
Processing Precision-Constrained Approximate Queries
in Wireless Sensor Networks∗

Minji Wu Jianliang Xu
Hong Kong Baptist University

Kowloon Tong, Hong Kong
{alexwu,xujl}@comp.hkbu.edu.hk

Xueyan Tang
Nanyang Technological University

Singapore
asxytang@ntu.edu.sg

Abstract

A lot of research efforts have been devoted to improving
energy efficiency for wireless sensor networks by exploring
distributed data storage and in-network query processing
techniques. In this paper, we present a generic two-tier
data storage strategy for answering precision-constrained
approximate queries in a sensor network. The basic idea
is to keep two versions of data in the network. A high-
precision version is kept at the sensor node that captures the
data while a low-precision version is maintained at the base
station. We develop query processing and node refreshment
strategies for various types of approximate queries under
the two-tier storage. Our extensive experiments show that
the two-tier storage strategy outperforms the basic central-
ized storage scheme by an order of magnitude in terms of
network lifetime under various system configurations.

1 Introduction

The rapid development in sensing and wireless commu-
nication technologies has made the availability of wireless
sensor networks. Wireless sensor networks can be used in
a wide range of practical applications such as habitat mon-
itoring and environment monitoring. For example, the con-
servation of endangered species in Hong Kong (such as Chi-
nese White Dolphins and Romer’s Tree Frog) is hampered
by insufficient knowledge of their status [19]. The current
practice is to send human beings to the habitat sites of these
species to collect their status information. However, this
approach introduces potential disturbance. The use of net-
worked sensors not only eliminates the potential impacts of
human presence, but also enables data collection at scales
and resolutions that are difficult to achieve through tradi-
tional instrumentation [17].

∗This work was supported by Research Grants Council of Hong Kong
SAR, China under Project No. HKBU 2115/05E.

Figure 1. Sensor Network Architecture

A wireless sensor network is typically constructed of a
base station and a large number of sensor nodes scattered
in an area of interest (see Figure 1). These sensor nodes
are equipped with sensing, data processing, and communi-
cation components to collect local measurements, process
and exchange information about the environment. They are
usually battery powered. Replacing the batteries is not only
costly but also impossible in many situations. As such, en-
ergy efficiency is a critical consideration in the design of
sensor networks. There have been significant research ef-
forts towards energy-conserving sensor networks. However,
most of the existing studies have focused on the design of
sensing architectures and protocols in support of exact an-
swers to user queries.

Here we take a different approach to improve energy
efficiency. We exploit the trade-off between data quality
and energy consumption to extend network lifetime by in-
vestigating approximate queries with precision guarantees.
Many sensor applications are willing to tolerate a certain de-
gree of error in data due to either the application nature or
the high resource constraints in sensor networks. For exam-
ple, to save energy, a user retrieving the temperature reading
of a sensor may allow an error of one degree. In this case,
the retrieved value is acceptable as long as it is within ±1
degree of the actual reading.

In this paper, we present a generic two-tier data storage
strategy for answering precision-constrained approximate
queries. The basic idea is to keep two versions of data in the
network. A high-precision version is kept at the sensor node
that captures the data, while the same data with a lower pre-
cision is replicated at the base station. The imprecision of

1

low-precision data at the base station is bounded by an ap-
proximation range. An update in reading will not be sent to
the base station if the new value remains within the approx-
imation range. Thus, a query can be answered by the base
station if the user’s required precision is weaker than that
of the result computed based on low-precision data. Oth-
erwise, some of the sensor nodes need to be refreshed to
improve the data precision, in which two fundamental is-
sues arise: 1) How to determine the to-refresh node set?
As the costs for sensor nodes to report their readings to the
base station differ from one another, it is important to pick
the set of sensor nodes that incurs the minimal energy con-
sumption. 2) Upon selecting the set of to-refresh nodes,
how to refresh them in an energy-efficient way? In some
types of queries, we do not need to refresh all the nodes in
the to-refresh set to resolve the answer.

We develop detailed query processing and node refresh-
ment strategies for various types of approximate queries
(including ID-based, range, top-k, and aggregate queries)
under the proposed two-tier data storage. Extensive experi-
ments are conducted to evaluate the performance of the two-
tier storage strategy using real trace data. The results show
that the two-tier storage strategy substantially outperforms
the basic centralized storage and local storage schemes un-
der various system configurations.

