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Abstract

We are witnessing in recent years growing interest
for location-dependent information services among mobile
users. This paper examines the issue of processing location-
dependent queries in a mobile broadcast environment. Dif-
ferent from a traditional environment, mobile users are con-
cerned with not only access latencies but also power con-
servation. The planar point location algorithms and con-
ventional spatial index structures are shown inefficient. In
this paper, we propose a new index data structure, called D-
tree, for querying location-dependent data in mobile broad-
cast environments. The basic idea is to index data regions
based on the divisions between them. We describe how to
construct the binary D-tree index, how to process location-
dependent queries based on this index structure, and how
to page the D-tree to fit the packet capacity. The perfor-
mance of the D-tree is evaluated using both synthetic and
real datasets. Experimental results show that the proposed
D-tree provides a much better overall performance than the
well-known existing schemes such as the R � -tree.

1 Introduction

We are witnessing in recent years growing interest for
location-dependent information services (LDISs) among
mobile users thanks to the rapid technological development
in high-speed wireless networks, personal portable devices,
and location identification techniques [7, 20, 23]. Exam-
ples of mobile LDISs include location-dependent informa-
tion access (e.g., traffic reports and attractions) and nearest
neighbor queries (e.g., finding the nearest restaurant).
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Wireless broadcasting is an attractive approach for data
dissemination in a mobile environment. Disseminating data
through a broadcast channel allows simultaneous access by
an arbitrary number of mobile users and thus allows effi-
cient usage of scarce bandwidth. Owing to this scalabil-
ity feature, the wireless broadcast channel has been consid-
ered an alternative storage media (called “air storage”) of
the traditional hard disks [1, 15]. Many studies addressing
various problems in mobile broadcast environments, such
as scheduling and bandwidth allocation, have appeared in
the literature [1, 12, 15, 22]. It is expected that in the near
future a number of mobile LDISs (e.g., region-wide traf-
fic reports and tourism information) will utilize broadcast
for the dissemination of information to the rapidly increas-
ing population of mobile users. This paper investigates the
issue of querying location-dependent data in mobile broad-
cast environments.

In wireless broadcast, one critical issue is to conserve
battery power, which is a scarce resource for mobile clients.
Without any auxiliary information on the broadcast chan-
nel, a client may have to access all objects in a broadcast
cycle in order to retrieve the desired data. This requires the
client to listen to the broadcast channel all the time, which is
power inefficient. Air indexing techniques address this issue
by pre-computing some index information and interleaving
it with the data on the broadcast channel [15]. By first ac-
cessing the broadcast index, the mobile client is able to pre-
dict the arrival time of the desired data. Thus, it can stay
in the power saving mode most of the time and tune into
the broadcast channel only when the requested data arrives.
The drawback of this solution is that broadcast cycles are
lengthened due to additional index information. As such,
there is a trade-off between access latency and tuning time.
Three criteria have been used to evaluate the performance
of air indexing techniques [13, 15]:

� Access Latency: the period of time elapsed from the
moment a mobile client issues a query to the moment
when the requested data is received by the client.
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� Tuning Time: the period of time spent by a mobile
client staying active in order to obtain the requested
data.� Indexing Efficiency: the ratio of the tuning time saved
against the non-indexing scheme to the index over-
head.

While access latency measures the overhead of an index
structure and the efficiency of data and index organization
on the broadcast channel, tuning time is frequently used to
estimate the power consumption by a mobile client since
sending/receiving data is power dominant in a mobile envi-
ronment [17].1 Indexing efficiency, which correlates access
latency and tuning time, is used to evaluate the efficiency
of indexing techniques in terms of minimizing tuning time
while maintaining acceptable access latency overhead.

Several indexing techniques dedicated to the wireless
broadcast channel, i.e., the hashing indexing [14], the sig-
nature approach [18], and the hybrid approach [13], have
been introduced in the literature. Moreover, imbalanced in-
dexing for skewed data accesses [6] and indexing for multi-
attribute queries [12] have also been investigated. How-
ever, these studies concentrated on one-dimensional in-
dexes for equality-based queries, and thus are inapplicable
to location-dependent query processing where point queries
are involved. Imielinski et al. investigated the issue of inter-
leaving data and index on the linear wireless channel such
that the tuning time is nearly optimized while maintaining
the access latency as short as possible [14, 15]. Recently,
there is a study [11] that discussed query processing for spa-
tial objects over the broadcast channel. However, its main
focus was on how to utilize the limited client cache to re-
duce the tuning time when traversing spatial index trees. To
the best of our knowledge, the issue of querying location-
dependent data in a mobile broadcast environment has not
been addressed before.

In this paper, we are interested in exploring efficient in-
dex structures for broadcasting location-dependent data on
air. We first review some existing index structures. Through
an illustration with some simple examples, we show their
limitations for querying location-dependent data in mobile
broadcast environments. Next, we present a new index data
structure, called D-tree. The basic idea is to index data re-
gions (i.e., valid scopes of data instances, formally defined
in Section 2) based on the divisions between them. We de-
scribe how to construct the binary D-tree index, how to pro-
cess location-dependent queries based on this index struc-
ture, and how to page the D-tree to fit the packet capac-
ity. The performance of the D-tree is evaluated using both
synthetic and real datasets. Experimental results show that
the proposed D-tree provides a much better overall perfor-
mance than the well-known schemes such as the R � -tree.

