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ABSTRACT
Wireless data broadcast has received a lot of attention from
industries and academia in recent years. Access efficiency
and energy conservation are two critical performance con-
cerns in a wireless data broadcast environment. To improve
the efficiency of energy consumption on mobile devices, tra-
ditional disk-based indexing techniques such as B+-tree have
been extended to index broadcast data on a wireless chan-
nel. However, existing designs are mostly based on central-
ized tree structures. Most of these indexing techniques are
not flexible in the sense that the trade-off between access ef-
ficiency and energy conservation is not adjustable based on
application specific requirements. We propose in this paper
a novel parameterized index, called the exponential index,
which can be tuned to optimize the access latency with the
tuning time bounded by a given limit, and vice versa. The
proposed index is very efficient because it facilitates repli-
cation naturally by sharing links in multiple search trees
and thus minimizes storage overhead. Experimental results
show that the exponential index not only achieves better
performance than the state-of-the-art indexes but also en-
ables great flexibility in trade-offs between access latency
and tuning time.

Categories and Subject Descriptors
H.3.1 [Information Systems]: Information Storage and
Retrieval—content analysis and indexing ; C.2.0 [Computer
Systems Organization]: Computer-Communication Net-
works—general

General Terms
Algorithms, Performance
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1. INTRODUCTION
Owing to the widespread deployment of wireless networks

and fast-improving capabilities of mobile devices, there has
been an increasing interest in wireless data services among
both industrial and academic communities in recent years.
There are two fundamental information delivery approaches
for wireless data services: point-to-point access and periodic
broadcast [6]. Point-to-point access employs a basic client-
server model, where the server is responsible for processing
a query and returning the result to the user via a dedicated
point-to-point channel. Periodic broadcast, on the other
hand, has the server actively pushing data to the users. The
server determines the data and its schedule for broadcast.
A user listens to a broadcast channel to retrieve data based
on his queries and, thus, is responsible for query processing.

Point-to-point access is particularly suitable for light-
loaded systems when contention for wireless channels and
server processing is not severe. However, as the number of
users increases, the system performance deteriorates rapidly.
Compared with point-to-point access, broadcast is a very at-
tractive alternative [1, 10]. It allows simultaneous access by
an arbitrary number of mobile clients and thus allows effi-
cient usage of the scarce wireless bandwidth. Moreover, in
some wireless environments (e.g., satellite-based systems),
communication capacities are asymmetric. The downlink
communication capacity is much greater than the uplink
communication capacity. With periodic broadcast, users
need not submit queries to the server, which alleviates the
burden on the limited uplink.

Wireless data broadcast services have been available as
commercial products for many years (e.g., StarBand [18] and
Hughes Network [19]). In particular, the recent announce-
ment of the smart personal objects technology (SPOT) by
Microsoft [15] further highlights the industrial interest in
and feasibility of utilizing broadcast for wireless data ser-
vices. With a continuous broadcast network (called Di-
rectBand Network) using FM radio subcarrier frequencies,
SPOT-based devices (e.g., PDAs and watches) can continu-
ously receive timely information such as stock quotes, airline
schedules, local news, weather, and traffic information. In
this paper, we focus on wireless data broadcast.

Access efficiency and energy conservation are two critical
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issues for the users in a wireless data broadcast system. Ac-
cess efficiency concerns how fast a request is satisfied, while
energy conservation concerns how to reduce a mobile client’s
energy consumption when it accesses the data of interest. In
the literature, two performance metrics, namely access la-
tency and tuning time, are used to measure access efficiency
and energy conservation, respectively [7, 9, 10]:

• Access latency: The time elapsed between the moment
when a query is issued and the moment when it is
responded.

• Tuning time: The amount of time a mobile client stays
active to receive the requested data.

While access efficiency is a constantly tackled issue in
most system and database research, energy conservation is
very critical due to the limited battery capacity on mobile
clients [16, 21]. Moreover, only a modest improvement in
battery capacity of 20-30% is expected over the next few
years. To facilitate energy conservation, a mobile device typ-
ically supports two operation modes: active mode and doze
mode. The device normally operates in the active mode; it
can switch to the doze mode to save energy when the sys-
tem becomes idle. For example, a typical wireless PC card,
ORiNOCO, consumes 60 mW during the doze mode and
805-1,400 mW during the active mode [21].