The rest of this paper is organized as follows. Section
2 reviews the related work. Section 3 gives some prelimi-
naries of the work. Section 4 presents the two-tier data stor-
age strategy and develops the query processing and node re-
freshment techniques for various types of queries. We eval-
uate the performance of our proposed techniques in Section
5. Finally, Section 6 concludes this paper.

2 Related Work

Distributed data storage for wireless sensor networks has
been investigated in the literature [3, 10, 15, 21]. In the
TinyDB project, Madden et al. [10] proposed a pull-based
acquisitional query processing (ACQP) model, where the
sensors control where, when, and how often the data is ac-
quired and delivered to query processing operators. The
Cougar project [3] employed a hybrid pull-push model:
sensed data is pushed to some selected view nodes, from
which the data is pulled by queries. Ratnasamy et al. [15]
proposed a data-centric storage model: each sensor read-
ing is pushed to the sensor node nearest to some geograph-
ical location hashed from a predefined key. Only equality
queries are supported by data-centric storage.

In-network query processing techniques have been stud-
ied for various data storage models [5, 7, 22]. These studies
examined exact queries only. Query evaluation techniques
over imprecise data have been investigated by Lazaridis
and Mehrotra [8], which quantified data quality with set-

based uncertainty and value-based uncertainty. They then
proposed a cost efficient processing technique for quality-
aware relational queries. However, how to collect imprecise
data was not discussed in [8]. Deshpande et al. [2] have
most recently developed a model-driven data acquisition ar-
chitecture that employs statistical modeling techniques to
efficiently answer one-shot queries with high confidence.

In-network data aggregation, where data values are ag-
gregated as forwarded by the network, has been receiving
increasing attention recently [1, 9]. Continuous precision-
constrained aggregate queries were studied in [4, 16]. The
key issue is how to allocate the error budget to the sensor
nodes involved in the aggregation tree. Sharaf et al. [16]
implemented a uniform error allocation scheme. Deligian-
nakis et al. [4] improved it by developing an adaptive al-
gorithm to allocate more error tolerances to the nodes that
can reduce more network traffic. Neither of these stud-
ies considered balancing the energy consumption of sensor
nodes to extend network lifetime. In a recent work [18], we
proposed an error allocation algorithm to optimize network
lifetime. However, these techniques developed for contin-
uous queries are not applicable to one-shot queries. To the
best of our knowledge, this is the first effort to investigate
one-shot approximate queries for wireless sensor networks.

Other inspiring work includes querying approximate
data over distributed caches and streams. Olston et al. [13]
studied error-bounded aggregate queries over distributed
data streams. An adaptive scheme for precision adjustment
at each individual source was proposed to reduce the com-
munication cost. Inspired from [14], Han et al. [6] devel-
oped an adaptive precision setting algorithm for precision-
constrained data collection in a single-hop sensor network.
However, their work was confined to collection of indi-
vidual sensor readings. In contrast, this paper presents a
generic two-tier data storage strategy in support of various
types of queries in multi-hop sensor networks.

3 Preliminaries

We assume the wireless sensor network is composed of
a base station and many sensor nodes. Each sensor node
measures the local physical phenomena (e.g., temperature,
humidity, and light) at a fixed sampling rate and reports to
the base station if necessary. The base station and sensor
nodes are equipped with wireless interfaces to communicate
with each other. Since the wireless transmission range is
limited, a routing infrastructure (such as TAG tree [9]) is
established to transmit data between the base station and
the sensor nodes in the network.

The base station serves as an interface for external users
to pose queries to the sensor network. Users are inter-
ested in various types of precision-constrained approximate
queries, e.g. (their definitions will be detailed in Section 4):

2

Q1 Find the temperature reading (within ±1◦C)
of Sensor Node 1. (ID-based Query)

Q2 Find the sensors whose temperature readings
are above 100◦C (within an error of 5◦C).
(Range Query)

Q3 Find the k sensors (within an error of 1◦C)
with the highest temperature readings. (Top-
k Query)

Q4 Find the average temperature reading (within
an error of 1◦C) of the sensors. (Aggregate
Query)

To answer these queries, two basic data storage strategies
exist:
• Centralized Storage (CS): Each sensor node reports

to the base station whenever a new reading is sampled.
Note that the report of sensor readings cannot make
use of the in-network aggregation technique. When the
base station receives a query, the result can be imme-
diately computed based on the stored up-to-date read-
ings.

