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Abstract—Flash disks have been an emerging secondary stor-
age media. In particular, there have been portable devices,
multimedia players and laptop computers that are configured
with no magnetic disks but flash disks. It is envisioned that
some RDBMSs will operate on flash disks in the near future.
However, the I/O characteristics of flash disks are different from
those of magnetic disks. Thus, in this paper, we study the core of
query processing in RDBMSs — join processing — on flash disks.
Specifically, we propose a new join method, called DigestJoin, to
exploit fast random reads of flash disks. DigestJoin consists of two
phases: (1) projecting the join attributes followed by a join on the
projected attributes; and (2) fetching the full tuples that satisfy
the join to produce the final join results. While the problem of
tuple/page fetching with minimum I/O cost (in the second phase)
is intractable, we propose three heuristic fetching strategies. We
have implemented DigestJoin on a real flash disk for performance
evaluation. Experiments on TPC-H datasets show that DigestJoin
clearly outperforms the traditional sort-merge join under variou s
system configurations.

I. I NTRODUCTION

Flash disks have been widely used in portable devices
such as PDAs, smartphones and multimedia players, as well
as in some laptop and desktop computers in the form of
Solid State Drive (SSD). When compared to their magnetic
counterpart, flash disks offer comparable storage space, better
data access performance, better shock resistance, lower power
consumption, lighter weight, smaller dimension and better
noise resistance. Given such a wide range of advantages,
flash disks have been a competitive candidate for the next-
generation mass storage media.

Adopting flash disks as a secondary storage media, recent
research (e.g., [11], [16], [17], [22]) has investigated the
possibilities for developing flash-based RDBMSs. It has been
remarked that flash disks have unique I/O characteristics (see
Table I for a comparison of I/O operation overhead between
magnetic disks and flash disks). For instance, flash-based
storage does not involve any mechanical components and
hence there is a negligible seek time and rotational delay in
reading or writing a page on a flash disk. While flash disks still
have some overhead on each I/O operation, which is caused
by the encapsulated logic for such purposes as wear leveling
and internal caching [4], [6], such overhead can be more than
20 times smaller than its mechanical counterpart in magnetic
disks. Recall that query processing algorithms on magnetic
disks often spend an effort to avoid random I/O operations
but exploit sequential I/O operations whenever possible. The

TABLE I
MAGNETIC DISK’ S SEEKING VS. SSD’S OVERHEAD [12]

Storage Seeking/Overhead
hard disk† 8.33 ms
flash SSD‡ 0.2 ms (read)

0.4 ms (write)
† Seagate Barracuda 7200.10 ST3250310AS, average

latency for seek and rotational delay
‡ Samsung MCAQE32G8APP-0XA drive with
K9WAG08U1A 16 Gbits SLC NAND chips

I/O characteristics of flash disks indicate that such an effort is
no longer crucial in flash-based RDBMSs.

The state-of-the-art RDBMSs are mainly designed to op-
erate on magnetic disks and therefore assume the I/O char-
acteristics of magnetic disks. Among the operators of SQL
(supported by all RDBMSs), joins are particularly I/O in-
tensive and computationally expensive. Therefore, joins have
been extensively studied in the literature [15]. In this paper,
we focus on joins in the absence of indexes,i.e., non-index
joins. There have been a few existing non-index join methods,
e.g., nested-loop, sort-merge and hash joins. An objective is
to reduce the I/O opertions in performing the join.
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Fig. 1. Sort-Merge Join Algorithm

Consider the nested-loop join algorithm. Assume that the
tables, that participate the join, do not fit into main memory.
The nested loops encapsulate table scans which minimize the
seek operations in performing the join. Similarly, consider
the sort-merge join algorithm. It sorts the tables (using an
external sort algorithm if necessary) by the join attributes. This
facilitates table scans on the sorted tables in the merge phase
of the algorithm, as illustrated in Fig. 1. This shows that inthe
absence of indexes, join algorithms have been minimizing the
number of seek operations. Nevertheless, as discussed earlier,
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Fig. 2. Overview of DigestJoin

in the context of flash-based RDBMSs, minimizing the number
of seek operations does not offer much advantage.

Regarding flash disks, what is desirable is to study how
their unique I/O characteristics can be utilized to enhancethe
performance of joins. In this paper, we proposeDigestJoin, a
join algorithm that exploits fast random reads, among others,
of flash disks.DigestJoinconsists of two phases. In the first
phase,DigestJoin projects the tuple id (tid)1 and only the
attributes that are relevant to the join operator from the tables
that participate the join. The projected tables are called the
“digest” tables. The main intuition here is that flash disks
are often installed inside mobile devices with limited main
memory. It is often beneficial to reduce the I/O operations
required through a scan on the tables to obtain digest tables. A
traditional join algorithm is then applied on the smaller digest
tables to generate thedigest join results. The digest join results
are just pairs oftids together with the join attributes, thereby
minimizing the size of intermediate join results. It is worth
noting that the digest join results are similar to join indexes
[21], [20], [13] except that they are computed on-the-fly in
the first phase ofDigestJoinbecause we do not assume the
presence of indexes on the join attributes.

