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Abstract— This paper exploits the tradeoff between data qual- sensor readings and converts them into a form requested
ity and energy consumption to extend the lifetime of wireless py the applications (e.g., average temperature readirfgs T
sensor networks. We consider the applications that require some conversion process is calleygregation Primarily designed

aggregate form of sensed data with precision guarantees. Our f itori licati .
key idea is to differentiate the precisions of data collected from 'OF MONIONNG purposes, many Sensor applications require

different sensor nodes to balance their energy consumption. COntinuous aggregation of sensed data [3].

This is achieved by partitioning the precision constraint of data ~ While the base station can have continuous power supply,
aggregation and allocating error bounds to individual sensor the sensor nodes are usually battery-powered. They are in-
nodes in a coordinated fashion. Three factors affecting the convenient to replace once deployed in the field. Sometimes,

lifetime of sensor nodes are identified: (1) the changing pattern | ti ) ibl des in amard
of sensor readings; (2) the residual energy of sensor nodes; replacement is even impossible (e.g., sensor nodes in r

and (3) the communication cost between the sensor nodes andréach area). Thus, energy efficiency is a critical desigrsiden
the base station. We analyze the optimal precision allocation eration of wireless sensor networks. In these networks,-com
in terms of network lifetime and propose an adaptive precision munication is a dominant source of energy consumption [4].
allocation scheme that dynamically adjusts the error bounds of Continuous exact data aggregation requires substantiaggn

sensor nodes. Experimental results using real data traces show fi b h de has t t
that the proposed scheme significantly improves network lifetime consumption because each sensor node has 1o report every

compared to existing methods. reading to the base station. Unlike the strict data senmmntic
emphasized in traditional databases, to save energy, many
. INTRODUCTION sensor applications allo@pproximate data aggregatiowith

Rapid advances in sensing and wireless communicatiprecision guarantees [5], [6], [7], [8]. The precision céor,
technologies have made feasible the deployment of wireles&mple, be specified in the form of quantitative error baund
sensor networks for a wide range of applications such %verage temperature reading of all sensor nodes within an
ecosystem monitoring and traffic surveillance [1], [2]. Aerror bound of 1C.” In approximate data aggregation, the
wireless sensor network typically consists of a base statisensor nodes do not have to report all readings to the base
and a group of sensor nodes (see Figure 1). The sensor nagtation. Only the updates necessary to guarantee the diesire
are responsible for continuously capturing environmedgédh level of precision need to be sent.
such as temperature and wind. They are also capable ofVhen a sensor node runs out of energy, its coverage is
communicating with each other and the base station throulgist. The mission of a sensor application would not be able
radios. The base station, on the other hand, serves a0 acontinue if the coverage loss is remarkable. Therefore,
gateway for the sensor network to exchange data with extertize practical value of a sensor network is determined by the
applications to accomplish certain missions. It colledte ttime duration before it fails to carry out the mission due to
insufficient number of “alive” sensor nodes. This duratisn i
referred to as thenetwork lifetime[1]. It is both mission-

- o —y critical and economically desirable to manage sensed data
— (g o o = in an energy-efficient way to extend the lifetime of sensor
) - networks. However, this is a challenging task in that thessen

@ @ @ nodes are inherently heterogeneous in energy consumption.
First, the data captured by different sensor nodes may ehang
Application Base Station Wireless Sensor Network at different rates. This implies the sensor nodes need trtrep
data at different rates. Second, the wireless communitatio
Fig. 1. System Architecture cost heavily depends on the transmission distance [9]. Due t




the geographically distributed nature of sensor netwattks, where the precision settings of different sensor nodes are
sensor nodes are likely to differ significantly in the enecggt inter-related. Olstoret al. [5] investigated burden-based pre-
of sending a message to the base station. Even if all sensision adjustment for continuous queries over distributath
nodes report data at the same rate, their energy consumpsteams. They aimed at minimizing the total communication
can be highly unbalanced, thereby reducing network lifetimcost between data sources and the data sink. Skhagf[6]

In this paper, we investigate the optimization of networknplemented a simple uniform precision allocation for in-
lifetime for approximate data aggregation. Our key ideais hetwork data aggregation. Deligiannakés al. [8] further
differentiate the quality of data collected from differes@insor optimized the allocation to reduce the number of messages in
nodes to balance their energy consumption. This is achiewhb& network. However, none of these studies has taken energy
by partitioning the precision constraint of data aggregati and lifetime models into consideration. Thus, their pregubs
and allocating error bounds to individual sensor nodes intechniques are not effective in handling the energy coimssra
coordinated fashion. Our contributions are as follows: in wireless sensor networks. Moreover, some algorithmgresi

« We identify three factors affecting the lifetime of sensowas based on a given changing pattern of sensor readings (e.g

nodes in the context of approximate data aggregation: @)e-dimensional random walk [5]). Hence, the algorithmg ma
the changing pattern of sensor readings; (2) the residut work well for other changing patterns. Different from
energy of sensor nodes; and (3) the communication céstisting work, in this paper, we develop a generic framework
between the sensor nodes and the base station. for extending network lifetime. Our proposed techniques ar
« We analyze the optimal precision allocation in terms dgipplicable to any changing pattern of sensor readings.
network lifetime. To the best of our knowledge, this is the Besides precision setting, some researchers investigated
first study on optimizing precision allocation to balanc@roximate representation of sensor readings with sophisti
energy consumption in wireless sensor networks. data structures [16], [17]. These studies are complemetdar

« We develop a sample-based precision allocation methedr work.

and prove its optimality. Based on this, an adaptive
precision allocation scheme is proposed to dynamically
adjust the error bounds of sensor nodes. The schemdVe consider a network of. sensor nodes geographically
models in-network aggregation in multi-hop networks. distributed in an operational area. They monitor immediate

« We present an experimental evaluation using real dagerroundings and periodically collect local measuremsuth

traces. Experimental results show that the proposéd temperature and wind. The rate at which the sensor nodes
scheme significantly improves network lifetime compareggapture data readings is called the sensing rate, denoted by
to existing methods. S. The period between two successive readings is called an

The rest of this paper is organized as follows. Section §iP0ch The base station gathers data from the sensor nodes.
summarizes the related work. Section Il describes theegyst
model and gives some basic definitions. Section 1V analyzes i ) . ) o
the optimal precision allocation in single-hop networksian We consider approximate data aggregation with precision
then proposes an adaptive precision allocation scheme. s¥¢arantees [6], [7], [8]. Data impreciseness is measured by
tion V extends the adaptive scheme to multi-hop networkdle quantitative difference between an approximate vaie a
The experimental setup and results are discussed in Sationthe exact value. The sensor application specifies the jpwacis