• Local Storage (LS): The sensed data is stored on the
local node only. When the base station receives a
query, the query is sent to the node involved (for ID-
based queries) or flooded throughout the whole net-
work (for range, top-k, and aggregate queries). The
query result is then collected by the base station via
the routing infrastructure. For top-k and aggregate
queries, the result collection can take advantage of in-
network aggregation to save energy costs.

Both of these two strategies have some performance dis-
advantages. The CS strategy suffers from a high updating
cost while the LS strategy incurs a high querying traffic.
Furthermore, they do not take advantage of the error al-
lowed in the query answer to improve system performance.
In the next section, we propose a more efficient data storage
strategy.

4 Two-Tier Data Storage

4.1 Overview

Taking advantage of users’ error tolerances, we propose
a generic two-tier data storage strategy to support process-
ing of various types of approximate queries (including ID-
based, range, top-k, and aggregate queries). The base sta-
tion serves as the first tier (referred to as centric storage)
that stores imprecise sensor data, while each sensor node
serves as the second tier (referred to as local storage) that
stores exact up-to-date data. Consider a sensor node i. The
imprecision of the data stored at the base station is bounded
by a certain error represented by an approximation range,

i.e., a stored value vi with an approximation range of ei

means that the actual value must lie in the approximate in-
terval [li, hi], where li = vi − ei

2 and hi = vi + ei

2 . At each
sampling instance, if the newly sensed value v′

i is within a
difference of ei

2 from the previously reported value vi, the
new value vi is kept at the sensor node locally, otherwise an
update message is sent to the base station to replace vi by v′

i

in the centric storage (this is called source-initiated update).
In this way, a lot of updating traffic can be saved. How-
ever, if the precision of stored data is insufficient to answer
a query issued to the base station, we will have to refresh
the data from the local storage (this is called query-initiated
refreshment), which incurs communication overhead.

The general query processing under the two-tier storage
takes three steps. First, the base station computes a tenta-
tive result based on stored imprecise data. Second, if the
tentative result is not sufficiently precise, the base station
refreshes the readings from a (selected) subset of the sen-
sor nodes. After refreshment, the approximation ranges of
those refreshed nodes are shrunk to zero. Note that the re-
freshed values remain up-to-date till the next sampling in-
stance, after which the approximation range of node i re-
turns to ei. Finally, the base station re-evaluates the query
based on refreshed data. In the following, we detail the
query processing techniques for different types of queries.

4.2 ID-based Query

An approximate ID-based query is interested in the read-
ing of a particular sensor node (e.g., Node 1), with a preci-
sion constraint of R. It is acceptable as long as the returned
value is within a deviation of R of the true reading.

Recall that the sensor reading kept at the base station
is in the form of [li, hi]. If R ≥ hi − li, meaning the
stored data has a higher precision than the expected, it is
immediately returned to the user. Otherwise, the stored data
does not meet the precision requirement, we have to send a
refresh message to the desired sensor node to probe its latest
reading. By doing so, we shrink the approximation range to
zero (till the next sampling instance), thereby satisfying the
precision requirement of the query.

4.3 Range Query

In this type of queries, we are interested in the sensor
nodes whose readings are within a specified range [L, H].
With a precision constraint of R, we are required to find out
all sensor nodes whose readings are in [L + R, H −R] and
to exclude those whose readings are not in [L−R, H +R].
The nodes whose readings are within [L − R, L + R] or
[H − R, H + R] may or may not be returned.

By examining the approximate value [li, hi] of each
node i, we divide the sensor nodes into three groups T+,

3

T−, T ?, which respectively represent the nodes who can be
returned, the nodes who are not returned, and the rest. A
node i is categorized in T+ if li > L−R and hi < H + R.
It is categorized in T− if hi < L + R or li > H − R. If
none of these conditions is satisfied, the node is categorized
in T ?. The nodes in T ? must be refreshed because we are
not sure whether they should be included in the query result.

