improve the performance. These

optimizations are orthogonal to each other and are introduced

in the ascending order of their optimization scope.

A. One-Off Local Distance Computation

The basic local distance computation requires a two-phase

protocol, in which the first phase is to identify the position

of the query point with respect to the range to facilitate the

minimum square distance calculation in the second phase.

However, this protocol has two performance issues. First, it

requires two rounds of client-cloud interaction, which may

increase the query response time. Second, all costly multipli-

cations (including the scrambling) are performed at the client

side, while the cloud only involves in decryptions. To remedy

these drawbacks, we propose a one-off approach by sending

for each dimension only the scrambled E(u) − E(q) and

E(l)−E(q) to the cloud. As shown in Fig. 4 and Eqn. 2, the

minimum distance takes three different values according to the

comparison result of u−q and l−q, and furthermore, u−q and

l−q are all the cloud needs to compute the minimum distance.

Since the cloud eventually knows the comparison result, the

scrambling F of E(u− q) and E(l− q) can be simplified as

follows. The deviation multiplies E(ξ) with a seed E(s) and

sends E(s) · E(ξ) = E(s · ξ) to the cloud. The same s will

be used for both E(u − q) and E(l − q) in all dimensions,

entries, and nodes throughout a query’s lifetime.

Once the cloud receives and decrypts E(s(u − q)) and

E(s(l−q)), if they have different signs, the local distance is 0;

otherwise, the cloud uses the one with a smaller absolute value

to compute the minimum distance. Note that this minimum

distance is computed in the cleartext domain, and thus no

modular operations are involved. As for the computational

cost, for each d-dimensional entry, the client’s cost is dom-

inated by the scrambling cost of 2d t-component ciphertexts,

which is 2dt2η×. Compared to (3d + 4)dt2η× for the two-

phase approach, this saves d+4

3d+4
computation. For 2D data, this
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tops up to a 60% saving. On the other hand, the cloud’s cost

is dominated by the decryption cost of the 2d 2t-component

ciphertexts, which is 4dtη×. This saves 2tη× decryption cost

in the second phase. The communication cost of the second

phase (2tl(m)) is also saved, so the one-off approach only

needs 4dntl(m).
It is noteworthy that this one-off method discloses more

information to the cloud and restricts the scrambling process.

We will study its privacy implication in Section IX.

B. Distance Folding

Both this and the next optimizations aim to reduce unnec-

essary distance computations during the distance access for

a single node. The key observation for the distance folding

optimization is from Eqn. 3, where the local distance is added

up from the encrypted minimum square distance in each

dimension. Since distance is always positive, a partial local

distance from a subset of all dimensions becomes a natural

lower bound of the actual local distance. This lower bound is

particularly useful because an R-tree node usually has tens or

hundreds of entries and some entries could be faraway from

the query point, the complete local distances of these entries

are not necessary and can be replaced by a lower bound which

serves the same query processing purpose. We call this process

“distance folding”. It is noteworthy that a folded distance can

always be unfolded into a larger lower bound or even into the

actual local distance if necessary later on.

The main challenge lies in when to stop adding up for

the partial location distance — an immature stop leads to

an aggressive lower bound that will probably be unfolded

later on. For distance range queries, the adding up can be

stopped when the lower bound reaches the distance threshold.

For kNN queries, however, the decision to fold a distance can

relate to the processing status. Specifically, we keep only the

topmost L items in the priority queue as “unfolded” while

the distances of all rest items are folded as they are. Before

a folded distance is to be inserted into the queue, it must be

unfolded by at least one dimension or until it is no longer

among the topmost L items. This strategy is called is “L-

unfolded”, where L dictates how aggressive the strategy is.

Obviously, L ≥ k for kNN queries; moreover, for the best

adaption to a specific dataset, L can be runtime-adjustable by

its performance as follows. When a query is complete, the

saving can be calculated by counting all entries in the queue

whose distances are still folded, whereas the overhead can

be calculated by counting the number of unfolding operations

during processing. L should be increased when the overhead

dominates the saving, and vice versa.

C. Entry Folding

While distance can be folded by ignoring some dimensions,

the same rationale can be applied to the entries in an index

node. The key observation is that, a node i usually has a large

number (typically over 100) of entries to fit into one disk

page, and it is unnecessary to compute the local distance from

q to each entry. As such, some remote entries can be “folded”

and represented by a super entry. As there are fewer entries
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Fig. 5. Super Entry and Entry Folding

in i, the computational cost of distance access for i can be

significantly reduced.

Fig. 5 illustrates the notion of super entry and entry folding.