To retrieve a data item in wireless data broadcast, a mo-
bile client has to continuously monitor the broadcast until
the data arrives. This will consume a lot of energy since
the client has to remain active during its waiting time. A
solution to this problem is air indexing. The basic idea is
to include some index information about the arrival times
of data items on the broadcast channel. By accessing the
index, mobile clients are able to predict the arrivals of their
desired data. Thus, they can stay in the doze mode during
waiting time and tune into the broadcast channel only when
data items of interest arrive. Several traditional disk-based
indexing techniques such as B+-tree have been extended for
air indexing [3, 10, 17]. However, existing designs are mostly
based on centralized tree structures. To start a search, a
client needs to wait until it reaches the root of the next
broadcast search tree. To reduce this waiting latency, mul-
tiple replicated indexes are usually interleaved with data
broadcast. The drawback of this solution is that broadcast
cycles are lengthened due to the additional indexing infor-
mation. As such, there is a trade-off between access latency
and tuning time.

Different application scenarios may require different per-
formance trade-offs: some may favor a short latency at the
cost of energy consumption; others may prefer to conserve
energy by tolerating a long latency. As such, we need a
tunable air indexing scheme to accommodate different re-
quirements. A good air indexing scheme should be able to
facilitate latency bounded tuning and tuning-time bounded
tuning. In general, a shorter tuning time is expected when
a longer latency can be tolerated, and vice versa. However,
most of the existing indexing techniques are not flexible in
the sense that the trade-off between tuning time and ac-
cess latency is not adjustable based on application specific
requirements.

In this paper, we propose a novel parameterized index,
called the exponential index, which can be easily adjusted
to optimize the access latency (or tuning time) with the

tuning time (or access latency) bounded by a given limit.
The proposed exponential index is very efficient because it
naturally facilitates the index replication by sharing links
in different search trees and thus minimizes storage over-
head. Moreover, it has a linear yet distributed structure
and, hence, allows searching to start at any index segment.
This suits the sequential-access broadcast environment very
well.

A performance analysis of the exponential index in terms
of the access latency and tuning time is provided. A wide
range of experiments are also conducted to compare the
exponential index with two state-of-the-art air indexing
schemes, i.e., the distributed tree [10] and the flexible in-
dex [9]. Experimental results show that the proposed expo-
nential index not only achieves better performance than the
existing indexing schemes but also enables great flexibility
in trade-offs between access latency and tuning time.

The rest of this paper is organized as follows. Section 2
gives the background for indexing data on broadcast chan-
nels and reviews the related work. In Section 3, we introduce
the proposed exponential index and explain how to tune
different trade-offs between tuning time and access latency.
We compare the proposed index with the existing indexes in
Section 4. Section 5 discusses a number of practical issues
of applying the proposed index to a real broadcast system.
Finally, the paper is concluded in Section 6.

2. BACKGROUND

2.1 Preliminaries
Consider a data dissemination system that periodically

broadcasts a collection of data items (e.g., stock quotes) to
mobile clients through a wireless broadcast channel. Each
data item is a tuple of attribute values and can be identified
by a key value. Similar to [10], the smallest access unit
of a broadcast is referred to as a bucket, which physically
consists of a fixed number of packets – the basic unit of
message transfer in networks. We distinguish between index
buckets that hold the index and possibly some data if space
permits, and data buckets which hold the data (one or more
items) only. A sequence of multiplexed index buckets and
data buckets constitute a bcast, in which each data item
appears at least once (see Figure 1). The bcast is repeatedly
broadcast on the wireless channel.

Bcasts can be classified as flat broadcast, where each item
appears exactly once, and skewed broadcast, where some
items may appear more than once. While skewed broad-
cast is useful for reducing the average access latency for
non-uniform data access, its effectiveness depends heavily
on the accuracy of the estimates of user access patterns [1].
In contrast, flat broadcast is simple. Moreover, even though
the original user access pattern may show non-uniformity,
flat broadcast is justified in the following two scenarios: 1)
the non-uniform pattern is flattened out if the client em-
ploys a local cache and the data are not updated [13]; 2) flat
broadcast offers very good performance for queries request-
ing multiple items [14].