Take Q2 as an example, in which the query asks for the
nodes whose readings are greater than 100◦C with a preci-
sion constraint of 5◦C. Thus, as illustrated in Figure 2, for
the nodes that hold li > 95, we throw them into T+, and for
the nodes who hold hi < 105, we throw them into T−. We
will refresh all the other nodes and combine the qualified
nodes with T+ as the final result.

10095 105

: need to refresh10793

: not returned10491

96 110 : returned

Figure 2. Processing Range Query

4.4 Top-k Query

In a top-k query, the user wants to get the k nodes with
the highest (or lowest) readings. Recall that the reading of
node i is approximated with an interval of [li, hi]. Given a
precision constraint of R, an approximate top-k query re-
trieves the (ordered) set of sensor nodes T with the highest
readings:

T =< n1, n2, · · · , nk >,

where ∀i > j, hni
≤ lnj

+ R and ∀l �= ni(i =
1, 2, · · · , k), hl ≤ min{ln1 , ln2 , · · · , lnk

} + R. Intuitively,
if two sensor readings are within a difference of R, their
order can be arbitrary.

The evaluation of an approximate top-k query is much
different from that of the previous two types of queries.
Given an ID-based query or range query, the set of to-
refresh nodes is uniquely determined. However, for a top-k
query, whether a node needs to refresh depends on the rela-
tive order of its reading against the other sensor nodes. We
divide the refreshing process into two steps: selecting to-
refresh nodes and processing refreshment.

When the base station receives a top-k query with a pre-
cision constraint of R, it sorts the sensor nodes based on
their current approximate readings. Without loss of gener-
ality, the nodes are sorted by the upper bounds of their ap-
proximate intervals. Suppose n1, n2, · · · , nk is the tentative
top-k list. We will return this list immediately if no node in
the list has an overlap with any other node by greater than R

in the approximate interval. Otherwise, we need to refresh
some nodes to resolve the top-k order. To do so, we define
refreshing candidates (RCi) with respect to each node i in
the tentative top-k list as follows:

RCi =
{

∅ if ∀j, hj − li ≤ R,
{i} ∪ {j | hj − li > R} otherwise.

Note that the refreshing candidate sets with respect to
different nodes may overlap. Figure 3 shows an example
top-2 query among 4 nodes (with approximate intervals of
[5, 8], [3, 7], [2, 6], and [1, 5], respectively). Assume the pre-
cision constraint R = 1. The RCi sets for nodes 1 and 2
are {1, 2} and {2, 3, 4}, respectively.

1 :

3 :

4 :

5 8

3 7

2 6

1 5

h − l =2 1 2 > R

4 2h − l =2 > R

3 2h − l =3 > R

1

22 :

{

{RC = 2, 3, 4 }

RC = 1 , 2 }

Figure 3. Finding out RCi in Top-k Query

A straightforward refreshment strategy is to refresh all
nodes in RC =

⋃k
i=1 RCi. We call it full refresh-

ment. However, this might not be necessary because the
refreshments of some nodes may eliminate the need to re-
fresh other nodes. Consider the early example. RC =
{1, 2, 3, 4}. Suppose we choose to refresh node 2 first, and
assume that the current reading of node 2 is 5.5. After re-
freshment, the approximation interval [3, 7] of node 2 is re-
placed by its exact reading of 5.5. Hence, RC1 and RC2 are
updated with empty sets. Thus, we can assert that the top-2
list is 〈1, 2〉 without refreshing nodes 1, 3, and 4 anymore.

This fact suggests that we can refresh in rounds. In each
round, we choose a subset of RC to refresh. When we get
the refreshed reading(s), we update the RCi set for each
node i in the tentative top-k list. This process is repeated un-
til all the RCi sets become empty. We propose two round-
based refreshment strategies:

• Batch: Starting from the top-1 node, the RCi set of
one top-k node is refreshed in each round.

• Sequential: One node is refreshed per round. In each
round, the node that appears in most RCi sets is se-
lected to refresh. Refreshing such a node is expected
to quickly resolve the order confusion.