Il. SYSTEM MODEL

Data Aggregation Model

Finally, Section VII concludes the paper. constraint of data aggregation by an upperbounan data
impreciseness (called thexror bound. That is, on receiving
Il. RELATED WORK an aggregate data valud’ from the sensor network, the

Wireless sensor networks have attracted much researchagfplication would like to be assured that the exact aggeegat
fort in recent years. In the networking community, researsh value A lies in the intervallA’ — E, A’ + E].
have focused on optimizing network related operations suchin approximate data aggregation, not all sensor readings
as routing and media access [10], [11], but they usually dichve to be sent to the base station in every epoch. To reduce
not take application-level data semantics into considarat communication cost, the designated error bound on aggregat
In the database community, researchers have focused on edata can be partitioned and allocated to individual sensor
query processing over sensed data [12], [13], [14] and paiddes (we shall call iprecision allocatiof). Each sensor node
little attention to trading data quality for energy effioogn updates a new reading with the base station only when the

Hanet al. [7] investigated the management of sensor statasw reading significantly deviates from the last update & th
for approximate query processing. In an earlier work, wease station and violates the allocated error bound. This is
developed a two-tier storage scheme for approximate queslled aprecision-driven updateThe designated precision of
processing in object tracking sensor networks [15]. Howeveggregate data must be guaranteed provided that each sensor
these studies were limited to queries for the readings wbde updates the readings with the base station according to
individual sensor nodes, in which case the precision carebe s allocated error bound. Therefore, the error boundsatéx
independently for different sensor nodes. Different frofp [ to individual sensor nodes have to satisfy certiasibility
[15], in this paper, we consider continuous data aggregatioonstraints Different aggregation functions impose different



constraints. In this paper, we consider three commonly ustadke different forms to cater for a wide range of factors.He t
types of aggregations: SUM, COUNT and AVERAGE. Exsimplest case, if all sensor nodes use a default commumicati
ploring other aggregation functions such as MIN/MAX igsange,s;'s are the same for all nodes. More sophisticatedly, if
an important topic of future work. For SUM and COUNTthe sensor nodes know the locations of the receivers [18], [1
aggregations, to guarantee a given error bobreh aggregate they can adapt the power level to the transmission distance.
data, the total error bound allocated to the sensor node®tarnThe sensor nodes with longer transmission distances wauld b
exceedFE, i.e., associated with highey;’s. In addition, reliability can also be
Ze' < B o modeled in the energy cost. L.ess reliable I!nk; are entibed
t= highers;'s andwv;’s due to possible retransmissions. The exact

) forms of s; andv; are orthogonal to our analysis and beyond
wheree; is the error bound allocated to sensor nadé=or the scope of this paper.

AVERAGE aggregation, the total error bound allocated to the gjmijar to other studies [20], [21], [22], [23], we define

sensor nodes cannot exceedE, i.e., the network lifetime as the time duration before the first

n sensor node runs out of energy. Our analysis is also apj#icab

Zei <n-FE, (2) to redundant sensor deployment where each target location

i=1 is covered by several sensor nodes. From the viewpoint of
wheren is the number of sensor nodes. network lifetime, the set of sensor nodes monitoring theesam

Eligible precision allocation under the feasibility carastt location can be converted to a single equivalent node byngddi
is not unique. For example, in a network of 10 temperatutg the energy budgets of these sensor nodes. More generally,
sensor nodes, if the error bound on AVERAGE aggregationifghe network lifetime is defined as the time duration befare
1°C, we can allocate an error bound ofClto each sensor given portion of sensor nodes run out of energy, our proposed
node. Alternatively, we can also allocate an error bound e€heme can be applied repeatedly to extend network lifetime
5.5°C to a selected node and an error bound®0.50 each after the exhaustion of a sensor node’s energy.
of the remaining nodes. This offers the flexibility to adjust The notations we have introduced and will introduce later
the energy consumption of individual sensor nodes by chrefre summarized in Table I.
precision allocation. In general, to collect the readinfisao

sensor node at higher precision (i.e., smaller error bgund) TABLE |
the sensor node needs to send precision-driven updates to SUMMARY OF NOTATIONS
the base station more frequently, which translates to highe| Notation | Definition
energy consumption. The quantitative relationship depemd j number of sensor nodes
)% ) p : ! : p daep E designated error bound on aggregate data
the changing patternof sensor readings (e.g., the frequency S sensing rate
and magnitude). Without loss of generality, we shall denotg ¢ error bound allocated to sensor node

precision-driven update rate of sensor nade

the precision-driven update rate of each sensor nods a ui() | (as a function of its allocated error bound)

function u;(e) of the allocated error bound > 0. u;(e) is si energy cost for sensor nodeo transmit a data update

essentially the rate at which the reading captured by sensar vi eneroy ICOSt for sensor ”Oda(;‘ receive a data update
. " . . . Di residual energy of sensor noae

nodei changes beyonel Intuitively, u;(e) is anon-increasing v normalized energy consumption rate of sensor nodd

function with respect te. It is obvious thatu;(e) < S and
u;(00) = 0.

Constraints (1) and (2) share the common characteristic tha
the total error bound of the sensor nodes is capped by a givfR? PrECISIONALLOCATION IN SINGLE-HOP NETWORKS
value. We shall focus on constraint (1) in our discussiore Th
analysis and algorithms developed in this paper can be edlapt We start by investigating the precision allocation in a king
to handle constraint (2) in a straightforward manner. They ahop network where each sensor node sends its local readings
also directly applicable to SUM and AVERAGE aggregationto the base station directly. In this casgrefers to the energy

over any fixed subset of the sensor nodes. cost for node to send a data update to the base station. Single-
hop networks are preferred by many applications due to a
B. Energy Model number of reasons [11]. First, the limitation of sensor giesi

The base station normally has continuous and sufficief@.g., simplex MAC with limited buffer) may make relaying
power supply. Thus, we shall assume no energy constrgmactically infeasible. Second, breaking the transmissito
at the base station. The sensor nodes, on the other hamdjumber of short hops does not necessarily favor energy
are powered by batteries that are inconvenient to replaedficiency compared to a single long hop due to the receiving
Communication has been shown to be the dominant souamst. More importantly, the analysis of precision allogatin
of energy consumption in wireless sensor networks [1], [4] single-hop network provides insights on the allocatiom in
and is therefore the focus of this paper. multi-hop network. The adaptive precision allocation snke
We denote the energy consumed by sensor néoléransmit  described in this section serves as a building block of thee on
and receive a data update byandwv; respectively. They can we shall propose for multi-hop networks in Section V.



