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Abstract—Flash disks have been an emerging secondary stor- MAGNETIC D,SK’SsEEIﬁQBGL\I,ES_I SSD’s OVERHEAD [12]
age media. In particular, there have been portable devices,
multimedia players and laptop computers that are configured Storage Seeking/Overhead
with no magnetic disks but flash disks. It is envisioned that hard disk 833 ms
some RDBMSs will operate on flash disks in the near future. flash SSD 0.2 ms’ (read)
However, the 1/O characteristics of flash disks are different from )

L o 0.4 ms (write)
those of magnetic disks. Thus, in this paper, we study the core of
g pap y T Seagate Barracuda 7200.10 ST3250310AS, average

query processing in RDBMSs — join processing — on flash disks. latency for seek and rotational delay
Specifically, we propose a new join method, called DigestJoin, to t Samsung MCAQE32GBAPP-0XA drive with
exploit fast random reads of flash disks. DigestJoin consists of two KOWAGO8U1A 16 Ghits SLC NAND chips
phases: (1) projecting the join attributes followed by a join on the
projected attributes; and (2) fetching the full tuples that satidy
the join to produce the final join results. While the problem of ;5 characteristics of flash disks indicate that such anrei$o
tuple/page fetching with minimum I/O cost (in the second phase) L

is intractable, we propose three heuristic fetching strategies. We no longer crucial in flash-based RDBMS_S' )

have implemented DigestJoin on a real flash disk for performance ~ The state-of-the-art RDBMSs are mainly designed to op-
evaluation. Experiments on TPC-H datasets show that DigestJoin erate on magnetic disks and therefore assume the 1/O char-

clearly outperforms the traditional sort-merge join under various  acteristics of magnetic disks. Among the operators of SQL
system configurations. (supported by all RDBMSSs), joins are particularly I/O in-
|. INTRODUCTION tensive and computationally expensive. Therefore, joimgeh

. ) ) . been extensively studied in the literature [15]. In this grap
Flash disks have been widely used in portable devicgs, t5cus on joins in the absence of indexes, non-index

such as PDAs, smartphones and multimedia players, as Wgfls There have been a few existing non-index join methods

as in some laptop and desktop computers in the form gl - osied.oop, sort-merge and hash joins. An objective is
Solid State Drive (SSD). When compared to their magnetig™.c 4 ,ce the 1/O opertions in performing the join.
counterpart, flash disks offer comparable storage spatier be

data access performance, better shock resistance, lower po )

consumption, lighter weight, smaller dimension and better Sort Scan

noise resistance. Given such a wide range of advantages, Table X > Sored /\

flash disks have been a competitive candidate for the next-

generation mass storage media. w Merge —s»
Adopting flash disks as a secondary storage media, recent 50”‘ Sorted \_/

research €.g, [11], [16], [17], [22]) has investigated the Table ¥ 7| Table v —

possibilities for developing flash-based RDBMSs. It hasnbee (Y

remarked that flash disks have unique 1/O characteristas (s

Table | for a comparison of I/O operation overhead between Fig. 1. Sort-Merge Join Algorithm

magnetic disks and flash disks). For instance, flash-based

storage does not involve any mechanical components andConsider the nested-loop join algorithm. Assume that the
hence there is a negligible seek time and rotational delaytables, that participate the join, do not fit into main memory
reading or writing a page on a flash disk. While flash disks stillhe nested loops encapsulate table scans which minimize the
have some overhead on each I/O operation, which is causegk operations in performing the join. Similarly, conside
by the encapsulated logic for such purposes as wear levelthg sort-merge join algorithm. It sorts the tables (using an
and internal caching [4], [6], such overhead can be more thaxternal sort algorithm if necessary) by the join attrilsufghis

20 times smaller than its mechanical counterpart in magnetacilitates table scans on the sorted tables in the mergsepha
disks. Recall that query processing algorithms on magnetitthe algorithm, as illustrated in Fig. 1. This shows thathia
disks often spend an effort to avoid random /O operatiorbsence of indexes, join algorithms have been minimizieg th
but exploit sequential I/O operations whenever possible Tnumber of seek operations. Nevertheless, as discusseer,earl



Tuple Fetching memory constraints. As the digest join results are not ehast

with respect to the page address, a page may be fetched
Table X [~[| bigest multiple times during the whole process. This is partidylar
Extract | | Table of X \ true for mobile devices, where flash disks are popular. Thus,
Join —> we propose a few heuristics to schedule page fetching to
exvact [| pigest / minimize the number of page accesses in the second phase
table vy || Tante of ¥ of DigestJoin
Our main contributions can be summarized as follows:

Tuple Fetching « We propose a two-phase join algorithm, calléu-

gestJoin that exploits fast random reads of flash disks.
The first phase ofDigestJoinis generic and can be
integrated with any traditional non-index join algorithm.
« We propose three heuristic solutions for the page fetching
problem arising from the second phaseDifestJoin In
particular, we consider the memory constraint in the page
fetching problem.
We evaluateDigestJoinwith sort-merge join in an exper-

Fig. 2. Overview of DigestJoin

in the context of flash-based RDBMSs, minimizing the number

of seek operations does not offer much advantage.
Regarding flash disks, what is desirable is to study how

their unique I/O characteristics can be utilized to enhahee o

performance of joins. In this paper, we propdigestJoin a
join algorithm that exploits fast random reads, among ather
of flash disks.DigestJoinconsists of two phases. In the first
phase, DigestJoin projects the tuple idtid)* and only the
attributes that are relevant to the join operator from thxets

imental RDBMS implemented on a real flash disk. By
conducting experiments with TPC-H benchmark datasets,
we show thaDigestJoinoutperforms the traditional sort-
merge join under various system configurations.