4.5 Aggregate Query

There are five types of standard aggregate queries: SUM,
MAX, MIN, COUNT, AVG. MAX and MIN queries can be
viewed as top-1 queries. While COUNT can be processed in

4

a way similar to SUM, AVG and SUM queries differ by only
a constant which is the number of sensor nodes. Therefore,
we shall focus our discussion on SUM queries here.

If the reading of each sensor node i maintained at the
base station has an approximation range ei, the SUM ag-
gregation can be computed with an approximation range
E =

∑n
i=1 ei, where n is the number of sensor nodes in

the network.
If the query precision constraint R is greater than E, the

result is returned by the base station without refreshing the
reading of any sensor node. Otherwise, if R is smaller than
E, some sensor readings have to be refreshed to refine the
query result. Let T be the to-refresh node set. Since re-
freshing the reading of a sensor node reduces its approxi-
mation range to zero, to meet the precision requirement of
the query, T must satisfy

∑
i∈T

ei ≥ E − R. (1)

The refreshment can make use of in-network aggrega-
tion to improve energy efficiency. Specifically, on receiv-
ing up-to-date readings from more than one children, an in-
termediate node aggregates the readings before forwarding
them upstream. For SUM aggregation, the partial aggre-
gate result is simply the sum of the readings received. In-
network aggregation cuts down the volume of data sent over
the upper-level links in the routing tree.

We define the subtree rooted at each child of the base sta-
tion as a region. Since these children relay packets between
the base station and the other nodes in their respective re-
gions, they consume much more energy than the others. We
therefore call these nodes the hot-spot nodes. In order to
prolong the network lifetime, we should conserve the en-
ergy at these hot-spot nodes. This implies the following
design philosophy of refreshing:

• We should distribute the to-refresh nodes in as few re-
gions as possible. This is because due to in-network
aggregation, the volume of data sent by a hot-spot node
to the base station is independent of the number of sen-
sor nodes refreshed in the corresponding region. To
save the energy consumption at hot-spot nodes, it is
desirable to reduce the number of regions involved in
the refreshment.

• When selecting regions for refreshment, we favor
those with more residual energy.

• When the number of to-refresh sensor nodes is smaller
than that in one region, we should choose the nodes
that lie closer to the base station. This helps reduce the
number of sensor nodes involved in relaying the up-to-
date readings and thus the network-wide total energy
consumption.

We propose to construct the to-refresh node set as fol-
lows. Starting from an empty to-refresh node set, we con-
tinue to insert nodes into the set until the total approxima-
tion range of the nodes in the set adds up to E − R. In this
process, the regions are sequentially examined. For each
region, all nodes in the region are inserted to the to-refresh
node set if the insertion does not make the total approxima-
tion range greater than E − R. Otherwise, only a subset
of the nodes in the region are inserted to increase the total
approximation range of the to-refresh node set to E − R.
The subset of nodes are selected in increasing order of their
distances to the base station. We propose two examination
orders of the regions:

• Max-Size: Our first strategy favors large regions to
minimize the number of regions involved in the re-
freshment, i.e., the regions are examined in decreasing
order of their sizes.

• Max-Energy: The second strategy favors the regions
with more residual energy to balance the energy con-
sumption among regions. That is, we examine the re-
gions in descending order of the residual energy levels
of their hot-spot nodes. Note that since the hot-spot
nodes are located near the base station, it is practically
easy to maintain the residual energy levels of these
nodes (e.g., by piggybacking the energy information
on the refresh messages).

5 Performance Evaluation

5.1 Simulation Setup

We have developed a simulator based on ns-2 (version
2.26) [11] and NRL’s sensor network extension [12] to eval-
uate the proposed two-tier storage strategy. The simulator
includes the detailed models of the MAC and physical lay-
ers for wireless sensor networks. The sensor nodes can op-
erate in one of three modes: sending message, receiving
message, and sleeping. These modes differ in energy con-
sumption. The energy consumption for sending a message
is determined by a cost function: s · (α + β · dq), where s
is the message size, α is a distance-independent term, β is
the coefficient for a distance-dependent term, q is the com-
ponent for the distance-dependent term, and d is the dis-
tance of message transmission. We set α=50 nJ/b, β=100
pJ/b/m2, and q=2 in the simulation [18]. The energy con-
sumption for receiving a message is given by s · γ, where γ
is set at 50 nJ/b. The power consumption in sleeping mode
is set at 0.016 mW. For simplicity, the energy overhead of
mode switching is ignored. We set the size of a data update
message at 8 bytes, and the size of a refresh message at 4
bytes. The initial energy budget at each sensor node was set
at 0.1 Joule.