A. Analysis of Optimal Precision Allocation Since

Consider a snapshot of the network. legt es, ---, e, be i1 j* s
the error bounds currently allocated to sensor nodes 1.,- 2, Z u; s_) = Zujl(ﬁ),
n respectively. Since the sensor nodes in a single-hop nketwor Ly i 1 grL e
are not involved in relaying data from other sensor nodes \ have
the base station, the energy consumption rate of sensor node = i
1 is simply uL(Pi <E< ! Di '
ui(e;) - 5. ; ! (lj* 'Si)_ ; ! (lj*Jrl'Si)
Suppose the residual energy of sensor noitep;. Then, the  Hence, there also exists @h (I;- < * < l;-11) such that
expected lifetime of sensor nodeas given by i
i 1P y_p 3
e > @
AN [ i=1
Therefore, the network lifetime is given by On the other hand, 57, ui_l(l ) < E, sinceu;(-)’s
Di are non-increasing and; ' (0) = oo, there exists ai* (I* >
1<i<n ui(ei) : Si. ln) such that
The objective of precision allocation is to find a set of error Zuﬂ Di )= E. (4)
boundsey, es, ---, e, that maximizes the network lifetime I* - s

under the constraint For convenience, we shall dengté = n in this case so that

> e <E. (4) is consistent with (3).

We now analyze the optimal precision allocation. For sim- Theorem 1:An optimal precision allocation is given by

plicity, we shall assume functions;(-)'s are continuous and u?l( Py <<
denote the inverse function af,(-) by u; '(-). e; = { vomsd T
. . . . Sl o 0 jF<i<n,
Since u;(-) is non-increasing, the minimum lifetime of
sensor nodée is given by which has a lifetime of*.
l Di Proof: See [24] for details. O
L ul(O) . Si.

Theorem 1 implies that the sensor nodes with high residual
energy f;), slow change in readings (i.e., low;(0)), and
L1 <lp<---<1,. low communication costs() may be assigned zero error
bounds. The sensor nodes allocated non-zero error bounds in
Ijor each pair(i, j) wherei < j, consider the error bound gn optimal precision allocation must be equal in the energy
u; (777%;) that makes the lifetime of sensor nodequivalent  consumption rate normalized by the residual energy:
to the minimum lifetime of sensor node Sincew;(+) is non-

increasing, it follows fromi; <;,, that T =

Without loss of generality, suppose

ui(e:) - si

Pi '
We shall call »; the normalized energy consumption rate
To extend network lifetime, it is important tbalance the
normalized energy consumption rates of the sensor nodes.

-1, Pi -1 Pi
U — )< u; _—
7 (lj . 81) — 7 lj+1 . S'L
Thus, given anyl < j < n,

j j+1 . . .
zj:uf < zj:ufl _ Jz:u B. Adaptive Precision Allocation
—~ oz liv1- Sz ) y+1 In practice, the exact forms af;(-)'s (i.e., the changing

patterns of sensor readings) may not be known a priori and

This implies 3=7_, u; (l ;) is non-decreasing with in- 4,0 may even change dynamically. Thus, we propose a
creasingj. Note that whery = 1, sample-based precision allocation method, which willfart
J s be used to design an adaptive precision allocation schehge. T
ZUZl(ﬁ) = u; "(u1(0)) = 0. key idea is to let each sensor node report to the base station a

i=1 J number ofsample error boundand the associated normalized

Therefore, given an error bounf > 0 on aggregate data, energy consumption rates based on historical sensor g=adin

if > ;1( ) > E, there must exist g* (1 < j* < n) The base station optimizes precision allocation based eseth

such that samples to extend network lifetime. Since the general rela-
* 541 tionships between error bounds and precision-driven @pdat
Z“;I(L) <E< Z u Y Pi ) rates are not known, an additional constraint here is that th
im1 Lj= - si im1 Ljv g1 - 85 error bound of each sensor node can only be set to one



of its samples. Such allocations are calEaimple precision boundse; 1,e;2, - ,e; . The sensor node keeps track of

allocations and the one that maximizes network lifetime ithe precision-driven update rates,, u; s, - - - , u;,m Of these

called theoptimal sample precision allocation error bounds as it captures new readings. At the end of the
Assume that each sensor node estimatesamples. For adjustment period, the sensor node computes the normalized

each sensor nodg lete; 1 < e;2 < --- < e;,, be the list of energy consumption rate ; of eache; ; as

sample error bounds, ang,,7; 2, -, ;. be the associated wi ;- 8

normalized energy consumption rates. It follows that > Tig = T

rio > -+ > 1 ;. Suppose the smallest sample error boundﬁ1

for the sensor nodes do not add up to the designated boun Sample errot bounds; ;’s and normalized energy con-
, 1 sumption rates; ;’s are then reported to the base station. On
on aggregate data, i.ee;1 + €21 + - +e,1 < E. :

Algorithm 1 presents the pseudocode to compute_the optinﬁgfe'wng the_ ;amples, t_he b"’?se stat|o_n computes ihe dptima
sample precision allocation sample precision allocation using Algorithm 1. If the corgul
' error bounds are different from those currently allocatethe

Algorithm 1 Optimal Sample Precision Allocation in a Single_sensor nodes, they are then sent to the sensor nodes for their

Hob Network adjustments.
IanlJJt' Algorithm 1 and Theorem 2 are generic in that they are

applicable to any list of samples. In this paper, we propose t
£ error bound of aggregate data , choose a set of sample error bounds that are exponentially
Ciyes Tiyx - gample error bounds and normalized energé/paced for each sensor node. The closer the samples to
consumption rates the current error bound, the smaller the difference between
Output: . . . neighboring samples. The motivation is to adjust the error
€0, €rror bound of each sensor in optimal allocation bounds at coarser granularity when they are significantly fa
away from the optimum, and adjust them at finer granularity
when they are close to the optimum. Let be the current

1: for i =1ton do

2 xdl f: L error bound of sensor node Then, the sample error bounds
3: err]fl or q of i range fromle; to 2e;. Given the number of samples
4 while 12'£]an # m do m = 2k + 1, the sample error bounds are selected as
5 ) = ar max izt