1For systems in which mobile clients are charged on a per-bit basis,
tuning time can also be used to measure the access cost.

The rest of this paper is organized as follows. Section 2
gives the background on the information system model
and the index broadcast model. In Section 3, we review
some existing index structures that can be used for querying
location-dependent data. Section 4 presents the proposed
D-tree index structure along with the partition, query pro-
cessing, and paging algorithms. The performance evalua-
tion is presented in Section 5. Finally, Section 6 concludes
this paper.

2 Preliminaries

This section provides some background on location-
dependent services and information broadcast systems. It
is assumed that location-dependent services are provided to
mobile clients by an information broadcast system. We re-
fer to the geographical area covered by the system as the
service area, denoted by � . Mobile clients are assumed to
be able to identify their locations using such systems as the
global positioning system (GPS). A mobile client can move
freely from one location to another within the service area
and make queries ubiquitously with its current location or a
future location to the broadcast system.
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Figure 1. Running Example

A data type denotes the type of location-dependent in-
formation service (e.g., traffic report or nearest restaurant).
In this paper, we assume that queries are specified on one
data type. The dataset is a collection of data instances that
return the answer to a query according to the location it is
bound. A data instance has a certain valid scope within
which this instance is the only correct answer. For exam-
ple, in Figure 1, we have four cities, �����������	��
 , and ��� , and
their respective boundaries, ����	������
 , and �� . Given any
point in, say, �
 , ��
 is always the city to which the point
belongs. This example will be used throughout this paper
as the running example for different index structures.

Given a set of data instances and their valid scopes, the
problem of querying location-dependent data is, given a
query location, how to efficiently determine which data in-
stance to return. In this paper, we study this problem in a
two-dimensional space, which is enough for most LDISs.
To formulate the problem, we first introduce the concept of
data region. A data region is assumed to take the shape of a
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polygon.

Definition 1 A data region, �� , is spatial representation of
the valid scope for a data instance, and one data region
corresponds to one data instance, such that �

�
��� � ���� � ,

and ��
	 ����� , ��������������� and ������ , where � is the
service area and � is the number of data instances for one
data type.

As can be seen, one salient feature for data regions is that
they are connected and adjacent to each other. This study
aims at investigating efficient index structures to support
location-dependent query processing on a wireless broad-
cast channel: given data regions  �������������� �	 � , how can
all the regions be indexed such that point queries can be
processed efficiently in terms of access latency and tuning
time?

To interleave data and index on the wireless channel, the
( � �! ) technique [15] is employed (see Figure 2). That is,
the index is broadcast preceding every �" fraction of the
broadcast cycle. As in [15], to reduce the tuning time, each
index segment (except for the root) and each data segment
contain a pointer pointing to the root of the next index.
The access protocol for querying location-dependent data
involves the following steps:

� Initial probe: The client tunes into the broadcast chan-
nel and determines when the next index will be broad-
cast. It then turns into the power saving mode until the
next index arrives.� Index search: The client searches the index. It fol-
lows a sequence of pointers (i.e., selectively tunes into
the broadcast index) to locate the data region contain-
ing the query point and find out when to tune into the
broadcast channel to get the desired data. It waits for
the arrival of the data in the power saving mode.� Data retrieval: The client tunes into the channel when
the desired data arrives and downloads the data.
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Figure 2. Data and Index Organization on the
Broadcast Channel

In wireless communications, a bit stream is normally de-
livered in the unit of packet (or frame) for such purposes as
error-detecting, error-correction, and synchronization [15].
For example, in the GPRS network a packet can contain the
data up to 1600 bytes [5]. As a result, data is accessed by

clients in the unit of packet. Thus, the tuning time for an in-
dex structure is measured in terms of the number of packet
accesses [12, 15].

3 Review of Existing Approaches

In general, indexes based on simple shapes perform ef-
ficiently. Thus, the actual shape of a spatial object is of-
ten abstracted before being inserted to the index. To serve
this purpose, there are two categories of techniques: object
decomposition and object approximation [4, 9]. In object
decomposition, the shape of each object is represented as
the geometric union of simpler shapes such as triangles and
trapezoids. In object approximation, regular shapes such
as bounding rectangles or spheres are used to approximate
spatial objects. In the following subsections, we briefly in-
troduce several typical solutions and analyze their limita-
tions when they are applied to location-dependent queries
in a mobile broadcast environment.

