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Abstract - Caching video objects at proxies close to clients has
attracted a lot of attention in recent years. To meet diverse client
bandwidth conditions, there have been research efforts to
combine proxy caching with video layering or transcoding.
Nevertheless, these adaptive systems suffer from either coarse
adaptation granularity due to the inflexible structures of existing
layered coders or high computation overhead due to the
transcoding operations. In this paper, we propose a novel
adaptive video caching framework that enables low-cost and
fine-grained adaptation. The innovative approach employs the
MPEG-4 Fine-Grained Scalable (FGS) video with post-encoding
rate control. We demonstrate that the proposed framework is
both network aware and media adaptive: clients can be of
heterogeneous streaming rates, and the backbone bandwidth
consumption can be adaptively controlled. We also examine the
design and management issues in the framework, in particular,
the optimal stream portions to cache and the optimal streaming
rate to each client. Simulation results demonstrate that,
compared to non-adaptive caching, the proposed framework
with optimal cache management not only achieves significant
reduction on transmission costs but also enables flexible utility
assignment for the heterogeneous clients. Meanwhile, its
computational overhead is kept at a low level, implying that it is
practically deployable.

I. INTRODUCTION

Due to the increasing demands on video distribution over
the Internet, caching video objects at proxies close to clients
has attracted much attention in recent years. However, video
objects have several distinct features, which make
conventional Web caching techniques inefficient, if not
entirely inapplicable. In particular, a video object usually has
a high data rate and a long playback duration, which
combined yield a very high data volume. As an example, a
one-hour MPEG-1 video has a data volume of about 675 MB;
caching it as a whole is clearly impractical, as several such
large streams would exhaust the capacity of a typical cache.

To address these problems, many partial caching
algorithms have been proposed in recent years [3,4,21],
demonstrating that, even if a small portion of a video is stored
at the proxy, the network resource requirement can be
significantly reduced. Most of these proposals, however,
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assume that the rate (either constant or variable) of the video
is predetermined. Due to this non-adaptability, they suffer
from two limitations: first, it is difficult to meet the diverse
bandwidth conditions from heterogeneous clients, for a single
streaming rate would either overuse or underuse some client
bandwidths; second, it is not flexible enough to control the
backbone (server-to-proxy) bandwidth consumption, since the
streaming rate from the proxy to the clients is not adjustable.

While rate adaptability is a salient feature of video objects,
the use of adaptive videos poses great challenges to caching.
The problem is particularly complicated by the fact that most
conventional rate adaptation mechanisms are executed during
the encoding process (e.g., adjusting quantizers [7,18]) and,
hence, are difficult to apply to cached videos. There have been
research efforts to combine proxy caching with video layering
or transcoding [6,13,17]. However, these adaptive systems
suffer from either coarse adaptation granularity (due to the
inflexible structures of existing layered coders) or high
computation overhead (due to the transcoding operations).

In this paper, we propose a novel video caching framework
to achieve low-cost and fine-grained rate adaptation. The
innovative approach is to employ the MPEG-4 Fine-Grained
Scalable (FGS) video with bit-plane coding, which enables
post-encoding rate control by partitioning the video stream at
any specific rate [8]. These operations can be efficiently
implemented at the server or at a proxy with fast response and
low cost. The proposed framework is both network aware and
media adaptive: clients can be of heterogeneous access
bandwidths, and adaptive FGS videos are used to meet the
clients’ bandwidth conditions and to control the backbone
bandwidth consumption.

We examine the critical design and management issues in
the proposed framework. Specifically, there is a two-
dimensional space to explore for how to cache an FGS video:
the length and the rate of the portion to be cached. We stress
that the selection must take into account the interactivities in
video playback, i.e., the non-uniform access rates of different
portions. Moreover, when a cached video is delivered to a
client, different streaming rates can be selected as long as the
rate is no higher than the client’s available bandwidth.
Consequently, the proxy management becomes considerably
more complex than that for a non-adaptive video based system.
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We develop efficient solutions to the above problems. The
objective is to offer optimal resource utilization as well as
satisfactory and fair services to clients.

The performance of the proposed framework with optimal
proxy cache management is extensively examined in various
aspects. The results demonstrate its superiority over non-
adaptive caching schemes for heterogeneous clients. More
importantly, they reveal that our FGS video based adaptive
caching system incurs low computation overhead and, hence,
is practically deployable.

The rest of this paper is organized as follows. In Section I,
we introduce the background as well as related work. Section
IIT describes the FGS video based proxy caching system. The
problems of optimal proxy management are formulated in
Section IV. We also present efficient solutions to the
problems. Their performance is evaluated in Section V. In
Section VI, we further consider the practical issues for
deploying our system. Finally, Section VII concludes the
paper and offers some future directions.

II. BACKGROUND AND RELATED WORK

A. Video Caching for Homogeneous Clients

Numerous cache algorithms for Web proxies have been
proposed in the past decade [5]. However, as mentioned in
Introduction, several distinct features of video objects like
large volume make the conventional Web caching algorithms
inapplicable. To this end, many segment or interval caching
methods have been proposed, with emphases on cache
admission and replacement policies [21]. Due to the static
nature of video contents and the disk bandwidth
considerations at proxies, semi-statically caching popular
video portions over a relatively long time period, rather than
dynamically caching them in response to individual client
requests, has also been suggested [3,4,15]. Wang et al. [3]
proposed a video staging scheme, in which only the part of a
stream that exceeds a certain cut-off rate (i.e., the bursts of a
VBR stream) is cached at the proxy. Sen et al. [4] proposed a
prefix caching algorithm that caches the initial frames of the
video stream. This is particularly attractive in reducing the
client start-up latency, due to the predictable sequential nature
of video accesses.