The rest of this paper is organized as follows. In Section Il,

that participate the join. The projected tables are calledl twe give an overview of théigestJoinmethod and identify
“digest” tables. The main intuition here is that flash disksts page fetching issue. Section Il discusses the paghaifeic

are often installed inside mobile devices with limited maiproblem and proposes three fetching strategies. Section IV
memory. It is often beneficial to reduce the I/O operationsresents the results of performance evaluation. In Sedtion
required through a scan on the tables to obtain digest tableswe review the related work on flash-based data management
traditional join algorithm is then applied on the smalleget and join processing. Finally, this paper is concluded in-Sec
tables to generate thiBgest join resultsThe digest join results tion VI.

are just pairs otids together with the join attributes, thereby
minimizing the size of intermediate join results. It is wort
noting that the digest join results are similar to join inegx

Il. OVERVIEW OF DIGESTJOIN
In this section, we give an overview d@iigestJoin Given

[21], [20], [13] except that they are computed on-the-fly ithe I/O characteristics of flash disks, we minimize the numbe
the first phase oDigestJoinbecause we do not assume thef page read and write operations required by a join and use

presence of indexes on the join attributes.

sequential write operations whenever possible. As shown in

The 1/0 cost of the join operator saved by joining thé&ig. 2, our proposedigestJoinmethod is divided into two
(smaller) digest tables is paid in the form of a table scgrasesdigest table joiningand page fetching

in the first phaseand random reads in the second phase of
DigestJoin In the second phase, based on the digest joii9€st

results, the algorithm loads the full tuples, that satisfy join,

from the original tables to produce the final join resultsisTh {AttrywAttr_yw - . k '
denotetuple ids of X andY’, respectively. For simplicity, we

has been known to be the classipalge fetching problenm

index joins. However, random reads are no longer an issued§CUSSX >atr,, =atr,,

flash disks. The only concern here is to minimize the amou;

Table Joining. Consider two  tables
= {Attry,, Attry,, ..., Attr, } and 'Y =
., Attr, }, and usetid, and tid, to

Y. In this phase, we first compute
digest tables— the projected tables that contain only the

of I/Os in fetching the full tuples as specified in the digedPin attributes and the tuple ids. In our example, the digest

join results. Consider a digest join result, which contd

mes (ables areX’ = {Attr,, tid,} andY' = {Attry,,tid,}.

join attributes and thdids of the two tuples that satisfy theSUch @ projection will obviously reduce much I/O cost in

join. Based ontids, we can locate the full tuples from th

original tables to construct the final join result. Whenevéf9orithm €.g, _ me _
digest tables to generate thgest join resultsin the form of

a tuple is requested, the entire page containing the tuple
fetched. Ideally, each page should be fetched at most o
during the whole process of final result construction. Haavev
this is difficult to achieve in practice (if not impossible)alto

gherforming the actual join. Then, we apply a traditionahjoi

nested-loop, sort-merge, or hash join) to the

ttry, . tidy, tid, }. The digest join results may be written

to the flash disk sequentially if it is larger than the memory
size.

However, the digest join resultAttr,, , tid,, tid,} only

Throughout this paper, we assume that the tuple id is implerdeagea tell us which tuples satisfy the join. To output the full join

page id plus a slot number.

results, we have to fetch the corresponding tuples from the



original tables according teids. Fetching tuples from the I/Os. Thus, as long as the second page fetching phase require
original tables is usually performed at the granularity ages fewer than101,600 I/Os, DigestJoinwould outperform the
in RDBMS. Thus, we have the second phase — page fetchitiaditional sort-merge join algorithm.

Although the page fetching will pay some cost of randomysssjons. The proposedDigestJoin method is appealing
reads, we hope that the cost is only a small part of the IiQ f4h_hased storage media in two aspects. On one hand, it
saving gained in performing digest table joining. reduces the size of intermediate join results, therebyngavi

Page FetchingA careful fetching schedule of tuples is criticathe /O operations and particularly the temporary writes to
to the page fetching problem. To illustrate that, we givena-si flash disks during the join. This also implicitly leads to faw

ple example. Suppose that we have the following digest jodiase operations on flash disks. On the other hBrgkstJoin
results: (1, tid,, , tid,, ), (v2, tidy,, tidy,), (r3,tidy,, tid,,) is possible due to fast random reads of flash disks. In the
and (x4, tid,,, tid,,), and that tuplestid,, and tid,, are second phase, the tuples involved in the join results aedylik
stored on pagel’ tup|estidm2 andtidn74 are on page3, tup|es to be scattered over a flash disk. Thus, page fetching will
tid,, andtid,, are on page’, tuplestid,, andtid,, are on incur quite a humber of random read operations, which are
pageD. If we have sufficient memory space, we may fetch a@xtremely costly for magnetic disk-based storage media. Fo
of these four pages, namely, B, C' andD, and keep them in magnetic disks, the overhead of such random read operations
the memory throughout the process of constructing the fifRy even exceed the 1/O cost saved in the first phase. Flash-
join results. However, in practice, memory space is limite@ased storage media is particularly benefited from joinirey t
and, hence, we need to carefully schedule the page fetohingligest tables, as random reads on flash disks are efficient.
minimize the page read cost. Suppose that the_ Memory SPace||| pacE FETCHING STRATEGIES FORDIGESTIOIN
can hold two pages only. If we construct the final results in o ) o )

the order ofz,, 4, 3 andz,, we need to fetch pagesand AN efficient page fetching strategy is important fbi-

