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Abstract— The rapid growth of time-critical information ser-
vices and business-oriented applications is making quality of ser-
vice (QoS) support increasingly important in content distribution.
This paper investigates the problem of placing object replicas
(e.g., web pages and images) to meet the QoS requirements of
clients with the objective of minimizing the replication cost. We
consider two classes of service models: replica-aware service and
replica-blind service. In the replica-aware model, the servers
are aware of the locations of replicas and can therefore direct
requests to the nearest replica. We show that the QoS-aware
placement problem for replica-aware services is NP-complete.
Several heuristic algorithms for efficient computation of subopti-
mal solutions are proposed and experimentally evaluated. In the
replica-blind model, the servers are not aware of the locations
of replicas or even their existence. As a result, each replica
only serves the requests flowing through it under some given
routing strategy. We show that there exist polynomial optimal
solutions to the QoS-aware placement problem for replica-
blind services. Efficient algorithms are proposed to compute the
optimal locations of replicas under different cost models.

I. INTRODUCTION

Replication techniques are widely employed to improve
the performance of large-scale content distribution systems
such as CDNs [1]. By geographically multiplying the source
of information, the requested contents can be brought much
closer to the clients, thereby reducing both the access latency
and network traffic. Replication also offers the potential to
improve system scalability by distributing the load across
multiple servers.

In general, a client would experience shorter access latency
if a replica of the requested object (e.g., a web page or
an image) is placed in its closer proximity. Therefore, the
effectiveness of replication, to a large extent, depends on the
locations where the replicas are placed. With the rapid growth
of time-critical information services and business-oriented
applications, there is an increasing demand to support quality
of service (QoS) in content distribution [2]. The desired level
of performance can be specified in the form of service level
agreements (SLAs) between the content/service providers and
their users, e.g., the response time of requests from domain A
for Nasdaq.com home should not exceed 1 second; 95% of the
requests from domain B for CNN.com home should complete
in less than 2 seconds [3]. This entails the consideration
of QoS requirements in replica placement. It is desirable to

allocate replicas in the network closer to the clients with
higher QoS requirements. Unfortunately, most existing work
on replica placement has focused on optimizing an average
performance measure of the entire client community such
as the mean access latency [4], [5], [6]. While an average
performance measure may be important from the system’s
point of view, it does not differentiate the likely diverse
performance requirements of the individuals. So far, to the
best of our knowledge, there has been no study on QoS-aware
replica placement.

In this paper, we investigate the problem of placing the
replicas of an object in content distribution systems to meet the
QoS requirements of clients with the objective of minimizing
the replication cost. The QoS requirements are specified in the
form of a general distance metric. The replication cost, on the
other hand, is measured in terms of storage, consistency man-
agement, or a combination of both. We consider two classes
of service models that lead to different problem formulations:
replica-aware service and replica-blind service.

In the replica-aware model, the servers in the system are
aware of the locations of replicas. By making use of this
information, the servers are capable of directing requests to
the nearest replica of the target object. We show that the
QoS-aware placement problem for replica-aware services is
NP-complete. Several heuristic algorithms are then proposed
for efficient computation of suboptimal solutions. They are
evaluated, via simulation experiments, against a super-optimal
bound obtained from the solution of a relaxed linear program.

In the replica-blind model, the servers in the system are not
aware of the locations of replicas or even their existence. As a
result, request routing is independent of where the replicas
of the target object are located. Each replica only serves
the requests flowing through it under some given routing
strategy which can be implemented at either the network
level or the application level. We show that the QoS-aware
placement problem for replica-blind services can be solved
with polynomial time complexity. Efficient algorithms are
proposed to compute the optimal locations of replicas under
different cost models.

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III describes the system
model and provides some basic definitions. Section IV presents
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a formulation of the QoS-aware placement problem for replica-
aware services, analyzes its complexity and proposes several
heuristic solutions. The QoS-aware placement problem for
replica-blind services is formulated and investigated in Sec-
tion V. Finally, Section VI concludes the paper.

II. RELATED WORK

Early work on replica placement had investigated the file al-
location problem (FAP) in storage systems [7] and the database
location problem (DBL) in computer networks [8]. They were
transformed into mixed linear programming models. In these
studies, the delivery of data updates to different replicas
was assumed unicast-based. Wolfson et al. [9] adopted a
multicast-based delivery model to reduce the network traffic of
update transfers. They proposed polynomial-time algorithms to
compute optimal replica placement strategies for some special
networks. However, their problem formulation assumed a ho-
mogeneous network model where all the links were associated
with the same communication cost. Furthermore, the storage
costs of replicas were not considered in the cost model.

