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Abstract— This paper exploits the tradeoff between data qual-
ity and energy consumption to extend the lifetime of wireless
sensor networks. We consider the applications that require some
aggregate form of sensed data with precision guarantees. Our
key idea is to differentiate the precisions of data collected from
different sensor nodes to balance their energy consumption.
This is achieved by partitioning the precision constraint of data
aggregation and allocating error bounds to individual sensor
nodes in a coordinated fashion. Three factors affecting the
lifetime of sensor nodes are identified: (1) the changing pattern
of sensor readings; (2) the residual energy of sensor nodes;
and (3) the communication cost between the sensor nodes and
the base station. We analyze the optimal precision allocation
in terms of network lifetime and propose an adaptive precision
allocation scheme that dynamically adjusts the error bounds of
sensor nodes. Experimental results using real data traces show
that the proposed scheme significantly improves network lifetime
compared to existing methods.

I. I NTRODUCTION

Rapid advances in sensing and wireless communication
technologies have made feasible the deployment of wireless
sensor networks for a wide range of applications such as
ecosystem monitoring and traffic surveillance [1], [2]. A
wireless sensor network typically consists of a base station
and a group of sensor nodes (see Figure 1). The sensor nodes
are responsible for continuously capturing environmentaldata
such as temperature and wind. They are also capable of
communicating with each other and the base station through
radios. The base station, on the other hand, serves as a
gateway for the sensor network to exchange data with external
applications to accomplish certain missions. It collects the
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sensor readings and converts them into a form requested
by the applications (e.g., average temperature reading). This
conversion process is calledaggregation. Primarily designed
for monitoring purposes, many sensor applications require
continuous aggregation of sensed data [3].

While the base station can have continuous power supply,
the sensor nodes are usually battery-powered. They are in-
convenient to replace once deployed in the field. Sometimes,
replacement is even impossible (e.g., sensor nodes in a hard-to-
reach area). Thus, energy efficiency is a critical design consid-
eration of wireless sensor networks. In these networks, com-
munication is a dominant source of energy consumption [4].
Continuous exact data aggregation requires substantial energy
consumption because each sensor node has to report every
reading to the base station. Unlike the strict data semantics
emphasized in traditional databases, to save energy, many
sensor applications allowapproximate data aggregationwith
precision guarantees [5], [6], [7], [8]. The precision can,for
example, be specified in the form of quantitative error bounds:
“average temperature reading of all sensor nodes within an
error bound of 1◦C.” In approximate data aggregation, the
sensor nodes do not have to report all readings to the base
station. Only the updates necessary to guarantee the desired
level of precision need to be sent.

When a sensor node runs out of energy, its coverage is
lost. The mission of a sensor application would not be able
to continue if the coverage loss is remarkable. Therefore,
the practical value of a sensor network is determined by the
time duration before it fails to carry out the mission due to
insufficient number of “alive” sensor nodes. This duration is
referred to as thenetwork lifetime[1]. It is both mission-
critical and economically desirable to manage sensed data
in an energy-efficient way to extend the lifetime of sensor
networks. However, this is a challenging task in that the sensor
nodes are inherently heterogeneous in energy consumption.
First, the data captured by different sensor nodes may change
at different rates. This implies the sensor nodes need to report
data at different rates. Second, the wireless communication
cost heavily depends on the transmission distance [9]. Due to



the geographically distributed nature of sensor networks,the
sensor nodes are likely to differ significantly in the energycost
of sending a message to the base station. Even if all sensor
nodes report data at the same rate, their energy consumption
can be highly unbalanced, thereby reducing network lifetime.

In this paper, we investigate the optimization of network
lifetime for approximate data aggregation. Our key idea is to
differentiate the quality of data collected from differentsensor
nodes to balance their energy consumption. This is achieved
by partitioning the precision constraint of data aggregation
and allocating error bounds to individual sensor nodes in a
coordinated fashion. Our contributions are as follows:

• We identify three factors affecting the lifetime of sensor
nodes in the context of approximate data aggregation: (1)
the changing pattern of sensor readings; (2) the residual
energy of sensor nodes; and (3) the communication cost
between the sensor nodes and the base station.

• We analyze the optimal precision allocation in terms of
network lifetime. To the best of our knowledge, this is the
first study on optimizing precision allocation to balance
energy consumption in wireless sensor networks.

• We develop a sample-based precision allocation method
and prove its optimality. Based on this, an adaptive
precision allocation scheme is proposed to dynamically
adjust the error bounds of sensor nodes. The scheme
models in-network aggregation in multi-hop networks.

• We present an experimental evaluation using real data
traces. Experimental results show that the proposed
scheme significantly improves network lifetime compared
to existing methods.

The rest of this paper is organized as follows. Section II
summarizes the related work. Section III describes the system
model and gives some basic definitions. Section IV analyzes
the optimal precision allocation in single-hop networks and
then proposes an adaptive precision allocation scheme. Sec-
tion V extends the adaptive scheme to multi-hop networks.
The experimental setup and results are discussed in SectionVI.
Finally, Section VII concludes the paper.

II. RELATED WORK

Wireless sensor networks have attracted much research ef-
fort in recent years. In the networking community, researchers
have focused on optimizing network related operations such
as routing and media access [10], [11], but they usually did
not take application-level data semantics into consideration.
In the database community, researchers have focused on exact
query processing over sensed data [12], [13], [14] and paid
little attention to trading data quality for energy efficiency.