3.1 Object Decomposition

The object decomposition technique has been developed
for the planar point location problem [3]: given a polygonal
subdivision of the plane ( . vertices and  segments) and
a query point / , how can we efficiently determine which
face of the subdivision contains / ? This is similar to our
problem. However, we are concerned with not only search
efficiency (which contributes to the tuning time) but also ac-
cess latency (which is attributed to the index storage size).
As a result, the point location algorithms perform poorly
overall as we will show in the performance evaluation later
in this paper. There is a long stream of research on the
point location problem. Kirkpatrick’s algorithm [16] and
the trapezoidal map approach [3] are two typical solutions.
The former achieves an O(log . ) search time and an O( . )
space, while the latter is a randomized algorithm and has an
expected search time of O(log  ) and an expected space of
O(  ). However, the constant factors in these worst perfor-
mance measures are large, especially for the space measure
[3].

In Kirkpatrick’s algorithm, the original subdivision is
first triangulated. Then, we recursively remove some ver-
tices, along with all the edges adjacent to them, and re-
triangulate the new subdivision. This operation is contin-
ued until the number of triangles contained in the space
is smaller than some predefined threshold ( 0 " ��1 ). Fig-
ures 3(a), 3(b), and 3(c) show the triangulation processing
for our running example, where 0 " �21 is set to five. From
3(a) to 3(b), vertices 3 
 , 354 , and 376 are removed; and from
3(b) to 3(c), vertex 3�� is removed. A hierarchical index
tree, as shown in Figure 3(d), is built upon the triangles
generated in the course of recursive triangulation. Given
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Figure 3. Index Construction Using Kirk-
patrick’s Algorithm (the Trian-Tree)

a query point, the probe begins at the root. It checks each
child sequentially until a triangle containing the query point
is found. Then, the search continues from that node all the
way down to a leaf node. In this paper, we call the index
structure built by Kirkpatrick’s algorithm the trian-tree.

In the trapezoidal map approach, the planar subdivision
is viewed as a collection of line segments. The index struc-
ture is built when the line segments are inserted one by one
into the subdivision. From each new vertex created by the
insertion of a line segment, we draw two vertical extension
lines, one going upwards and the other going downwards.
The extension does not stop until it meets a line segment
that has been previously inserted. Eventually, the original
subdivision is decomposed into a set of trapezoids. Obvi-
ously, the insertion order of line segments influences the
index structure. A randomized incremental approach is em-
ployed in our experiments [3]. Figure 4(a) shows the final
trapezoidal map of our example, where line segments are in-
serted in the order of 
 � ��
 � ��
 
 ��
 � , and 
 4 . The correspond-
ing index structure is shown in Figure 4(b). There are two
kinds of nodes in the index structure: one is x-node (repre-
sented by a circle) recording the x-coordinate of a vertex;
the other is y-node (represented by a hexagon) recording
a line segment. Given a query point / , the search process
begins at the root and terminates when a leaf node is met.
At an x-node, we evaluate whether / lies to the left or to
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Figure 4. Index Construction Using Trape-
zoidal Map (the Trap-Tree)

the right of the vertical line that goes through the stored x-
coordinate. At a y-node, we evaluate whether / lies above
or below the stored line segment. We call the index struc-
ture built using the trapezoidal map approach the trap-tree
in this paper.

For both the trian-tree and the trap-tree, an intuition is
that their index sizes are probably large. For our example
with only four regions and six vertices, the index trees have
about ten nodes. This will significantly increase the broad-
cast cycle and result in a long access latency in a wireless
broadcast environment.

3.2 Object Approximation

The object approximation technique has been commonly
employed for disk indexing in the spatial database field [9].
The problem is that given a very large amount of spatial
objects, efficient disk indexes need to be created to support
various spatial operations.2 Since the index data on a disk
is accessed in the unit of page and the disk access time is
pre-dominant in access latency, the objective of an index
structure is often to minimize the number of page accesses.
This seems similar to our case that we have to access the
index on air in the unit of packet and we want to optimize
the number of packet accesses. However, it is worth not-
ing that the motives are different: disk indexing is required
only for large databases, whereas packet-based data access
is a “physical” requirement for wireless communications.
Hence, in our case minimizing the amount of packet ac-
cesses is required for databases of any size. Moreover, as
we will illustrate in a moment, the nature of our problem
renders the approximation-based spatial index structures in-
efficient.

One of the most classical spatial index structures is the
R-tree [10]. There are also some variants such as the R


-

tree [21] and the R � -tree [2]. The basic idea is to use a

2Due to a large amount of objects, the main memory may not be able
to accommodate the index structure so that it has to be stored on a disk.
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Figure 5. Index Construction Using the R � -
tree

minimal bounding rectangle (MBR) to approximate a spa-
tial object, and then establish the index based on a sequence
of MBRs. Each node in the index tree contains a number
of entries according to the page capacity. An entry in an
internal node contains a child-pointer pointing to a lower
level node in the tree and a bounding rectangle covering all
the rectangles in the lower nodes in the subtree. In a leaf
node, an entry consists of a pointer pointing to the data and
a bounding rectangle which bounds its data objects. Vari-
ants of the R-tree differ from one another in the criteria used
to insert an object and to split an overflowing node. Exten-
sive experiments conducted in [2] showed that the R � -tree
gained a superior performance for different types of queries
and operations. Figure 5(c) shows the structure of the R � -
tree (excluding the added layer) for our example, where the
corresponding MBRs are shown in Figures 5(a) and 5(b).
In the performance evaluation, the R � -tree is used as the
representative of the object approximation technique.