Recent research has studied replica placement on the In-
ternet for efficient content distribution. The replication entity
can be either a mirror/proxy server or an object replica. The
former is referred to as the server placement problem and
the latter is called the object placement problem. Most ex-
isting work on server placement has assumed all mirror/proxy
servers are provided with the same contents, in which case
the server placement problem is essentially the same as the
object placement problem. Li et al. [10] and Krishnan et
al. [4] developed polynomial optimal solutions to place a given
number of servers in a tree network to minimize the average
retrieval cost of all clients. The same problem for general
topologies was shown to be NP-complete. Qiu et al. [5]
experimentally compared several heuristic solutions and found
a simple greedy algorithm performed the best. Jamin et al. [11]
investigated the constrained mirror placement problem where
mirrors were allowed to be placed at some subset of network
nodes only. It was shown that placing more mirrors beyond
a certain number offered little performance gain. Different
from the above studies which explored the optimization of
retrieval cost only, Xu et al. [12] and Jia et al. [13] further
took the update cost into consideration. Cidon et al. [6], on
the other hand, used the total storage and retrieval cost as the
objective metric of optimization. They developed a distributed
algorithm to compute the optimal locations to place object
replicas. A more comprehensive cost model was adopted by
Kalpakis et al. [14] who optimized three types of cost (i.e.,
retrieval, update, and storage costs) for replica placement in
an integrated fashion. Korupolu et al. [15] took a different
approach to account for the storage overhead. They investi-
gated replica placement for multiple objects in the context of
hierarchical caching under the constraint that each cache was
equipped with limited storage space. A coordinated placement
and replacement strategy for general cascaded caching archi-
tectures was proposed by Tang et al. [16]. However, most
work described above aimed at maximizing the performance

gain with a given budget of resources in terms of an average
performance measure. To the best of our knowledge, none
of the existing work has considered providing some level of
performance guarantee in replica placement. Different from
existing research, the objective of our study is to minimize
the amount of resources required to achieve a certain level
of service. We investigate the QoS-aware replica placement
problem for a variety of service and cost models.

III. SYSTEM MODEL AND BASIC DEFINITIONS

Consider an object hosted by a content distribution system
whose servers are connected to form a network represented
by a graph G = (V,E), where V is the set of servers and
E ⊂ V × V is the set of physical or logical links between
the servers. A weight s(v) is associated with each server
v ∈ V , representing the cost of storing a copy of the object
at v. Moreover, a distance d(u, v) is associated with each
edge (u, v) ∈ E, representing the communication cost of
sending a request and the associated response for the object
between u and v. Note that the term “communication cost” is
used in a general sense in our model. It can be intepreted
as different performance measures such as network delay,
bandwidth consumption, and hop count. If an object transfer
goes through multiple links from the source to the destination,
the total communication cost is given by the sum of those
on all intermediate links. To facilitate presentation, we shall
extend the function d(u, v) to all pairs of nodes (u, v) ∈ V ×V
by defining d(u, v) as the total communication cost of the links
on the shortest path between u and v.

The object is associated with an authoritative origin server
in the network where the content provider makes the updates
to the object. The object copy located at the origin server is
called the origin copy (denoted by r) and an object copy at
any remaining server is called a replica. We refer to the set
of servers in V − {r} where the replicas are placed as the
replication strategy (denoted by R). The object is retrieved
by the clients outside the network of servers. We assume each
server receives requests from some community of clients (e.g.,
by statically configuring the clients, using DNS-based request
direction, or intercepting requests in a transparent fashion [1]).
If the object is replicated at the server receiving the client
request, the response is generated locally. Otherwise, the server
forwards the request to the other servers in the network and
relays the response to the client.

In this paper, we consider retrieval cost as a measure of the
performance perceived by the clients. The retrieval cost of a
request is given by the communication cost involved in serving
the request. Since the communication cost from a client to the
associated server is independent of the replication strategy, for
simplicity, this portion of cost is not included in our analytical
model. We shall assume client requests originate from the
associated servers. Every server in the network has some QoS
requirement on retrieving the object for its clients. The QoS
requirement of each server v is specified by an upperbound
q(v) on retrieval cost. If the object can be retrieved by v within
a cost of q(v), the QoS requirement is satisfied. Otherwise, the
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Fig. 1. Replica-Aware Service Model

QoS requirement is violated. The QoS requirements associated
with different servers can be different.

The objective of the QoS-aware replica placement problem
is to find a replication strategy of the object that satisfies the
QoS requirements of all servers and involves the minimal
replication cost. We identify two types of replication cost:
storage cost and update cost. Given a replication strategy
R ⊆ V − {r}, the storage cost of R refers to the cost of
placing replicas at the servers in R and is given by

scost(R) =
∑
v∈R

s(v).

The update cost, on the other hand, refers to the com-
munication cost of keeping the replicas consistent with the
authoritative origin copy. To allow for efficient delivery of
object updates, it is assumed that all servers in the network
are organized into a tree structure rooted at the origin server.
We shall call it the update distribution tree, denoted by T .
Object updates are delivered from the origin copy to all
replicas via application-level multicast, in which each server
receives updates from its parent and is responsible for further
distributing the updates to its children [17], [18]. The total cost
of update delivery depends on the locations of the lowest level
replicas in the tree. Let µ be the update rate of the object. The
update cost of R is then given by

ucost(R) = µ ·
∑

v �=r ∧ Tv∩R �=∅
d(v, p(v)),

where Tv is the subtree of T rooted at v, and p(v) is the parent
of v in T . Note that Tv ∩ R �= ∅ implies v is involved in the
application-level multicast. Depending on the business model,
the replication cost of R can take the form of the storage
cost scost(R), the update cost ucost(R), or a combination
of the two costs α · scost(R) + (1 − α) · ucost(R), where
0 < α < 1 is a relative weight. In the following sections, we
study the QoS-aware replica placement problem for different
service models.