I =AY 13 ok —1 9k 41 5 3
6. if eja 41 +Z#j ez, > E then 5 Cir g i T Cin Gy T Cin s € S
;: t&rgfak; V. PRECISIONALLOCATION IN MULTI-HOP NETWORKS

end i

o x;=x;+1; A. Modeling In-Network Aggregation

10: end while Multi-hop networks are necessary if the base station is
beyond the radio coverage of some sensor nodes. In-network

Initially, the error bound of each sensor node is set to jfd9regation is an important technique to reduce the network

smallest sample (steps 1 to 3). In each iteration of stepd@ffic of data collection in multi-hop networks [25], [6]3];

to 10, the error bound of the sensor node having the high&kfl- Specifically, the sensor nodes are organized in a tree
energy consumption rate is replaced with its next smalledfucture rooted at the base station. On receiving data fiom
sample. The iteration stops if a new replacement would makgildren, each intermediate node aggregates the dataebefor
the total bound of the sensor nodes exceed the designd@y/arding them upstream, thereby cutting down the volume

bound on aggregate data (steps 6 to 7). The worst-case tﬂf._(gata tr.ansmitted over the upper-level links in the treredé&f
complexity of Algorithm 1 isO(mn).2 this architectures; refers to the energy cost for nodéo send

a data update tds parent, and; refers to the energy cost for
Theorem 2:The sample precision allocation computed b)0de: to receive a data update from a child.
Algorithm 1 maximizes network lifetime. Like in a single-hop network, each sensor nédeallocated
Proof: See [24] for details. g an error bounc; for its local readings. We shall call it the
local error bound The total error bound allocated to the sensor

Adaptive precision allocation works by adjusting the errd_?OdeS in the subtree rooted at sensor nbdereferred to as
bounds of sensor nodes periodically. The interval betwesen t/tS 9r0Ss error boungddenoted byE;. Note that the gross and

successive adjustments is calledeaiustment periogwhich is 10c@l error Ib_orl]mds of a Iiaf senﬁor node arzthe same.
much longer than an epoch. At the beginning of an adjustment @ Multi-hop network, each sensor node guarantees to
period, each sensor node selects a list of sample errorUPdate its parent whenever the partial aggregate resuft ove
the subtree rooted at it changes beyond its gross error bound
1our proposed sample selection method (to be discussed latérisn Specifically, in each epoch, a leaf sensor node sends itsigead
section) satisfies this constraint.

2As shall be shown in Section VI, a smait is sufficient to achieve near  3The residual energy of a sensor node can be estimated fronatiisryo
optimal network lifetime. voltage [2], [3].




to the parent if the reading has changed beyond its locaf erig; o, ---, E; ,,. Like in a single-hop network, each sensor
bound since the last update to the parent. Each intermediatele keeps track of the precision-driven update rates
sensor node in the tree maintains the data value reported:by, - - -, u; ,, of the sample local error bounds for its local
each child as well as its local sensor reading at the time i@fadings. At the end of the adjustment period, the sampkesgro
its last update to the parent. In each epoch, the sensor ned®r bounds and the associated data update rates and energy
re-aggregates the data values and sends the updated daggregasumption rates are computed and propagated in a bottom-
value to its parent if (a) it has received data updates fromp manner from the leaf sensor nodes to the base station.
at least one child; or (b) the local sensor reading has clianggpecifically, each sensor nodeends a lis{E; 1,U; 1, Ri 1),
beyond the local error bound since the last update to itspareE; o, U; 2, Ri 2), - - -, (Ei m, Uim, Rim) tO its parent, where

If neither event (a) nor (b) occurs, the intermediate senede U, ; is the rate of data updates sent by nad® its parent
does not need to update its parent because the aggregate vahder the optimal allocation aof; ; in the subtree rooted at

cannot have changed beyond its gross error bound. i, and R; ; is the corresponding maximum normalized energy
Let U; be the rate of data updates sent by each sensor nedasumption rate of the sensor nodes in the subtree.
i to its parent. Ifi is a leaf node[J; is simplyi's precision- If ¢ is a leaf sensor node, its sample gross error bounds

driven update rate, i.el/; = u;(e;). If i is an intermediate are the same as its sample local error bounds. Tiygss are
node,U; depends on the rates at which events (a) and (b) occsimply the precision-driven update rates;’s. Like the sensor
We first analyze event (a). In each epoch, the probability thaodes in a single-hop network, computes the normalized

an's child ¢ sends a data update to nods % whereS is energy consumption rate ef ; as
the sensing rate. For simplicity, we assume that the changes Wi s
the readings at different sensor nodes are independent, The Tij = —2—.
the probability that at least one child sends a data update to pi
sensor nodeé in an epoch is given by Sincei is a leaf nodeR; ;'s are simplyr; ;'s.
U If ¢ is an intermediate sensor node, it collects the lists
1- H (1 — ?C), of sample gross error bounds, data update rates and energy
ceC; consumption rates from all of its children. Together witle th
where C; is the set ofi’s children. On the other hand, inPrecision-driven update rates, uis, ---, i,» measured

each epoch, the probability that event (b) occurs can [gvgally,. sensor nodeé computes the optimall sample_precision
approximatetiby “:(2) Therefore, the probability that sensog@/location for each gross error bouid ; using Algorithm 2.

nodei sends a data update to its parent in an epoch is ~ Given a sample gross error bouid ;, all sample local error
boundse; ;, wheree;; < E;; are considered (step 3). For

1— (1 _ _“i(ei)) ) H (1 _ E) eache; 5, the optimal allocation of?; ; —e; , amongi’s chil-
S oo S dren is computed using Algorithm 1 (step 4). Suppfse, is
the gross error bound of each childn the optimal allocation.
Then,U. ., is the corresponding data update rate frono i,
U —g. (1 B (1 B ui(ei)) _ H (1 _ %)) ) and . ., is the corresponding maximum normalized energy
! S S consumption rate of the sensor nodes in the subtree rooted at
c. The data update rate from sensor node its parent and’s
Taking into consideration the energy consumed in sendidg aRormalized energy consumption rate are then computed based
receiving data updates, the normalized energy consumptigh (5) and (6) respectively (steps 6 and 7). The maximum
rate of sensor nodeis given by normalized energy consumption rate of the sensor nodes in
Ui si+ Y eee, Ue v; the subtree rooted atcan then be computed (s_tep 7)._ The
: (6) sample local error bound; ;, and the corresponding optimal
) o ) allocation among’s children that lead to the lowest maximum
B. Adaptive Precision Allocation energy consumption rate are selected as the optimal sample
As shown in Section IV, to extend network lifetime, itprecision allocation forE; ; (steps 8 to 13). The worst-case
is important to balance the normalized energy consumptiime complexity of Algorithm 2 isO(m? - |C;|), where|C;| is
rates of the sensor nodes, i.e., to minimize the maximutfimle number ofi’s children. Sensor nodé keeps the optimal
rate. Adaptive precision allocation in a multi-hop networlallocation for each gross error boudd ;, and sends the list
also works by adjusting the error bounds of sensor nodés; ,U; 1, Ri1), (Ei2, Uiz, Ri2), -+ (Eim, Uim, Ri.m) 10
periodically. At the beginning of an adjustment period, teadts parent.
sensor nodé selects a list of sample local error boungds, The base station, on receiving the lists from all of its
ei2, -+, €,m and a list of sample gross error bounds;, children, computes the optimal sample precision allocatio
among the children using Algorithm 1. The computed error
4This is a conservative estimate. Strictly speaking, the asitehich event o nds are then sent to the sensor nodes for their adjustment
(b) occurs is lower than the precision-driven update rafec;). This is in a top-down manner. The base station sends to its chiltieen t