5

base station

sensor node

10 m

Figure 4. Network Layout

We simulated a multi-hop network of 120 sensor nodes
(see Figure 4 for the layout). The sensor readings were sim-
ulated using real traces provided by the Live from Earth
and Mars (LEM) project [24] of University of Washing-
ton. We used the temperature and humidity traces logged
by the station at the University of Washington from Aug.
2004 to Aug. 2005 in our experiments. Each trance con-
sists of more than 500,000 readings captured at a sampling
interval of one minute. We extracted many different sub-
traces starting at randomly selected timepoints. Each sub-
trace contained 20,000 readings. The subtraces were used
to simulate the physical phenomena in the immediate sur-
roundings of different sensor nodes. In the simulation, the
interval between two successive readings was assumed to
be one time unit. The following two metrics are used in the
performance comparison:
• Network Lifetime: As in the previous work [20, 23],

the network lifetime is defined as the time duration be-
fore the first sensor node runs out of power. It serves
as the primary metric in the performance evaluation.

• Average Energy Consumption: It is defined as the
average amount of energy consumed by a sensor node.

In what follows, we first evaluate the query process-
ing heuristics developed for top-k queries and aggregate
queries. We then compare the performance of the proposed
two-tier storage strategy against the basic centralized stor-
age and local storage schemes with mixed types of queries.

5.2 Refreshment Strategies for Top-k Queries

In this section, we evaluate the performance of the three
node refreshment strategies (proposed in Section 4.4) for
top-k queries. We set k at 5 and the query precision con-
straint of each query at a value randomly selected from an
interval of [0,1]. The temperature trace was used in this set
of experiments. Figure 5 plots the network lifetime under
different approximation range settings. When the approxi-
mation range is smaller than 0.5 (i.e., the stored data at the
base station is relatively precise), the refreshment strategies

have a similar performance since refreshments are rarely
needed. With increasing the approximation range, the three
strategies achieve different network lifetimes. The batch
and sequential strategies are much better than (sometimes
double the lifetime of) the full refreshment. By maximizing
the utility of each refreshment, the sequential refreshment
shows the best performance in all cases tested. It is also
interesting to observe that the performance curve of each
strategy forms a ‘∩’ shape. The network lifetime short-
ens when the approximation range is set too small (due to a
large amount of source-initiated updates) or too large (due
to a large amount of query-initiated refreshments). This
suggests there exists an optimal setting of approximation
range. We leave the study of optimization of the approxi-
mation range as an important future work.

1000

1500

2000

2500

3000

3500

4000

4500

0 0.5 1 1.5 2

N
et

w
or

k
L

if
et

im
e

(T
im

e
U

ni
ts

)

Approximation Range

Batch
Sequential

Full

Figure 5. Performance for Top-k Queries

5.3 Node Selection for Aggregate Queries

0

2000

4000

6000

8000

10000

12000

0 0.5 1 1.5 2

N
et

w
or

k
L

if
et

im
e

(T
im

e
U

ni
ts

)

Approximation Range

Max-Size
Max-Energy

Random

Figure 6. Performance for Aggregate Queries

In this section, we evaluate the schemes for selection of
to-refresh nodes in processing aggregate queries. In addi-
tion to the Max-Size and Max-Energy schemes proposed
in Section 4.5, we also include a Random selection scheme
for comparison. The Random scheme randomly selects the
to-refresh nodes, which serves as a baseline scheme. We
tested AVG aggregate queries using the temperature trace
with precision constraints uniformly distributed in the range
of [0, 1]. Figure 6 shows the result under different ap-
proximation range settings. As observed in the last subsec-

6

tion, when the approximation range is small, all the three
schemes show a similar performance. Their performance
differences are obvious with an approximation range larger
than 0.75. Clearly, the Max-Energy scheme beats the other
two schemes by more than 25%. Max-Energy performs bet-
ter than Max-Size, which implies that it is more important to
balance the energy consumption of each region rather than
the overall network traffic.