The I/O cost of the join operator saved by joining the
(smaller) digest tables is paid in the form of a table scan
in the first phaseand random reads in the second phase of
DigestJoin. In the second phase, based on the digest join
results, the algorithm loads the full tuples, that satisfy the join,
from the original tables to produce the final join results. This
has been known to be the classicalpage fetching problemin
index joins. However, random reads are no longer an issue in
flash disks. The only concern here is to minimize the amount
of I/Os in fetching the full tuples as specified in the digest
join results. Consider a digest join result, which containsthe
join attributes and thetids of the two tuples that satisfy the
join. Based ontids, we can locate the full tuples from the
original tables to construct the final join result. Whenever
a tuple is requested, the entire page containing the tuple is
fetched. Ideally, each page should be fetched at most once
during the whole process of final result construction. However,
this is difficult to achieve in practice (if not impossible) due to

1Throughout this paper, we assume that the tuple id is implemented as a
page id plus a slot number.

memory constraints. As the digest join results are not clustered
with respect to the page address, a page may be fetched
multiple times during the whole process. This is particularly
true for mobile devices, where flash disks are popular. Thus,
we propose a few heuristics to schedule page fetching to
minimize the number of page accesses in the second phase
of DigestJoin.

Our main contributions can be summarized as follows:

• We propose a two-phase join algorithm, calledDi-
gestJoin, that exploits fast random reads of flash disks.
The first phase ofDigestJoin is generic and can be
integrated with any traditional non-index join algorithm.

• We propose three heuristic solutions for the page fetching
problem arising from the second phase ofDigestJoin. In
particular, we consider the memory constraint in the page
fetching problem.

• We evaluateDigestJoinwith sort-merge join in an exper-
imental RDBMS implemented on a real flash disk. By
conducting experiments with TPC-H benchmark datasets,
we show thatDigestJoinoutperforms the traditional sort-
merge join under various system configurations.

The rest of this paper is organized as follows. In Section II,
we give an overview of theDigestJoinmethod and identify
its page fetching issue. Section III discusses the page fetching
problem and proposes three fetching strategies. Section IV
presents the results of performance evaluation. In SectionV,
we review the related work on flash-based data management
and join processing. Finally, this paper is concluded in Sec-
tion VI.

II. OVERVIEW OF DIGESTJOIN

In this section, we give an overview ofDigestJoin. Given
the I/O characteristics of flash disks, we minimize the number
of page read and write operations required by a join and use
sequential write operations whenever possible. As shown in
Fig. 2, our proposedDigestJoinmethod is divided into two
phases:digest table joiningandpage fetching.

Digest Table Joining. Consider two tables
X = {Attrx1

, Attrx2
, . . . , Attrxm

} and Y =
{Attry1

, Attry2
, . . . , Attryn

}, and use tidx and tidy to
denotetuple ids of X andY , respectively. For simplicity, we
discussX ⊲⊳Attrx1

=Attry1
Y . In this phase, we first compute

the digest tables— the projected tables that contain only the
join attributes and the tuple ids. In our example, the digest
tables areX ′ = {Attrx1

, tidx} and Y ′ = {Attry1
, tidy}.

Such a projection will obviously reduce much I/O cost in
performing the actual join. Then, we apply a traditional join
algorithm (e.g., nested-loop, sort-merge, or hash join) to the
digest tables to generate thedigest join results, in the form of
{Attrx1

, tidx, tidy}. The digest join results may be written
to the flash disk sequentially if it is larger than the memory
size.

However, the digest join results{Attrx1
, tidx, tidy} only

tell us which tuples satisfy the join. To output the full join
results, we have to fetch the corresponding tuples from the



original tables according totids. Fetching tuples from the
original tables is usually performed at the granularity of pages
in RDBMS. Thus, we have the second phase — page fetching.
Although the page fetching will pay some cost of random
reads, we hope that the cost is only a small part of the I/O
saving gained in performing digest table joining.

Page Fetching.A careful fetching schedule of tuples is critical
to the page fetching problem. To illustrate that, we give a sim-
ple example. Suppose that we have the following digest join
results:(x1, tidx1

, tidy1
), (x2, tidx2

, tidy2
), (x3, tidx3

, tidy3
)

and (x4, tidx4
, tidy4

), and that tuplestidx1
and tidx3

are
stored on pageA, tuplestidx2

andtidx4
are on pageB, tuples

tidy1
and tidy3

are on pageC, tuplestidy2
and tidy4

are on
pageD. If we have sufficient memory space, we may fetch all
of these four pages, namely,A, B, C andD, and keep them in
the memory throughout the process of constructing the final
join results. However, in practice, memory space is limited
and, hence, we need to carefully schedule the page fetching to
minimize the page read cost. Suppose that the memory space
can hold two pages only. If we construct the final results in
the order ofx1, x2, x3 andx4, we need to fetch pagesA and
C for x1, B and D for x2, thenA and C again forx3, and
finally B andD again forx4. In this case, each page is fetched
twice. Alternatively, we may swap the order ofx2 andx3 in
the schedule and then each page would be fetched only once.
Therefore, as can be seen, the page fetching schedule has a
great impact on the I/O cost. We will propose three strategies
for page fetching in the next section.

Before we proceed to the next section, we present an
example to exemplify how muchDigestJoincan improve over
a traditional join algorithm. Consider the following join on
two TPC-H tables, whereCUSTOMER andORDERS are joined
through the keyC_CUSTKEY:

SELECT *
FROM CUSTOMER, ORDERS
WHERE CUSTOMER.C_CUSTKEY = ORDERS.C_CUSTKEY;