Most of these algorithms assumed non-adaptive/non-
scalable videos and bandwidth homogeneous clients, though
some of them also considered work-ahead smoothing to
reduce the backbone bandwidth demand for VBR videos. Our
work is motivated by these studies, in particular, the staging
and prefix caching algorithms, and complements them by
focusing on the issues arising from caching scalable videos
with heterogeneous clients.

B. Video Caching for Heterogeneous Clients

To handle the heterogeneity of client bandwidths, a
straightforward method is to produce replicated video streams
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of different rates [18]. Though being used in many
commercial streaming products, this method suffers from high
replication redundancy. Other recent studies have introduced
proxy services with active filtering, which reduces the
bandwidth of a video object by transcoding [2,18]. However,
they usually incur much higher computation overhead due to
transcoding operations.

A more efficient method is to use layered coding (also
known as scalable coding), which compresses a video into
several layers [8]: the most significant layer, called the base
layer, contains the data representing the most important
features of the video, while additional layers, called
enhancement layers, contain the data that progressively refine
the quality of the reconstructed video. Layering has been
widely used in live video multicast to heterogeneous and
isochronous clients [18]. For proxy-assisted streaming with
layered videos, Rejaie et al. [6] studied cache replacement and
perfecting policies with the objective of alleviating congestion
for individual clients. Kangasharju et al. [13] simplified the
system model by assuming the cached contents are semi-static
and only complete layers are cached. They developed
effective heuristics to maximize the total revenue based on a
stochastic knapsack model.

Our work differs from these previous studies in two aspects:
First, we focus on the optimal resource allocation for a set of
clients, rather than the performance perceived by an individual
client. This is an important design issue from a system point
of view. Second, the previous studies employed conventional
layered coding, where the number of layers is restricted and
the rate of each layer is often fixed. For example, Kangasharju
et al. [13] focused on two layers only (base layer and one
enhancement layer). Our work complements them by
employing the fine-grained scalable videos to enhance
adaptability.

C. Fine-Grained Scalable (FGS) Video

FGS generalizes the conventional layering (scalable coding)
methods through a bitplane coding algorithm, which uses
embedded representations for the enhancement layer (also
called FGS layer) [8]. For illustration, there are 64 (8x8) DCT
coefficients for each video block of the enhancement layer; all
the most significant bits from the 64 DCT coefficients
constitute bitplane 0, all the second most significant bits
constitute bitplane 1, and so on and so forth. In the output
stream, the bitplanes are placed sequentially to reconstruct the
coefficients. A post-encoding filter thus can truncate this
embedded stream of the enhancement layer to achieve any
specified output rate, with negligible mismatches due to block
boundary constraints for the truncation [8,12]. We stress that
this rate control method has two advantages: (1) like
transcoding, it enables fine-grained rate adaptation, but the
computation overhead of the filter is much lower; (2) like
layered adaptation, it can be applied to stored videos and
enables the proxy to adjust the rate of a cached stream at a low
cost. Specifically, for narrowband clients, the proxy can
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reduce the streaming rate using the filter; for wideband clients,
the proxy can fetch some uncached portion (i.e., higher-order
bitplanes) from the server and assemble it with the cached
portion to generate a higher rate stream. Such operations are
difficult to implement using transcoding, not only because it
has high computation overhead but also because it changes the
stream syntax.

FGS coding has been adopted in the MPEG-4 standard and
is undergoing active improvement. We have seen proposals
that make efficient use of FGS coding for adaptive video
streaming [19]. However, they did not consider proxy caching.
To our knowledge, the only work that employed FGS videos
in caching is [20]. Their focus however was on developing a
general cache management framework, in particular, the
replacement policies for mixed-media streaming; the FGS
coding was used to for the performance evaluation purpose.

IT1. SYSTEM MODEL OF FGS VIDEO BASED CACHING

The video streaming system consists of a server that stores a
repository of videos, and a set of proxies on the edge of the
network. Selected videos are partially cached at the proxies. A
client request is first forwarded to a nearby proxy, which
intercepts the request and computes a schedule for streaming:
the cached portion of the video can be delivered to the client
directly; some uncached portion, if needed, will be fetched
from the server and then relayed to the client. Although this
process is similar to that of many existing systems, our model
has three novel features, making it more general and flexible.

First, we consider a relatively more complex network (e.g.,
Intranet) behind the proxy, instead of a simple LAN assumed
in most existing studies. Examples include an enterprise
network or a campus network, which remains highly
heterogeneous in terms of client access bandwidths, due to
such factors as hardware configurations, connection methods
(e.g., Ethernet, ADSL, or wireless LAN), and administrative
policies (e.g., in a campus network, the access bandwidth
provisioned for a faculty member would be higher than that
for a student). To reflect such heterogeneity, we assume that
there are M classes of clients, and the maximum access
bandwidth for a client (or simply client bandwidth) of class ¢
is given by ¢;, © = 1,2,..., M, which is an upper bound on the
video streaming rate from the proxy to a client of class i.
Without loss of generality, we number the classes in
ascending order of the «client bandwidth, that is,
gL <<y