5.4 Performance Evaluation of Two-Tier Storage

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.5 1 2 3 4

N
et

w
or

k
L

if
et

im
e

(T
im

e
U

ni
ts

)

Approximation Range

CS
LS

TS-N
TS-O

(a) Temperature

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.5 1 2 3 4

N
et

w
or

k
L

if
et

im
e

(T
im

e
U

ni
ts

)

Approximation Range

CS
LS

TS-N
TS-O

(b) Humidity

Figure 7. Lifetime vs Approximation Range

In this section, we evaluate our proposed two-tier storage
(TS) against the basic centralized storage (CS) and local
storage (LS) strategies under a mixed-type query environ-
ment. We simulated four types of queries, i.e., ID-based,
range, top-10, and AVG queries. We set the query rate at
one per time unit by default. At each querying instance, a
query type is randomly selected among the four types and
a precision constraint is set to a random value in the range
of [0, 1]. We evaluate two versions of TS strategy: TS-O in
which the best node selection and refreshment schemes for
top-k and AVG queries (i.e., Sequential and Max-Energy)
are used, and TS-N in which the basic node selection and
refreshment schemes (i.e., Full and Random) are used. As
shown in Figures 7a and 7b, both TS-O and TS-N substan-
tially outperform CS and LS. In particular, TS-O improves

the lifetime against CS by an order of magnitude and against
LS by several times. For a similar reason explained in Sec-
tion 5.2, the network life increases first and drops next as
the approximation range increases.

Figure 8 shows the average energy consumption for each
of the storage strategies under comparison. It is interesting
to observe that the improvement of TS-O over CS, LS, TS-
N in terms of energy consumption is not as high as that
in terms of network lifetime. This suggests that the node
selection and refreshment schemes in TS-O are particularly
optimized for the metric of network lifetime.

0

0.5

1

1.5

2

2.5

3

0.5 1 2 3 4
A

ve
ra

ge
 E

ne
rg

y
C

on
su

m
pt

io
n

(u
J)

Approximation Range

CS
LS

TS-N
TS-O

Figure 8. Energy vs Approximation Range
(Temperature)

We also evaluate the proposed two-tier storage with dif-
ferent query patterns. Figure 9 shows the result by vary-
ing the query rate. The approximation range was set at 1.
Again, TS-O and TS-N perform much better than CS and
LS. As expected, all the storage strategies except CS dete-
riorate with increasing query rate. When the query rate is
increased from 0.25 to 2, compared to LS, the performance
downgrade of TS-O and TS-N is a bit smaller (i.e., 56%
and 58% vs 66%). Figure 10 plots the result with different
settings of query precision constraints. While CS and LS re-
main constant in performance as the precision constraint is
relaxed, TS-O and TS-N can take advantage of the relaxed
precision requirement to further improve network lifetime
significantly.

6 Conclusion

This paper has presented a two-tier data storage strategy
in support of precision-constrained approximate queries in
wireless sensor networks. By storing high-precision data
at the sensor nodes while maintaining low-precision dupli-
cates at the base station, the proposed strategy attempts to
balance the energy consumption between data updating and
querying. We have developed the query processing and
node refreshment strategies for various types of approxi-
mate queries under the two-tier storage. Extensive exper-
iments have been conducted to evaluate the performance of

7

0

2000

4000

6000

8000

10000

0.25 0.67 1 2

N
et

w
or

k
L

if
et

im
e

(T
im

e
U

ni
ts

)

Query Rate (per Time Unit)

CS
LS

TS-N
TS-O

Figure 9. Lifetime vs Query Rate (Tempera-
ture)

0

2000

4000

6000

8000

10000

0.5 1 1.5 2

N
et

w
or

k
L

if
et

im
e

(T
im

e
U

ni
ts

)

Average Query Precision Constraint

CS
LS

TS-N
TS-O

Figure 10. Lifetime vs Precision Constraint
(Temperature)

the proposed two-tier storage strategy using real trace data.
The results show that the two-tier storage strategy soundly
outperforms the basic centralized storage and local storage
schemes.