Given a query point / , the search algorithm descends
the tree from the root. The algorithm recursively traverses
down the subtrees of bounding rectangles that contain / .
When a leaf node is reached, bounding rectangles are tested
and their objects are fetched to verify whether they con-
tain / . When applying the R � -tree to the wireless broad-
cast scenario, to save the tuning time, we modify the tree
structure slightly: one layer is added to the R � -tree at the
bottom as shown in Figure 5(c). This layer consists of the
actual shapes of data regions so that in the containment test
a costly access of actual data is avoided.

As can be seen, the problem with the R-type tree is
that if a point is covered by two or more sibling MBRs it
may need to explore several subtrees before the wanted ob-
ject can be located. This will increase the search time and
hence the tuning time. Unfortunately, in our scenario, all
data regions are adjacent to each other, and, as such, their
MBRs will overlap. The nature of this problem renders the
approximation-based spatial index structures inefficient. As
an example, suppose the query point is / in Figure 5(a) and
5(b). The search first reaches the leaf node

� � through the
root and

� 4 . Since it is outside  � pointed by
� � , the search

backtracks to
� � . Likewise, it is outside of  � and next the

search backtracks to
� 6 . Finally, it obtains the correct an-

swer in node
� 
 . Thus, we need to access a total of six

nodes (i.e., the root,
� 4 , � � , � � , � 6 , and

� 
 ) before we
know it is contained in �
 .

4 The D-tree Index Structure

This section describes the index data structure of the pro-
posed D-tree. In the following, we first present the overall
idea of the D-tree in Section 4.1. The partition algorithm
is described in Section 4.2. Section 4.3 provides the algo-
rithm for location-dependent query processing based on the
D-tree index structure. Finally, Section 4.4 explains how to
page the binary D-tree to fit the packet capacity.

4.1 An Overall Picture

As discussed in the last section, the object decomposi-
tion and approximation approaches suffer from a long ac-
cess latency and/or a long tuning time. In the meantime, we
observe that the actual shapes of data regions are contained,
either explicitly or implicitly, in the index structures of both
approaches. In object decomposition, the shape of each re-
gion is embedded in the index structure, while in object ap-
proximation, it is approximated by an MBR with the exact
shape encoded in an additional layer of nodes, as shown in
Figure 5(c). Based on this observation, we propose a new
data structure, called D-tree, to index data regions directly
based on the divisions between them. This new index struc-
ture neither decomposes nor approximates data regions. In
the following, we illustrate the overall idea.

The D-tree is a binary height-balanced tree similar to the
kd-tree [9]. However, while the kd-tree is built based on
hyperplanes, the D-tree is built based on the divisions be-
tween data regions. We recursively partition a space con-
sisting of a set of data regions into two complementary sub-
spaces containing about the same number of regions until
each subspace has one region only. The partition between
two subspaces is represented by one or more polylines.
The overall orientation of the partition, hereafter referred
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to as partition dimension, can be either � -dimensional or � -
dimensional, which is obtained, respectively, by sorting the
data regions based on their lowest/uppermost y-coordinates,
or leftmost/rightmost x-coordinates (see Section 4.2). Fig-
ure 6(a) shows the partitions for our running example. The
polyline /���� 3����!3�
��!3�� �!356�� partitions the original space into
 4 and �6 , and /��	� 3 ���!3�

� and /��	� 3�� �!354
� further partition  4
into  � and  � , and  6 into  
 and  � , respectively. The
first polyline is � -dimensional and the remaining two are
� -dimensional. The algorithm of finding the partition for a
space will be described in Section 4.2.
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Figure 6. Index Construction Using the D-tree
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Figure 7. Data Structure of the D-tree Node

Attribute Description
bid the unique id for each node

include flag indicating if the node size � oneheader
packet, style & size of the partition
the type (data or node pointer) and theleft ptr
offset to the beginning of the left child
the type (data or node pointer) and theright ptr
offset to the beginning of the right child
a sequence of coordinates that representpartition
the partition

Table 1. Illustration of the Attributes in a D-
tree Node

The data structure of a D-tree node is illustrated in Fig-
ure 7. The meaning of each attribute is summarized in Ta-
ble 1. In the D-tree, an internal node contains the partition
that divides the current space into two complementary sub-
spaces, a left (right) pointer pointing to the node containing
the data regions that lie in the lefthand or upper (righthand
or lower) subspace, and some control parameters including
bid and header. A leaf node contains the partition of two

data regions, the pointers pointing to the data buckets corre-
sponding to the regions, and the control parameters as well.
Thus, a spatial data region is inferred by the partitions when
following the path from the root towards a leaf node. Note
that in the data structure of Figure 7, we place the pointers
before the partition on purpose. We will explain this in Sec-
tion 4.4. For the moment, there is no difference for where
the pointers are placed. The binary D-tree satisfies the fol-
lowing four properties (the correctness was proved in [24]).