Second, we assume that the clients could terminate a video
playback prematurely after they requested the playback from
the beginning of a video. Existing studies on video server
workloads [10] have revealed that such early terminations
occur quite often and, hence, should be considered in system
dimensioning. One approach for modeling early termination is
to partition a video into two parts: a prefix and a suffix, where
the prefix could be a preview of the video. If a client feels
uninterested after watching the prefix, it will terminate the
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connection; otherwise, it will continue playback by retrieving
the suffix. We denote the lengths of the prefix and the suffix
by L, and L,, respectively. Assume the probability of early
terminations is pgr , 0 < ppr < 1. The probability of a
client accessing the entire video (also the probability of
accessing the suffix) is thus 1 — pgp. While here we consider
this simple model only, the method can be extended to a
multiple-segment case with non-uniform access rates due to
such interactivities as VCR-like operations in playback (some
preliminary results can be found in [22]).

Finally and most importantly, we advocate scalable adaptive
videos in this system, in particular, the MPEG-4 FGS videos.
To model an FGS video, we assume that the base layer of the
video has a constant rate 7;,,, , which cannot be further
partitioned along the rate axis. As such, the base layer
represents an ensured lowest playback quality. On the other
hand, neglecting the effect of block boundaries for bitplane
truncation, the enhancement layer can be adaptively
partitioned into any given rate using a filter, either at the
server or at the proxy. Thus, as illustrated in Fig. 1, a proxy
manager can set the streaming rate to a client of class ¢ in the
range of [Tbasea Ci] .

Video Server Video Proxy
> Uncached 2
Filter . £ Fas
Portion g stream
Z ®)
Backbone Cache K
Network )
Video P Client
¢ V. Proxy TOXy Monit — R t
Repository | (—— Request Manager onttor e((iu)es

Fig. 1. Functionalities of the video server and a proxy.

The proxy manager also determines which portion of a
video is to be cached. In the conventional non-adaptive video
caching system, given a cache size for the video, the portion
to be cached is simply determined by the length (in terms of
playback time). However, with FGS videos, there is one
additional dimension to explore: the rate of the portion to be
cached. Such flexibility potentially enables better resource
utilization, but also complicates the proxy cache management.
In addition, there are two cases in which some uncached
portion is to be fetched from the server: (1) the length of the
demanded portion is longer than that of the cached portion;
and (2) the streaming rate is higher than that of the cached
portion. In the second case, the uncached bitplanes will be
fetched from the server and then assembled with the cached
portion to form a stream of higher rate.

As in many previous studies [3,4,14], we assume that the
contents of the proxy cache are semi-static and updated
periodically with changes of the system workloads. For each
period, the key issues in proxy management are to find the
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optimal length as well as the optimal rate for caching a video,
and to determine the streaming rate for each client of the
video. To ensure fairness, we let the video streaming rate to
any client of class ¢ be identical, denoted by b, , b <¢;,
1 =12,...,M. For a multi-video case of N videos, the proxy
manager also needs to determine an optimal resource (cache
space and backbone bandwidth) sharing among the videos.

The key parameters of this model are summarized in Table
1. We assume all these parameters are known a priori and do
not change drastically in a period. Moreover, for ease of
exposition, we focus on the interactions among the origin
server, a single proxy, and the clients of the proxy. Our results,
however, are applicable to the multi-proxy case where each
proxy serves a non-overlapping set of clients.

L Length of the video, L = I, + L,

L Length of the prefix

L,  Length of the suffix

Probability of early terminations

H  Proxy cache size for the video

Base layer rate of the video

A Client request rate for the video

M Number of client classes

b Probability that a client is in class i, p; > 0
¢ Client bandwidth of class i

b; Streaming rate for a class i client (7., < b < ¢;)
o;  Utility of a client in class i, oy = b; /¢

1% Volume of the video with rate ¢, V=L cy
B Backbone bandwidth consumption with ideal

client utility assignment and no caching

Table 1. Model parameters for a single video. For the multi-
video case of N videos, a superscript (k) is to be added to each
parameter of video k, k = 1,2,....N .

IV. THE PROXY CACHE MANAGEMENT PROBLEM
AND SOLUTIONS

In this section, we consider the proxy cache management
problem for a single video object as well as for multiple
heterogeneous videos. Our objective in designing the proxy
cache management module is two-fold: first, to maximize the
client utility, which is related to the streaming rate to each
class of clients; and second, to minimize the transmission cost,
as the video streaming imposes very high data delivery
demands to the network. As suggested in previous studies [3],
we assume that the local (i.e., proxy-to-client) transmission
cost is trivial, and the overall transmission cost is a non-
decreasing function of the average backbone (i.e., server-to-
proxy) bandwidth consumption. Note that the above two
objectives could conflict, because it is obvious that the higher
the streaming rate (which results in a higher client utility), the
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more the uncached portion to be fetched from the origin
server (which incurs a higher transmission cost). As such, it is
important to find a trade-off between them.

A. Minimizing Transmission Cost

We first consider the transmission cost for a single video
with specified streaming rates for each class of clients, b; ,
b, ..o by, b <¢,i=12..,M. We attempt to answer the
following question: Given a limited cache size H to the video,
which portion of the stream is cached (referred to as a caching
scheme) such that the transmission cost is minimized? As said,
this objective is equivalent to minimizing the backbone
bandwidth consumption.