IV. QOS-AWARE PLACEMENT FOR REPLICA-AWARE

SERVICES

In the replica-aware service model, the servers in the system
are aware of the replication strategy (e.g., by maintaining the
object identifiers and the associated replication strategies in

the form of directories) [5], [11], [19]. By making use of
this information, the servers are capable of directing locally
missed requests to the nearest replica of the target object.
Figure 1 shows the request paths in an example system where
all network links have the same communication cost. The
requests originating from v1, v2 and v3 are served by replicas
v4, v5 and v5 respectively.

By modeling the content distribution system as a general
graph, the QoS-aware placement problems for replica-aware
services are formulated as follows.

Definition 1: [The Placement Problems for Replica-Aware
Services]

Given a network G = (V,E), the origin copy r ∈ V
with an update rate µ, the storage cost s(v) and the QoS
requirement q(v) for each node v ∈ V , the communication
cost d(u, v) for each link (u, v) ∈ E, and a relative weight α
of update cost to storage cost. Let T be the update distribution
tree rooted at r. The storage, update, and combined costs of
a replication strategy R ⊆ V − {r} are defined as

scost(R) =
∑
v∈R

s(v),

ucost(R) = µ ·
∑

v �=r ∧ Tv∩R �=∅
d(v, p(v)),

and

sucost(R) = α ·
∑
v∈R

s(v)+ (1−α)µ ·
∑

v �=r∧Tv∩R �=∅
d(v, p(v)),

respectively, where Tv is the subtree of T rooted at v, and p(v)
is the parent of v in T . The objectives of the min-scost, min-
ucost, and min-sucost placement problems for replica-aware
services are to find a replication strategy R with the minimal
storage, update, and combined costs respectively, such that
R ∪ {r} satisfies the QoS requirement of every node v ∈ V ,
i.e.,

min
w∈R∪{r}

d(v, w) ≤ q(v). �

Note that the min-scost and min-ucost problems are special
cases of the min-sucost problem with α values of 1 and 0
respectively. In the following, we first show that the placement
problems for replica-aware services are NP-complete. Several
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heuristic algorithms are then proposed and experimentally
evaluated against the super-optimal yardstick obtained by solv-
ing the relaxed linear program formulation of the problems.

A. NP-Completeness Results

Theorem 1: The min-scost, min-ucost, min-sucost place-
ment problems for replica-aware services are NP-complete.
Proof: Consider a candidate solution for an instance of the
replica placement problem in its decision version with an
integral bound K. Since the distance of the shortest path be-
tween each pair of nodes can be computed in polynomial time,
examining whether the candidate solution satisfies the QoS
requirements of all nodes has a polynomial time complexity.
Moreover, the computation of the total cost and its comparison
with the bound K can be performed in polynomial time, be it
the storage, update, or combined cost. Therefore, the replica
placement problems are in NP.

It can be shown that the replica placement problems are
NP-complete by a polynomial reduction from the minimum
set cover problem which is known to be NP-complete [20].
See [21] for details.

Hence, the theorem is proven. �

B. Heuristic Algorithms for Replica Placement

A brute-force solution to the replica placement problem
is computationally expensive. There are a total of 2|V |−1

different replication strategies for an exhaustive search, where
|V | is the number of servers. The search space is huge even for
small values of |V |. In this section, we present some heuristic
algorithms for replica placement, all of which share the greedy
approach. The performance of these algorithms is compared,
via simulation experiments, with a super-optimal bound in
Section IV-C. The results show that the proposed heuristics
generally produce good solutions.

The first family of algorithms is called l-Greedy-Insert. l-
Greedy-Insert starts with an empty replication strategy R = ∅
and continues to insert replicas into R until all QoS require-
ments are satisfied. At each step, the insertion alternative
with the maximum normalized benefit is performed, where the
normalized benefit is defined as the increase in the number
of nodes whose QoS requirements are satisfied normalized
by the increase in replication cost. l-Greedy-Insert allows l-
level backtracking in the insertion process. In the first step, the
set of (l + 1) replicas that maximizes the normalized benefit
is inserted into R. In each subsequent step, l-Greedy-Insert
examines all possibilities of replacing some l already assigned
replicas with (l + 1) replicas. Note that the removed replicas
and the inserted replicas can overlap. It is obvious that the first
step has a time complexity of O(|V |l+1) and each subsequent
step has a worst case complexity of O(|V |2l+1). There can be a
total of O(|V |) steps in the worst case. To calculate normalized
benefits efficiently, the shortest-path distances between all
pairs of nodes need to be computed in a preprocessing stage.
This has a time complexity of O(|V |3). Therefore, the overall
time complexity of l-Greedy-Insert is O(|V |3) for l = 0 and
O(|V |2l+2) for any l > 0.