The node i contains 10 objects or child entries which form two

super entries a and b. When i is accessed, it will be treated

as if there are only entries a and b. Later when entry a is

accessed (as it is closer to q than b), the same node i will be

used and a will be unfolded into entries 1-5. b, on the other

hand, remains folded and entries 6-10 can be waived from the

distance access.

The entry folding process is conducted offline at the data

owner after the index is built. For each node, the set of entries

are recursively partitioned into two subsets by dimensional

axes like the kd-tree index until each subset contains only

one entry. Upon service initialization, besides the shadow

index, an auxiliary table is sent to the client that stores the

super entry information of all nodes (see Fig. 5). Each table

record corresponds to a super entry and has three fields: the

node affiliation, minimum bounding box (encrypted by E),

and the associated entries. The table size depends on how

we regulate the size of a super entry. Based on its query

demands, the client should initialize a desirable threshold W
for the minimum number of entries in each super entry. For

example, W should be set higher than the largest k for kNN

queries. In Fig. 5, W = 5. Note that entry folding is not

equivalent to reducing the fanout of the index, as the latter

is query independent. The tradeoff of entry folding lies in the

wasted distance computation of super entries that are unfolded

later and the saved distance computation of folded entries.

IX. SECURITY ANALYSIS

In this section, we analyze the security aspects of our so-

lution, from both the client and cloud/owner perspectives. We

first show the data security of the proposed framework, based

on the theoretical results from ASM-PH [7]. We then study the

query security, in particular the security of scrambling process

and the one-off optimization for distance computation.

A. Data Security

The security of the data is based on two factors — the

security of the secret keys in the ASM-PH and distance

recoding scheme.

1) Key Security: In [7], Domingo-Ferrer showed the ASM-

PH is secure against the compromise of a fixed number h of

known cleartext-ciphertext pairs. Specifically, he first showed

that the size of the subset of keys consistent with the known
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pairs grows exponentially with s− h where s = logm′ m. In

fact, the expected size of this subset is max{6(m′)s−h/π2, 1}.

Then he showed that the probability of two keys (r1,m
′

1) and

(r2,m
′

2) yield the same cleartext from the same ciphertext

is O((logm)/m), which is extremely low. As such, the best

attacking strategy of ASM-PH is randomly guessing a key and

verifying its consistency with the known pairs, until a key is

found that is consistent to all known cleartext-ciphertext pairs.

Even if the adversary were not bounded by the computing

power, the success rate of such attack is at most equal to

π2(m′)h−s/6. This probability can be extremely small as

long as h < s, because m′ is always large in a practical

application domain. However, if h ≥ s, i.e., the number of

known pairs exceeds logm′ m, the key that is consistent with

the h pairs will be almost unique. Nonetheless, the acquisition

of this key is still bounded by the adversary’s computational

power. Since the key is a pair of (r,m′), the enumeration of

all possible pairs in a practical application domain is almost

infeasible, let alone the verification process, which requires

modular multiplication.

In our framework, the adversary can easily obtain all

ciphertexts because the shadow index is stored at the client

side. However, he/she cannot obtain any cleartext through

our framework, except for the cleartext-ciphertext pairs in

the seeds. As the number of seeds is usually small, h < s
can be trivially satisfied. As such, we come to the following

proposition on key security.

Proposition 9.1: The secret key (r,m′) is secure against the

client if h < s, where h is the number of known cleartext-

ciphertext pairs, including the seeds, and s = logm′ m.

2) Distance Recoding: The distance recoding on the cloud

modifies a scrambled local distance x into x′. To show x′

cannot be reverted to x, we show the distance recoding scheme

guarantees the expected value of x′ is independent of x.

Property 9.2: As the u-th distance to be recoded, the ex-

pected value x′ for x is independent of x.

Proof: Let x′(u) denote the expected recoded value,

Φ
′

(u) and φ
′

(u) denote the expected values of the maximum

and minimum recoded distances among u distances, Φ(u) and

φ(u) denote the corresponding distances before recoding, and

ζ denote the expected value of the rand() function in the

recoding scheme. Then we have recursive formulae as follows.

x′(u+ 1) = x′(u) ∗
u− 1

u+ 1
+ (Φ′(u) + x− Φ(u) + ζ)

∗
1

u+ 1
+ (φ′(u)− x+ φ(u)− ζ) ∗

1

u+ 1
(4)

Φ′(u+ 1) = Φ′(u) + ζ ∗
1

u+ 1
(5)

φ′(u+ 1) = φ′(u)− ζ ∗
1

u+ 1
(6)

Since x is canceled out in Eqn. 4, and Φ
′

(u), Φ(u), φ
′

(u),
φ(u) are independent of x, x′(u) is independent of x.