Note that the rates for different positions of the cached
portion can be different when using FGS videos. Denote the
rate for position [ (measured in the elapsed time from the
beginning of the video) of the cached video by r(l),l € [0,L].
A caching scheme for the video is therefore uniquely
determined by the shape of r(l). We say that the scheme is
valid if 1) [ r()dl < H and 2) for any I € [0...L], 14 < (1)
< ¢y or r(l)=0. The above two constraints follow the
cache size limit and the base layer rate limit, respectively.

A caching scheme is optimal if it is valid and yields the
minimum backbone bandwidth consumption for fetching the
uncached portion. Let V' denote the total volume of the video
with rate ¢, (the maximum client bandwidth). Obviously,
if H >V, the caching scheme r(I) = ¢;;, | €[0,L] is optimal.
For the case of limited cache size, we show two lemmas that
facilitate searching the optimal caching scheme.

Lemma 1: If H <wn,. -L , the
Thases le [07H/Tbase]

l =
V=10 1e/nunt)

caching scheme

is optimal.

Proof: This scheme is clearly valid. For any client request,
a video portion of volume H is saved from being transmitted
over the backbone. This is the maximum saving per client
request that a valid caching scheme could achieve under cache
size H . o

Lemma?2: Ifn,, L, <H <V, assuming that the size of
the cached prefix is fixed to H, (€ [t - Ly, H] ), there

exists an optimal caching scheme:

Tis l e [OaLf}
T(l) = Ts. l S (Lt7LC]a
0, 1€ (L,L]

where 7, and r, respectively represent (constant) rates of the
cached prefix and cached suffix, and are given by
rn, = H, /L, and r, = max {n,.,(H — H,)/L,}; L, is the
total length of the cached portion, L, = L, + (H — H,)/r,.
The proof of this lemma can be found in [22]. Let’s
concentrate on this case ( re L < H <V ) with a
given H, . It is easy to show that n, > r, for an optimal
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caching scheme because a cached prefix will serve both early
terminated requests and all other requests. The backbone
bandwidth consumption for all requests from class i is
therefore given by

By, (b)=
Api[(1 = ppr) (0L — H) + ppr(biL — H,)],
n<b <cy (1)
Api(1 = ppr)[biLs — r(Le — Ly)],
Api(1 = ppr)bi(L — L),

T, <b <n
szgrs

n)(lsﬁ
which can be easily validated from Fig. 2 (for r, < b, < 7).
It follows that the optimal caching scheme for 7, - Iy
< H <V can be accomplished by a one-dimensional search
on H, in the range of [r4. - Ly, H]. The optimal solution, or
the minimum backbone bandwidth consumption, is thus

M .
By = min - B b;). 2
H toase Iy <H, <H, 1,57, Zz:l H.H,( 7,) ( )

Assume the minimum cache grain is v, which could be the
size of a disk block or the size of a GOP (Group-of-Pictures)
of the video; the cache size H, as well as H,, is always a
multiple of the grain v . Then the complexity to search By is

OH /).

For H> VvV and H <1, - L, , the optimal caching

scheme can also be uniquely represented using 7, r,, and L, .

The corresponding backbone bandwidth consumption thus can
be calculated by Egs. 1 and 2 as well.

ARate

AN —
Uncached
- Portiomr b,
\ Cached Prefix r
/ Tobe fetched :
fi
Time k7 fromsemver Cached Suffix
T OLLeL) I, I, 0

Fig. 2. Illustration of different portions of an FGS video stream.

B. Trading off Backbone Bandwidth with Client Utility

In the above optimization, we assume that the streaming
rates for the clients of the video are specified. We now
consider a more general and flexible scheme that makes
effective use of FGS.

Define the utility of a class i client as «; =¥ /¢ for
Thase < b; < ¢ . The ideal utility assignment is «; =1,
1=12..,M, ie., the client bandwidth is fully utilized for
every class. However, it is clear that the higher the client
utility, the more the transmission cost or the backbone
bandwidth consumption. To reduce bandwidth consumption,
one solution is to block some of the client requests. Although
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this has been suggested in previous studies, it is unfair to the
blocked clients. The FGS video, however, offers an alternative
method by trading off bandwidth with client utility, that is,
assigning a somewhat lower yet acceptable streaming rate to
each class of clients.

More explicitly, we would like to investigate whether there
exists some utility assignment to each class of clients of the
video, such that the backbone bandwidth consumption is no
more than 773 , where B is the backbone bandwidth
consumption with the ideal utility assignment and zero-size
cache (i.e., no caching); 7 thus reflects the factor of backbone
bandwidth reduction. We are particularly interested in a utility
assignment that achieves the best “social welfare”, i.e., the
total utility of the clients is maximized. This utility
optimization problem for the single video can be formally
described as follows:

MU-SV: maz Uy, = Z£1)‘piai , 3)

s.t. n)ase/ci Sai Sl, izl,Q,...,M,
Q;_1Ci_1 S [e 716N 1= 2, 3,...,M .
BH S UB,

where Uy, is the total client utility per unit time for a cache
size H and a backbone bandwidth reduction factor . The
constraint «;_¢;_; < a;¢; (equivalent to b,_; <b; ) is to
preserve the order (priority) of the client classes in resource
sharing.

Assume that there is a minimum bandwidth grain w ; the
backbone bandwidth consumption for a certain class of clients
is rounded to a multiple of w . Fig. 3 presents an algorithm to
solve the problem instance of a given size of the cached prefix,
H,. MU-SV thus can be accomplished by a search on H,,
similar to that in the previous subsection.