According to the schemas of TPC-H, the tuple size of a digest
table is approximately 6% of that of theCUSTOMER table, and
9% of that of theORDERS table. Assume that there are10, 000
and 5, 000 pages forCUSTOMER andORDERS, respectively.
Consider the traditional sort-merge algorithm. Given a memory
size of 20 pages, we need4 and 3 passes to sort these two
tables, respectively, and the total sorting cost is4×2×10, 000+
3 × 2 × 5, 000 = 110, 000 I/Os. The next merge procedure
will alternatively scan both of the sorted tables, leading to
a total join cost of110, 000 + 10, 000 + 5, 000 = 125, 000
I/Os. Now if we employDigestJoin, the digest tables extracted
from CUSTOMER andORDERS are of size600 and450 pages,
respectively. Thus, the cost for building these two digest tables
is 10, 000 + 5, 000 + 600 + 450 = 16, 050 I/Os. Then, when
applying the sort-merge join to the digest tables, both tables
can be sorted in 3 passes, with a join cost of3 × 2 × 600 +
3 × 2 × 450 + 600 + 450 = 7, 350 I/Os. Hence, the total cost
incurred in the first phase will be16, 050 + 7, 350 = 23, 400

I/Os. Thus, as long as the second page fetching phase requires
fewer than101, 600 I/Os, DigestJoinwould outperform the
traditional sort-merge join algorithm.

Discussions.The proposedDigestJoin method is appealing
to flash-based storage media in two aspects. On one hand, it
reduces the size of intermediate join results, thereby saving
the I/O operations and particularly the temporary writes to
flash disks during the join. This also implicitly leads to fewer
erase operations on flash disks. On the other hand,DigestJoin
is possible due to fast random reads of flash disks. In the
second phase, the tuples involved in the join results are likely
to be scattered over a flash disk. Thus, page fetching will
incur quite a number of random read operations, which are
extremely costly for magnetic disk-based storage media. For
magnetic disks, the overhead of such random read operations
may even exceed the I/O cost saved in the first phase. Flash-
based storage media is particularly benefited from joining the
digest tables, as random reads on flash disks are efficient.

III. PAGE FETCHING STRATEGIES FORDIGESTJOIN

An efficient page fetching strategy is important forDi-
gestJoinas it minimizes the number of page accesses when
fetching the full tuples from the original tables to producethe
final join results. In this section, we first formulate the page
fetching problem as a graph problem and discuss its hardness.
Then, we propose three heuristic-based strategies to address
this problem.

A. The Page Fetching Problem

In DigestJoin, the outputs of the first phase are the digest
join results. Based on that, in the second phase, disk pages
containing the full tuples (or partial tuples containing required
attributes in the projection list of the input query) are fetched
to generate the final join results. Thepage fetchingproblem
is to schedule a page fetching sequence to read all tuples in
the join results with minimum number of page accesses.

To analyze the page fetching problem, we formulate it
as a graph problem. A join graph is used to represent the
relationship between the disk pages specified by the join
results. The join graph is defined as an undirected bipartite
graph G = (V1 ∪ V2, E), where V1 and V2 denote the
set of pages from the two original tables, respectively, and
E ⊆ V1 × V2 denotes the set of page-pairs specified by the
join results. Specifically, for each edge(va, vb) ∈ E, there
exists a tuple on pageva which joins with a tuple on page
vb. The join graph can be used to dynamically represent the
remaining pages to be fetched and joined. An edge(va, vb) is
removed fromE if pagesva and vb have been fetched into
the main memory and the corresponding tuples on them have
been joined. A vertexv is removed from G once its out-degree
becomes zero.

An example of a join graph is shown in Fig. 3, where
vertices1 and 2 represent the pages from one table, while
verticesa, b and c represent the pages from the other table.
An edge(1, a) means there is/are tuple(s) on page1 that can be
joined with tuple(s) on pagea. Similarly, edges(1, b), (1, c),
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Fig. 3. Example of Join Graph Fig. 4. Transformed Graph

(2, a) and(2, c) represent the “join relationship” between other
pairs of pages.

A page fetching sequence is equivalent to a sequence for
removing all edges of the join graph. As mentioned previously,
an edge is removed if and only if the corresponding pages are
fetched into the memory (and the final results are constructed).
Therefore, an optimal page fetching sequence is a sequence for
removing all edges in the join graph with minimum number
of page accesses. If there was sufficient memory space to hold
all related pages, obviously each page would be fetched once.
Thus, any page fetching sequence would be optimal. However,
when the memory space is limited, page swaps are needed and
the problem becomes intractable.

The hardness of this problem can be illustrated as follows.
We first derive another graph from the join graph. For a
join graphG = (V1 ∪ V2, E), we construct a corresponding
weighted complete graphG′ = (V ′, E′) by the following
method: for each edge(va, vb) ∈ E, we create a new vertex
v′ in G′. That is, each edge in the join graph is transformed
to a vertex in the new graph. Therefore,v′ in the new graph
represents fetching the pagesva and vb into the memory to
construct the final join results. We assign a weight of each
edge as the page swapping cost between two join operations
implied by the vertices of the edge. For example, Fig. 4 shows
the transformed graph of the join graph shown in Fig. 3. In the
graph, we label each vertex by its corresponding edges in the
join graph,e.g., vertex1a corresponds to edge(1, a) in Fig. 3.
Regarding the weights of the edges, we assume that the main
memory can hold two pages only for analysis purposes. The
weight of edge(1a, 1b) (solid line) is1 as one new page has
to be fetched into the memory for performing the second join
of pages 1 andb; the weight of edge(1b, 2a) (dashed line) is
2 as two new pages have to be fetched for joining of pages 2
and a. With such a formulation, a page fetching sequence is
equivalent to a tour of all vertices on the graph. The number of
pages fetched is the sum of the weights of all edges in the tour.
Thus, the page fetching problem is to find a tour in the graph
with minimum cost. Then, we can reuse a result from Merrett
et al. [14]. They proved that finding a Hamiltonian path from
our transformed graph isNP-complete(Proposition 1 in [14]).
We remark that Merrett et al. [14] studied a slightly different
problem — determining whether there exists a solution with
n−1 page swaps for the page fetching problem isNP-complete
(assuming that there are totallyn pages in the join graph).