C for 21, B and D for z,, then A and C again forzs, and gesthmas it minimizes the numpe.r of page accesses when
finally B andD again forz4. In this case, each page is fetchedetching the full tuples from the original tables to prodube
twice. Alternatively, we may swap the order of andz in final Jom results. In this section, we first fo_rmulat(_a the pag
the schedule and then each page would be fetched only orf€&hing problem as a graph problem and discuss its hardness
Therefore, as can be seen, the page fetching schedule hdd!&: We propose three heuristic-based strategies to sgldre

great impact on the 1/O cost. We will propose three stragegithis Problem.
for page fetching in the next section. A. The Page Fetching Problem

Before we proceed to the next section, we present anln DigestJoin the outputs of the first phase are the digest
example to exemplify how mucBbigestJoincan improve over join results. Based on that, in the second phase, disk pages
a traditional join algorithm. Consider the following joimo containing the full tuples (or partial tuples containinguéed
two TPC-H tables, wher€USTOVER and ORDERS are joined attributes in the projection list of the input query) arecfetd

through the keyC CUSTKEY: to generate the final join results. Tipage fetchingproblem
is to schedule a page fetching sequence to read all tuples in
SELECT = the join results with minimum number of page accesses.
FROM CUSTOVER, ORDERS T | th fetchi bl f late it
WHERE CUSTOMER. C_CUSTKEY = ORDERS. C_CUSTKEY; 0 analyze Ih€ page feiching probiem, we formulate |

as a graph problem. A join graph is used to represent the
According to the schemas of TPC-H, the tuple size of a digestiationship between the disk pages specified by the join
table is approximately 6% of that of tf@JSTOVER table, and results. The join graph is defined as an undirected bipartite
9% of that of theORDERS table. Assume that there at@,000 graph G = (V3 U V4, E), where V; and V; denote the
and 5,000 pages forCUSTOVER and ORDERS, respectively. set of pages from the two original tables, respectively, and
Consider the traditional sort-merge algorithm. Givenamsm E C V; x V, denotes the set of page-pairs specified by the
size of 20 pages, we need and 3 passes to sort these twojoin results. Specifically, for each edde,,v,) € E, there
tables, respectively, and the total sorting cogbi®@ x 10,000+ exists a tuple on page, which joins with a tuple on page
3 x 2 x 5,000 = 110,000 I/Os. The next merge procedurev,. The join graph can be used to dynamically represent the
will alternatively scan both of the sorted tables, leading temaining pages to be fetched and joined. An edgeuvy) is
a total join cost of110,000 + 10,000 + 5,000 = 125,000 removed fromE if pagesv, and v, have been fetched into
I/Os. Now if we employDigestJoin the digest tables extractedthe main memory and the corresponding tuples on them have
from CUSTOVER andORDERS are of size600 and450 pages, been joined. A vertex is removed from G once its out-degree
respectively. Thus, the cost for building these two digektds becomes zero.
is 10,000 + 5,000 4 600 + 450 = 16,050 I/Os. Then, when  An example of a join graph is shown in Fig. 3, where
applying the sort-merge join to the digest tables, bothemblvertices1 and 2 represent the pages from one table, while
can be sorted in 3 passes, with a join cosBof 2 x 600 + verticesa, b and c represent the pages from the other table.
3 x 2 x 450 + 600 + 450 = 7,350 1/Os. Hence, the total cost An edge(1, a) means there is/are tuple(s) on pdgéat can be
incurred in the first phase will b&6, 050 + 7,350 = 23,400 joined with tuple(s) on page. Similarly, edged(1,b), (1,c¢),



a each edge will change dynamically. Furthermore, to the dfest
1 our knowledge, there has not been any practical appro>emati
b algorithm to address the page fetching problem [3]. In tist re
of this section, we propose three heuristic strategies Her t

page fetching problem.
C

B. Naive Fetching Strategy

One intuition to tackle the page fetching problem is to fetch
pagesonling i.e., as the digest join results are produced. The
first strategy — calledchaive fetching strategy— is to fetch
(2, @) and(2, ¢) represent the “join relationship” between othethe pages of the tuples as soon as they are produced in the
pairs of pages. digest join phase. Furthermore, recall that seek opemsition