1. Every node has exactly two children.
2. All objects in the left subtree of a node are in the left-

hand or upper subspace of the partition, and all objects
in the right subtree are in the righthand or lower sub-
space.

3. The tree is height-balanced, i.e., the levels of the leaves
differ by at most one.

4. The search time for a point query is � (log � ) in terms
of the number of nodes visited.

The D-tree index structure for the running example is de-
picted in Figure 6(b), where the header attribute is simpli-
fied and only contains the partition dimension. Compared
to the trian-tree in Figure 3 and the trap-tree in Figure 4, the
size of the D-tree is much smaller. Compared to the R � -tree
in Figure 5, the search time for the D-tree is expected to be
shorter since it searches only two nodes for any query point.

4.2 Partition Algorithm

Finding a good partition for a space is crucial to the ef-
ficiency of the D-tree. This subsection describes the pro-
posed space partition algorithm. There are many ways of
dividing one space into two complementary subspaces that
contain almost the same number of data regions. For ex-
ample, we can sort the regions according to their rightmost
x-coordinates, and identify the space that encloses the first
����� regions as one subspace and the rest as the other. Al-
ternatively, we can sort the regions according to their low-
est y-coordinates, leftmost x-coordinates, or uppermost y-
coordinates, and perform the subspace identification in a
similar fashion. Moreover, if � is odd, we may identify
the first � ��� �
�	��� or � ��� �
����� regions as one subspace.
Consequently, four partition styles are evaluated when � is
even and eight when � is odd.

For each partition style, the size of the partition is mea-
sured in terms of the number of coordinates that represent
the partition. In selecting among different partition styles,
we choose the one with the smallest partition size. If they
are equal, for tie breaking, we define inter-prob of two sub-
spaces as the probability of a query being issued from their
interlocking part, i.e., for a � -dimensional ( � -dimensional)
partition, the area between the rightmost x-coordinate (low-
est y-coordinate) of the lefthand (upper) subspace and the
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Algorithm 1 PartitionSize: Evaluate the Size of the Parti-
tion
Input: an array of data regions and the partition style

// assuming ����� regions in the lefthand subspace
// and rightmost x-coordinate sorting

Output: the partition and its size
Procedure:
1: sort the regions in an increasing order of their rightmost

x-coordinates;
2: identify the first � ��� regions as the lefthand subspace;
3: construct the extent for the lefthand subspace;
4:

� ������� �  	� := the leftmost x-coordinate of the righthand
subspace;

5: for each segment 
 ��� � ���	� � � ��� � ���	�����	� in the extent do
6: if 
 �	� � ���	� � � ��� � � �����
��� is to the left of the vertical line

� � � �
����� �  �� then
7: remove 
 ��� � ������� � �
� � ���	�����	� from the extent;
8: end if
9: if 
 �	� � � �	� � � ��� � � �	� � �	� intersects with the line � �� �
����� �  �� at � � �
����� �  	������ � then

10: if � � � � � then
11: reduce 
 ��� � � ��� � � �
� � � ��� � ��� to


 �	� � � �	� � � ��� � �
����� �  	���	�� ��� ;
12: else
13: reduce 
 ��� � � ��� � � �
� � � ��� � ��� to


 �	� � ���	����� ��� � �
����� �  	���	�  ��� ;
14: end if
15: end if
16: end for
17: return the set of polylines consisting of the remaining

segments and the partition size in terms of the number
of coordinates.

leftmost x-coordinate (uppermost y-coordinate) of the right-
hand (lower) subspace (e.g., � � in Figure 8(a)). Ties are
broken by favoring the one with the lowest inter-prob. The
reason will become clear when the reader proceeds to the
next two subsections and we will mention it again later on
in Section 4.4.

We now describe the algorithm �� � � ��� � � .�������� (Algo-
rithm 1) that takes an array of data regions and the partition
style as the input and evaluates the partition size with the
input style. To simplify the illustration, the algorithm is pre-
sented for the style in which the sorting is based on the re-
gions’ rightmost x-coordinates, and ����� regions are given
to the lefthand subspace. It is obvious to extend it to other
partition styles. The algorithm consists of two phases. In
the first phase (lines 1-3), we identify the lefthand subspace
and construct the extent for this subspace. This is straight-
forward. However, it is worth noting that the extent of a
subspace could consist of one or more closed polygons.3 In

3For example, in Figure 6(a), when the partition ����� ��� ������� � 	 ����� � has

the second phase (lines 4-16), we prune some unnecessary
segments in the extent such that the remaining segments are
sufficient to guide a query point to the appropriate subspace.
Thus, we prune the segments that are to the left of the ver-
tical line that goes through the leftmost x-coordinate of the
righthand subspace, right lmc (lines 6-8). In addition, we
truncate the remaining segments by right lmc (lines 9-15).
Note that this operation does not change the partition size,
but it identifies right lmc in the partition, which is useful
in paging (see Section 4.4). Figure 8(a) gives an example
where the extent of the lefthand subspace is the union of
the dash-dot line and the solid line. The output partition of
Algorithm 1 for this example would be the solid line. The
complexity of Algorithm 1 is O( � log � + ! ), where � is
the number of regions and ! is the number of line seg-
ments. Therefore, the complexity of the recursive partition
procedure for the original space is O( � log � � + ! log � ).
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Figure 8. Examples for the Partition and
Query Processing Algorithms