To facilitate a search for data items via an air index, each
data bucket includes an offset1 to the beginning of the next
index bucket. Taking Figure 1 as an example, the general ac-

1Offset denotes the relative distance of the index bucket
from this bucket.
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Figure 1: Data Organization on Wireless Broadcast
Channels

cess protocol for retrieving data involves the following steps:

• Initial probe: The client tunes into the broadcast chan-
nel at bucket b and determines when the next index
bucket is broadcast.

• Index search: The client tunes into the broadcast chan-
nel again at index bucket 3 and selectively accesses a
number of index buckets (i.e., index buckets 3, 5, and
6) to find out when to get the desired data held in
bucket p.

• Data retrieval: When bucket p arrives, the client down-
loads it and retrieves the desired data.

There are two basic data organizations with respect to
an attribute within a bcast: clustered broadcast and non-
clustered broadcast. A sequence of data items are clustered
if all the data items with the same value of the attribute ap-
pear consecutively; otherwise, they are non-clustered. Clus-
tered broadcast corresponds to flat broadcast with respect
to the primary attribute, whereas non-clustered broadcast
corresponds to flat broadcast with respect to secondary at-
tributes or skewed broadcast [10]. Without loss of gener-
ality, data items in clustered broadcast can be arranged in
ascending order of the attribute values. For non-clustered
broadcast, a bcast can be partitioned into a number of seg-
ments called meta-segments, each of which holds a sequence
of items with non-descending (or non-ascending) values of
the attribute [10]. Thus, when we look at each individual
meta-segment, the data items are clustered on that attribute
and the indexing techniques developed for clustered broad-
cast can still be applied to a meta-segment. Therefore, we
mainly focus on clustered broadcast when we describe the
proposed index in Section 3 and extend the technique to
non-clustered broadcast in Section 5.1.

2.2 Related Work
Several disk-based indexing techniques have been ex-

tended for air indexing. Imielinski et al. applied the B+

index tree, where the leaf nodes store the arrival times of the
data items [10]. The distributed indexing method was pro-
posed to efficiently replicate and distribute the index tree
in a bcast. Specifically, the index tree is divided into a
replicated part (the upper levels of the tree) and a non-
replicated part (the lower levels). The index tree is broad-
cast every 1

d
of a bcast. Each broadcast consists of the

replicated part and the non-replicated part that indexes the
data items immediately following it. As such, each node in
the non-replicated part appears only once in a bcast and,

hence, reduces the replication cost and access latency while
achieving a good tuning time.

Chen et al. and Shivakumar et al. considered unbal-
anced tree structures to optimize energy consumption for
non-uniform data access [3, 17]. These structures mini-
mize the average index search cost by reducing the num-
ber of index searches for hot data at the expense of spend-
ing more on cold data. Tan and Yu discussed data and
index organization under skewed broadcast [20]. Hashing
and signature methods have also been suggested for wireless
broadcast that supports equality queries [9, 12]. Hu et al.
showed that the signature method is particularly attractive
for multi-attribute indexing [7, 8]. However, none of these
techniques is flexible in adjusting access latency and tuning
time. Moreover, as they are extended from disk-based envi-
ronments, which enable random access, they are not natural
for broadcast environments, where only sequential access is
allowed and, hence, tedious adaptation is needed.

A flexible indexing method was proposed in [9]. The flexi-
ble index first sorts the data items in ascending (or descend-
ing) order of the search key values and then divides them
into p segments. The first bucket in each data segment con-
tains a control index, which is a binary index mapping a
given key value to the segment containing that key, and a
local index, which is an m-entry index mapping a given key
value to the buckets within the current segment. By tuning
the parameters of p and m, mobile clients can achieve ei-
ther a good tuning time or a good access latency. However,
[9] does not make it clear how flexibility can be measured.
As we shall see in Section 4, the flexibility of this indexing
method is quite limited.