because the up-to-date sensor reading & also conveyed in the updates ) -
to i's parent when event (a) occurs. gross error bounds allocated to them. An intermediate $senso

As a result,

i

Dbi



Algorlthm 2 Sample Precision Allocation at Sensor Node error bounds are selected as
in a Multi-Hop Network k k
1.3 28 -1 28 +1 5.3
Input: 7Ei77Ei7"' ) ) Eiin7 ki Ela 77Ei77Eia
2 4 2k 2k 4 2
E; ;. sample gross error bound of sensor nade

Eev,U.., R..: sample gross error bounds, data lJlodataend the sample local error bounds are selected as

rates and maximum normalized energy consumption rates 1 3 2k —1 2k +1 5 3
received from each child of i 9 g TR G T Gt G G
Output: VI. PERFORMANCEEVALUATION
E.: gross error bound of each chidof i in optimal Experimental Setup
Z:lifaffcnm error bound of sensor node in optimal We have developed a simulator based on ns-2 (version
allocation 2.26) [26] and NRL's sensor network extension [27] to evalu-

U, .: data update rate from sensor nade its parent in ate the proposed adaptive precision allocation schemée Tlab
2,7 . . .
optjimal allocation summarizes the system parameters and their settings.

R; j: maximum normalized energy consumption rate in TABLE Il
the subtree rooted dtin optimal allocation SYSTEM PARAMETERS AND SETTINGS
Parameter Setting
1 Ri7j = +00; Number of Sensor Node$ 10 (single-hop network)
2: for h=1tom do (n) 20 (multi-hop network)
. . . d4q
3 if e;, < Eyj then s lath db
4 compute the optimal sample allocation of error bound Energy Consumption 8 = 100 pJ/bim
E;; — e;,, amongi’s children using Algorithm 1 for Sending a Message q=2
based OnEC’.* and R,C’*; d: tan?rﬁi?s?gg jizteance
5: for each childc of 4, let E. ;. be the error bound

Energy Consumption 57
gy & p 4 = 50 nd/b
for Receiving a Message

of ¢ in the optimal allocation, therU, ., is the
s: message size

corresponding data update rate froro i, andR.. .,

Power Consumption

is the corresponding maximum norma}ized energy in Sleeping Mode 0.016 mw
consumption rate of the sensor nodes in the subtree Initial Energy Budget 013
rooted atc: at Each Sensor Node )
' ws U Epoch 1 time unit
6 Ui=S5-(1-(1-"%") TLee, (1- %) ):
Ui-si+) cco, Ue,ae i . . .
7 R, = max( . , max Rc,xc); The simulator includes the detailed models of the MAC and
8: if R: < R. . then el physical layers for wireless networks. The sensor nodes can
. 1 T, . . ..
9 R . — RJ_. operate in one of three modes: sending message, receiving
. 1, T (2 . . .

10: U}j}_ U message, and sleeping. These modes differ in energy con-
- v,] T (2] . . . .

11: n - B sumption. We used similar energy models to those in other
: i = h; ;

12: for each childe of i, y, — a.; studies [11], [21], [28]. The energy consumed by a sensoe hod

13- end if ) ) to send a message is (« + 3 - d?), wheres is the message

14:  end if size,«a is a distance-independent termjs the coefficient for

15: end for a distance-dependent terinjs the exponent for the distance-

dependent term, andlis the transmission distance. The energy
consumed by a sensor node to receive a data updatenis
where~y is a coefficient independent of transmission distance.
node, on receiving its allocated gross error bound, re#sevThe settings of these parameters are shown in Table Il. The
the corresponding optimal allocation which contains a llocgower consumption in the sleeping mode was set at 0.016
error bound and a set of gross error bounds for its childrew. For simplicity, the energy overhead of mode switching
The intermediate sensor node applies the local error bougdgnored. The initial energy budget at each sensor node was
to its local readings and sends the gross error bounds togtg at 0.1 Joule. The epoch was assumed to be 1 time unit.
children. A leaf sensor node, on receiving its aIIocatedsgro We simulated a single-hop network of 10 sensor nodes and
error bound, simply takes it as the local error bound. a multi-hop network of 20 sensor nodes. Their layouts are
Similar to adaptive precision allocation in a single-hop- neshown in Figures 2 and 3.
work, the sample gross and local error bounds of each sensoWwe made use of the data provided by the Tropical At-
node are exponentially spaced around the current gross amasphere Ocean (TAO) project [29] to simulate the sensor
local error bounds respectively. L&f; ande; be the current readings. Oceanographic and meteorological data arectadle
gross and local error bounds of sensor nadespectively. from a wide range of mooring sites in the TAO project for
Given the number of samples = 2k + 1, the sample gross improved detection, understanding and prediction of EldNin
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and La Nina. We selected a subset of the sites and mapped (potential gain + timestamp

The base station computes the AVERAGE aggregation of
the readings collected from all sensor nodes with a designat
error boundE. As discussed in Section llI-A, in this case,
the total error bound allocated to the sensor nodes should be
capped byn - E, wheren is the number of sensor nodes. The
experiments started with the error bound uniformly alledat
to the sensor nodes, i.e., each sensor node is allocated an
error bound ofE. The following precision allocation schemes
were simulated for performance comparison. Table Il likes
scheme-specific parameters and their settings. We measured
the energy consumption of each sensor node and the network
lifetime in the experiments.