The second family of algorithms is called l-Greedy-Delete.
Different from l-Greedy-Insert, l-Greedy-Delete starts from a
complete replication strategy R = V − {r} and continues to
remove replicas from R provided that no QoS requirement
is violated. At each step, the removal alternative with the
maximum reduction in replication cost is performed. l-Greedy-
Delete also allows l-level backtracking in the removal process.
In the first step, l-Greedy-Delete removes from R the set of
(l + 1) replicas that maximizes the cost reduction without
violating any QoS requirement. In each subsequent step, l-
Greedy-Delete considers all possibilities of inserting l replicas
into R and then removing (l + 1) replicas from the new R
with no QoS requirement violated. The process continues until
the set of feasible alternatives is empty. It is easy to see that
the first step has a time complexity of O(|V |l+1) and each
subsequent step has a worst case complexity of O(|V |2l+1).
There are a total of O(|V |) steps in the worst case. Similar to
l-Greedy-Insert, l-Greedy-Delete also needs a preprocessing
stage with time complexity O(|V |3) to compute the shortest-
path distances between all pairs of nodes. Therefore, the
overall time complexity of l-Greedy-Delete is O(|V |3) for
l = 0 and O(|V |2l+2) for any l > 0.

The selection of l in the above heuristics reflects a tradeoff
between the time complexity and the quality of solution.
Let N be the size of an optimal replication strategy. For l
values in the range of 0 to N (|V | − N ), the l-Greedy-Insert
(l-Greedy-Delete) heuristic with a larger l value generally
produces a solution closer to the optimum at the cost of a
higher computational complexity. An l value of 0 degenerates
l-Greedy-Insert and l-Greedy-Delete to conventional greedy
heuristics.

C. Performance Evaluation

To evaluate the performance of the above heuristics, we have
experimentally compared them against a super-optimal bound.
Note that the min-sucost replica placement problem can be
written as the following 0-1 integer program, assuming the
node set V = {r, v1, v2, · · · , vn} where r is the origin copy:

minimize∑
i>0

(
α · si · xi + (1 − α) · µ · d(vi, p(vi)) · yi

)
,

subject to

∀i > 0 ∧ d(vi, r) > q(vi),
∑

d(vi,vj)≤q(vi)

xj ≥ 1, (1)

∀ i > 0, yi ≥ xi, (2)

∀ i > 0 ∧ p(vj) = vi, yi ≥ yj , (3)

∀ i > 0, xi, yi ∈ {0, 1}. (4)

There are a total of (2|V |−2) variables and a maximum of
(3|V |−3) constraints in the integer program. The 0-1 variable
xi indicates whether a replica is placed at node vi and the 0-1
variable yi indicates whether object updates need to be sent
through the link (vi, p(vi)) in the update distribution tree T ,
where p(vi) is the parent of vi in T . Constraint (1) ensures all
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QoS requirements are satisfied, i.e., if the QoS requirement of
a node cannot be met by the origin copy, it has to be satisfied
by some replica. Constraints (2) and (3) ensure object updates
are distributed to each replica. In our experiments, we relax
the integer program to a regular linear program by replacing
the last constraint (4) with ∀ i > 0, 0 ≤ xi, yi ≤ 1, and
compute the optimal solution to the regular linear program.
Since the solution may not be integral (i.e., not feasible in
practice), it provides a super bound on the optimal solution of
the replica placement problem.

In our experiments, the network topology of the content
distribution system was randomly generated using the Wax-
man model [22]. The model is designed to produce network
topologies that resemble typical internetworks. It works by
first placing a given number of N nodes on a square plane s
distance units by s distance units. The links are then inserted
to connect the nodes. A link is created between each pair of
nodes (u, v) with probability p(u, v) = β1 · e−d(u,v)/(β2·L),
where d(u, v) is the Euclidean distance between u and v, L =√

2 · s is the maximum distance between any two nodes, and
β1, β2 are Waxman parameters. The cost of each link is given
by the Euclidean distance between the two endpoints. The
experiments were performed over a wide range of parameter
settings. In our default parameter setting, N was set at 100,
s was set one order of magnitude higher than N , β1 was set
at 0.1, and β2 was set at 0.6. Under this setting, the average
number of links in the networks generated was about 280, and
the average communication cost of the links was about 450.

A server was assumed to be located at each node in the
network. The origin copy was assumed to be located at a
randomly selected node and was assigned an update rate of
one per time unit. The shortest paths tree rooted at the origin
copy was taken as the update distribution tree. The default
storage cost at each node was set at 1,000. Given a mean value

q, the QoS requirements of all nodes were assigned based
on two different distributions: a constant q, and a uniform
distribution in [0, 2q]. By default, the storage and update costs
were assigned equal weights in the combined cost, i.e., the
relative weight α = 0.5.