When the memory space can hold more than two pages, the
problem appears to be even more complex, as the weight of

each edge will change dynamically. Furthermore, to the bestof
our knowledge, there has not been any practical approximation
algorithm to address the page fetching problem [3]. In the rest
of this section, we propose three heuristic strategies for the
page fetching problem.

B. Naive Fetching Strategy

One intuition to tackle the page fetching problem is to fetch
pagesonline, i.e., as the digest join results are produced. The
first strategy — callednaive fetching strategy— is to fetch
the pages of the tuples as soon as they are produced in the
digest join phase. Furthermore, recall that seek operations do
not incur much overhead on a flash disk. Hence, in the digest
join phase, it is no longer necessary to assign as many input
buffer pages as possible,e.g., in the merge phase of sort-merge
join and the probe phase of hash join. Most of the available
memory space can be used to cache disk pages.

More specifically, we present the details of this strategy
in Algorithm 1. To illustrate the intuition, we assume sort-
merge join is used in the first phase ofDigestJoin. That is, in
Algorithm 1, we assume that the digest tables have been sorted
and it is handling the merge phase of sort-merge join. Initially,
we assign pagesp1 andp2 (in main memory) for merging the
two digest tables. The remaining memory is assigned to form a
page cache. Next, a traditional cache replacement policy, such
as LRU, is applied to the management of the page cache. The
while loop in the algorithm constructs the final results as the
digest join results are produced.

Input : Sorted digest tabledt1, sorted digest tabledt2
Output : Join results

Allocate bufferp1 for dt1, p2 for dt2
Allocate rest buffers asPageCachewith LRU policy
while joining dt1 and dt2 with p1 and p2 do

if there is a join result(join attribute, tid1, tid2) then
page1 = the page id containingtid1

page2 = the page id containingtid2

if page1 in PageCachethen
Extract tuple withtid1 to t1

else
Load page1 into PageCache, extract tuple with
tid1 to t1

if page2 in PageCachethen
Extract tuple withtid2 to t2

else
Load page2 into PageCache, extract tuple with
tid2 to t2

Join t1 and t2 and then output

Algorithm 1 : Naive Page Fetching

C. Page-based Fetching Strategy

Although the page fetching problem isNP-hard, there have
been some special cases where the problem can be solved
efficiently, e.g., the case with sufficient memory space to hold
all pages of the join results. Another case is that the digest
join results are clustered with respect to the page address and
the full tuples of the join results are clustered with respect to
the join attributes. In this case, directly applying the naive
fetching strategy would result in an optimal page fetching



sequence which ensures each page is fetched at most once.
This motivates us to propose thepage-based fetching strategy.

Specifically, we build two kinds of temporary tables to assist
page fetching. The first one is calledfetching instruction table,
which archives digest join results. After this table is filled with
all digest join results, we sort its digest join results based
on their page addresses. Thus, fetching tuples based on such
sorted digest results avoids duplicated page fetching requests.
However, tuples fetched according to their page addresses are
generally not clustered on the join attributes. Hence, we have
another temporary table calledjoin candidate tableto store
the tuples fetched according to the fetching instruction table.
Sort-merge join or hash join algorithm can then be applied on
this table for producing the final join results.

To illustrate the page-based fetching strategy, let
us recall the example on digest join results used in
Section II. In practice, we may encode thetids in
the form of “page id:slot number” when we generate
the digest tables. Here, the results are(x1, A:1, C:1),
(x2, B:1, D:1), (x3, A:2, C:2) and (x4, B:2, D:2).
Two fetching instruction tables are then created:
ft1 = {A:1, B:1, A:2, B:2},ft2 = {C:1, D:1, C:2, D:2}.
We sort them according to page id and obtain
ft1 = {A:1, A:2, B:1, B:2}, ft2 = {C:1, C:2, D:1, D:2}.
The tuples now can be fetched efficiently. We then obtain
two join candidates tables —jct1 = {x1, x2, x3, x4},
jct2 = {y1, y2, y3, y4}. By joining them again, we obtain the
final join results.

The page-based strategy gives an efficient page fetching
sequence with the cost of introducing some extra I/O cost
for maintaining two temporary tables and another extra final
join. We summarize the above discussions in Algorithm 2.

Input : Sorted digest tabledt1, sorted digest tabledt2
Output : Join results

while joining dt1 and dt2 do
if there is a join result(join attribute, tid1, tid2) then

Output tid1, tid2 to fetching instruction tablesft1 and
ft2

Sort ft1 andft2 based onpage id
while scanningft1 and ft2 do

Fetch clustered tuples according totids and output the
tuples to join candidate tablesjct1 andjct2

Perform sort-merge join or hash join onjct1 andjct2

Algorithm 2 : Page-based Fetching

D. Graph-based Fetching Strategy

Instead of archiving the digest join results in temporary
tables, an alternative method is to archive it with the join
graph. If the memory can hold all digest join results in the
form of a join graph, we may find good heuristics to travel
all edges to do the page fetching and joining near optimally.
In the literature, two heuristics [3], [18] are in that direction,
focusing on page fetching for index-based joins. The basic
idea is to select a subgraph of a vertex which contains all its
adjacent edges and requires the fewest non-resident pages to
be fetched. Here, a non-resident page is a page that is not

currently cached in the main memory. In other words, we
check all subgraphs in the current join graph: 1) to identify
whether each subgraph contains all edges of any vertex in the
subgraph; and 2) to count how many vertices (i.e., pages) are
not in the main memory. Then, the subgraph that satisfies the
first condition and has the smallest value of the second quantity
is selected. As iterating all subgraphs of the join graph makes
the computational cost prohibitively high, an approximation
method is to select the vertex with the fewest non-resident
neighbors, together with all its neighbors in the join graph,
calledsegment[3].