A page fetching sequence is equivalent to a sequence f@t incur much overhead on a flash disk. Hence, in the digest
removing all edges of the join graph. As mentioned previguslijoin phase, it is no longer necessary to assign as many input
an edge is removed if and only if the corresponding pages angffer pages as possible.g, in the merge phase of sort-merge
fetched into the memory (and the final results are constiictejoin and the probe phase of hash join. Most of the available
Therefore, an optimal page fetching sequence is a sequenceniemory space can be used to cache disk pages.
removing all edges in the join graph with minimum number More specifically, we present the details of this strategy
of page accesses. If there was sufficient memory space to hialdAlgorithm 1. To illustrate the intuition, we assume sort-
all related pages, obviously each page would be fetched. onegerge join is used in the first phase DigestJoin That is, in
Thus, any page fetching sequence would be optimal. Howevalgorithm 1, we assume that the digest tables have beerdsorte
when the memory space is limited, page swaps are needed and it is handling the merge phase of sort-merge join. lhitia
the problem becomes intractable. we assign pages; andp. (in main memory) for merging the

The hardness of this problem can be illustrated as followyo digest tables. The remaining memory is assigned to form a
We first derive another graph from the join graph. For page cache. Next, a traditional cache replacement policy) s
join graphG = (V; U Vs, E), we construct a correspondingas LRU, is applied to the management of the page cache. The
weighted complete grapl”’ = (V’,E’) by the following While loop in the algorithm constructs the final results as th
method: for each edgev,,v,) € E, we create a new vertex digest join results are produced.

v in G. Th_at is, each edge in the join graph is transformed Input_- Sorted digest table,, sorted digest tablet,
to a vertex in the new graph. Thereforé,in the new graph Output: Join results
represents fetclhmg. the pages and v, |n.to the memory to Allocate bufferp, for dtr, ps for dts
construct the final join re_sults. We assign a wglght of ea_:hAHocate rest buffers aPageCachewith LRU policy
edge as the page swapping cost between two join operatipnghile joining dt; and dt» with p; and p, do
implied by the vertices of the edge. For example, Fig. 4 shows | if there is a join result(join_attribute, tid:, tidz) then
the transformed graph of the join graph shown in Fig. 3. In the page; = the page id containingid
. . . pagez = the page id containingid.
_gr_aph, we label each vertex by its correspondmg edges in the if page, in PageCachehen
join graph,e.g, vertexla corresponds to edgd, a) in Fig. 3. | Extract tuple withtid; to ¢;
Regarding the weights of the edges, we assume that the main else , )
memory can hold two pages only for analysis purposes. The Load page; into PageCachgextract tuple with

. . . . tid1 tO t1
weight of edge(1la, 1b) (solid line) is1 as one new page has if pages in PageCachdhen

Fig. 3. Example of Join Graph  Fig. 4. Transformed Graph

to be fetched into the memory for performing the se_cond_ join | Extract tuple withtids to ¢
of pages 1 and; the weight of edgé€1b, 2a) (dashed line) is else _ _
2 as two new pages have to be fetched for joining of pages 2 Load page: into PageCachgextract tuple with

tids tO to

and a. With such a formulation, a page fetching sequence |is Joint: andt, and then output

equivalent to a tour of all vertices on the graph. The numiberjo [ -

pages fetched is the sum of the weights of all edges in the tour Algorithm 1: Naive Page Fetching

Thus, the page fetching problem is to find a tour in the graph

with minimum cost. Then, we can reuse a result from Merre@. Page-based Fetching Strategy

et al. [14]. They proved that finding a Hamiltonian path from Although the page fetching problem \P-hard there have

our transformed graph NP-completgProposition 1 in [14]). been some special cases where the problem can be solved

We remark that Merrett et al. [14] studied a slightly differe efficiently, e.g, the case with sufficient memory space to hold

problem — determining whether there exists a solution withil pages of the join results. Another case is that the digest

n—1 page swaps for the page fetching problefi-complete join results are clustered with respect to the page addrabs a

(assuming that there are totaltypages in the join graph). the full tuples of the join results are clustered with resgec
When the memory space can hold more than two pages, the join attributes. In this case, directly applying theveai

problem appears to be even more complex, as the weightfetfching strategy would result in an optimal page fetching




sequence which ensures each page is fetched at most onaeently cached in the main memory. In other words, we
This motivates us to propose thage-based fetching strategy check all subgraphs in the current join graph: 1) to identify
Specifically, we build two kinds of temporary tables to assisvhether each subgraph contains all edges of any vertex in the
page fetching. The first one is callégtching instruction table subgraph; and 2) to count how many vertices.(pages) are
which archives digest join results. After this table is fill@ith not in the main memory. Then, the subgraph that satisfies the
all digest join results, we sort its digest join results lmasdirst condition and has the smallest value of the second guant
on their page addresses. Thus, fetching tuples based on sacelected. As iterating all subgraphs of the join graphesak
sorted digest results avoids duplicated page fetchingesiqu the computational cost prohibitively high, an approxiroati
However, tuples fetched according to their page addresses method is to select the vertex with the fewest non-resident
generally not clustered on the join attributes. Hence, we haneighbors, together with all its neighbors in the join graph
another temporary table callgdin candidate tableto store calledsegmen{3].
the tuples fetched according to the fetching instructidiieta  For example, let us reconsider the join graph in Fig. 3. The
Sort-merge join or hash join algorithm can then be applied @andidatesegmentsre {1, a,b,c}, {2,a,c}, {a,1,2}, {b,1}
this table for producing the final join results. and{e, 1,2}. If there has not been any page fetched into the
To illustrate the page-based fetching strategy, l&tain memory yet, we should sele¢b,1}. This is because
us recall the example on digest join results used ihhas the fewest non-resident neighbors and implies thet lea
Section II. In practice, we may encode th&ds in page accesses. Let us assume that some pages have already
the form of ‘pageid:slot numbet when we generate been fetched into the main memory, sayThen, we may
the digest tables. Here, the results afe;,A:1, C:1), select{2,a,c} or {b,1}. The reason is that both pages 2 and
(z2,B:1, D:1), (z3,A:2, C:2) and (14,B:2, D:2). b have only one non-resident neighbag., pagesa and 1,
Two fetching instruction tables are then createdespectively.
ft1 = {A, B:1, A2, B:2,fts = {C:1, D:1, C:2, D:2. However, there are some challenges in applying this heuris-
We sort them according topageid and obtain tic to our scenario. First, we observe that the devices liasta
fti = {A1, A2, B1, B:2}, fts = {C:1, C:2,D:1, D:2. with flash disks often have a limited memory space. In our
The tuples now can be fetched efficiently. We then obtalesearch, we study joins on large tables that are largerttigan