The following algorithms described in Section IV-B were
evaluated in our simulation study: 0-Greedy-Insert, 0-Greedy-
Delete, 1-Greedy-Insert and 1-Greedy-Delete. In addition,
two new algorithms called 0-Better-Greedy and 1-Better-
Greedy were also included. The 0-Better-Greedy (1-Better-
Greedy) algorithm outputs the lower-cost replication strat-
egy between the solutions of 0-Greedy-Insert (1-Greedy-
Insert) and 0-Greey-Delete (1-Greey-Delete). Note that the
time complexities of 0-Better-Greedy and 1-Better-Greedy are
asymptotically the same as the simple 0-Greedy and 1-Greedy
heuristics respectively.

For each parameter setting, we randomly generated 1,000
different network topologies. The average performance of
these 1,000 simulation runs is plotted for performance com-
parison. To quantify the relative performance difference, the
replication costs of different algorithms are normalized with
respect to the super-optimal bound.

Figures 2(a) and 2(b) show the normalized replication costs
as a function of q for constant and uniform distributions of
QoS requirements respectively. As evident from the superior
performance of Better-Greedy heuristics over their simple
Greedy peers, the Greedy-Insert and Greedy-Delete heuristics
do not dominate one another. On the other hand, the 1-
Greedy heuristics generally outperform the 0-Greedy heuris-
tics. The normalized costs of 0-Better-Greedy and 1-Better-
Greedy heuristics are consistently within 30% and 19% of the
super-optimal bound respectively under constant distribution
of QoS requirements. They are within 5% and 3% of the
super-optimal bound respectively under uniform distribution
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of QoS requirements. When the QoS requirements of most
nodes are low (i.e., q ≥ 2, 000 for constant distribution and
q ≥ 30, 000 for uniform distribution), few replicas need to be
placed in addition to the origin copy. In contrast, when the
QoS requirements are high (i.e., q ≤ 100), a replica should
be placed at almost every node. In the above two cases, the
performance of all heuristic algorithms approaches the super-
optimal bound. Noticeable difference between 0-greedy and
1-greedy heuristics appears at moderate q values. The better
performance of 1-greedy heuristics is achieved at the cost of
a higher asymptotic complexity. Similar performance trends
have also been observed in our experiments with different
network connectivities and different relative weights α’s of
update cost to storage cost. The results are not shown here
due to space limitation.

Figures 3(a) and 3(b) show the experimental results for
different numbers of servers in the content distribution system
(i.e., the number of nodes modeled in the network). In these
experiments, the connectivity parameters β1 and β2 were set
such that the average node degree was kept similar across
networks. We did not simulate the 1-greedy heuristics for
networks with 500 servers due to their high computational
requirements. As seen from Figure 3, the normalized costs
of the greedy heuristics generally increase with the number
of servers. However, the increasing rate of normalized cost
reduces with growing number of servers. The performance
difference between networks with 500 and 100 servers is
much smaller than that between networks with 100 and 20
servers. For content distribution systems with 500 servers,
the normalized costs of 0-Better-Greedy are 1.37 and 1.12
under constant and uniform distributions of QoS requirements
respectively. This demonstrates that the greedy heuristics gen-
erally produce close-to-optimal solutions with much lower
computation complexity than a brute-force approach.

V. QOS-AWARE PLACEMENT FOR REPLICA-BLIND

SERVICES

In the replica-blind service model, the servers in the system
are not aware of the replication strategy. Thus, request routing
is independent of where the replicas of the target object are
located. Examples of replica-blind service include static proxy
hierarchies [12], [23], [24] and en-route content distribution
architectures [4], [25], [26]. In these systems, each replica
only serves the requests flowing through it under some given
routing strategy which can be implemented at either the
application level or the network level [1]. Regardless of the
underlying routing mechanism used, the request/delivery paths
between all nodes and a given origin server are represented
by a tree topology rooted at the origin server. This tree is
simultaneously used for the routing purposes of both object
retrieval and update. Consider again the example system in
Figure 1. Assuming all requests are routed through the shortest
paths towards the origin server, the corresponding request
paths are shown in Figure 4. As can be seen, the requests
originating from v1 and v2 are served by the origin copy, and
the requests from v3 is served by replica v5. Note that requests
in a replica-blind serice model are not necessarily served by
the physically nearest replica. They are satisfied by the nearest
replica along the direction towards the origin copy.

The QoS-aware placement problems for replica-blind
services are formulated as follows.

Definition 2: [The Placement Problems for Replica-Blind
Services]

Given a tree T = (V,E) rooted at the origin copy r ∈
V with an update rate µ, the storage cost s(v) and the QoS
requirement q(v) for each node v ∈ V , the communication
cost d(u, v) for each link (u, v) ∈ E, and a relative weight
α of update cost to storage cost. The storage, update, and
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Fig. 4. Replica-Blind Service Model

combined costs of a replication strategy R ⊆ V − {r} are
defined as

scost(R) =
∑
v∈R

s(v),

ucost(R) = µ ·
∑

v �=r ∧ Tv∩R �=∅
d(v, p(v)),

and

sucost(R) = α ·
∑
v∈R

s(v)+ (1−α)µ ·
∑

v �=r∧Tv∩R �=∅
d(v, p(v)),

respectively, where Tv is the subtree of T rooted at v, and p(v)
is the parent of v. The objectives of the min-scost, min-ucost,
and min-sucost placement problems for replica-blind services
are to find a replication strategy R with the minimal storage,
update, and combined costs respectively, such that R ∪ {r}
satisfies the QoS requirement of every node v ∈ V , i.e.,

d(v, l(v,R ∪ {r})) ≤ q(v),

where l(v,R ∪ {r}) is the lowest ancestor of v in R ∪ {r}.
�

A. Optimal Placement with Minimal Storage Cost

This section presents a dynamic programming solution
to the min-scost replica placement problem. As shown in
Figure 5, we consider a more generalized problem of placing
replicas in a subtree rooted at node x, assuming the lowest
ancestor of x that has a replica is node y. This new problem
is formally defined as follows.