For example, let us reconsider the join graph in Fig. 3. The
candidatesegmentsare {1, a, b, c}, {2, a, c}, {a, 1, 2}, {b, 1}
and{c, 1, 2}. If there has not been any page fetched into the
main memory yet, we should select{b, 1}. This is because
it has the fewest non-resident neighbors and implies the least
page accesses. Let us assume that some pages have already
been fetched into the main memory, sayc. Then, we may
select{2, a, c} or {b, 1}. The reason is that both pages 2 and
b have only one non-resident neighbor,i.e., pagesa and 1,
respectively.

However, there are some challenges in applying this heuris-
tic to our scenario. First, we observe that the devices installed
with flash disks often have a limited memory space. In our
research, we study joins on large tables that are larger thanthe
size of available memory. Therefore, the memory space is not
likely to hold the entire join graph for the analysis mentioned
earlier. Furthermore, in order to avoid producing duplicate join
results, we have to attachtids to the edges in the join graph
in implementation. This is a rather subtle point. Consider the
scenario where onlypage ids are attached to the join graph.
Suppose we have an edge in the join graph indicating a join
between pagea of tableX and pageb of tableY . When the
memory space runs out, we conduct the join on pagesa andb
to reclaim space by removing the corresponding vertices and
edges from the join graph. Next time, when another digest join
result requiring pagea to join with pageb comes, duplicate
join results will be generated. As there is no information on
what results have already been produced, attachingtids to the
edges can address this issue. However, it makes the size of
the join graph grows faster and aggravates memory shortage.

Second, pre-allocating sufficient memory for caching
pages for the join graph is not feasible in general. The
heuristic we discussed above provides a rough bound
on the maximum required size of the page cache,i.e.,
min{sizeof(X), sizeof(Y )}+1, when joining tablesX and
Y . However, if we could reserve so many pages for the page
cache, we can simply load one table into the memory and
use the remaining memory space to scan the other table to
perform the join. Therefore, we need a careful implementation
to effectively hold both the join graph and the page cache in
a limited memory space.

In this subsection, we propose agraph-based fetching
strategywhich aims at achieving acceptable performance even
when the memory available is highly limited. Fig. 5 gives
an overview of the memory management for the graph-based
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Fig. 5. Memory Management of Graph-based Fetching Strategy

fetching strategy. We divide the available memory space into
two parts: one for storing the join graph (i.e., join graph
storage) and the other for caching fetched pages (i.e., page
cache). We dynamically manage the memory space for the
join graph storage and the page cache. When a digest join
result comes, if there is space, we directly add it into the join
graph. Otherwise, we try to adjust the space for the join graph
based on itsrequired storage size(RSS) and required cache
size(RCS). TheRSS of a join graph is equal to the number
of pages that are required to hold this join graph. We organize
the join graph in an adjacency list, and theRSS is larger
than the size of the adjacency list, as extra space is needed to
store thetids for the edges. TheRCS of a join graph is the
minimum cache size for fetching and joining any segment of
this join graph. Initially, the join graph only takes up one page
and the page cache spans the rest of the memory. During the
join process, we dynamically adjust the sizes of the join graph
and the page cache. Specifically, when we cannot insert a join
result from the digest table into the join graph, we perform
the following:

• If RCS < the current page cache size, we enlarge the
memory space for join graph storage (correspondingly,
shrink the space of the page cache by removing some
cached pages) to insert that result.

• Otherwise, we try to select a segment of the join graph to
load full tuples and join them using the page cache. After
that, the size of the join group is reduced. We then insert
the pending join result into the join graph, and check
RSS to see whether we need to enlarge the space for the
page cache (correspondingly, shrink the memory space of
the join graph).

We summarize the graph-based fetching strategy in Algo-
rithm 3. And we discuss the main functions used as follows:

• RequiredStoreSize(): This function computes the storage
requirement of the current join graph. Note that the re-
quirement is measured in pages, since only page-oriented
memory management is often supported in RDBMSs.

• SelectSegment(): This function selects a segment from
the join graph. We follow the same approximation in
[3], which has been discussed in the first paragraph of
this subsection. Since there may exist edges having both
vertices (i.e., pages) in the page cache, we also select
those edges in order to join as many pages as possible.

• FetchAndJoin(): This function accepts a segment of the
join graph, fetches the corresponding pages from the
original tables, and joins the tuples indicated bytids.
When the page cache is fully occupied, we have to swap
some pages out. In particular, we have to decide the order

Input : Sorted digest tabledt1, sorted digest tabledt2
Output : Join results

Allocate pagep1 for dt1, p2 for dt2
Allocate rest pages forPageCacheandJoinGraph, and set
JoinGraph initial size to be one page
while joining dt1 and dt2 with p1 and p2 do

if there is a join result(join attribute, tid1, tid2) then
Try join tuplestid1 & tid2 only with PageCache
if join succeedsthen

continue to next digest join result

Try add (join attribute, tid1, tid2) to JoinGraph
if fail then

/* insufficient space for JoinGraph */
rcs = RequiredCacheSize(JoinGraph)
if rcs < current cache sizethen

IncreaseJoinGraphsize by one page
DecreasePageCachesize by one page
Add (join attribute, tid1, tid2) to
JoinGraph

else
seg = SelectSegment(JoinGraph)
FetchAndJoin(seg)
Update in-cache flags ofJoinGraph
Removeseg from JoinGraph
Add (join attribute, tid1, tid2) to
JoinGraph
rss = RequiredStoreSize(JoinGraph)
if rss > current JoinGraph sizethen

DecreaseJoinGraphsize by one page
IncreasePageCachesize by one page

Algorithm 3 : Graph-based Fetching

to fetch pages in the selected segment and select the
victim pages in the page cache to be swapped out. In
our implementation, we select to load the page in the
segment with the largest resident degree, which is defined
to be the number of its in-cache neighbors in the join
graph; we select the page in the cache with the smallest
non-resident degree as the victim, where the non-resident
degree of a page is defined as the number of its not-in-
cache neighbors in the join graph.