two join candidates tables —jct; = {x1,22,23,24}, Size of available memory. Therefore, the memory space is not
jeta = {y1,92,Y3,y4}- By joining them again, we obtain thelikely to hold the entire join graph for the analysis mengdn
final join results. earlier. Furthermore, in order to avoid producing dupkgain

The page-based strategy gives an efficient page fetchiiggults, we have to attadfids to the edges in the join graph
sequence with the cost of introducing some extra I/O costimplementation. This is a rather subtle point. Considher t
for maintaining two temporary tables and another extra fing¢enario where onlpage ic are attached to the join graph.

join. We summarize the above discussions in Algorithm 2. Suppose we have an edge in the join graph indicating a join
between page of table X and page of tableY. When the

Input : Sorted digest tablét,, sorted digest tablet, memory space runs out, we conduct the join on pagasdb
Output: Join results . - . .
e to reclaim space by removing the corresponding vertices and
while joining dt, anddt, do , o edges from the join graph. Next time, when another digest joi
if there is a join result(join_attribute, tidi, tid2) then - . . .
Outputtidy, tids to fetching instruction tableg, and result requiring page to join with pageb comes, duplicate
fto join results will be generated. As there is no information on

o what results have already been produced, attachiifgjto the

Sort ft d ft, based id L . .
Wﬁirmf ;C:,?nir{g}tla:re]d ]?trfz%e' edges can address this issue. However, it makes the size of

Fetch clustered tuples accordingttals and output the the join graph grows faster and aggravates memory shortage.

| tuples to join candidate tablggt; and jcts Second, pre-allocating sufficient memory for caching
Perform sort-merge join or hash join giat, andjct: pages for the join graph is not feasible in general. The
Algorithm 2: Page-based Fetching heuristic we discussed above provides a rough bound

on the maximum required size of the page cache,,
min{sizeof(X), sizeof(Y)}+1, when joining tables¥ and
Instead of archiving the digest join results in temporary. However, if we could reserve so many pages for the page
tables, an alternative method is to archive it with the joinache, we can simply load one table into the memory and
graph. If the memory can hold all digest join results in thase the remaining memory space to scan the other table to
form of a join graph, we may find good heuristics to travgberform the join. Therefore, we need a careful implemeomati
all edges to do the page fetching and joining near optimally effectively hold both the join graph and the page cache in
In the literature, two heuristics [3], [18] are in that ditien, a limited memory space.
focusing on page fetching for index-based joins. The basicln this subsection, we propose graph-based fetching
idea is to select a subgraph of a vertex which contains all gategywhich aims at achieving acceptable performance even
adjacent edges and requires the fewest non-resident pagewhen the memory available is highly limited. Fig. 5 gives
be fetched. Here, a non-resident page is a page that is antoverview of the memory management for the graph-based

D. Graph-based Fetching Strategy
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Fig. 5. Memory Management of Graph-based Fetching Strategy

fetching strategy. We divide the available memory space int

two parts: one for storing the join graphg, join graph
storage) and the other for caching fetched pages fpage

cache). We dynamically manage the memory space for the
join graph storage and the page cache. When a digest joi

result comes, if there is space, we directly add it into the jo
graph. Otherwise, we try to adjust the space for the joinlgrap
based on itsequired storage siz€R.S.S) andrequired cache
size(RCS). The RSS of a join graph is equal to the number
of pages that are required to hold this join graph. We organi
the join graph in an adjacency list, and tfi&5'S is larger

N

than the size of the adjacency list, as extra space is needed t

store thetids for the edges. Th&CS of a join graph is the

minimum cache size for fetching and joining any segment
this join graph. Initially, the join graph only takes up orexe

and the page cache spans the rest of the memory. During
join process, we dynamically adjust the sizes of the joirpgra
and the page cache. Specifically, when we cannot insert a jp
result from the digest table into the join graph, we perform
the following:

the

n

Input : Sorted digest tabldt;, sorted digest tabldt-
Output: Join results

Allocate pagep; for dty, p2 for dits

Allocate rest pages fdPageCacheand JoinGraph and set

JoinGraphinitial size to be one page

while joining dt1 and dt» with p; andp, do

if there is a join result(join_attribute, tidi, tids) then

Try join tuplestid, & tide only with PageCache

if join succeedshen

| continue to next digest join result

Try add (join_attribute, tid, tids) to JoinGraph

if fail then

/* insufficient space for JoinGraph */

rcs = RequiredCacheSizéJoinGraph)

if rcs < current cache siz¢hen
IncreaseJoinGraphsize by one page
DecreasdPageCachesize by one page
Add (join_attribute, tidy, tids) to
JoinGraph