As for future work, we are going to investigate the opti-
mal setting of approximation range for the two-tier storage.
This paper did not consider the query predicates; we plan
to extend the work to the queries with predicates. We also
plan to build a small-scale testbed using Motes to measure
the performance of different storage strategies.

References

[1] J. Considine, F. Li, G. Kollios, and J. Byers. Approximate
aggregation techniques for sensor databases. In IEEE ICDE,
March 2004.

[2] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein,
and W. Hong. Model-driven data acquisition in sensor net-
works. In VLDB, August 2004.

[3] A. Demers, J. Gehrke, R. Rajaraman, J. Trigoni, and Y. Yao.
The Cougar project: A work-in-progress report. In SIGMOD
Record, 32(4): 53-59, Dec. 2003.

[4] A. Deligiannakis, Y. Kotidis, and N. Roussopoulos. Hierar-
chical in-network data aggregation with quality guarantees.
In EDBT, March 2004.

[5] J. Gehrke and S. R. Madden. Query processing in sensor
networks. IEEE Pervasive Computing, 2004.

[6] Q. Han, S. Mehrotra, and N. Venkatasubramanian. Energy
efficient data collection in distributed sensor environments.
In IEEE ICDCS, March 2004.

[7] X. Li, Y. J. Kim, R. Govindan, and W. Hong. Multi-
dimensional range queries in sensor networks. In ACM Sen-
Sys, Nov. 2003.

[8] I. Lazaridis and S. Mehrotra. Approximate selection queries
over imprecise data. In IEEE ICDE, March 2004.

[9] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong. TAG: A tiny aggregation service for ad-hoc sensor
networks. In USENIX OSDI, Dec. 2002.

[10] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W.
Hong. The design of an acquisitional query processor for
sensor networks. In ACM SIGMOD, June 2003.

[11] The network simulator - ns-2. http://www.isi.edu/nsnam/ns/.
[12] NRL’s sensor network extension to ns-2.

http://nrlsensorsim.pf.itd.nrl.navy.mil/.
[13] C. Olston, J. Jiang, and J. Widom. Adaptive filters for con-

tinuous queries over distributed data streams. In ACM SIG-
MOD, June 2003.

[14] C. Olston, B. T. Loo, and J. Widom. Adaptive precision
setting for cached approximate values. In ACM SIGMOD,
May 2001.

[15] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan,
L. Yin, and F. Yu. Data-centric storage in sensornets with
GHT, a geographic hash table. ACM/Kluwer MONET, 8(4),
2003.

[16] M.A. Sharaf, J. Beaver, A. Labrinidis, and P.K. Chrysanthis.
TiNA: A scheme for temporal coherency-aware in-network
aggregation. In ACM MobiDE, Sept. 2003.

[17] R. Szewczyk, et al. Habitat monitoring with sensor net-
works. Communications of ACM, June 2004.

[18] X. Tang and J. Xu. Extending network lifetime for precision-
constrained data aggregation in wireless sensor networks. In
IEEE INFOCOM, April 2006.

[19] World Wildlife Fund - Hong Kong.
http://www.wwf.org.hk/eng/conservation/spe cons/.

[20] M. Wu, J. Xu, X. Tang, and W.-C. Lee. Monitoring top-
k query in wireless sensor networks. In IEEE ICDE, April
2006. (Poster)

[21] J. Xu, and X. Tang, and W.-C. Lee. EASE: Energy-
conserving Approximate StoragE for querying object track-
ing sensor networks. In IEEE SECON, Sept. 2005.

[22] Y. Xu, W.-C. Lee, J. Xu, and G. Mitchel. Processing window
queries in wireless sensor networks. Proc. In IEEE ICDE,
April 2006.

[23] O. Younis and S. Fahmy. Distributed clustering for ad-hoc
sensor networks: A hybrid, energy-efficient approach. In
Proc. IEEE INFOCOM, March 2004.

[24] Live from Earth and Mars (LEM) Project. http://www-
k12.atmos.washington.edu/k12/grayskies/.

8