• RequiredCacheSize(): Following the upper-bound analy-
sis in [3], we assign the value of RCS as the maximum
vertex degreedmax in the current join graph plus one.
However, as we tend to select more edges than the
approximation in practice, we adjust the value of RCS
with a constantk. Thus, we have the value of RCS to
be k × (dmax + 1). The value fork can be decided via
experiments.

IV. PERFORMANCEEVALUATION

In this section, we present the performance evaluation
results of our proposedDigestJoinmethod. In what follows,
we first describe the experiment setup including the algorithm
implementation, test dataset and system settings. Then, we
compareDigestJoin with the traditional sort-merge join al-
gorithm and evaluate different page fetching strategies under
various system configurations.



A. Experiment Setup

We implementedDigestJoin with all three page fetching
strategies in an experimental database system built on top
of 16GB Mtron MSD-SATA3025 SSD. The experimental
database system is designed to enable an easy evaluation on
the performance of different join algorithms. It is composed of
three components:raw storage manager, page-oriented buffer
managerandquery executor. The raw storage manager main-
tains a bunch of pre-allocated continuous space on the SSD
and provides a page-oriented read/write interface. The other
two components rely on this interface to perform I/O access to
the SSD. The page-oriented buffer manager maintains a fixed
number of memory pages, each of which has the same size as
the ones in the raw storage manager. Any query processing in
the query executor should interact with the memory pages in
the buffer manager. The query executor provides facilitiesto
implement and execute specific join algorithms. The system
catalog maintains some statistics information, such as system
parameters (e.g., page size, memory size, etc.), table sum-
maries (e.g., # tuples, # pages, etc.), as well as join statistics
(e.g., join selectivity).

Tables are organized on page-oriented space of the SSD.
The data tuples are stored on the pages following a row-based
storage scheme. Since we study non-index joins, we do not
build any index for each table. To save space, we store data
tuples in a variable-size format. Finally, the data tuples are
imported into the storage in a random order. This is to simulate
a general-case join where the join attribute values could bein
any arbitrary order in the original tables.

The test dataset is taken from the TPC-H benchmark.
In particular, we use oneCUSTOMER table of TPC-H and
perform a natural self-join through the keyC_CUSTKEY. The
selectivity is thus 100%. In our implementation, we installa
filtering function before we are about to get a join result. The
filtering function will flip a coin to decide whether to drop the
result or not. By controlling the flipping probability, we can
simulate different degrees of selectivity. In particular,we can
also control the selectivity on a page basis to simulate skewed
join distributions.

We use the sort-merge join algorithm as a representative to
evaluate theDigestJoinmethod, while expecting that similar
performance results can be observed for nested-loop join. We
have not compared the hash join since its performance depends
on the quality of the hash function and more on the distribution
of the join values. Specifically, the algorithms under evaluation
are: traditional sort-merge join (Basic),DigestJoinwith naive
page fetching strategy (Digest(Naive)),DigestJoinwith page-
based fetching strategy (Digest(Page)), andDigestJoin with
graph-based fetching strategy (Digest(Graph)).

We run all the experiments on a desktop PC equipped with a
Core 2 Quad Q6600 CPU and 4GB main memory. The system
parameters used in the evaluation are listed in Table 3. The
results of various join algorithms are compared with the I/O
cost measured in seconds, where the I/O cost is the sum of
time used in all kinds of I/O operations including sequential

TABLE II
PARAMETER SETTINGS

Parameter Setting
Page size 4 KB
Ratio of tuple size to

digest entry size (p) 10
Average tuples per page (t) 25
Table size 32 MB (i.e., 8,192 pages)
Join selectivity 0.005∼0.5 (0.05 by default)
Memory size 256∼8,192 pages (512 by default)

reads/writes and random reads/writes.

B. Parameterk of Graph-based Page Fetching Strategy

In the first set of experiments, we determine the proper
configuration of the parameterk for the graph-based page
fetching strategy. Recall thatk is a parameter to determine
the required cache size of a join graph. Fig. 6 shows the I/O
results whenk is varied from 0.5 to 4. As can be seen, the
value k should not be set smaller than 1. When it is set at
0.5, the memory space for caching fetched pages is too small,
which leads to frequent page swaps. On the other hand, when
the parameterk is increased from 1 to 4, the I/O cost is almost
the same. The indicates that for the page cache, it is enough
to reserve as many pages as the size of the segment we may
select. Reserving more memory only could restrict the join
graph not to grow large enough and thus slightly degrade the
performance of page fetching. Therefore, we setk at 1 for
the graph-based page fetching strategy in the rest evaluation
of the DigestJoinmethod.
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Fig. 6. Impact of Parameter k for Graph-based Fetching Strategy (Selectivity
= 0.05, Memory Size = 512 Pages, Uniform Join Distribution)

C. Impact of Join Selectivity

We now compare different join methods and page fetching
strategies, and investigate how the join selectivity wouldaffect
their performances. Fig. 7 and Fig. 8 show the comparison
results with join selectivity varying from 0 to 0.1 and from
0.1 to 0.5, respectively. The results do not include the costto
output the final join results, since usually they are not output
to the secondary storage and this cost is the same for all join
algorithms. As such, the result of Basic remains the same over
different selectivity settings. It is used as the baseline in the
performance analysis.