Han et al. [7] investigated the management of sensor states
for approximate query processing. In an earlier work, we
developed a two-tier storage scheme for approximate query
processing in object tracking sensor networks [15]. However,
these studies were limited to queries for the readings of
individual sensor nodes, in which case the precision can be set
independently for different sensor nodes. Different from [7],
[15], in this paper, we consider continuous data aggregation

where the precision settings of different sensor nodes are
inter-related. Olstonet al. [5] investigated burden-based pre-
cision adjustment for continuous queries over distributeddata
streams. They aimed at minimizing the total communication
cost between data sources and the data sink. Sharafet al. [6]
implemented a simple uniform precision allocation for in-
network data aggregation. Deligiannakiset al. [8] further
optimized the allocation to reduce the number of messages in
the network. However, none of these studies has taken energy
and lifetime models into consideration. Thus, their proposed
techniques are not effective in handling the energy constraints
in wireless sensor networks. Moreover, some algorithm design
was based on a given changing pattern of sensor readings (e.g.,
one-dimensional random walk [5]). Hence, the algorithms may
not work well for other changing patterns. Different from
existing work, in this paper, we develop a generic framework
for extending network lifetime. Our proposed techniques are
applicable to any changing pattern of sensor readings.

Besides precision setting, some researchers investigatedap-
proximate representation of sensor readings with sophisticated
data structures [16], [17]. These studies are complementary to
our work.

III. SYSTEM MODEL

We consider a network ofn sensor nodes geographically
distributed in an operational area. They monitor immediate
surroundings and periodically collect local measurementssuch
as temperature and wind. The rate at which the sensor nodes
capture data readings is called the sensing rate, denoted by
S. The period between two successive readings is called an
epoch. The base station gathers data from the sensor nodes.

A. Data Aggregation Model

We consider approximate data aggregation with precision
guarantees [6], [7], [8]. Data impreciseness is measured by
the quantitative difference between an approximate value and
the exact value. The sensor application specifies the precision
constraint of data aggregation by an upperboundE on data
impreciseness (called theerror bound). That is, on receiving
an aggregate data valueA′ from the sensor network, the
application would like to be assured that the exact aggregate
valueA lies in the interval[A′ − E,A′ + E].

In approximate data aggregation, not all sensor readings
have to be sent to the base station in every epoch. To reduce
communication cost, the designated error bound on aggregate
data can be partitioned and allocated to individual sensor
nodes (we shall call itprecision allocation). Each sensor node
updates a new reading with the base station only when the
new reading significantly deviates from the last update to the
base station and violates the allocated error bound. This is
called aprecision-driven update. The designated precision of
aggregate data must be guaranteed provided that each sensor
node updates the readings with the base station according to
its allocated error bound. Therefore, the error bounds allocated
to individual sensor nodes have to satisfy certainfeasibility
constraints. Different aggregation functions impose different



constraints. In this paper, we consider three commonly used
types of aggregations: SUM, COUNT and AVERAGE. Ex-
ploring other aggregation functions such as MIN/MAX is
an important topic of future work. For SUM and COUNT
aggregations, to guarantee a given error boundE on aggregate
data, the total error bound allocated to the sensor nodes cannot
exceedE, i.e.,

n
∑

i=1

ei ≤ E, (1)

where ei is the error bound allocated to sensor nodei. For
AVERAGE aggregation, the total error bound allocated to the
sensor nodes cannot exceedn · E, i.e.,

n
∑

i=1

ei ≤ n · E, (2)

wheren is the number of sensor nodes.
Eligible precision allocation under the feasibility constraint

is not unique. For example, in a network of 10 temperature
sensor nodes, if the error bound on AVERAGE aggregation is
1◦C, we can allocate an error bound of 1◦C to each sensor
node. Alternatively, we can also allocate an error bound of
5.5◦C to a selected node and an error bound 0.5◦C to each
of the remaining nodes. This offers the flexibility to adjust
the energy consumption of individual sensor nodes by careful
precision allocation. In general, to collect the readings of a
sensor node at higher precision (i.e., smaller error bound),
the sensor node needs to send precision-driven updates to
the base station more frequently, which translates to higher
energy consumption. The quantitative relationship depends on
the changing patternof sensor readings (e.g., the frequency
and magnitude). Without loss of generality, we shall denote
the precision-driven update rate of each sensor nodei as a
function ui(e) of the allocated error bounde ≥ 0. ui(e) is
essentially the rate at which the reading captured by sensor
nodei changes beyonde. Intuitively, ui(e) is anon-increasing
function with respect toe. It is obvious thatui(e) ≤ S and
ui(∞) = 0.

Constraints (1) and (2) share the common characteristic that
the total error bound of the sensor nodes is capped by a given
value. We shall focus on constraint (1) in our discussion. The
analysis and algorithms developed in this paper can be adapted
to handle constraint (2) in a straightforward manner. They are
also directly applicable to SUM and AVERAGE aggregations
over any fixed subset of the sensor nodes.

B. Energy Model

The base station normally has continuous and sufficient
power supply. Thus, we shall assume no energy constraint
at the base station. The sensor nodes, on the other hand,
are powered by batteries that are inconvenient to replace.
Communication has been shown to be the dominant source
of energy consumption in wireless sensor networks [1], [4]
and is therefore the focus of this paper.

We denote the energy consumed by sensor nodei to transmit
and receive a data update bysi andvi respectively. They can

take different forms to cater for a wide range of factors. In the
simplest case, if all sensor nodes use a default communication
range,si’s are the same for all nodes. More sophisticatedly, if
the sensor nodes know the locations of the receivers [18], [19],
they can adapt the power level to the transmission distance.
The sensor nodes with longer transmission distances would be
associated with highersi’s. In addition, reliability can also be
modeled in the energy cost. Less reliable links are entitledto
highersi’s andvi’s due to possible retransmissions. The exact
forms of si andvi are orthogonal to our analysis and beyond
the scope of this paper.