4.3 Query Processing Algorithm

This subsection presents the algorithm for processing
location-dependent point queries based on the D-tree index
structure. As we discussed in Section 2, the D-tree records
data regions to facilitate point queries. Thus, given a query
point, the query processing problem becomes equivalent to
the problem of searching in the D-tree for the data region
containing the query point. The search algorithm works as
follows. It starts from the root and recursively follows either
the left pointer or the right pointer according to the query
point and the partition until a leaf node is reached. Since
the D-tree is a binary height-balanced tree and there is no
spatial overlapping among sibling nodes, the search time
is � (log � ) in terms of the number of nodes visited. The
procedure is described in Algorithm 2, where the partition

one or more vertices (say, ��� and/or � 	 ) touching the left edge of the space,
the left subspace will consist of more than one closed polygon.
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Algorithm 2 Location-Dependent Query Processing
Input: the D-tree and the query point /
Output: the pointer to the correct data instance
Procedure: // assuming a � -dimensional partition
1: /�� � := the pointer to the root;
2: while / � � is not a data pointer do
3: get the partition of the current node pointed by / � � ;
4: determine if the query point / is to the left or to the

right of the partition (lines 5-26):
5:

� �
����� �  �� := the leftmost x-coordinate of the parti-
tion;

6: ��� � � �  �� := the rightmost x-coordinate of the parti-
tion;

7: if /�� ����� � �
����� �  �� then
8: /�� � := the left pointer of the current node;
9: continue;

10: end if
11: if /�� � ��� � � � � �  	� then
12: /�� � := the right pointer of the current node;
13: continue;
14: end if
15: draw a horizontal ray ��� emanating from / to the

right;
16: .	�  := 0;
17: for each segment in the partition do
18: if the ray ��� intersects the segment then
19: .	�  := .	�  +1;
20: end if
21: end for
22: if .	�  mod 2 == 1 then
23: /�� � := the left pointer of the current node;
24: else
25: /�� � := the right pointer of the current node;
26: end if
27: end while
28: return /�� � .

style is assumed to be a � -dimensional partition. It is trivial
to extend the algorithm to the � -dimensional partition style.

In the algorithm, the key issue is to determine whether
a given query point / is located to the left or to the right
of the partition. As shown in Figure 8(a), we can see that
after a partition, a space is divided into three parts: � � � � � ,
and � 
 , where � � is bound by the leftmost x-coordinate
of the righthand subspace (i.e., � ������� �  �� ) and � 
 is by
the rightmost x-coordinate of the lefthand subspace (i.e.,
� � � � �  �� ). If / falls in � � (i.e., /�� �
��� � �
����� �  	� ), it
goes to the lefthand subspace (lines 7-10). If / falls in � 

(i.e., /�� � ��� ��� � � �  �� ), it goes to the righthand subspace
(lines 11-14). Otherwise, / falls in � � and it has to be de-
termined by examining the partition since � � is shared by
both subspaces (lines 15-26). This operation is illustrated

by an example. In Figure 8(b), Suppose that the solid line
is the partition and that the query point is / . Consider a hor-
izontal ray � � emanating from / to the right. If the number
of times that this ray � � intersects the line segments making
up the partition is odd, then / is to left of the partition; oth-
erwise if the number is even, then / lies to the right of the
partition. In Figure 8(b), since the number turns out to be
one, we know the query point is in the lefthand subspace.

4.4 Paging the D-tree

As discussed in Section 2, wireless data is accessed in
the unit of packet. Thus, it needs to allocate the nodes of
the binary D-tree into packets of fixed size. In this paper, we
employ a top-down approach to carry out packet allocation
[19]. The algorithm works as follows. The D-tree is tra-
versed in a breadth-first order. When inserting a new node,
if the inclusion of the new node in the packet where the par-
ent node is allocated does not exceed the packet capacity,
the new node is allocated space in this packet. Otherwise, a
new packet is created and the new node is allocated to the
beginning of this packet. We do not split a tree node unless
it it is larger than the packet capacity since splitting a small
node will result in a two-packet access, instead of one if the
node is not split. Finally, to save storage we merge some
partial packets at the leaf level in a greedy way. The pseudo
code of the procedure is described in Algorithm 3. This
algorithm has a complexity of O( � ). The query process-
ing over the paged D-tree is similar to that over the binary
D-tree.