TABLE Il
SCHEME-SPECIFICPARAMETERS AND SETTINGS
Parameter | Setting
All Schemes
(dat vatne + timostap) 8 bytes
Error Bound 8 bytes

Adjustment Message

(error bound + timestamp) (except Uniform-PA)

Adaptive-PA
Adjustment Period 500 time units
Number of Samplesrf) 7
4m + 4 bytes
Sample Report Message | (single-hop network)
(m samples + timestamp) 8m + 4 bytes
(multi-hop network)
Burden-PA
Adjustment Period 200 time units
Shrink Percentage 5%
PGain-PA
Adjustment Period 500 time units
Shrink Percentage 40%

Sample Report Message 8 bytes

them to the sensor nodes in our networks. We used the air

temperature (AT) and winds (WIND) data from 1999 to 2000 ] o ) ]

in our experiments. The data of different sites are simitar i * Proposed Adaptive Precision Allocation (Adaptive-
magnitude. Figure 4 shows some representative segments of PA): This is the adaptive precision allocation scheme
the AT and WIND data traces. In general, the WIND data Proposed in Sections IV-B and V-B. By default, each

fluctuate more widely than the AT data.
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Fig. 4. Sample Data Traces

sensor node selectedh = 7 sample error bounds and
the adjustment period was set at 500 time units. The
performance impacts ofn and adjustment period are
investigated in Section VI-B. In a single-hop network,
since the base station is aware of the current error bounds
of the sensor nodes, it can infer the sample error bounds
tracked by each sensor node which are exponentially
spaced around the current bound. Therefore, only the
estimated energy consumption rates need to be reported
to the base station at the end of the adjustment period.
The payload size of a sample report message was thus
set at 4n + 4 bytes> Similarly, in a multi-hop network,
since each intermediate sensor node is aware of the
current gross error bounds of its children, it can infer
the sample gross error bounds tracked by each child.
At the end of the adjustment period, only the estimated
update rates and maximum energy consumption rates

5A timestamp of 4 bytes was assumed to be included in all messages fo
ordering and consistency purposes.



are reported by a sensor node to its parent. Thus, the 70000 — : : : : :
payload size of a sample report message was setrat 8 @
+ 4 bytes.

60000

50000

AT Trace —+—
WIND Trace -—->---

(Time Uni

« Uniform Precision Allocation (Uniform-PA) : The error
bound is evenly partitioned among the sensor nodes, i.e.¢ 40000
the precision allocation remains the initial one. This is a-g
simple and static scheme which does not differentiate the%
sensor nodes by the changing pattern of sensor readings 20000

30000

_Xemmmm Keommmmms K== X
residual energy, and communication cost with the base% T
station. 2 10000 x-~ 4
O 1 1 1 1 1 1
o Burden-based Precision Allocation (Burden-PA) 1 3 5 7 9 11

Olston et al. [5] presented a burden-based precision
allocation scheme for aggregate queries over distributed
data Stre.amfs' Their objective was to minimize the tot |I . 5. Network Lifetime vs. Number of Sample Error Bounds in piilze-
communication cost between data sources and the da,fa(Sing|e_H0p Network 2 = 0.4)
sink. In our experiments, the energy consumed by each
sensor node to send a data update to the base station
was taken as a measure of its communication costaces. The network lifetime increases rapidly withup to 5.
Burden-PA works by periodically reducing the erroit is generally insensitive ten whenm exceeds 5. The default
bound of each sensor node byshrink percentageind m was set at 7 in the remaining experiments.
redistributing the leftover portion among the sensor Adaptive-PA, Burden-PA and PGain-PA all adjust the error
nodes. As suggested by [5], the shrink percentage wasunds of sensor nodes periodically. The setting of adjeistm
set at 5%. The default adjustment period was set at 2@@riod reflects a tradeoff between overhead and adaptiwity.
time units which showed the best performance in owgeneral, the shorter the adjustment period, the highervae o
experiments (see Section VI-B). head. On the other hand, the longer the adjustment peried, th
less adaptive the precision allocation scheme. Figure #/sho
» Potential-Gain-based Precision Allocation (PGain- the network lifetime for different adjustment periods when
PA): To reduce the number of messages in the networkas set at 0.4. As expected, the graph of network lifetime is
Deligiannakiset al. [8] presented a precision allocationconvex for most combinations of precision allocation sckem
scheme for data aggregation based on online estinind data trace. We have selected the default adjustmentiperi
tion of potential gains. Similar to Burden-PA, PGainfor each allocation scheme as the one that showed the best
PA periodically reduces the error bound of each sensperformance (i.e., 500, 200 and 500 time units for Adaptive-
node by ashrink percentagand redistributes the leftover PA, Burden-PA and PGain-PA respectively).
portion among the sensor nodes. As suggested by [8], the . i . .
shrink percentage was set at 40%. The default adjustmént COmparing Adaptive-PA with Existing Schemes
period was set at 500 time units which showed the bestFigure 7 shows the network lifetime as a function of the
performance in our experiments (see Section VI-B). designated error bound on data aggregation for different
e precision allocation schemes in the single-hop network of
B. Effect of System-Specific Parameters Figure 2. It can be seen that the lifetime increases with
First, we investigate the performance impact of the numbgfror bound. The proposed Adaptive-PA scheme significantly
of sample error boundsn in the proposed Adaptive-PA gutperforms the other schemes for both traces tested.
scheme. Figure 5 shows the network lifetime for different  Even when the readings at all sensor nodes follow similar
values when the error bound was set at 0.4.Note that changing patterns, it is not desirable to allocate the same
whenm = 1, the current error bound is the only samplesrror bound to all sensor nodes due to their geographically
Thus, the optimal sample precision allocation computed Rystributed nature. In a single-hop network, the sensorenod
Algorithm 1 is always the same as the current allocationc&inggrther away from the base station consumes more energy in
the experiments started with uniformly allocated errorimts) sending a data update than the sensor node closer to the base
Adaptive-PA degenerates to Uniform-PA. station. Among the four precision allocation schemes exam-
The flexibility of precision allocation increases with. As  ined, Uniform-PA and PGain-PA do not take this heteroggneit
seen from Figure 5, am value of 3 improves the networkinto consideration. Thus, as shown in Figure 7, Adaptive-PA
lifetime by over 40% compared to that of = 1 for both jmproves the network lifetime by a factor up to 2.2 compared
6 . . . to Uniform-PA and PGain-PA. To show the importance of
Only the experimental results of the single-hop network (Fég2) are

reported in this section to show the effect of system-spepdimmeters. The balancmg e_nergy consumption in extending network lifetim
results of the multi-hop network (Figure 3) have similar trend we plot in Figure 8 the total energy consumed by each sensor