Similar to other studies [20], [21], [22], [23], we define
the network lifetime as the time duration before the first
sensor node runs out of energy. Our analysis is also applicable
to redundant sensor deployment where each target location
is covered by several sensor nodes. From the viewpoint of
network lifetime, the set of sensor nodes monitoring the same
location can be converted to a single equivalent node by adding
up the energy budgets of these sensor nodes. More generally,
if the network lifetime is defined as the time duration beforea
given portion of sensor nodes run out of energy, our proposed
scheme can be applied repeatedly to extend network lifetime
after the exhaustion of a sensor node’s energy.

The notations we have introduced and will introduce later
are summarized in Table I.

TABLE I

SUMMARY OF NOTATIONS

Notation Definition
n number of sensor nodes
E designated error bound on aggregate data
S sensing rate
ei error bound allocated to sensor nodei

precision-driven update rate of sensor nodei
ui(·) (as a function of its allocated error bound)
si energy cost for sensor nodei to transmit a data update
vi energy cost for sensor nodei to receive a data update
pi residual energy of sensor nodei
ri normalized energy consumption rate of sensor nodei

IV. PRECISIONALLOCATION IN SINGLE-HOP NETWORKS

We start by investigating the precision allocation in a single-
hop network where each sensor node sends its local readings
to the base station directly. In this case,si refers to the energy
cost for nodei to send a data update to the base station. Single-
hop networks are preferred by many applications due to a
number of reasons [11]. First, the limitation of sensor designs
(e.g., simplex MAC with limited buffer) may make relaying
practically infeasible. Second, breaking the transmission into
a number of short hops does not necessarily favor energy
efficiency compared to a single long hop due to the receiving
cost. More importantly, the analysis of precision allocation in
a single-hop network provides insights on the allocation ina
multi-hop network. The adaptive precision allocation scheme
described in this section serves as a building block of the one
we shall propose for multi-hop networks in Section V.



A. Analysis of Optimal Precision Allocation

Consider a snapshot of the network. Lete1, e2, · · · , en be
the error bounds currently allocated to sensor nodes 1, 2,· · · ,
n respectively. Since the sensor nodes in a single-hop network
are not involved in relaying data from other sensor nodes to
the base station, the energy consumption rate of sensor node
i is simply

ui(ei) · si.

Suppose the residual energy of sensor nodei is pi. Then, the
expected lifetime of sensor nodei is given by

pi

ui(ei) · si

.

Therefore, the network lifetime is given by

min
1≤i≤n

pi

ui(ei) · si

.

The objective of precision allocation is to find a set of error
boundse1, e2, · · · , en that maximizes the network lifetime
under the constraint

n
∑

i=1

ei ≤ E.

We now analyze the optimal precision allocation. For sim-
plicity, we shall assume functionsui(·)’s are continuous and
denote the inverse function ofui(·) by u−1

i (·).
Since ui(·) is non-increasing, the minimum lifetime of

sensor nodei is given by

li =
pi

ui(0) · si

.

Without loss of generality, suppose

l1 ≤ l2 ≤ · · · ≤ ln.

For each pair(i, j) wherei ≤ j, consider the error bound
u−1

i ( pi

lj ·si
) that makes the lifetime of sensor nodei equivalent

to the minimum lifetime of sensor nodej. Sinceui(·) is non-
increasing, it follows fromlj ≤ lj+1 that

u−1
i (

pi

lj · si

) ≤ u−1
i (

pi

lj+1 · si

).

Thus, given any1 ≤ j < n,

j
∑

i=1

u−1
i (

pi

lj · si

) ≤

j
∑

i=1

u−1
i (

pi

lj+1 · si

) =

j+1
∑

i=1

u−1
i (

pi

lj+1 · si

).

This implies
∑j

i=1 u−1
i ( pi

lj ·si
) is non-decreasing with in-

creasingj. Note that whenj = 1,

j
∑

i=1

u−1
i (

pi

lj · si

) = u−1
1 (u1(0)) = 0.

Therefore, given an error boundE > 0 on aggregate data,
if

∑n

i=1 u−1
i ( pi

ln·si
) > E, there must exist aj∗ (1 ≤ j∗ < n)

such that
j∗

∑

i=1

u−1
i (

pi

lj∗ · si

) ≤ E <

j∗+1
∑

i=1

u−1
i (

pi

lj∗+1 · si

).

Since
j∗+1
∑

i=1

u−1
i (

pi

lj∗+1 · si

) =

j∗

∑

i=1

u−1
i (

pi

lj∗+1 · si

),

we have
j∗

∑

i=1

u−1
i (

pi

lj∗ · si

) ≤ E <

j∗

∑

i=1

u−1
i (

pi

lj∗+1 · si

).

Hence, there also exists anl∗ (lj∗ ≤ l∗ < lj∗+1) such that

j∗

∑

i=1

u−1
i (

pi

l∗ · si

) = E. (3)

On the other hand, if
∑n

i=1 u−1
i ( pi

ln·si
) ≤ E, sinceui(·)’s

are non-increasing andu−1
i (0) = ∞, there exists anl∗ (l∗ ≥

ln) such that
n

∑

i=1

u−1
i (

pi

l∗ · si

) = E. (4)

For convenience, we shall denotej∗ = n in this case so that
(4) is consistent with (3).