In this algorithm, v, ;, represents the maximum total utility
per unit time for classes 1 through ¢ , with backbone
bandwidth j consumed by classes 1 through i, and backbone
bandwidth % consumed by class 4. Function (B;, 1, (k) is
a generalized inverse of B;I. H (b;) (see Eq. 1), répresenting
the highest streaming rate for a class 4 client given that the
backbone bandwidth consumed by this class is k. A special
case is k =0. Recall that we assume Ap, >0 and
1—pgr >0 in the system; zero backbone bandwidth
consumption implies that L, = L and the streaming rate is
no higher than 7. Therefore, if L, = L, we let (qu , )(0)
be 7, to maximize the total utility; otherwise,' we set
(Byy,)"(0) to 0 and By, (0) to oo . Finally, note that
B;L'Ht'(bi) is undefined for b; < 7, and b; > ¢, ; if directly
inv_érsing Eq. | yields a value in these two ranges, we set
(B;LHT )"'(k) to 0 and c,;, respectively.

The correctness of this algorithm can be found in [22].
Given the cache grain v , applying the algorithm for each H,
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solves problem MU-SV in time O(M - \né/wJS -H /v) .
Since the accuracy of this algorithm depends on v and w , we
shall investigate their impact in the next section through
simulation experiments.

Uy jx < —oo /* Initialization */
for k = 0 to 7B step w do
for j =k to nB step w do
u i — Ap(Birg,) " (R)]/ o

for i =2 to M do /* Table filling */
for k=0 to nB step w do
y — (Birm,) (k)
for j=1Fk to nB step w do
maxr <— —oo
for z = 0 to By, (y) step w do
temp —Apy /¢ + Ui_1j o
if mazx < temp

then maz «— temp, bw «—

Ui < max, by — bw

u « —oo /* Extract optimal results */
for bw =0 to nB step w do

Lemp «— Ung|yB /wlwpw

if o' < temp

then v — temp , bw" — bw

b = {né/w], bw' = bw"
for i = M down to 1do

o; — (Big,) '(bw')/ ¢

b, — b, — bw/ . bw/ — hi,b,,bw,

Output:
u": maximum expect utility for the given H , H, ,n

o corresponding utility assignment of a class ¢ client

Fig. 3. Algorithm for an instance of MU-SV with given H, .

C. Proxy Management for Multiple Heterogeneous Videos

We now extend the above proxy cache management policies
to the case of multiple heterogeneous videos. Assume that
there are N videos, indexed as 1 through N . Given the total
cache size HT and the total bandwidth reduction factor n”
for all the videos, our objective is to find a cache partitioning
(H® k =1,2,...,N ) as well as bandwidth partitioning (n*),
k =1,2,...,N) for these videos, such that the system utility
(total utility of all the clients for the videos) is maximized.
This problem can be formally described as follows:
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N X
MU-MV: max Zk~:1U$(1)77l(k)’

N k T
sit. Zk=1H<)§H ,

N pk) TNV k)
Zk:lBH(“SnZk:IB ’

This is a 2-dimesional (bandwidth and space) version of the

“

knapsack problem. Given cache grain v and backbone
bandwidth grainw , it can be solved by extending the known
pseudo-polynomial time algorithm for 1-D knapsack [1:Ch
16], and the time complexity of this solution is bounded by
O(N-HT v ~[nTZﬁ:1E;““> B’-W’D . where B’ =
min{nTZQLIE( ), max; BY} and H' = min {H,
max; VMY [22].

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our FGS-
based caching system through simulation experiments. We
examine the system along two dimensions: 1) the transmission
cost, or backbone bandwidth consumption; and 2) the quality
of the delivered streams, i.e., the client utility.

A. System Settings

For the single video case, we assume that there are five
classes of clients, and the client bandwidths of the classes are
exponentially spaced, i.e., ¢,=128 Kbps and ¢, =2¢;, for
1 = 2,3,4,5, which cover the bandwidths of a broad spectrum
of access technologies. For the client population distribution
among the classes, ( pi, p1,-.-, 5 ), we have evaluated various
settings in our experiments. Due to space limitation, in this
paper we present the simulation results for three typical
distributions:

(1) Uniform:
(2) S-narrow:
(3) S-wide:

(0.2, 0.2, 0.2, 0.2, 0.2);
(0.5, 0.2, 0.15, 0.1, 0.05) ;
(0.05, 0.1, 0.15, 0.2, 0.5) .

The latter two are skewed distributions, respectively
dominated by narrowband clients and wideband clients. The
lengths of the entire video and the prefix are set to 100
minutes and 20 minutes, respectively. The probability of early
terminations is set to 0.3. Although a rigorous evaluation of
the client termination behavior is beyond the scope of this
work, we note that higher probabilities of early terminations
have been observed in reality [10]; in this case, more benefits
can be expected from the caching paradigm advocated in our
system.

We assume that the requests follow a Poisson arrival
process with a mean rate of one request per minute. We
normalized the backbone bandwidth by B (the backbone
bandwidth consumption with ideal utility assignment and no
caching) and the cache size by 1% (the total volume of the
video with rate c); ) for all presented results. Hence, our
conclusions are generally applicable when the parameters are
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proportionally scaled. Unless explicitly specified, the default
cache grain and backbone bandwidth grain are set at
1/200V and 1/200B, respectively.