Definition 3: Let node y be an ancestor of node x in tree
T , and Vx be the set of nodes in the subtree of T rooted at x
(see Figure 5). Assume an object replica is placed at y. The
problem of finding a replication strategy R(x, y) ⊆ Vx with
the minimal storage cost

scost(R(x, y)) =
∑

v∈R(x,y)

s(v),

such that R(x, y)∪{y} satisfies the QoS requirement of every
node v ∈ Vx, i.e.,

d(v, l(v,R(x, y) ∪ {y})) ≤ q(v),

is referred to as the (x, y)-optimization problem. �

V

y

x

x

Fig. 5. The (x, y)-Optimization Problem

By creating a dummy parent p for the root r, an original
tree T = (V,E) can be transformed into a new tree T ∗ =
(V ∪ {p}, E ∪ {(r, p)}), where d(r, p) = 0. It is easy to
see that the min-scost replica placement problem in T is
equivalent to the (r, p)-optimization problem in T ∗. To develop
a dynamic programming algorithm, Theorem 2 proves that
an optimal solution to the (x, y)-optimization problem must
contain optimal solutions to some subproblems.

Theorem 2: Consider three nodes x, y and z in tree T ,
where y is an ancestor of x, and z is a child of x (see Figure 6).
Let Vz be the set of nodes in the subtree of T rooted at z.
Let R(x, y), R(z, x) and R(z, y) be optimal solutions to the
(x, y)-, (z, x)- and (z, y)-optimization problems respectively.
(i) If x ∈ R(x, y), the replication strategy R′(x, y) =

(R(x, y) − Vz) ∪ R(z, x) is also an optimal solution to
the (x, y)-optimization problem.

(ii) Otherwise, if x /∈ R(x, y), the replication strategy
R′′(x, y) = (R(x, y) − Vz) ∪ R(z, y) is also an optimal
solution to the (x, y)-optimization problem.

Proof: See [21] for details. �

Theorem 2 implies the following properties.
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Theorem 3: Let node y be an ancestor of node x in tree T ,
and Z(x) be the set of x’s children. Let R(x, y) be an optimal
solution to the (x, y)-optimization problem.

(i) If x ∈ R(x, y), the replication strategy {x} ∪⋃
z∈Z(x) R(z, x) is also an optimal solution to the (x, y)-

optimization problem, where R(z, x) is an optimal solu-
tion to the (z, x)-optimization problem.

(ii) Otherwise, if x /∈ R(x, y), the replication strategy⋃
z∈Z(x) R(z, y) is also an optimal solution to the (x, y)-

optimization problem, where R(z, y) is an optimal solu-
tion to the (z, y)-optimization problem.

Proof: Suppose Z(x) = {z1, z2, · · · , zk}.
If x ∈ R(x, y), by iteratively applying claim (i) of The-

orem 2, the following replication strategies are all optimal
solutions to the (x, y)-optimization problem:

(R(x, y) − Vz1) ∪ R(z1, x),
(R(x, y) − Vz1 − Vz2) ∪ R(z1, x) ∪ R(z2, x),
(R(x, y) − Vz1 − Vz2 − Vz3)

∪ R(z1, x) ∪ R(z2, x) ∪ R(z3, x),

· · · · · · ,

(R(x, y) −
k⋃

i=1

Vzi
) ∪ (

k⋃
i=1

R(zi, x)). (5)

Since x ∈ R(x, y), it follows that R(x, y)−⋃k
i=1 Vzi

= {x}.
Thus, (5) = {x}∪⋃k

i=1 R(zi, x) is an optimal solution to the
(x, y)-optimization problem, and claim (i) is proven.