Theorem 1:An optimal precision allocation is given by

e∗i =

{

u−1
i ( pi

l∗·si
) 1 ≤ i ≤ j∗,

0 j∗ < i ≤ n,

which has a lifetime ofl∗.
Proof: See [24] for details. 2

Theorem 1 implies that the sensor nodes with high residual
energy (pi), slow change in readings (i.e., lowui(0)), and
low communication cost (si) may be assigned zero error
bounds. The sensor nodes allocated non-zero error bounds in
an optimal precision allocation must be equal in the energy
consumption rate normalized by the residual energy:

ri =
ui(ei) · si

pi

.

We shall call ri the normalized energy consumption rate.
To extend network lifetime, it is important tobalance the
normalized energy consumption rates of the sensor nodes.

B. Adaptive Precision Allocation

In practice, the exact forms ofui(·)’s (i.e., the changing
patterns of sensor readings) may not be known a priori and
they may even change dynamically. Thus, we propose a
sample-based precision allocation method, which will further
be used to design an adaptive precision allocation scheme. The
key idea is to let each sensor node report to the base station a
number ofsample error boundsand the associated normalized
energy consumption rates based on historical sensor readings.
The base station optimizes precision allocation based on these
samples to extend network lifetime. Since the general rela-
tionships between error bounds and precision-driven update
rates are not known, an additional constraint here is that the
error bound of each sensor node can only be set to one



of its samples. Such allocations are calledsample precision
allocations and the one that maximizes network lifetime is
called theoptimal sample precision allocation.

Assume that each sensor node estimatesm samples. For
each sensor nodei, let ei,1 < ei,2 < · · · < ei,m be the list of
sample error bounds, andri,1, ri,2, · · · , ri,m be the associated
normalized energy consumption rates. It follows thatri,1 ≥
ri,2 ≥ · · · ≥ ri,m. Suppose the smallest sample error bounds
for the sensor nodes do not add up to the designated bound
on aggregate data, i.e.,e1,1 + e2,1 + · · · + en,1 ≤ E.1

Algorithm 1 presents the pseudocode to compute the optimal
sample precision allocation.

Algorithm 1 Optimal Sample Precision Allocation in a Single-
Hop Network
Input:

E: error bound of aggregate data
ei,∗, ri,∗: sample error bounds and normalized energy
consumption rates

Output:
ei,xi

: error bound of each sensor in optimal allocation

1: for i = 1 to n do
2: xi = 1;
3: end for
4: while min

1≤i≤n
xi 6= m do

5: j = arg max
1≤i≤n,xi 6=m

ri,xi
;

6: if ej,xj+1 +
∑

i6=j ei,xi
≥ E then

7: break;
8: end if
9: xj = xj + 1;

10: end while

Initially, the error bound of each sensor node is set to its
smallest sample (steps 1 to 3). In each iteration of steps 4
to 10, the error bound of the sensor node having the highest
energy consumption rate is replaced with its next smallest
sample. The iteration stops if a new replacement would make
the total bound of the sensor nodes exceed the designated
bound on aggregate data (steps 6 to 7). The worst-case time
complexity of Algorithm 1 isO(mn).2

Theorem 2:The sample precision allocation computed by
Algorithm 1 maximizes network lifetime.
Proof: See [24] for details. 2

Adaptive precision allocation works by adjusting the error
bounds of sensor nodes periodically. The interval between two
successive adjustments is called anadjustment period, which is
much longer than an epoch. At the beginning of an adjustment
period, each sensor nodei selects a list of sample error

1Our proposed sample selection method (to be discussed later inthis
section) satisfies this constraint.

2As shall be shown in Section VI, a smallm is sufficient to achieve near
optimal network lifetime.

boundsei,1, ei,2, · · · , ei,m. The sensor node keeps track of
the precision-driven update ratesui,1, ui,2, · · · , ui,m of these
error bounds as it captures new readings. At the end of the
adjustment period, the sensor node computes the normalized
energy consumption rateri,j of eachei,j as3

ri,j =
ui,j · si

pi

.

The sample error boundsei,j ’s and normalized energy con-
sumption ratesri,j ’s are then reported to the base station. On
receiving the samples, the base station computes the optimal
sample precision allocation using Algorithm 1. If the computed
error bounds are different from those currently allocated to the
sensor nodes, they are then sent to the sensor nodes for their
adjustments.

Algorithm 1 and Theorem 2 are generic in that they are
applicable to any list of samples. In this paper, we propose to
choose a set of sample error bounds that are exponentially
spaced for each sensor node. The closer the samples to
the current error bound, the smaller the difference between
neighboring samples. The motivation is to adjust the error
bounds at coarser granularity when they are significantly far
away from the optimum, and adjust them at finer granularity
when they are close to the optimum. Letei be the current
error bound of sensor nodei. Then, the sample error bounds
of i range from 1

2ei to 3
2ei. Given the number of samples

m = 2k + 1, the sample error bounds are selected as

1

2
ei,

3

4
ei, · · · ,

2k − 1

2k
ei, ei,

2k + 1

2k
ei, · · · ,

5

4
ei,

3

2
ei.

V. PRECISIONALLOCATION IN MULTI -HOP NETWORKS

A. Modeling In-Network Aggregation

Multi-hop networks are necessary if the base station is
beyond the radio coverage of some sensor nodes. In-network
aggregation is an important technique to reduce the network
traffic of data collection in multi-hop networks [25], [6], [8],
[17]. Specifically, the sensor nodes are organized in a tree
structure rooted at the base station. On receiving data fromits
children, each intermediate node aggregates the data before
forwarding them upstream, thereby cutting down the volume
of data transmitted over the upper-level links in the tree. Under
this architecture,si refers to the energy cost for nodei to send
a data update toi’s parent, andvi refers to the energy cost for
nodei to receive a data update from a child.