B. Query Privacy

The security of the query is based on two factors: the

security of the scrambling and “untraceable root access”. The

latter means that the cloud should not be able to pinpoint or

narrow down the query during the first node access, when the

cloud knows it is always the root node.

1) Scrambling Security: The deviation is based on initial

seeds and composite seeds that are derived from initial seeds

through arithmetic operations. In what follows, we show that

the set of composite seeds can be extremely large by only a

few steps of arithmetic operations.

Proposition 9.3: Given g initial seeds, whose ciphertexts all

have t components, then the number of composite seeds by h
operations and whose ciphertexts have at most wt components

is at least gh(
∑w

i=0
2h−i ·

(

h
i

)

), where w < h < g.

Although the above number may include duplicates, devi-

ation based on these composite seeds are still sufficient to

prevent the disclosure of original distances individually. In

addition, the permutation further disconnects the one-to-one

correspondence between the distances and entries.

2) Untraceable Root Access: Since the scrambling process

turns genuine distances into relative distances and destroys

their correspondence to entries, the cloud is unable to narrow

down the query point during the root access, using techniques

such as Voronoi Diagram. However, for the one-off approach

in Section VIII, the cloud is able to know the relative position

of qi and segment [li, ui], for any dimension i. The following

privacy threat exploits this knowledge.

Security Threat 9.4: For the root node and the one-off

approach, the cloud or data owner may try to narrow down

the query point in any dimension i. Specifically, li and ui

of all n entries are projected on a 1D axis, which splits this

axis into at most 2n + 1 segments. For any segment seg, if

the query point qi is in it, the number of occurrences when

qi > ui, li ≤ qi ≤ ui, and qi < li can be determined. If

any of these three values are different from what the one-off

approach tells, qi cannot be in this seg and can be filtered.

This threat can be alleviated by sending scrambled E(u−q)
and E(l− q) values in random dimension order. As such, the

above attack cannot be launched for a particular dimension.

Rather, all dimensions must be considered as a whole, so the

entire space needs to be split into subspaces for filtering. This

not only costs more computations for this attack, but also

results in more possible subspaces for the query point.

X. PERFORMANCE ANALYSIS

In this section, we analyze the performance of our proposed

framework. While no existing work can be directly compared

with it, the purpose is to show the feasibility and study its com-

putation and communication costs under various query types

and parameter settings. We build an R-tree index on a real

dataset of 123,593 postal addresses in New York, Philadelphia

and Boston. The longitude and latitude coordinates of these

objects are scaled up to integers and all significant figures

are preserved. The resulted cleartext domain is [0, 106], which

means the m′ of ASM-PH must exceed 4×1012. The resulted

R-tree has a size of 7.28 MB and the shadow index has a size

of 19.08 MB. As the transmission of the shadow index is a

one-time operation, such cost is small and can be amortized

610



Parameter Symbol Value

# of R-tree records N 123, 593
page size – 4KB

encryption key (m’,r) [2x1015, 4x1015], [1015, 2x1015]
threshold for range query τ 500 − 10, 000
k of kNN query k 1− 50

TABLE I
PARAMETER SETTINGS FOR EXPERIMENTS
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Fig. 6. Distance Range Query Performance

over a series of queries. Further, this size of index can easily

fit into the main memory of most modern computers.

The client is set up on a desktop computer with Intel

Core Duo T2500 processor and 2GB RAM, running Windows

XP SP3 64-bit edition, and the cloud is set up on an IBM

eserver xSeries 335, with Dual 4-cores Intel Xeon X5570

2.93GHz CPU and 32GB RAM, running GNU/Linux. The

code of our experiments is implemented and executed in

Java JDK 1.6.0. As for the ASM-PH encryption scheme, we

use m ∈ [2 × 1017, 8 × 1017], m′ ∈ [2 × 1015, 4 × 1015],
r ∈ [1015, 2× 1015], t = 3, and the encryption key is (m′, r).
The number of initial seeds is set to 10 and any composite

seed is derived by 1-3 operations on the initial seeds. For

performance evaluation, we measure the computational cost

(as the client and cloud CPU time), the communication cost

(as the exchanged kilobytes between client and cloud), and the

response time (as the total CPU time plus the communication

time through a typical network at 2Mbps download rate and

1Mbps upload rate). For each experiment, 1,000 queries are

executed and their average measurements are reported. Table I

summarizes the parameter settings used in the experiments.