A similar proof can be done for claim (ii). Hence, the
theorem is proven. �

Consider the tree T ∗ = (V ∪ {p}, E ∪ {(r, p)}) rooted at
p that is induced from T = (V,E). For each pair of nodes
x, y ∈ V ∪ {p} where y is an ancestor of x, let R(x, y) be an
optimal solution to the (x, y)-optimization problem in T ∗, and
min-scost(x, y) be the storage cost of R(x, y). The (x, y)-
optimization problem is trivial if x is a leaf in T ∗. In this case,
if d(x, y) ≤ q(x), no replica needs to be placed at x; other-
wise, if d(x, y) > q(x), a replica should be placed at x. For

each non-leaf node x in T ∗, if d(x, y) > q(x), a replica must
be placed at x; otherwise, as seen from Theorem 3, the follow-
ing two possibilities of R(x, y) need to be compared: {x} ∪⋃

z∈Z(x) R(z, x) and
⋃

z∈Z(x) R(z, y), the costs of which
are given by c1(x, y) = s(x) +

∑
z∈Z(x) min-scost(z, x)

and c2(x, y) =
∑

z∈Z(x) min-scost(z, y) respectively, where
Z(x) is the set of x’s children in T ∗. Therefore, the recur-
rences for dynamic programming are given by:

min-scost(x, y)

=




0 if x is a leaf and d(x, y) ≤ q(x),
s(x) if x is a leaf and d(x, y) > q(x),
min{c1(x, y), c2(x, y)}

if x is not a leaf and d(x, y) ≤ q(x),
c1(x, y)

if x is not a leaf and d(x, y) > q(x),

and

R(x, y)

=




∅ if x is a leaf and d(x, y) ≤ q(x),
{x} if x is a leaf and d(x, y) > q(x),
{x} ∪ ⋃

z∈Z(x) R(z, x)
if x is not a leaf, d(x, y) ≤ q(x),
and c1(x, y) ≤ c2(x, y),⋃

z∈Z(x) R(z, y)
if x is not a leaf, d(x, y) ≤ q(x),
and c1(x, y) > c2(x, y),

{x} ∪ ⋃
z∈Z(x) R(z, x)

if x is not a leaf and d(x, y) > q(x).

Starting from the entries where x is a leaf, we can compute
all R(x, y)’s and min-scost(x, y)’s by a post-order traversal
of x in T ∗. R(r, p) is the optimal solution to the min-scost
replica placement problem.

The space and time complexities of the dynamic program-
ming solution are analyzed as follows. Since there are at most
O(|V |2) R-entries and min-scost-entries to compute respec-
tively, the worst case space complexity is given by O(|V |2).
The time complexity to compute each entry R(x, y)/min-
scost(x, y) is O(Nc(x)), where Nc(x) is the number of
x’s children. Note that given a node x ∈ V , there are a
total of Na(x) R-entries/min-scost-entries in the form of
R(x, y)/min-scost(x, y), where Na(x) is the number of x’s
ancestors in T ∗. Therefore, the total computation complexity
of R(r, p) is given by

O
( ∑

x∈V

Na(x) · Nc(x)
)

≤ O
( ∑

x∈V

|V | · Nc(x)
)

= O
(
|V | ·

∑
x∈V

Nc(x)
)

= O(|V |2).
B. Optimal Placement with Minimal Update Cost

This section presents an optimal solution to the min-ucost
replica placement problem. Unlike storage costs, the update
costs of different replicas are inter-related. Placing a new
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replica does not increase the total update cost if some replicas
have already been placed downstream to the new replica in
the tree. As mentioned in Section III, the total update cost
of a replication strategy depends on the locations of the
most downstream replicas only. The closer the replicas to
the origin copy, the lower the update cost. Therefore, the
most downstream replicas should be selected such that each
of them satisfies the QoS requirements of some nodes that
are not satisfied by its parent. Theorem 4 presents an optimal
replication strategy that produces the minimal update cost.

Theorem 4: The replication strategy

R∗ = {v | v �= r

∧ ∆cost(v) = min
w∈Tv

(q(w) − d(w, v)) < d(v, p(v))}

is an optimal solution to the min-ucost placement problem for
replica-blind services.
Proof: We first show that R∗ satisfies the QoS requirement of
every node w ∈ V . If d(w, r) ≤ q(w), the claim is straight-
forward. Otherwise, if d(w, r) > q(w), since d(w,w) = 0 ≤
q(w), there exists one node v on the path between r and
w such that d(w, p(v)) > q(w) and d(w, v) ≤ q(w). Thus,
q(w) < d(w, p(v)) = d(w, v) + d(v, p(v)), and equivalently,
q(w) − d(w, v) < d(v, p(v)). By definition, v ∈ R∗, and
it follows that d(w, l(w,R∗ ∪ {r})) ≤ d(w, v) ≤ q(w).
Therefore, R∗ satisfies the QoS requirements of all nodes.

To prove the optimality of R∗, we show that for any replica-
tion strategy R satisfying all QoS requirements, ucost(R) ≥
ucost(R∗). In fact, for each node v �= r, Tv ∩ R∗ �= ∅
implies Tv ∩ R �= ∅. Let x be a node in Tv ∩ R∗. According
to the definition of R∗, there exists a node w ∈ Tx such
that q(w) − d(w, x) < d(x, p(x)). On the other hand, since
R satisfies the QoS requirement of every node, we have
d(w, l(w,R∪{r})) ≤ q(w). Therefore, d(w, l(w,R∪{r})) ≤
q(w) < d(w, x)+d(x, p(x)) = d(w, p(x)). Note that p(x) and
l(w,R∪{r}) are both ancestors of w. This implies p(x) must
be an ancestor of l(w,R∪{r}), and thus, l(w,R∪{r}) ∈ Tx.
Since x ∈ Tv, we have l(w,R ∪ {r}) ∈ Tv . Therefore,
l(w,R ∪ {r}) ∈ Tv ∩ R and Tv ∩ R �= ∅. It follows from
Definition 2 that

ucost(R∗) = µ ·
∑

v �=r ∧ Tv∩R∗ �=∅
d(v, p(v))

≤ µ ·
∑

v �=r ∧ Tv∩R �=∅
d(v, p(v))

= ucost(R).