Number of Sample Error Bounds (m)



70000 T T T T T 20000 T T T T T
m m .8 B 3
£ 60000 = B g = Uniform-PA —+—
° AR © 15000 - o Burden-PA ---x-— |
£ 50000f 7 (S g PGain-PA ----x--
E X e TR E . Adaptive-PA &
g 40000 ¢ h 8 S R o
£ SO £ 10000 | +— : T —
B 30000}, x K e - E ki o Koo He Koo DR E
< - | Uniform PA Qf‘ >
X~ L | - _ X~
g 20000 Burden-PA - S 5000 .
*?5 10000 - PGain-PA ke %
Z Adaptive-PA & z
0 1 1 1 1 1 0 1 1 1 1 1
0 200 400 600 800 1000 0 200 400 600 800 1000
Adjustment Period (Time Units) Adjustment Period (Time Units)
(a) AT Trace (b) WIND Trace
Fig. 6. Network Lifetime vs. Adjustment Period (Single-HoptiNerk, E = 0.4)
AZOOOOO T T T T T T T é A35000 T T T T T T T T
%) . ) M .
2 Uniform-PA —— 2 Uniform-PA ——
5 Burden-PA —-x--- T 530000 - Burden-PA --->-- .
© 150000 PGain-PA % R 0 PGain-PA -
£ Adaptive-PA & E£25000-  Adaptive-PA = E
P L © 20000 - 1
£ 100000 - . £
2 2 15000 e
p p}
4 4 L .
S 50000 . 5 10000
2 2
3] © 5000 | B
z =z
0 0 1 1 1 1 1 1 1 1
0 01 02 03 04 05 06 0.7 08 0.9 0O 01 02 03 04 05 0.6 0.7 08 0.9
Designated Error Bound (E) Designated Error Bound (E)
(a) AT Trace (b) WIND Trace
Fig. 7. Network Lifetime vs. Designated Error Bound (Singlep Network)
HUniform-PA  EPGain-PA  OBurden-PA  [@Adaptive-PA | | OUniformPA  EPGain-PA  OBurden-PA  [@Adaptive-PA
0.1 4 —  — —F - 04 —— = R el
a8 n o - - ; - TWF B : T ]
o [ 3 5
3 0084 2 0.08 g !
= i 3 ! !
g o.06 | H—t——f+— vy g 0.06 - i ;
2 g ; {1 I ; ; § @ y g ¥
S oooa M H H Helld el THE A 8§ 0947 : : :
3 M B S U E LR ETE E M E 2 2 g 2
2 002 = 0.02 | H H I | i H
o HLBLE] -,_I:[_ | [ [ 1 _ﬂ- | [ [ 0 AR S L Ea—
1 2 3 4 5 6 7 8 9 10 1.2 3 4 5 6 7 8 9 10

Sensor Node ID

Sensor Node ID

(a) AT Trace

Fig. 8.

(b) WIND Trace

Energy Consumed at Different Sensor Nodes (Single-Network, E = 0.4)




— 120000 T T T T T T T Jﬁ AZSOOO T T T T T T T T
n 0 : pal
= Uniform-PA —— = Uniform-PA —— .
= 100000 - Burden-PA —--x--- b 320000 L Burden-PA ---x--- |
Q PGain-PA ----x--- X o PGain-PA -
E 80000 Adaptive-PA = I £ Adaptive-PA -
~ 15000 - A
Q Q
£ 60000 - - E
= 210000 - -
= 40000 - . =
g S 5000
£ 20000 . g
z z

0 0 1 1 1 1 1 1 1 1

0 01 02 03 04 05 06 0.7 08 0.9 0 01 02 03 04 05 06 0.7 0.8 09
Designated Error Bound (E) Designated Error Bound (E)
(a) AT Trace (b) WIND Trace

Fig. 9. Network Lifetime vs. Designated Error Bound (Multepl Network)

node by the time when the first sensor node runs out of energyComparing the performance of different precision alloca-
(i.e., the network lifetime elapsed). As can be seen, und@yn schemes, Adaptive-PA significantly outperforms theeot
Adaptive-PA, most sensor nodes were close to exhaustimg trechemes for both traces tested. In general, the improvement
energy when the network lifetime elapsed. However, undircreases with increasing error bound. This is becausege lar
Uniform-PA and PGain-PA, the sensor nodes close to the baseor bound gives more flexibility in optimizing precision
station (i.e., nodes 3 and 8 in Figure 2) consumed as low @#cation to balance the energy consumption of the sensor
15% of the energy only. nodes. As seen from Figure 9, Adaptive-PA outperforms

Burden-PA, on the other hand, considers the heterogenditpiform-PA, Burden-PA and PGain-PA by factors up to 1.8,
in communication cost due to transmission distance. Howvevé.7 and 2.5 respectively. Comparing Figures 7 and 9, it can
the objective of Burden-PA is to minimize the total commualso be observed that the relative improvement of Adaptive-
nication cost. Figure 7 shows that Burden-PA results in BA over Burden-PA is greater in the multi-hop network than in
shorter network lifetime by up to 41% than Adaptive-PA. Thighe single-hop network. This is because Burden-PA consider
implies minimizing network-wide total energy consumptioflata sources independently and no in-network aggregadion i
does not necessarily balance the energy consumption of fedeled. Our proposed Adaptive-PA scheme accounts for the
sensor nodes. As seen from Figure 8, under Burden-PA, serig@pact of in-network aggregation in multi-hop networks and
nodes 3 and 8 consumed less than 30% of the energy wif@pdels energy consumption more accurately.
the network lifetime elapsed.