As can be seen from Fig. 7, Digest(Naive) outperforms
Basic only when the selectivity is very low (i.e., < 0.08).
When the selectivity is higher than 0.08, as the naive page
fetching strategy results in too many duplicate page accesses,
it becomes worse than Basic. Similarly, Digest(Page) has
the best performance among all join algorithms under a low
selectivity, but its performance degrades when the selectivity
increases. When the selectivity is higher than 0.3 (see Fig. 8),
it performs worse than Basic. Overall, Digest(Graph) offers the
best performance and outperforms Basic by 15%-64% for all
selectivity setting. As predicted, because of the increased page
fetching cost, its performance improvement becomes smaller
when the selectivity increases.

D. Effect of Graph-based Fetching Strategy

Fig. 9 shows the effect of our graph-based fetching strategy
by comparing it with the original heuristic in [3] (for short,
Original). Specifically, we implemented Original by allowing
it to use as much memory as possible to store the join graph.
When the join graph is larger than the memory available, we
process some edges by following the heuristic. Since most
of memory has already been occupied by the join graph, we
have to load the pages on demand. The original heuristic is
not expected to be efficient and we can see that, in Fig. 9,
after the selectivity is higher than 0.2, it is not only worse
than Digest(Graph), but also even worse than the traditional
sort-merge join algorithm (Basic). On the other hand, when
the selectivity is small (< 0.2), Original is as efficient as
Digest(Graph). This is because a low selectivity makes the
join graph smaller enough to be held in memory, and since
Original and Digest(Graph) follow nearly the same heuristic,
their performances are similar.

E. Impact of Page Size

Fig. 10 and Fig. 11 show the performance comparison with
page size varying from 4 KB to 32 KB. By default, the
page size is 4 KB, which is the smallest page size supported
by our SSD; and the memory space available for joins is 2
MB (512 pages). When varying the page size, we maintain
the same amount of memory (i.e., 2 MB). Hence, there are
256/128/64 memory pages that could be used when the page
size is 8/16/32 KB, respectively. From Fig. 10 and Fig. 11, the
page size has a different impact on the join algorithms.Basic
andDigest(Page)become better when the page size increases.
The reason is that a big page size implies fewer pages of tables,
and the external sort can be done in fewer runs for Basic and
Digest(Page). Digest(Graph) also benefits from a big page size.
This is because fewer pages of tables result in a smaller join
graph, and thus we can make the in-memory join graph more
informative, which leads to better page fetching schedules. On
the other hand, Digest(Naive) performs worse when the page
size increases, and it is even worse than Basic when the page
size is bigger than 8 KB with a low selectivity (see Fig. 10).
This is because no matter how few the pages are, the number
of fetching requests remains the same under a fixed selectivity.

As such, when the cost of fetching a page become higher due
to a bigger page size, Digest(Naive) becomes worse.

F. Impact of Memory Size

Fig. 12 shows the performance comparison with memory
size ranging from 256 to 8192 pages (i.e., 3.1% to 100% of
the table size). As expected, the I/O cost decreases for all
algorithms when more memory space is available. When the
memory space is large enough (i.e., 100%) to hold the entire
join table, Basic has the best performance. However, such
situation rarely occurs in practice, especially when considering
database applications on flash-based mobile devices, which
often have very limited memory space.

It can be also observed that when the memory size increases
from 3.1% to 100% of the table size, the performance gap be-
tween Digest(Page) and Digest(Graph) becomes larger (from
6% to 13%). This is because a large memory space is more
helpful for the page-based strategy to join the candidate join
tables, thereby achieving a more efficient memory usage.

G. Impact of Join Result Distribution

In the previous experiments, all algorithms are evaluated
under the setting where join results are uniformly distributed
over the disk pages. In this subsection, we evaluate their
performances when the join results follow non-uniform dis-
tributions. Specifically, the join results are skewed over the
disk pages based on a Zipf distribution. The Zipf distribution
is controlled by a skewness parameter ofθ. Whenθ is 0, the
distribution is uniform. The larger is the valueθ, the more
skewed is the distribution. We apply the Zipf distribution to
one table only, which emulates the case that one table is joined
with a part of another table,e.g., some day’s orders are joined
with the whole customer table.

Fig. 13 shows the results under the Zipf distribution. Due to
the skewed distribution of join results, the selectivity cannot
be very high. We set it to be 0.1. We make two observations
from Fig. 13. First, whenθ becomes larger,DigestJoinhas a
better performance improvement over Basic. Furthermore, Di-
gest(Naive) outperforms Basic in most cases. This is because
fewer pages are to be fetched when join results have high
skewed distributions. Second, from Fig. 13, Digest(Graph)
saves more I/O cost than Digest(Page) whenθ is larger. This
is because in that case the join graph is generally small and
hence an effective page fetching schedule is more likely to be
achieved.