Ise
seg = SelectSegmerfoinGraph
FetchAndJoin(seg)
Update in-cache flags dfoinGraph
Removeseg from JoinGraph
Add (join_attribute, tidy, tidz) to
JoinGraph
rss = RequiredStoreSiz¢JoinGraph)
if rss > current JoinGraph siz¢hen

DecreaseloinGraphsize by one page
IncreasePageCachesize by one page

« If RCS < the current page cache size, we enlarge the
memory space for join graph storage (correspondingly,
shrink the space of the page cache by removing some

cached pages) to insert that result.

« Otherwise, we try to select a segment of the join graph to
load full tuples and join them using the page cache. After
that, the size of the join group is reduced. We then insert

the pending join result into the join graph, and check

RSS to see whether we need to enlarge the space for the
page cache (correspondingly, shrink the memory space of

the join graph).

We summarize the graph-based fetching strategy in Algo-,

rithm 3. And we discuss the main functions used as follows:
« RequiredStoreSize(This function computes the storage

requirement of the current join graph. Note that the re-
quirement is measured in pages, since only page-oriented

memory management is often supported in RDBMSs.
o SelectSegment()This function selects a segment from
the join graph. We follow the same approximation in

Algorithm 3: Graph-based Fetching

to fetch pages in the selected segment and select the
victim pages in the page cache to be swapped out. In
our implementation, we select to load the page in the
segment with the largest resident degree, which is defined
to be the number of its in-cache neighbors in the join
graph; we select the page in the cache with the smallest
non-resident degree as the victim, where the non-resident
degree of a page is defined as the number of its not-in-
cache neighbors in the join graph.
RequiredCacheSize(following the upper-bound analy-
sis in [3], we assign the value of RCS as the maximum
vertex degreel,, . in the current join graph plus one.
However, as we tend to select more edges than the
approximation in practice, we adjust the value of RCS
with a constantt. Thus, we have the value of RCS to
be k x (dnaz + 1). The value fork can be decided via
experiments.

[3], which has been discussed in the first paragraph of

this subsection. Since there may exist edges having both

IV. PERFORMANCEEVALUATION

vertices {.e., pages) in the page cache, we also selectin this section, we present the performance evaluation
those edges in order to join as many pages as possiblesults of our proposeB®igestJoinmethod. In what follows,

« FetchAndJoin() This function accepts a segment of thave first describe the experiment setup including the allgorit
join graph, fetches the corresponding pages from tlmplementation, test dataset and system settings. Then, we

original tables, and joins the tuples indicated hys.

compareDigestJoinwith the traditional sort-merge join al-

When the page cache is fully occupied, we have to swgprithm and evaluate different page fetching strategieteun
some pages out. In particular, we have to decide the ord@rious system configurations.



TABLE I

A. Experiment Setup PARAMETER SETTINGS
We implementedDigestJoinwith all three page fetching —pzrameter Setting
strategies in an experimental database system built on Opage size 4 KB
of 16GB Mtron MSD-SATA3025 SSD. The experimental Ratio of tuple size to
database system is designed to enable an easy evaluation Bvri'gzsé ;”;lré’:g:’ri% age)( %g
the performance of different join algorithms. It is compaed Table size 32 MBi(e, 8,192 pages)
three componentsaw storage managepage-oriented buffer 54, selectivity 0.0050.5 (0.05 by default)
managerandquery executorThe raw storage manager main- Memory size 256.8,192 pages (512 by default)

tains a bunch of pre-allocated continuous space on the SSD

and provides a page-oriented read/write interface. Theroth

two components rely on this interface to perform 1/O access feads/writes and random reads/writes.

the SSD. The page-oriented buffer manager maintains a fixed

number of memory pages, each of which has the same sizdBasParameterk of Graph-based Page Fetching Strategy

the ones in the raw storage manager. Any query processing i, the first set of experiments, we determine the proper

the query executor should interact with the memory P?‘Qeséaniguration of the parametér for the graph-based page

the buffer manager. The query executor provides faCililies fetching strategy. Recall that is a parameter to determine

implement and execute specific join algorithms. The systegs required cache size of a join graph. Fig. 6 shows the 1/O

catalog maintains some statistics information, such a®Bys (as,lts whenk is varied from 0.5 to 4. As can be seen, the

parameters €9, page size, memory size, etc.), table suMyiye k should not be set smaller than 1. When it is set at

maries €.9, # tuples, # pages, etc.), as well as join statistigss the memory space for caching fetched pages is too small,

(e.9, join selectivity). which leads to frequent page swaps. On the other hand, when
Tables are organized on page-oriented space of the S@kd parametek is increased from 1 to 4, the I/O cost is almost

The data tuples are stored on the pages following a row-basgél same. The indicates that for the page cache, it is enough

storage scheme. Since we study non-index joins, we do R@treserve as many pages as the size of the segment we may

build any index for each table. To save space, we store datdect. Reserving more memory only could restrict the join

tuples in a variable-size format. Finally, the data tuples agraph not to grow large enough and thus slightly degrade the

imported into the storage in a random order. This is to siteulgperformance of page fetching. Therefore, we ket 1 for

a general-case jOin where the jOin attribute values couloh bethe graph-based page fetching Strategy in the rest evatuati

any arbitrary order in the original tables. of the DigestJoinmethod.