Like in a single-hop network, each sensor nodei is allocated
an error boundei for its local readings. We shall call it the
local error bound. The total error bound allocated to the sensor
nodes in the subtree rooted at sensor nodei is referred to as
its gross error bound, denoted byEi. Note that the gross and
local error bounds of a leaf sensor node are the same.

In a multi-hop network, each sensor node guarantees to
update its parent whenever the partial aggregate result over
the subtree rooted at it changes beyond its gross error bound.
Specifically, in each epoch, a leaf sensor node sends its reading

3The residual energy of a sensor node can be estimated from its battery
voltage [2], [3].



to the parent if the reading has changed beyond its local error
bound since the last update to the parent. Each intermediate
sensor node in the tree maintains the data value reported by
each child as well as its local sensor reading at the time of
its last update to the parent. In each epoch, the sensor node
re-aggregates the data values and sends the updated aggregate
value to its parent if (a) it has received data updates from
at least one child; or (b) the local sensor reading has changed
beyond the local error bound since the last update to its parent.
If neither event (a) nor (b) occurs, the intermediate sensornode
does not need to update its parent because the aggregate value
cannot have changed beyond its gross error bound.

Let Ui be the rate of data updates sent by each sensor node
i to its parent. Ifi is a leaf node,Ui is simply i’s precision-
driven update rate, i.e.,Ui = ui(ei). If i is an intermediate
node,Ui depends on the rates at which events (a) and (b) occur.
We first analyze event (a). In each epoch, the probability that
an i’s child c sends a data update to nodei is Uc

S
, whereS is

the sensing rate. For simplicity, we assume that the changesin
the readings at different sensor nodes are independent. Then,
the probability that at least one child sends a data update to
sensor nodei in an epoch is given by

1 −
∏

c∈Ci

(

1 −
Uc

S

)

,

where Ci is the set ofi’s children. On the other hand, in
each epoch, the probability that event (b) occurs can be
approximated4 by ui(ei)

S
. Therefore, the probability that sensor

nodei sends a data update to its parent in an epoch is

1 −
(

1 −
ui(ei)

S

)

·
∏

c∈Ci

(

1 −
Uc

S

)

.

As a result,

Ui = S ·

(

1 −
(

1 −
ui(ei)

S

)

·
∏

c∈Ci

(

1 −
Uc

S

)

)

. (5)

Taking into consideration the energy consumed in sending and
receiving data updates, the normalized energy consumption
rate of sensor nodei is given by

Ui · si +
∑

c∈Ci
Uc · vi

pi

. (6)

B. Adaptive Precision Allocation

As shown in Section IV, to extend network lifetime, it
is important to balance the normalized energy consumption
rates of the sensor nodes, i.e., to minimize the maximum
rate. Adaptive precision allocation in a multi-hop network
also works by adjusting the error bounds of sensor nodes
periodically. At the beginning of an adjustment period, each
sensor nodei selects a list of sample local error boundsei,1,
ei,2, · · · , ei,m and a list of sample gross error boundsEi,1,

4This is a conservative estimate. Strictly speaking, the rateat which event
(b) occurs is lower than the precision-driven update rateui(ei). This is
because the up-to-date sensor reading ofi is also conveyed in the updates
to i’s parent when event (a) occurs.

Ei,2, · · · , Ei,m. Like in a single-hop network, each sensor
node keeps track of the precision-driven update ratesui,1,
ui,2, · · · , ui,m of the sample local error bounds for its local
readings. At the end of the adjustment period, the sample gross
error bounds and the associated data update rates and energy
consumption rates are computed and propagated in a bottom-
up manner from the leaf sensor nodes to the base station.
Specifically, each sensor nodei sends a list〈Ei,1, Ui,1, Ri,1〉,
〈Ei,2, Ui,2, Ri,2〉, . . . , 〈Ei,m, Ui,m, Ri,m〉 to its parent, where
Ui,j is the rate of data updates sent by nodei to its parent
under the optimal allocation ofEi,j in the subtree rooted at
i, andRi,j is the corresponding maximum normalized energy
consumption rate of the sensor nodes in the subtree.

If i is a leaf sensor node, its sample gross error bounds
are the same as its sample local error bounds. Thus,Ui,j ’s are
simply the precision-driven update ratesui,j ’s. Like the sensor
nodes in a single-hop network,i computes the normalized
energy consumption rate ofei,j as

ri,j =
ui,j · si

pi

.

Sincei is a leaf node,Ri,j ’s are simplyri,j ’s.
If i is an intermediate sensor node, it collects the lists

of sample gross error bounds, data update rates and energy
consumption rates from all of its children. Together with the
precision-driven update ratesui,1, ui,2, · · · , ui,m measured
locally, sensor nodei computes the optimal sample precision
allocation for each gross error boundEi,j using Algorithm 2.
Given a sample gross error boundEi,j , all sample local error
boundsei,h where ei,h < Ei,j are considered (step 3). For
eachei,h, the optimal allocation ofEi,j − ei,h amongi’s chil-
dren is computed using Algorithm 1 (step 4). SupposeEc,xc

is
the gross error bound of each childc in the optimal allocation.
Then,Uc,xc

is the corresponding data update rate fromc to i,
and Rc,xc

is the corresponding maximum normalized energy
consumption rate of the sensor nodes in the subtree rooted at
c. The data update rate from sensor nodei to its parent andi’s
normalized energy consumption rate are then computed based
on (5) and (6) respectively (steps 6 and 7). The maximum
normalized energy consumption rate of the sensor nodes in
the subtree rooted ati can then be computed (step 7). The
sample local error boundei,h and the corresponding optimal
allocation amongi’s children that lead to the lowest maximum
energy consumption rate are selected as the optimal sample
precision allocation forEi,j (steps 8 to 13). The worst-case
time complexity of Algorithm 2 isO(m2 · |Ci|), where|Ci| is
the number ofi’s children. Sensor nodei keeps the optimal
allocation for each gross error boundEi,j , and sends the list
〈Ei,1, Ui,1, Ri,1〉, 〈Ei,2, Ui,2, Ri,2〉, . . . , 〈Ei,m, Ui,m, Ri,m〉 to
its parent.