For a large node that occupies more than one packet, the
following special arrangement is made. An additional coor-
dinate,

� !� (i.e., the rightmost x-coordinate in the parti-
tion for a � -dimensional partition or the lowest y-coordinate
for an � -dimensional partition), is inserted before the parti-
tion, and the partition starts with the point of � !� (i.e.,
the leftmost coordinate in the partition for a � -dimensional
partition or the uppermost coordinate for an � -dimensional
partition). The previous example in Figure 8(a) is used to
demonstrate the advantage of this arrangement. For query
points falling in � � and � 
 , once knowing

� !� and
� !� , we can detect which pointer to follow in the first
packet, thereby preventing further packet accesses and re-
ducing the tuning time. Consequently, we place the point-
ers before the partition to support this early termination of
packet accesses, as discussed in Section 4.1. In addition, it
is obvious that for two partition styles of the same size, the
lower the inter-prob of two subspaces, the higher the prob-
ability of successful early detection of the next pointer. For
nodes with sizes larger than the packet capacity, this will
result in a shorter index search time. Therefore, in the space
partition algorithm (Section 4.2), we break ties by favoring
the partition style with a lower inter-prob.
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Algorithm 3 D-tree Paging Algorithm
Input: a binary D-tree and packet capacity / � ����� � 
������
Output: a paged D-tree
Procedure:
1: arrange the tree nodes in the queue in a breadth-first

traverse;
2: while there are nodes left in the queue do
3: pick up the first node in the queue;
4: . ����� . 
������ := the size of this node;
5: if no parent or . ����� . 
������ � remaining space of the

packet of the parent node then
6: while . ����� � 
�� ��� � / � ����� � 
�� ��� do
7: create a new packet;
8: . ����� � 
�� ��� := . ����� � 
�� ��� � / � ����� � 
�� ��� ;
9: end while

10: create a new packet;
11: reduce the remaining space of the packet by

. ����� � 
�� ��� ;
12: allocate the node in the new packet(s);
13: for each new packet fill in other info such as the

packet id;
14: else
15: allocate the node in the packet of the parent node;
16: reduce the remaining space of the packet by

. ����� � 
�� ��� ;
17: end if
18: end while
19:

� �� �� ��. := 0;
20: for all packets at the leaf level do
21: if � �  	� ��. ��� occupied space of the current packet

then
22: merge the last packet with the current packet;
23: end if
24:

� �  �� ��. := remaining space of the current packet;
25: end for

5 Performance Evaluation

This section presents the performance evaluation results
for the proposed D-tree index structure. Three datasets are
used in the experiments (see Figure 9). In the first dataset
(UNIFORM), we randomly generate 1000 points in a square
Euclidean space. The second set (HOSPITAL) and the third
set (PARK) contain the positions of the hospitals and parks
in Southern California, which are extracted from the point
dataset available from [8]. The valid scopes (or data re-
gions) of the points regarding nearest neighbor search, as
shown in the figures, are constructed using the Voronoi Di-
agram approach [3]. The distributions of the data regions
in the latter two datasets are highly clustered. A uniform
access distribution over the data regions is assumed in the
evaluation.

(a) UNIFORM
( � =1000)

(b) HOSPITAL
( � =185)

(c) PARK
( � =1102)

Figure 9. Datasets under Evaluation

Parameter D-Tree Trian-Tree R*-Tree
Trap-Tree

bid size 2 bytes 2 bytes 2 bytes
header size 2 bytes 0 0
pointer size (each) 4 bytes 4 bytes 2 bytes
coordinate size 4 bytes
data instance size 1K bytes
packet capacity 64 bytes - 2K bytes

Table 2. System Parameters Setting

The D-tree is compared to the trian-tree, the trap-tree,
and the R � -tree index structures. As in the D-tree, the nodes
in the trian-tree and the trap-tree do not fit the packet ca-
pacity either. To remedy this situation, we page the trap-
tree using the top-down paging approach. For the trian-tree,
the nodes are paged in a greedy way as they are traversed
in a breadth-first order. This is because in the trian-tree a
node may be pointed by more than one parent node (see
Figure 3), making the top-down paging approach impracti-
cal. For the R � -tree, it is obvious that a better search ap-
proach is to examine candidate packets in a depth-first or-
der, such that once a containment test in leaf nodes evalu-
ates to true, the search can be terminated without accessing
useless branches. We employ this search method for the R � -
tree in the experiments. To reduce storage size, the added
layer in the R � -tree is also paged in a greedy manner. The
trap-tree and the D-tree are broadcast on the wireless chan-
nel in a breadth-first order to facilitate merging of the leaf
nodes. The trian-tree is broadcast in a breadth-first order
due to the aforementioned reason. The R � -tree is broadcast
in a depth-first order to enable backtracking operations.

The system parameters for the evaluation are set as in
Table 2. For the trian-tree and the trap-tree, the header size
is set to 0 since the size of a triangle or a segment is fixed
and there is no need to specify the size of each partition. For
the R � -tree, the pointer size is set to 2 bytes since its nodes
fit the packet capacity well and a pointer is just the offset to
the beginning of the packet containing its child. The header
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Figure 10. Performance of Expected Access Latency

info is also unnecessary in the R*-tree.
We assume that flat broadcast is employed for broadcast-

ing data on the wireless channel. The ( � �! ) interleaving
technique [15] is used to interleave the index and the data
on the broadcast channel. The optimal value of  depends
on the index size. It is calculated for each index structure
separately based on the technique presented in [15]. The re-
sults are obtained based on 1,000,000 randomly generated
queries. In the following three subsections, we present the
results in terms of access latency, tuning time, and indexing
efficiency, respectively.