A. Basic Query Performance

For distance-range queries, we vary the distance threshold τ
from 500 to 10, 000. Fig. 6(a) plots the client CPU, cloud CPU

and the communication cost. The CPU times of both parties

increase moderately as τ increases, and even for the largest

distance τ = 10, 000 (which returns 40 objects on average),

both times are below 100 ms. A similar trend is observed in

the communication cost, where the total transmitted data are

fewer than 100 kb in all τ settings. As a result, the query

response time, shown in Fig. 6(b), increases moderately as τ
increases. The same figure also shows the breakdown of the

response time, and we find that the CPU times are dominated

by the communication time, and their ratios of contributions

are stable regardless of τ . This justifies the use of privacy

homomorphism as an efficient encryption scheme.

For kNN queries, we vary the number of nearest neighbors

k from 1 to 50. Fig. 7(a) plots the client CPU, cloud CPU and

the communication cost. Similar to distance-range queries, the

0

50

100

150

200

1 10 20 30 40 50k

C
P

U
T

im
e

 (
m

s
)

0

50

100

150

200

C
o

m
m

. 
C

o
s

t 
(k

b
)

comm. client cpu cloud cpu

(a) CPU Time and Comm. Cost

0

500

1000

1500

2000

1 10 20 30 40 50k

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

client cpu cloud cpu comm. 

(b) Query Response Time

Fig. 7. kNN Query Performance

CPU times of both parties increase sub-linearly as k increases,

and they never exceed 200 ms even for the largest k value.

The trend in the communication cost coincides with those in

CPU times, where the total transmitted data are fewer than

200 kb in all k settings. As a result, the query response time,

shown in Fig. 7(b), increases moderately as k increases. The

breakdown of the response time also shows the dominance of

the communication time over CPU times, regardless of k.

B. Performance Optimizations

In this set of experiments, we implement the performance

optimization techniques proposed in Section VIII, namely, the

one-off local distance computing, distance folding and entry

folding. For distance folding, L for the L-unfolded strategy is

set to k; for entry folding, the minimum super entry size W
is set to 5. Fig. 8 shows their individual performance gain as

well as the total gain from the basic approach for distance-

range queries. In Fig. 8(a), the client CPU time has been

reduced by about 50% due to the one-off approach alone,

which is in line with our analysis in Section VIII that the

saving is approximately 60%. However, the distance folding

alone (not shown in this figure) does not produce noticeable

improvement. This can be explained as follows. The saving of

distance folding on the basic two-phase approach only occurs

in the first phase when E(u− q) and E(l− q) of those folded

dimensions are saved from being sent; and for a 2D dataset,

at most one dimension can be folded. On the other hand,

the unfolding penalty is always a repeat of the second phase.

Fortunately, the distance folding shows further improvement

when implemented on top of the one-off approach. As is

depicted in Fig. 8(a), they totally reduce the client CPU time

by more than 70%. It is also noteworthy that as τ increases,

only the gain of distance folding decreases slowly while the

others are kept constant. This is because a larger τ makes

fewer entries qualified for distance folding. Entry folding alone

produces about 20% cost saving consistently, which justifies

our motivation that a disk-based index node has more entries

than necessary for efficient query processing. The combination

of all three optimizations always achieves the top performance,

which is around 75% saving. This further verifies the fact that

all of them are effective. Similar trend and observations are

found in the cloud CPU time and communication cost, so we

omit these results in the interest of space. The query response

time is shown in Fig. 8(b), which concludes that for a normal

duty distance-range query (τ < 10, 000), the response time

can keep below 50 ms.

Fig. 9 shows the performance gains for kNN queries.
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Fig. 8. Performance Optimizations for Distance Range Query
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Fig. 9. Performance Optimizations for kNN Query

Although most results are similar to those in the distance-range

query, we observe that distance folding gains less and becomes

even less as k increases, until eventually when k = 50,

its response time is even worse than applying the one-off

approach alone. This is due to the folding strategy used in

different queries. For distance-range queries, it is naturally set

to distance exceeding τ ; for kNN queries, we use a simple

heuristic L = k for all k settings. However, as k increases,

this heuristic seems less viable — a nonlinear estimation of L
should be used. On the other hand, entry folding gains more

than in distance range queries, and becomes even better as k
increases. This shows that kNN queries normally needs fewer

entries in a single node than distance-range queries.

XI. CONCLUSION

In this paper, we study the problem of processing private

queries on indexed data for mutual privacy protection in a

cloud environment. We present a secure index traversal frame-

work, based on which secure protocols are devised for classic

types of queries. Through theoretical proofs and performance

evaluation, this approach is shown to be not only feasible,

but also efficient and robust under various parameter settings.

We believe this work steps towards practical applications

of privacy homomorphism to secure query processing on

large-scale, structured datasets. As for future work, we plan

to extend this work to other query types, including top-k

queries, skyline queries and multi-way joins. We also plan

to investigate mutual privacy protection for queries on semi-

or unstructured datasets.
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