The base station, on receiving the lists from all of its
children, computes the optimal sample precision allocation
among the children using Algorithm 1. The computed error
bounds are then sent to the sensor nodes for their adjustments
in a top-down manner. The base station sends to its children the
gross error bounds allocated to them. An intermediate sensor



Algorithm 2 Sample Precision Allocation at Sensor Nodei

in a Multi-Hop Network
Input:

Ei,j : sample gross error bound of sensor nodei

Ec,∗, Uc,∗, Rc,∗: sample gross error bounds, data update
rates and maximum normalized energy consumption rates
received from each childc of i

Output:
Ec,yc

: gross error bound of each childc of i in optimal
allocation
ei,yi

: local error bound of sensor nodei in optimal
allocation
Ui,j : data update rate from sensor nodei to its parent in
optimal allocation
Ri,j : maximum normalized energy consumption rate in
the subtree rooted ati in optimal allocation

1: Ri,j = +∞;
2: for h = 1 to m do
3: if ei,h < Ei,j then
4: compute the optimal sample allocation of error bound

Ei,j − ei,h among i’s children using Algorithm 1
based onEc,∗ andRc,∗;

5: for each childc of i, let Ec,xc
be the error bound

of c in the optimal allocation, thenUc,xc
is the

corresponding data update rate fromc to i, andRc,xc

is the corresponding maximum normalized energy
consumption rate of the sensor nodes in the subtree
rooted atc;

6: Ui = S ·

(

1 −
(

1 −
ui,h

S

)

·
∏

c∈Ci

(

1 −
Uc,xc

S

)

)

;

7: Ri = max
(

Ui·si+
∑

c∈Ci
Uc,xc ·vi

pi
, max
c∈Ci

Rc,xc

)

;

8: if Ri < Ri,j then
9: Ri,j = Ri;

10: Ui,j = Ui;
11: yi = h;
12: for each childc of i, yc = xc;
13: end if
14: end if
15: end for

node, on receiving its allocated gross error bound, retrieves
the corresponding optimal allocation which contains a local
error bound and a set of gross error bounds for its children.
The intermediate sensor node applies the local error bound
to its local readings and sends the gross error bounds to its
children. A leaf sensor node, on receiving its allocated gross
error bound, simply takes it as the local error bound.

Similar to adaptive precision allocation in a single-hop net-
work, the sample gross and local error bounds of each sensor
node are exponentially spaced around the current gross and
local error bounds respectively. LetEi and ei be the current
gross and local error bounds of sensor nodei respectively.
Given the number of samplesm = 2k + 1, the sample gross

error bounds are selected as

1

2
Ei,

3

4
Ei, · · · ,

2k − 1

2k
Ei, Ei,

2k + 1

2k
Ei, · · · ,

5

4
Ei,

3

2
Ei,

and the sample local error bounds are selected as

1

2
ei,

3

4
ei, · · · ,

2k − 1

2k
ei, ei,

2k + 1

2k
ei, · · · ,

5

4
ei,

3

2
ei.

VI. PERFORMANCEEVALUATION

A. Experimental Setup

We have developed a simulator based on ns-2 (version
2.26) [26] and NRL’s sensor network extension [27] to evalu-
ate the proposed adaptive precision allocation scheme. Table II
summarizes the system parameters and their settings.

TABLE II

SYSTEM PARAMETERS AND SETTINGS

Parameter Setting
Number of Sensor Nodes 10 (single-hop network)

(n) 20 (multi-hop network)
s · (α + β · dq)

α = 50 nJ/b
Energy Consumption β = 100 pJ/b/m2

for Sending a Message q = 2
s: message size

d: transmission distance
s · γ

Energy Consumption
γ = 50 nJ/b

for Receiving a Message
s: message size

Power Consumption
in Sleeping Mode 0.016 mW

Initial Energy Budget
at Each Sensor Node 0.1 J

Epoch 1 time unit

The simulator includes the detailed models of the MAC and
physical layers for wireless networks. The sensor nodes can
operate in one of three modes: sending message, receiving
message, and sleeping. These modes differ in energy con-
sumption. We used similar energy models to those in other
studies [11], [21], [28]. The energy consumed by a sensor node
to send a message iss · (α + β · dq), wheres is the message
size,α is a distance-independent term,β is the coefficient for
a distance-dependent term,q is the exponent for the distance-
dependent term, andd is the transmission distance. The energy
consumed by a sensor node to receive a data update iss · γ,
whereγ is a coefficient independent of transmission distance.
The settings of these parameters are shown in Table II. The
power consumption in the sleeping mode was set at 0.016
mW. For simplicity, the energy overhead of mode switching
is ignored. The initial energy budget at each sensor node was
set at 0.1 Joule. The epoch was assumed to be 1 time unit.

We simulated a single-hop network of 10 sensor nodes and
a multi-hop network of 20 sensor nodes. Their layouts are
shown in Figures 2 and 3.