5.1 Access Latency

This subsection evaluates the access latencies of the var-
ious indexes. Figures 10(a), 10(b), and 10(c) show the re-
sults as a function of packet capacity for the three datasets,
respectively. The latencies in the figures are normalized to
the expected access latency without any index (or called the
optimal access latency, i.e., half the time needed to broad-
cast the database). The access latency is affected by the
index size. The larger the index size, the longer the access
latency. Figure 11 shows the normalized index sizes of the
indexes for the PARK dataset. Comparing Figure 11 and
Figure 10(c), we can see that the relative performance in
index size and access latency is consistent.

Let’s compare the performance of different index struc-
tures. From Figure 10, the trian-tree and the trap-tree have
the worst performance, with an expected latency several
times of the optimal latency. This indicates that these two
index structures are almost impractical unless they can pro-
vide an extremely good tuning time and one is concerned
with the tuning time only. As expected, the D-tree gets the
access latency no longer than the R � -tree, and is much bet-
ter than the R � -tree for a small packet capacity. The access
latency overhead due to the D-tree indexing is maintained
at a similar level for all settings of the packet capacity. It
is about 50% worse than the optimal latency in all the three
datasets. We expect that the index overhead at this level is
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Figure 11. Normalized Index Sizes for the
PARK Dataset

acceptable provided that a good tuning time is achieved.

5.2 Tuning Time

This subsection investigates the tuning time for the index
structures. To have a close comparison, we measure the
tuning time only for the index search step since the tuning
time for the steps of initial probe and data retrieval is the
same for all the index structures.

As shown in Figure 12, the R � -tree has the worst per-
formance because of a significant degree of overlap among
index subspaces, which often carries out a search to access
more than one leaf node before the desired pointer can be
reached. For all the three datasets, the D-tree gains a much
better performance than the trian-tree and the trap-tree when
the packet has a capacity larger than 256 bytes. When the
packet capacity is smaller than 256 bytes, the D-tree per-
forms slightly worse than the trap-tree. This can be ex-
plained as follows. It was observed that, compared with
the trap-tree, in the D-tree, the partition size for the nodes at
the top levels are a little bit larger. Thus, for a small packet
capacity, a top-level node requires more packets to store. As
an index search has to access the top-level nodes, this leads
to a poorer performance for the D-tree. When the packet ca-
pacity increases, the binary D-tree can take advantage of the
top-down paging approach and allocate a large number of
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Figure 12. Peformance of Tuning Time
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Figure 13. Performance of Indexing Efficiency

branches to a single packet. This decreases the tree height
greatly and hence reduces the search time. However, the
trap-tree cannot compress the tree very much because of its
large index size (see Figure 11). As a result, the tuning time
of the D-tree is only about half that of the trap-tree when the
packet has a large capacity.

5.3 Indexing Efficiency

We now evaluate the index structures in terms of index-
ing efficiency. The larger the indexing efficiency, the more
valuable the index. The results for the three datasets are
shown in Figures 13(a), 13(b), and 13(c), respectively.

Due to an extremely large index size, the trap-tree has
the worst performance, although it can provide a short tun-
ing time for a small packet capacity in Figure 12. With a
medium index size, the trian-tree performs better than the
trap-tree. However, the performance of these two index
structures is far from that of the R � -tree and the D-tree. The
proposed D-tree is superior in all cases. This means that the
best tradeoff between tuning time and index size is achieved
by the D-tree. This is expected since, as shown in the last
two subsections, the D-tree can provide a very good tuning
time while maintaining the index overhead at a reasonable
level.

6 Conclusion

While LDISs are becoming increasingly popular among
mobile users, data broadcast provides an elegant scalability
to an unlimited client population. It is natural to employ
data broadcast to disseminate location-dependent data (such
as region-wide information) to mobile users. In this paper,
we have studied the issue of querying location-dependent
data in a mobile broadcast environment.

Through careful analysis of some existing index struc-
tures, we found these indexes inefficient for LDISs im-
plemented in a mobile broadcast environment. A new in-
dex structure, called D-tree, has been proposed. Different
from the existing approaches, the D-tree neither decom-
poses nor approximates data regions, rather indexes them
directly based on the divisions between the regions. The
partition algorithm, the query processing algorithm, and the
paging algorithm for the D-tree have been described.

We have evaluated the performance of the proposed D-
tree thoroughly using both synthetic and real datasets. The
following results are obtained. In terms of access latency,
the D-tree substantially outperforms the planar point algo-
rithms (i.e., the trian-tree and the trap-tree) and maintains a
similar level of index overhead to the R � -tree. In terms of
tuning time, the D-tree index shows a much better perfor-
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mance than the trap-tree for a large packet capacity, and the
R � -tree and the trian-tree in all cases. It performs slightly
worse than the trap-tree only when the packet capacity is
very small. As a result, the D-tree provides the best overall
performance in terms of indexing efficiency. As such, the
D-tree index is recommended for practical use in querying
location-dependent data in mobile broadcast environments.
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