For the multiple video case of N objects, we use similar
client settings as described above for each single video, and
assume that the access probabilities of the videos follow a
Zipf distribution, which has been suggested by workload
measurements of media servers. With this distribution, the
access probability of video k is (1/k)9/zjjv_1(1/j)9 )
where 6 reflects the skewness among the client populations
of the videos.

B. Evaluation Results for Single Video
B.1 Backbone Bandwidth Reduction

In the first set of experiments, we investigate the backbone
bandwidth consumption. We are interested in examining the
backbone bandwidth reductions by employing the optimal
caching scheme, compared to the following two baseline
schemes:

1 e[0,H/r] )

1) MaxLen: r(l) = , 7= max{n. H/L};
M O={o1em s {1 1/ 2}
ey L €0, H /ey

(2) MaxRate: r(l) = {0 Le (1 ey 1)

These two schemes are non-adaptive because they are not
aware of the client bandwidth distributions. They also
resemble the caching schemes for a coarse-grained layering of
2 layers, i.e., caching the base layer only and caching both the
base and enhancement layers.

Fig. 4 shows the backbone bandwidth reductions for
different cache sizes and class distributions. The client
bandwidth is assumed to be fully utilized for all classes, that is,
a;, =1,1=12,...,M . We observe remarkable reductions
achieved by our optimal scheme over the two baseline
schemes, which is generally over 10% and sometimes over
50%. The reduction depends on the class distributions, e.g.,
for the S-narrow distribution (Fig. 4b), the reduction is
particularly high when compared with the MaxRate scheme,
as most of the clients have a relatively low bandwidth and
hence, caching the stream of the highest rate becomes
wasteful. In this case, increasing the length of the cached
stream becomes a better alternative. However, compared to
our optimal scheme, the MaxLen scheme still suffers from
more than 10% bandwidth excess, because it is not flexible in
setting the rates for the cached prefix and suffix to better
accommodate early terminated requests. On the contrary, with
the S-wide distribution (Fig. 4c), since most clients have high
bandwidth demands, the MaxRate scheme is better than the
MaxLen scheme, but is still suboptimal. Finally, with the
Uniform distribution (Fig. 4a), both the MaxLen and the
MaxRate schemes are far from satisfactory.

It is worth noting that, compared to the two non-optimal
schemes, there is virtually no extra cost in employing the
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optimal scheme in our FGS video based caching framework.
Hence, we believe that our optimal scheme is an effective
means to improve the system performance.

B.2 Utility Improvement

We now examine the tradeoff between the client utility and
the backbone bandwidth consumption, given that the
streaming rates to the clients can be regulated using the
filter/assembler at the proxy. We employ the optimal caching
and utility assignment algorithms for our system, as described
in Section IV.B. Fig. 5 shows the expected utility for all
clients as a function of the backbone bandwidth consumption
for different cache sizes and class distributions. Note that the
normalized backbone bandwidth is essentially equal to 7, as
shown in Eq. 3.

It can be seen that, to achieve the optimal utility (= 1), a
relatively high backbone bandwidth is to be consumed if the
cache size is very small, e.g., 40% of backbone bandwidth B
with a cache size 0.3V for the uniform class distribution (Fig.
4a). However, there is a nonlinear relation between the
backbone bandwidth consumption and the client utility. As a
result, for the same setting, we can achieve an expected client
utility of 0.9 by consuming only 15% of B, that is, a 10%
utility reduction leads to a 62.5% backbone bandwidth
reduction. This is particularly evident for the S-narrow
distribution, not only because a relatively high volume is
cached for the stream to a narrowband client, but also because
a slight reduction of the streaming rate to a wideband client
will benefit the set of narrowband clients. In this case, the
expected utility is over 0.8 even with very limited resources
(e.g., backbone bandwidth of 0.05 B and cache size of 0.1V).
For the S-wide class distribution, the reduction is not that
significant. However, in this case, the absolute backbone
bandwidth consumption is much higher than that for the other
two distributions; hence, a slight reduction on the normalized
bandwidth would still lead to a great reduction in the absolute
backbone bandwidth consumed.

Such an adaptive setting of utility clearly offers a flexible
space for a designer to explore to either maximize the overall
revenue or minimize the overall cost. On the contrary, if the
cache size is less than 0.1V and the backbone bandwidth is
less than 0.5B, a non-adaptive system that fixes the client
utility to one does not even work for any class distribution.

B.3 Sensitivity to Allocation Grains

In our experiments, the default cache grain v and backbone
bandwidth grain w are set at 1/200V and 1/200B ,
respectively. To investigate their impact, we repeat the
experiments of the previous subsection with various grain
settings. Fig. 6a shows the maximum gaps in terms of optimal
client utilities between each setting and a finer-grained
setting: 1/1000B (bandwidth grain) and 1/1000V (cache
grain). We can see that the performance gap quickly decreases
with the refinement of the grains, and the gap for the default
setting (1/200V and 1/200 B) is already lower than 0.008.
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Fig. 4. Backbone bandwidth reductions achieved by the optimal caching scheme.
(a) Uniform class distribution; (b) S-narrow class distribution; (c¢) S-wide class distribution.
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Fig. 6. Performance gaps as compared to a fine-grained setting
v = 1/1000V ,w = 1/1000B . (a) Max gap; (b) Average gap.