We made use of the data provided by the Tropical At-
mosphere Ocean (TAO) project [29] to simulate the sensor
readings. Oceanographic and meteorological data are collected
from a wide range of mooring sites in the TAO project for
improved detection, understanding and prediction of El Nino
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and La Nina. We selected a subset of the sites and mapped
them to the sensor nodes in our networks. We used the air
temperature (AT) and winds (WIND) data from 1999 to 2000
in our experiments. The data of different sites are similar in
magnitude. Figure 4 shows some representative segments of
the AT and WIND data traces. In general, the WIND data
fluctuate more widely than the AT data.

 0

 5

 10

 15

 20

 25

 30

 0  200  400  600  800  1000  1200  1400  1600

S
en

so
r 

R
ea

di
ng

Time

AT Trace
WIND Trace

Fig. 4. Sample Data Traces

The base station computes the AVERAGE aggregation of
the readings collected from all sensor nodes with a designated
error boundE. As discussed in Section III-A, in this case,
the total error bound allocated to the sensor nodes should be
capped byn ·E, wheren is the number of sensor nodes. The
experiments started with the error bound uniformly allocated
to the sensor nodes, i.e., each sensor node is allocated an
error bound ofE. The following precision allocation schemes
were simulated for performance comparison. Table III liststhe
scheme-specific parameters and their settings. We measured
the energy consumption of each sensor node and the network
lifetime in the experiments.

TABLE III

SCHEME-SPECIFICPARAMETERS AND SETTINGS

Parameter Setting
All Schemes

Data Update Message
(data value + timestamp) 8 bytes

Error Bound
Adjustment Message 8 bytes

(error bound + timestamp) (except Uniform-PA)

Adaptive-PA
Adjustment Period 500 time units

Number of Samples (m) 7
4m + 4 bytes

Sample Report Message (single-hop network)
(m samples + timestamp) 8m + 4 bytes

(multi-hop network)
Burden-PA

Adjustment Period 200 time units
Shrink Percentage 5%

PGain-PA
Adjustment Period 500 time units
Shrink Percentage 40%

Sample Report Message
(potential gain + timestamp) 8 bytes

• Proposed Adaptive Precision Allocation (Adaptive-
PA): This is the adaptive precision allocation scheme
proposed in Sections IV-B and V-B. By default, each
sensor node selectedm = 7 sample error bounds and
the adjustment period was set at 500 time units. The
performance impacts ofm and adjustment period are
investigated in Section VI-B. In a single-hop network,
since the base station is aware of the current error bounds
of the sensor nodes, it can infer the sample error bounds
tracked by each sensor node which are exponentially
spaced around the current bound. Therefore, only the
estimated energy consumption rates need to be reported
to the base station at the end of the adjustment period.
The payload size of a sample report message was thus
set at 4m + 4 bytes.5 Similarly, in a multi-hop network,
since each intermediate sensor node is aware of the
current gross error bounds of its children, it can infer
the sample gross error bounds tracked by each child.
At the end of the adjustment period, only the estimated
update rates and maximum energy consumption rates

5A timestamp of 4 bytes was assumed to be included in all messages for
ordering and consistency purposes.



are reported by a sensor node to its parent. Thus, the
payload size of a sample report message was set at 8m

+ 4 bytes.

• Uniform Precision Allocation (Uniform-PA) : The error
bound is evenly partitioned among the sensor nodes, i.e.,
the precision allocation remains the initial one. This is a
simple and static scheme which does not differentiate the
sensor nodes by the changing pattern of sensor readings,
residual energy, and communication cost with the base
station.

• Burden-based Precision Allocation (Burden-PA):
Olston et al. [5] presented a burden-based precision
allocation scheme for aggregate queries over distributed
data streams. Their objective was to minimize the total
communication cost between data sources and the data
sink. In our experiments, the energy consumed by each
sensor node to send a data update to the base station
was taken as a measure of its communication cost.
Burden-PA works by periodically reducing the error
bound of each sensor node by ashrink percentageand
redistributing the leftover portion among the sensor
nodes. As suggested by [5], the shrink percentage was
set at 5%. The default adjustment period was set at 200
time units which showed the best performance in our
experiments (see Section VI-B).

• Potential-Gain-based Precision Allocation (PGain-
PA): To reduce the number of messages in the network,
Deligiannakiset al. [8] presented a precision allocation
scheme for data aggregation based on online estima-
tion of potential gains. Similar to Burden-PA, PGain-
PA periodically reduces the error bound of each sensor
node by ashrink percentageand redistributes the leftover
portion among the sensor nodes. As suggested by [8], the
shrink percentage was set at 40%. The default adjustment
period was set at 500 time units which showed the best
performance in our experiments (see Section VI-B).

B. Effect of System-Specific Parameters

First, we investigate the performance impact of the number
of sample error boundsm in the proposed Adaptive-PA
scheme. Figure 5 shows the network lifetime for differentm

values when the error boundE was set at 0.4.6 Note that
when m = 1, the current error bound is the only sample.
Thus, the optimal sample precision allocation computed by
Algorithm 1 is always the same as the current allocation. Since
the experiments started with uniformly allocated error bounds,
Adaptive-PA degenerates to Uniform-PA.

The flexibility of precision allocation increases withm. As
seen from Figure 5, anm value of 3 improves the network
lifetime by over 40% compared to that ofm = 1 for both

6Only the experimental results of the single-hop network (Figure 2) are
reported in this section to show the effect of system-specificparameters. The
results of the multi-hop network (Figure 3) have similar trends.
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Fig. 5. Network Lifetime vs. Number of Sample Error Bounds in Adaptive-
PA (Single-Hop Network,E = 0.4)

traces. The network lifetime increases rapidly withm up to 5.
It is generally insensitive tom whenm exceeds 5. The default
m was set at 7 in the remaining experiments.