The test dataset is taken from the TPC-H benchmark.
In particular, we use on€USTOVER table of TPC-H and 3 : : :
perform a natural self-join through the k€ CUSTKEY. The a5 | |
selectivity is thus 100%. In our implementation, we install g
filtering function before we are about to get a join resulteTh g 2r 7
filtering function will flip a coin to decide whether to dropeth % 15 - g
result or not. By controlling the flipping probability, we rca g 1k |
simulate different degrees of selectivity. In particulag can o
also control the selectivity on a page basis to simulate skew 05 r i

join distributions. 0
We use the sort-merge join algorithm as a representative to

evaluate theDigestJoinmethod, while expecting that similargig. 6. impact of Parameter k for Graph-based Fetching Syaejectivity

performance results can be observed for nested-loop jo&n. W0.05, Memory Size = 512 Pages, Uniform Join Distribution)

have not compared the hash join since its performance depend

on the quality of the hash function and more on the distrdouti ) o

of the join values. Specifically, the algorithms under estibn  C- Impact of Join Selectivity

are: traditional sort-merge join (Basid)igestJoinwith naive We now compare different join methods and page fetching

page fetching strategy (Digest(Naive)igestJoinwith page- strategies, and investigate how the join selectivity waffect

based fetching strategy (Digest(Page)), didestJoinwith their performances. Fig. 7 and Fig. 8 show the comparison

graph-based fetching strategy (Digest(Graph)). results with join selectivity varying from 0 to 0.1 and from
We run all the experiments on a desktop PC equipped witlDdl to 0.5, respectively. The results do not include the tast

Core 2 Quad Q6600 CPU and 4GB main memory. The systemtput the final join results, since usually they are not outp

parameters used in the evaluation are listed in Table 3. Tiwethe secondary storage and this cost is the same for all join

results of various join algorithms are compared with the l/@lgorithms. As such, the result of Basic remains the same ove

cost measured in seconds, where the I/O cost is the sumddferent selectivity settings. It is used as the baselméehie

time used in all kinds of I/O operations including sequédntigperformance analysis.

k=05 k=1 k=2 k=3



As can be seen from Fig. 7, Digest(Naive) outperformas such, when the cost of fetching a page become higher due
Basic only when the selectivity is very low.€., < 0.08). to a bigger page size, Digest(Naive) becomes worse.
When the selectivity is higher than 0.08, as the naive page .
fetching strategy results in too many duplicate page aesesd~ mpact of Memory Size
it becomes worse than Basic. Similarly, Digest(Page) hasFig. 12 shows the performance comparison with memory
the best performance among all join algorithms under a Iosize ranging from 256 to 8192 pagds( 3.1% to 100% of
selectivity, but its performance degrades when the selgcti the table size). As expected, the I/O cost decreases for all
increases. When the selectivity is higher than 0.3 (see Fig. 8lgorithms when more memory space is available. When the
it performs worse than Basic. Overall, Digest(Graph) affltse  memory space is large enoughe(, 100%) to hold the entire
best performance and outperforms Basic by 15%-64% for @in table, Basic has the best performance. However, such
selectivity setting. As predicted, because of the incrég@smge situation rarely occurs in practice, especially when adeisng
fetching cost, its performance improvement becomes smaltiatabase applications on flash-based mobile devices, which

when the selectivity increases. often have very limited memory space.
It can be also observed that when the memory size increases
D. Effect of Graph-based Fetching Strategy from 3.1% to 100% of the table size, the performance gap be-

tween Digest(Page) and Digest(Graph) becomes larger (from
8% to 13%). This is because a large memory space is more
helpful for the page-based strategy to join the candidate jo
Ft)%bles, thereby achieving a more efficient memory usage.

Fig. 9 shows the effect of our graph-based fetching strate
by comparing it with the original heuristic in [3] (for short
Original). Specifically, we implemented Original by allowi
it to use as much memory as possible to store the join gra
When the join graph is larger than the memory available, Wg. |mpact of Join Result Distribution
process some edges by following t_he heurlst|_c._ Since mOStIn the previous experiments, all algorithms are evaluated
of memory has already been occupied by the join graph, we

have to load the pages on demand. The original heuristicu@der the setting where join results are uniformly distidal

not expected to be efficient and we can see that. in Eig. D" the disk pages. In this subsection, we evaluate their
P A L ' 9 Serformances when the join results follow non-uniform dis-
after the selectivity is higher than 0.2, it is not only wors€

. . “Tributions. Specifically, the join results are skewed oves t
than D|gest_(G_raph), l.)Ut also ceven worse than the tradition Isk pages based on a Zipf distribution. The Zipf distribati
sort-merge join algorithm (Basic). On the other hand, when .

A L . .- is controlled by a skewness parametedofVhend is 0, the
the selectivity is small € 0.2), Original is as efficient as

Digest(Graph). This is because a low selectivity makes tﬁilﬁstrlbutpn IS ur?n‘o.rm..The larger is the Vf""we.‘h‘? more
. . . _skewed is the distribution. We apply the Zipf distributian t
join graph smaller enough to be held in memory, and since

- . ._.0he table only, which emulates the case that one table isdoin
Original and Digest(Graph) follow nearly the same heuwisti . ) o

; e with a part of another table.g, some day’s orders are joined
their performances are similar.

with the whole customer table.