It is also interesting to note that even under Adaptive-PA,
the sensor nodes are sometimes not well balanced in energwe have exploited the tradeoff between data quality and
consumption. For example, sensor nodes 3 and 8 consura@eérgy consumption to extend the lifetime for precision-
around 60% of the energy for the WIND trace. This is becaugenstrained data aggregation in wireless sensor netwavs.
these sensor nodes have low energy costs to communicate \wiktition the precision constraint and allocate error lisuto
the base station. Even if they are assigned error bounde clfdividual sensor nodes in a coordinated fashion. The mepo
to O, their energy consumption is not as high as the othef precision allocation is to differentiate the quality oétel
nodes for the WIND trace. This is consistent with the analysgllected from different sensor nodes, thereby balandiegy t
of optimal precision allocation in Section IV-A. energy consumption. We have analyzed the optimal precision

We have implemented in-network aggregation in the expegHocation in terms of network lifetime and have proposed an
ments. Figure 9 shows the results for the multi-hop network adaptive precision allocation scheme that dynamicallystd]
Figure 3. The relative performance of the precision allocat the error bounds of sensor nodes. Experimental resultg usin
schemes remains similar to that in the single-hop netwoneal data traces show that: (1) due to geographically Higed
The network lifetime increases rapidly with error boundhature of sensor networks, uniform precision allocatioesdo
For example, under Adaptive-PA, increasiffyfrom 0.1 to not perform well even if the readings at all sensor nodesyoll
0.2 prolongs the network lifetime by 65% and 54% for theimilar changing patterns; (2) to extend network lifetinite,

AT and WIND traces respectively. This demonstrates the more important to balance the energy consumption of the
effectiveness of approximate data aggregation in impgvisensor nodes than to minimize network-wide total energy
energy efficiency. consumption of the sensor nodes; (3) the proposed adaptive

VIl. CONCLUSION



precision allocation scheme significantly outperformsstg [23] I. Kang and R. Poovendran, “Maximizing network lifetimé laroad-
methods over a W|de range Of System Conﬂguratlons cast over wireless Stationary ad hoc networla%CM/KIuwer Mobile
Networks and Applicationssol. 11, no. 2, Apr. 2006.
[24] X. Tang and J. Xu, “Extending network lifetime for preois-
ACKNOWLEDGMENT constrained data aggregation in wireless sensor netwdgegended
. , . version), to be available from http://www.ntu.edu.sg/hfaegytang/.
Jianliang Xu's work was partially supported by a grant fronps; s. Madden, M. J. Frankiin, J. M. Hellerstein, and W. HoREAG: A

the Research Grants Council of the Hong Kong SAR, China tiny aggregation service for ad-hoc sensor networkspPioc. USENIX

; 0OSDI'02 Dec. 2002, pp. 131-146.
(Project No. HKBU 2115/05E). [26] “The network simulator - ns-2,” http://www.isi.edufmesm/ns/.
[27] “NRL’s sensor network extension to ns-2,”
REFERENCES http://nrisensorsim.pf.itd.nrl.navy.mil/.
[28] W. HeinzelmanApplication-Specific Protocol Architectures for Wireless
[1] 1. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayi# survey Networks Ph.D. Thesis, MIT, 2000.
on sensor networks/EEE Communications Magazingol. 40, no. 8, [29] “Tropical Atmosphere Ocean (TAO) Project,”
pp. 102-114, Aug. 2002. http://www.pmel.noaa.gov/tao/datliv.

[2] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A.iMearing,
and D. Estrin, “Habitat monitoring with sensor network€mmunica-
tions of the ACMvol. 47, no. 6, pp. 34-40, June 2004.

[3] J. Gehrke and S. Madden, “Query processing in sensorankssi IEEE
Pervasive Computingvol. 3, no. 1, pp. 45-55, January—March 2004.

[4] G. J. Pottie and W. J. Kaiser, “Wireless intergrated reetwvsensors,”
Communications of the ACMol. 43, no. 5, pp. 51-58, May 2000.

[5] C. Olston, J. Jiang, and J. Widom, “Adaptive filters for innous
queries over distributed data streams,Proc. ACM SIGMOD’03June
2003, pp. 563-574.

[6] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrydast “TiNA: A
scheme for temporal coherency-aware in-network aggregatioroc.
ACM MobiDE’03 Sept. 2003, pp. 69-76.

[7] Q. Han, S. Mehrotra, and N. Venkatasubramanian, “Eneffigient data
collection in distributed sensor environments,Hroc. IEEE ICDCS’04
Mar. 2004, pp. 590-597.

[8] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos, “Ifaechical in-
network data aggregation with quality guarantees,Pmc. EDBT'04
Mar. 2004, pp. 658-675.

[9] T. S. RappaportWireless Communications: Principles and Practice
Prentice Hall, 1996.

[10] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Dirdtdiffusion: A
scalable and robust communication paradigm for sensor nlesWadn
Proc. ACM MobiCom’00Aug. 2000, pp. 56-67.

[11] J. Pan, Y. T. Hou, L. Cai, Y. Shi, and S. X. Shen, “Topolagpntrol for
wireless sensor networks,” ifroc. ACM MobiCom’'03Sept. 2003, pp.
286-299.

[12] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hptthe design
of an acquisitional query processor for sensor networksProc. ACM
SIGMOD’03 June 2003, pp. 491-502.

[13] X.Li, Y. J. Kim, R. Govindan, and W. Hong, “Multi-dimengial range
queries in sensor networks,” iAfroc. ACM SenSys’03Nov. 2003, pp.
63-75.

[14] Y. Yao, X. Tang, and E.-P. Lim, “In-network processing néarest
neighbor queries for wireless sensor networks,Piroc. DASFAA'06
Apr. 2006.

[15] J. Xu, X. Tang, and W.-C. Lee, “EASE: Energy-conservapproximate
storage for querying object tracking sensor networks,Pmc. |IEEE
SECON'05 Sept. 2005.

[16] J. Considine, F. Li, G. Kollios, and J. Byers, “Approxiteaaggregation
techniques for sensor databases,Proc. IEEE ICDE'04 Mar. 2004,
pp. 449-460.

[17] N. Shrivastava, C. Buragohain, D. Agrawal, and S. SiMiedians and
beyond: New aggregation techniques for sensor network®tac. ACM
SenSys’04Nov. 2004, pp. 188-200.

[18] A. Sawvides, C.-C. Han, and M. B. Strivastava, “Dynamiwefgrained
localization in ad-hoc networks of sensors,Rroc. ACM MobiCom'01
July 2001, pp. 166-179.

[19] D. Niculescu and B. Nath, “Ad Hoc Positioning (APS) u$iA0A,” in
Proc. IEEE Infocom’03Apr. 2003, pp. 1734-1743.

[20] O. Younis and S. Fahmy, “Distributed clustering for amtlsensor net-
works: A hybrid, energy-efficient approach,” Rroc. IEEE Infocom’04
Mar. 2004, pp. 629-640.

[21] Y. T. Hou, Y. Shi, and H. D. Sherali, “Rate allocation inireless
sensor networks with network lifetime requirement,” Broc. ACM
MobiHoc’'04, May 2004, pp. 67—77.

[22] C. Buragohain, D. Agrawal, and S. Suri, “Power awareirgufor sensor
databases,” ifProc. |IEEE Infocom’05Mar. 2005, pp. 1747-1757.