Adaptive-PA, Burden-PA and PGain-PA all adjust the error
bounds of sensor nodes periodically. The setting of adjustment
period reflects a tradeoff between overhead and adaptivity.In
general, the shorter the adjustment period, the higher the over-
head. On the other hand, the longer the adjustment period, the
less adaptive the precision allocation scheme. Figure 6 shows
the network lifetime for different adjustment periods whenE

was set at 0.4. As expected, the graph of network lifetime is
convex for most combinations of precision allocation scheme
and data trace. We have selected the default adjustment period
for each allocation scheme as the one that showed the best
performance (i.e., 500, 200 and 500 time units for Adaptive-
PA, Burden-PA and PGain-PA respectively).

C. Comparing Adaptive-PA with Existing Schemes

Figure 7 shows the network lifetime as a function of the
designated error boundE on data aggregation for different
precision allocation schemes in the single-hop network of
Figure 2. It can be seen that the lifetime increases with
error bound. The proposed Adaptive-PA scheme significantly
outperforms the other schemes for both traces tested.

Even when the readings at all sensor nodes follow similar
changing patterns, it is not desirable to allocate the same
error bound to all sensor nodes due to their geographically
distributed nature. In a single-hop network, the sensor node
farther away from the base station consumes more energy in
sending a data update than the sensor node closer to the base
station. Among the four precision allocation schemes exam-
ined, Uniform-PA and PGain-PA do not take this heterogeneity
into consideration. Thus, as shown in Figure 7, Adaptive-PA
improves the network lifetime by a factor up to 2.2 compared
to Uniform-PA and PGain-PA. To show the importance of
balancing energy consumption in extending network lifetime,
we plot in Figure 8 the total energy consumed by each sensor
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Fig. 9. Network Lifetime vs. Designated Error Bound (Multi-Hop Network)

node by the time when the first sensor node runs out of energy
(i.e., the network lifetime elapsed). As can be seen, under
Adaptive-PA, most sensor nodes were close to exhausting their
energy when the network lifetime elapsed. However, under
Uniform-PA and PGain-PA, the sensor nodes close to the base
station (i.e., nodes 3 and 8 in Figure 2) consumed as low as
15% of the energy only.

Burden-PA, on the other hand, considers the heterogeneity
in communication cost due to transmission distance. However,
the objective of Burden-PA is to minimize the total commu-
nication cost. Figure 7 shows that Burden-PA results in a
shorter network lifetime by up to 41% than Adaptive-PA. This
implies minimizing network-wide total energy consumption
does not necessarily balance the energy consumption of the
sensor nodes. As seen from Figure 8, under Burden-PA, sensor
nodes 3 and 8 consumed less than 30% of the energy when
the network lifetime elapsed.

It is also interesting to note that even under Adaptive-PA,
the sensor nodes are sometimes not well balanced in energy
consumption. For example, sensor nodes 3 and 8 consumed
around 60% of the energy for the WIND trace. This is because
these sensor nodes have low energy costs to communicate with
the base station. Even if they are assigned error bounds close
to 0, their energy consumption is not as high as the other
nodes for the WIND trace. This is consistent with the analysis
of optimal precision allocation in Section IV-A.

We have implemented in-network aggregation in the experi-
ments. Figure 9 shows the results for the multi-hop network in
Figure 3. The relative performance of the precision allocation
schemes remains similar to that in the single-hop network.
The network lifetime increases rapidly with error bound.
For example, under Adaptive-PA, increasingE from 0.1 to
0.2 prolongs the network lifetime by 65% and 54% for the
AT and WIND traces respectively. This demonstrates the
effectiveness of approximate data aggregation in improving
energy efficiency.

Comparing the performance of different precision alloca-
tion schemes, Adaptive-PA significantly outperforms the other
schemes for both traces tested. In general, the improvement
increases with increasing error bound. This is because a large
error bound gives more flexibility in optimizing precision
allocation to balance the energy consumption of the sensor
nodes. As seen from Figure 9, Adaptive-PA outperforms
Uniform-PA, Burden-PA and PGain-PA by factors up to 1.8,
1.7 and 2.5 respectively. Comparing Figures 7 and 9, it can
also be observed that the relative improvement of Adaptive-
PA over Burden-PA is greater in the multi-hop network than in
the single-hop network. This is because Burden-PA considers
data sources independently and no in-network aggregation is
modeled. Our proposed Adaptive-PA scheme accounts for the
impact of in-network aggregation in multi-hop networks and
models energy consumption more accurately.

VII. C ONCLUSION

We have exploited the tradeoff between data quality and
energy consumption to extend the lifetime for precision-
constrained data aggregation in wireless sensor networks.We
partition the precision constraint and allocate error bounds to
individual sensor nodes in a coordinated fashion. The purpose
of precision allocation is to differentiate the quality of data
collected from different sensor nodes, thereby balancing their
energy consumption. We have analyzed the optimal precision
allocation in terms of network lifetime and have proposed an
adaptive precision allocation scheme that dynamically adjusts
the error bounds of sensor nodes. Experimental results using
real data traces show that: (1) due to geographically distributed
nature of sensor networks, uniform precision allocation does
not perform well even if the readings at all sensor nodes follow
similar changing patterns; (2) to extend network lifetime,it
is more important to balance the energy consumption of the
sensor nodes than to minimize network-wide total energy
consumption of the sensor nodes; (3) the proposed adaptive



precision allocation scheme significantly outperforms existing
methods over a wide range of system configurations.
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