Hence, the theorem is proven. �

It is obvious that if v ∈ R∗, all non-root ancestors of v are
in R∗. Therefore, the optimal solution R∗ induces a connected
subgraph in tree T .

The values of ∆cost(v) in Theorem 4 can be computed in
an iterative fashion by a post-order traversal of v in T with

the following recurrences:

∆cost(v)

=




q(v) if v is a leaf,
min{q(v), min

z∈Z(v)
(∆cost(z) − d(z, v))}

otherwise,

where Z(v) is the set of v’s children. The computational
complexity of ∆cost(v)’s is O(|V |). On obtaining these
values, the optimal replication strategy can be computed based
on Theorem 4 in O(|V |) time. Thus, the computation of R∗

has a total time complexity of O(|V |).

C. Optimal Placement with Minimal Combined Cost

Finally, we consider the min-sucost replica placement
problem. It can be solved by a similar dynamic programming
algorithm to that of the min-scost problem. The corresponding
(x, y)-optimization problem is defined as follows.

Definition 4: Let node y be an ancestor of node x in
tree T , and Vx be the set of nodes in the subtree of T
rooted at x (see Figure 5). Assume an object replica is placed
at y. The objective of the (x, y)-optimization problem is to
find a replication strategy R(x, y) ⊆ Vx satisfying the QoS
requirement of every node v ∈ Vx, i.e.,

d(v, l(v,R(x, y) ∪ {y})) ≤ q(v),

with the minimal combined cost

sucost(R(x, y))

= α ·
∑

v∈R(x,y)

s(v) + (1 − α)µ ·
(
γ · d(x, y)

+
∑

v∈Vx−{x} ∧ Tv∩R(x,y) �=∅
d(v, p(v))

)
,

where

γ =
{

0 if R(x, y) = ∅,
1 if R(x, y) �= ∅. �

The same conclusions of Theorems 2 and 3 can be proven
for the above definition of (x, y)-optimization problem. De-
tailed proofs are omitted in this paper due to space limitation.
Consider the tree T ∗ = (V ∪ {p}, E ∪ {(r, p)}) rooted at
p. For each pair of nodes x, y ∈ V ∪ {p} where y is an
ancestor of x, let R(x, y) be an optimal solution to the (x, y)-
optimization problem in T ∗ and min-sucost(x, y) be the
combined cost of R(x, y). Similar to the analysis in Section V-
A, for each leaf x in T ∗, if d(x, y) ≤ q(x), the optimal
solution R(x, y) = ∅; otherwise, if d(x, y) > q(x), the
optimal solution R(x, y) = {x}. For each non-leaf node x
in T ∗, if d(x, y) > q(x), a replica must be placed at x;
otherwise, if d(x, y) > q(x), the following two possibilities
of R(x, y) should be compared: {x} ∪ ⋃

z∈Z(x) R(z, x) and
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⋃
z∈Z(x) R(z, y), the costs of which are given by

c1(x, y) = α · s(x) + (1 − α)µ · d(x, y)

+
∑

z∈Z(x)

min-sucost(z, x),

and

c2(x, y)

=




0 if
⋃

z∈Z(x) R(z, y) = ∅,
(1 − α)µ · d(x, y)

+
∑

z∈Z(x)∧R(z,y) �=∅
(
min-sucost(z, y)

− (1 − α)µ · d(x, y)
)
if

⋃
z∈Z(x) R(z, y) �= ∅,

respectively, where Z(x) is the set of x’s children in T ∗.
The recurrences for dynamic programming, not shown here

due to space limitation, are similar to the ones in Section V-A.
The space and time complexities of the dynamic programming
algorithm are both given by O(|V |2).

VI. CONCLUSION

We have investigated the minimal cost replica placement
problem for QoS-aware content distribution. The problem has
been formulated under two classes of service models (replica-
aware service and replica-blind service) and three different
cost models (storage cost, update cost, and their combination).
In replica-aware services, the content distribution system is
modeled as a general graph. The associated replica placement
problems are proven to be NP-complete. Several heuristic
algorithms have been proposed and experimentally evaluated
against a super-optimal bound obtained from the relaxed linear
program. The results show that the proposed heuristics perform
close to the super-optimal bound. In replica-blind services,
the delivery paths with respect to a given origin server are
represented by a tree topology. It is shown that the optimal so-
lution to the associated replica placement problem for minimal
update cost can be computed with a time complexity linear to
the number of servers. There also exist polynomial optimal
solutions to the associated replica placement problems for
minimal storage and combined costs. Dynamic programming
algorithms with time complexities square to the number of
servers have been proposed for these two problems.
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