Fig. 13 shows the results under the Zipf distribution. Due to
the skewed distribution of join results, the selectivitynicat

Fig. 10 and Fig. 11 show the performance comparison witle very high. We set it to be 0.1. We make two observations
page size varying from 4 KB to 32 KB. By default, thefrom Fig. 13. First, wherf becomes largeDigestJoinhas a
page size is 4 KB, which is the smallest page size supporteetter performance improvement over Basic. Furthermore, D
by our SSD; and the memory space available for joins isg&st(Naive) outperforms Basic in most cases. This is becaus
MB (512 pages). When varying the page size, we maintaiewer pages are to be fetched when join results have high
the same amount of memory. €., 2 MB). Hence, there are skewed distributions. Second, from Fig. 13, Digest(Graph)
256/128/64 memory pages that could be used when the pagees more 1/0O cost than Digest(Page) wHednr larger. This
size is 8/16/32 KB, respectively. From Fig. 10 and Fig. 1&, tHs because in that case the join graph is generally small and
page size has a different impact on the join algorithBesic hence an effective page fetching schedule is more likelyeto b
andDigest(Pagepecome better when the page size increaseghieved.
The reason is that a big page size implies fewer pages oftable o
and the external sort can be done in fewer runs for Basic afid Impact of Flash I/O Characteristics
Digest(Page). Digest(Graph) also benefits from a big pame si  In this subsection, we investigate the impact of read/write
This is because fewer pages of tables result in a smaller jgipeeds on the performances of the join algorithms. We use
graph, and thus we can make the in-memory join graph maescaling factor\ to simulate the relative speed of read/write
informative, which leads to better page fetching sched@es operations. Specifically, we sBead = Read/)\ andWrite =
the other hand, Digest(Naive) performs worse when the pagérite x A, where Read and Write are the read/write speeds
size increases, and it is even worse than Basic when the pafjgthe Mtron SSD. With\ set larger than 1, the read becomes
size is bigger than 8 KB with a low selectivity (see Fig. 10)even faster than the write. With set smaller than 1, the read
This is because no matter how few the pages are, the numimgght be slower than the write. In the previous performance
of fetching requests remains the same under a fixed setgctivevaluation, besides the I/O time, we also recorded the numbe

E. Impact of Page Size
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of random reads, random writes, sequential reads and sequen V. RELATED WORK
tial write_s. Based on such Qatq, we plot thg estimated I/® cos Relational database management on flash-based storage
under different settings of in Fig. 14 and Fig. 15, where the meqia has attracted increasing research attention in trecen
selectivity is set at 0.05 and 0.2, respectively. years. Early work focused on how to assemble flash chips
We observe that when the relative read/write speed becon@ssimulate traditional hard disks [9], [5], [10] and how
larger {.e, when\ becomes largerigestJoindemonstrates to extend the lifetime of flash disks [4], [6], [10]. Based
a better improvement over Basic. The reason is that witm these research efforts, recent work have exploited the
DigestJoin we reduce the table size to sort and thus savecharacteristics of flash disks to enhance the performance of
lot of write operations. When the write cost tends to dominaRDBMSs. In view of the asymmetric read/write speed and
the overall performance, the advantageDijestJoinbecomes the erase-before-write limitation, Wu et al. [22] proposed
more obvious. Another interesting point is that, with adasta log-based indexing scheme for flash memory. Observing
read operationg.g, A = 3), the performances of differentthat the log-based indexing scheme is not suitable for read-
page fetching strategies converge. The reason is that, irensive workload on some flash devices, Nath and Kansal
page fetching involves read operations only, its cost beson]17] developed an adaptive indexing method that adapts to
negligible when the read speed is extremely fast. the workload and the underlying storage device. Lee and



Moon [11] presented a novel storage design called in-patgeanalyze both CPU and IO costs DigestJoin Secondly,

logging (IPL) for RDBMSs. Lee et al. [12] investigated howto explore the possibilities of “backward compatibilityhe

the performance of standard RDBMS algorithms are affectethy study the performance &figestJoinon magnetic disks.

when the conventional magnetic hard disks are replaced Bially, we may also optimize the current implementation of

flash disks. Shah et al. [19] presented a fast scanning amd prototype used in the experiments. These extensions may

joining method by adapting the PAX storage model [1] tsnakeDigestJoinmore appealing when compared to traditional

flash disks, which appears the most related work to our stugyin algorithms.

The main difference, however, is that our work utilizes fast

random reads to optimize traditional join algorithms, whil

PAX presented in [1] is an alternative scheme for storing The authors are grateful to Prof. Qiong Luo for her con-

relations on flash disks. structive comments on an early version of this paper. This
Join has been one of the important query operators WPrk was supported by the Research Grants Council of Hong

RDBMSs. Extensive research efforts have been spent on ng (Grants HKBU210808 and HKBU211307) and Natural

optimization of join processing. Mihra and Eich [15] suredy Science Foundation of China (Grant No. 60833005).
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join indexes [21], [20], [13] is to precompute join results index-based join processingEEE Trans. on Knowl. and Data Eng.
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