H. Impact of Flash I/O Characteristics

In this subsection, we investigate the impact of read/write
speeds on the performances of the join algorithms. We use
a scaling factorλ to simulate the relative speed of read/write
operations. Specifically, we setRead = Read/λ andWrite =
Write ∗ λ, whereRead andWrite are the read/write speeds
of the Mtron SSD. Withλ set larger than 1, the read becomes
even faster than the write. Withλ set smaller than 1, the read
might be slower than the write. In the previous performance
evaluation, besides the I/O time, we also recorded the number
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Fig. 7. DigestJoin vs. Traditional Sort-Merge Join
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Fig. 8. DigestJoin vs. Traditional Sort-Merge Join
under High Selectivities (Memory Size=512)
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Fig. 9. DigestJoin vs. Original
Implementation (Memory Size=512)
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Fig. 10. DigestJoin vs. Sort-Merge Join under
Different Page Sizes (Selectivity=0.05, Memory
Size=2M)
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Fig. 11. DigestJoin vs. Sort-Merge Join un-
der Different Page Sizes (Selectivity=0.2, Memory
Size=2M)
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Fig. 12. DigestJoin vs. Traditional Sort-Merge
Join under Various Memory Sizes (Selectiv-
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Fig. 14. DigestJoin vs. Sort-Merge Join under
Flash I/O Characteristics (Selectivity=0.05, Memory
Size=512)
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Fig. 15. DigestJoin vs. Sort-Merge Join under
Flash I/O Characteristics (Selectivity=0.2, Memory
Size=512)

of random reads, random writes, sequential reads and sequen-
tial writes. Based on such data, we plot the estimated I/O cost
under different settings ofλ in Fig. 14 and Fig. 15, where the
selectivity is set at 0.05 and 0.2, respectively.

We observe that when the relative read/write speed becomes
larger (i.e., whenλ becomes larger),DigestJoindemonstrates
a better improvement over Basic. The reason is that with
DigestJoin, we reduce the table size to sort and thus save a
lot of write operations. When the write cost tends to dominate
the overall performance, the advantage ofDigestJoinbecomes
more obvious. Another interesting point is that, with a faster
read operation (e.g., λ = 3), the performances of different
page fetching strategies converge. The reason is that, as
page fetching involves read operations only, its cost becomes
negligible when the read speed is extremely fast.

V. RELATED WORK

Relational database management on flash-based storage
media has attracted increasing research attention in recent
years. Early work focused on how to assemble flash chips
to simulate traditional hard disks [9], [5], [10] and how
to extend the lifetime of flash disks [4], [6], [10]. Based
on these research efforts, recent work have exploited the
characteristics of flash disks to enhance the performance of
RDBMSs. In view of the asymmetric read/write speed and
the erase-before-write limitation, Wu et al. [22] proposed
a log-based indexing scheme for flash memory. Observing
that the log-based indexing scheme is not suitable for read-
intensive workload on some flash devices, Nath and Kansal
[17] developed an adaptive indexing method that adapts to
the workload and the underlying storage device. Lee and



Moon [11] presented a novel storage design called in-page
logging (IPL) for RDBMSs. Lee et al. [12] investigated how
the performance of standard RDBMS algorithms are affected
when the conventional magnetic hard disks are replaced by
flash disks. Shah et al. [19] presented a fast scanning and
joining method by adapting the PAX storage model [1] to
flash disks, which appears the most related work to our study.
The main difference, however, is that our work utilizes fast
random reads to optimize traditional join algorithms, while
PAX presented in [1] is an alternative scheme for storing
relations on flash disks.

Join has been one of the important query operators in
RDBMSs. Extensive research efforts have been spent on the
optimization of join processing. Mihra and Eich [15] surveyed
a number of join algorithms and their implementations. In
this paper, we focus on exploring the possibility of further
improving non-index join algorithms by utilizing fast random
reads of flash disks. In particular, our proposed algorithm
is inspired by join indexes and page fetching. The idea of
join indexes [21], [20], [13] is to precompute join results
and record pairs of tuple ids that satisfy the join to speed
up future join requests. We find that this idea is useful even
when we generate the join indexes on demand for joins on
flash disks,i.e., the first phase ofDigestJoin. The problem of
determining an optimal page fetching schedule in the second
phase ofDigestJoinis actually found in index join algorithms.
Specifically, index join algorithms first compose a list of tuple
pairs that participate in the join by using indexes, and then
tuples themselves have to be fetched to construct the final
results [2], [7]. Merrett et al. [14] proved the decision problem
of optimally scheduling the page fetching to beNP-complete.
A number of heuristics have been developed,e.g., [8], [18]
and [3]. We adapt the ideas behind these heuristics to design
page-based and graph-based strategies for page fetching by
taking into consideration the memory space constraint.

VI. CONCLUSION

In this paper, we have proposed a new join method called
DigestJoin by exploiting fast random reads of flash disks.
DigestJoin is a generic join method as its implementation
could invoke any traditional join algorithm. We have iden-
tified a critical issue called page fetching forDigestJoin.
Three heuristic-based strategies, namely, naive, page-based
and graph-based fetching, have been proposed. We have also
implementedDigestJoinwith these page fetching strategies in
an experimental database system on top of a real flash disk.
The evaluation results show thatDigestJoingenerally improves
the traditional sort-merge join algorithm under various system
parameter settings. In particular,DigestJoin achieves more
performance improvement for the scenarios where the read
speed is much faster than the write speed. Among those page
fetching strategies, the graph-based strategy offers the best
overall performance, whereas the page-based strategy wins
under a low selectivity and uniform join distribution.

Regarding future work, we plan to extend this study along
a few directions. Firstly, we may extend our experiments

to analyze both CPU and IO costs ofDigestJoin. Secondly,
to explore the possibilities of “backward compatibility”,we
may study the performance ofDigestJoinon magnetic disks.
Finally, we may also optimize the current implementation of
our prototype used in the experiments. These extensions may
makeDigestJoinmore appealing when compared to traditional
join algorithms.
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