This is negligible from a client perception point of view.
We also show the average gaps in Fig. 6b, which are in fact
much smaller than the corresponding maximum gaps shown
in Fig. 6a. Therefore, we believe that the default setting is
reasonably good, especially considering that the computation
times with this setting are generally less than 30 ms on a
common PC (Pentium III 1 GHz).

C. Evaluation Results for Multiple Videos

Finally, we investigate the performance of the proxy
management algorithm for multiple videos. We implement
the joint optimization scheme MU-MV for cache and
bandwidth partitioning (see Section IV.C), as well as a
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baseline scheme with a uniform cache partitioning
(H ®) = g7 /N ) among the videos and a bandwidth
partitioning proportional to the client population of each
video (7" = (\® /ZL A("))~(77TZL B @y/B"). The
utility assignment for each single video is optimized using
the algorithm for MU-SV. It is easy to verify that the system
utility for the baseline scheme is independent of the skew
factor 6 . Fig. 7 shows the system utility improvement by the
joint optimization scheme for HT = 0,2211:’:1 yE
and n¥ = 0.1 . It is clear that the joint optimization
significantly improves the system utility, in particular, with
large skew factors, i.e., the client populations of the videos
are highly heterogeneous. For the S-wide distribution (Fig.
7¢), which has a relatively low system utility for the baseline
scheme under the given settings, the utility improvement is
over 30% for high skew factors.

To identify respective contributions of the two
optimization dimensions (i.e., space and bandwidth), we also
show in Fig. 7 the improvements achieved by employing the
optimal cache partitioning alone (Cache Optimal) and the
optimal bandwidth partitioning alone (Band Optimal). Their
corresponding bandwidth and cache partitionings are
proportional and uniform, respectively. It can be seen that,
though using either optimal partitioning alone also improves
the system utility, there remain remarkable gaps as compared
to that of the joint optimization, especially for higher skew
factors. This is because the utility of each video is a

IEEE INFOCOM 2004



35
12 —e— Joint Optimal | 4 —— Joint Optimal 30 +— Joint Optimal
— —0—Band Optimal — —0—Band Optimal —_ o—Band Optimal
S —a— Cache Optimal & —a— Cache Optimal R 25 s— Cache Optimal
§ o 53 [
£ £ £ 20
2 2 (3
8 8 3
g <]
Es E2 g"”
= £
S g Z 10
5 4 5, g
5
i
.
0 0 0
0 0.2 04 0.6 0.8 1 0 0.2 04 06 08 1 0 0.2 0.4 0.6 0.8 1
Skew Factor Skew Factor Skew Factor
(a) (b) (©)

Fig. 7. System utility improvement as a function of skew factor ¢ (H? = 0_222{1 v® , 5T =0.1) for multi-video allocation. The
system utilities of the baseline scheme for the Uniform, S-narrow, and S-wide distributions are 0.77, 0.92, and 0.56, respectively. (a)
Uniform distribution; (b) S-narrow distribution; (¢) S-wide distribution.

nonlinear function of cache space or backbone bandwidth
consumed by the video and, hence, the uniform cache
partitioning or the proportional bandwidth partitioning alone
is suboptimal for these heterogeneous videos. As such, we
believe that it is important to use the joint optimization for
the videos.

VI. COMPARISONS AND PRACTICAL CONSIDERATIONS
A. Scalable Video or Replicated Video?

As mentioned in Section II, yet another approach to handle
the client heterogeneity is stream replication [9,18]; that is,
on the server’s side, replicated streams are generated to meet
the bandwidth condition of each class of clients. Stream
replication has several advantages, such as simplicity and
compatibility with conventional non-scalable video coders.
Hence, it has been widely used in existing commercial
streaming systems, e.g., the RealNetwork’s SureStream.
Nevertheless, replication also leads to data redundancy, not
only in server storage but also in proxy cache and bandwidth
consumption.

Scalable video and replicated video based streaming
systems have been compared in [9] with no proxy caching. A
cache-aware comparison was shown in [16]. They considered
coarse-grained layering (two layers) and the metric of
interest is the request blocking probability. In this set of
experiments, we try to complement these works from a client
utility and bandwidth consumption point of view with the use
of FGS videos.

We first investigate the backbone bandwidth consumptions
of the two approaches when the client bandwidth is to be
fully utilized. To make a fair comparison, we develop the
optimal caching scheme for the stream replication based
system. In this system, the cached portion of a stream serves
the clients of its own class only, and its rate is equal to the
client bandwidth of the class. The problem is thus how to
partition a cache with given size H for the M replicated
streams of the video. This is a variation of the cache
allocation problem for multiple heterogeneous videos, as
solved in [14].
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Using the optimal caching schemes, we calculate the
backbone bandwidth reduction of the FGS video based
system against the stream replication based system, as shown
in Fig. 8. For the Uniform and S-narrow distributions, the
reduction is significant, often over 40% and sometimes over
60%. For the S-wide distribution, the reduction is relatively
smaller because the backbone bandwidth consumption is
dominated by the requests from the wideband clients.
Nevertheless, the absolute value of saved bandwidth remains
high enough in this case, as discussed in Section V-B.2.
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Fig. 8. Backbone bandwidth reduction of FGS video

based caching against stream replication based caching for
different cache sizes and class distributions.
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Next, we consider the case of flexible utility assignment,
where the client utility can be lower than one. The problem
of optimal caching and client utility assignment for the
stream replication based system can be formulated as follows:

M
MU-REP: max Uy, =Y. Api;, ™)
st i /e <o <1,1=12...M,
Q16 < e, 1= 2,3, M,
S°¥ b < H.,and By <nB,

where h; is the cache size allocated to stream i, and 7, is
the lowest streaming rate, which is set to 7,, in the
experiments to ensure a fair comparison. This problem can
also be solved by checking different partitionings of the
cache and, for each partitioning, the optimal utility
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assignment can be obtained using an algorithm similar to that
for problem MU-SV. Fig. 9 shows the utility improvement of
FGS based caching against stream replication based caching
for the uniform class distribution. It can be seen that, when
the backbone bandwidth consumption is lower than 0.25 B,
the improvement is often higher than 20%. It diminishes with
increasing backbone bandwidth, since the client utility
becomes saturated (optimal) for both systems. Nonetheless,
compared with Figs. 4 and 5, it is clear that the stream
replication based system requires far more resources to reach
such maximum. For example, with the uniform class
distribution, the client utility for our FGS based system has
reached one for a cache size of 0.5V and backbone
bandwidth consumption of 0.25 B (see Fig. 5a); however,
according to Figs. 5a and 9, the client utility for replication
based system is still below 0.9 in this case.
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Fig. 9. Utility improvement of FGS video based caching
against stream replication based caching for the uniform
class distribution.

In the above experiments, we used the function
«; = b; /¢; to measure client utility. It is worth noting that
the FGS coding incurs extra overhead for stream scaling,
which potentially leads to quality degradation. A
comprehensive study on this issue involves the use of
perception-aware utility functions, which is out of the scope
of this paper and is indeed an open research problem.
However, we are aware that current studies indicate that the
quality degradation caused by such overhead is generally less
than 10%, where the quality is measured by the Peak Signal-
to-Noise Ratio (PSNR) [8]. The degradation can be further
minimized using smart reference schemes, such as those
introduced in the Progressive FGS [11]. In view of these, and
considering that FGS has been adopted by the MPEG-4
standard as well as supported by quite a few industry giants,
we believe our FGS video based caching offers a promising
cost effective vehicle for video streaming to heterogeneous
clients.

B. Efficiency of FGS Filtering and Assembling

Another important practical concern of our system is its
computational efficiency. Since the cache allocation and
utility assignment are updated periodically and the allocation
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algorithms are reasonably fast, we mainly focus on
examining the efficiency of the filter/assembler module,
which is invoked for each client request.

We use a MPEG-4 standard test sequence News (CIF) in
our experiments. The rate of the sequence is 2 Mbps, and the
base layer rate for FGS coding is set to 128 Kbps, which is
consistent with our previous experiments. For the sake of
comparison, we also examine three other filters that have
been widely used in transcoding proxies [2,7,18]: simple
frame-dropping  (SFD), frame-dropping with  drift-
compensation (FD-DC), and re-quantization (RQ). A frame-
dropping filter discards some B-frames or P-frames to
achieve bandwidth reduction. Since a P-frame depends on its
preceding I or P frame, to avoid quality drift, if a P frame is
discarded, the SFD filter simply discards all subsequent P
frames until an I frame arrives. The FD-DC filter avoids this
by performing drift compensation for the subsequent P
frames. Finally, the RQ filter reduces the stream rate by re-
scaling quantizers, which yields better perceptual quality
than discarding a whole frame. For each filter/assembler, we
repeat filtering/assembling 10 times on the entire sequence,
with target rates distributed between 128 Kbps and 2 Mbps.

Fig. 10 shows the average computation times of these
various filters as well as the FGS filter/assembler. It can be
seen that the computation time of the FGS filter/assembler is
about two orders of magnitude lower than that of the FD-DC
or RQ filters. Given a frame interval of 30 ms, our PC can
support about 300 concurrent filter/assembler modules, and a
powerful proxy server would support much more. In this case,
the bottleneck of the system is likely the backbone
bandwidth, but not the computation power of the proxy. This
is however not true for the FD-DC or RQ filters; in particular,
the number of concurrent RQ filters cannot be more than 3
on our PC. The SFD filter, though having similar
computation time as ours, suffers from the coarse granularity
and confined dynamic ranges for rate adaptation as
mentioned before.
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Fig. 10. Average computation time per frame.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we addressed the problem of proxy-assisted
video streaming to a set of heterogeneous clients. We
proposed an adaptive proxy caching framework using fine-
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grained scalable (FGS) videos, and explored the benefits
associated with FGS in handling client heterogeneity as well
as reducing transmission costs. We also developed effective
solutions to two important proxy management problems in
this framework: which portion to be cached for each FGS
video, and which streaming rate to be employed for
delivering the stream to each client?

Simulation results showed the proposed framework not
only achieves significant backbone bandwidth reduction but
also enables flexible utility assignment for heterogeneous
clients. Meanwhile, its computation overhead is kept at a low
level. We also conducted a systematic comparison between
the FGS-based and the replication-based video caching
systems, which demonstrated the superiority of the FGS-
based caching.

Given the low computation overheads of the FGS
filter/assembler, we believe that our rate-adaptive caching
framework is practically deployable. However, implementing
a whole system remains a challenging undertaking, as it
involves not only the optimization of individual components,
but also their convergence. There are many possible research
issues worth further investigation. For example, what is the
impact of the nonlinear relation between video quality and
streaming rate? We plan to employ perception-aware utility
functions in our future experiments, e.g., those built on the
rate-distortion framework. We are also extending our scheme
to multiple segments with non-uniform access rates.
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