The proposed exponential index enhances the flexible in-
dex in at least three aspects: 1) instead of binary spaced
indexing, the exponential index allows indexing spaces to
be exponentially partitioned at any base value; 2) the expo-
nential index intelligently exploits the available bucket space
for indexing, whereas the flexible index blindly incurs over-
head; and 3) the exponential index allows the current bcast
to index into the next bcast to support an efficient search,
but the flexible index indexes the data within the current
bcast only.

Khanna et al. [5] considered broadcast scheduling and
indexing in an integrated fashion. In their approach, the
broadcast sequence of data items is first scheduled based on
their access rates. An index tree of the broadcast sequence
is then built in a bottom-up manner. Since the broadcast
sequence may not be key-ordered, the authors proposed to
store the range of the keys appearing in the subtrees (rather
than the maximum key only) at the internal nodes. To make
the range representation more accurate, they assumed that
the keys of data items are designated by the server and made
known to the clients. However, this does not suit the prac-
tice in which the keys are predetermined and represent some
semantics of data items and, thus, the applicability of their
approach is limited.

Other related work includes data scheduling [4, 14], se-
mantic broadcast [11], hybrid broadcast [6], cache manage-
ment [22, 24], and broadcast of location-dependent data [23].
These studies complement our studies in different aspects.

3. THE EXPONENTIAL INDEX
This section presents a new air indexing method, called

the exponential index. We focus on clustered broadcast in
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Figure 2: A Simple Exponential Index

this section and shall extend the proposed index to non-
clustered broadcast in Section 5.1. We first illustrate the
basic idea of the exponential index by an example and then
generalize it with two tunable parameters: index base and
chunk size (to be defined later). Next, we analyze the per-
formance of the generalized exponential index. Finally, we
show how to adjust the trade-off between tuning time and
access latency for the exponential index.

3.1 A Motivating Example
Consider a server that periodically broadcasts stock infor-

mation (e.g., stock ticks, prices, trading volumes, etc). Sup-
pose the server maintains 16 stock items that are arranged
in a bcast in ascending order of their identifiers.

For simplicity, each bucket is assumed to accommodate
only one stock item and some index information.2 As shown
in Figure 2, a bcast consists of 16 buckets. Each bucket con-
tains a data part and an index table. The index table consists
of four entries (rows). Each entry indexes a segment of buck-
ets in the form of a tuple {distInt, maxKey}, where distInt

specifies the distance range of the buckets from the current
bucket (measured in the unit of buckets), and maxKey is the
maximum key value of these buckets. The sizes of the seg-
ments grow exponentially. The first entry describes a single
bucket segment (i.e., the next bucket), and for each i > 1,
the ith entry describes the segment of buckets that are 2i−1

to 2i − 1 away (i.e., 2i−1 buckets). Note that the distInt
values need not be maintained in the index table since they
can be inferred from the entry IDs. The key range of the
buckets indexed by the ith entry is given by the maxKey
values of the (i − 1)th and ith entries.

Suppose that a client issues a query for item “NOK” right
before item “DELL” (i.e., bucket 1) is broadcast. The client
tunes into the broadcast channel and first retrieves the index
table in bucket 1 (i.e., the left index table in Figure 2). Since
“NOK” falls between the second maxKey “MOT” and the
third maxKey “SUNW,” the target item must lie in the
buckets that are 4 to 7 away. The client then stays in the
doze mode until bucket 5 is broadcast and examines the
item in bucket 5. As the target item cannot be found in
bucket 5, the client further checks the index table in bucket

2As mentioned, a bucket may accommodate one or more
data items (i.e., stock items here), depending on the bucket
capacity.

5 (i.e., the right index table in Figure 2). Since “NOK”
matches the first maxKey, the target item must be in the
next bucket. Therefore, the client completes the query by
accessing bucket 6. The total tuning time for the query is 3
buckets (i.e., buckets 1, 5, and 6). Similarly, if a client wants
to access item “SUNW” right before bucket 1 is broadcast,
it can get the desired data by searching buckets 1, 5, 7, and
8. As we shall show in Section 3.3, the worst tuning time for
such a distributed index is dlog2(N − 1) + 1e buckets, where
N is the total number of buckets in a bcast. In our example,
where N = 16, the worst tuning time is 5 buckets.

We can observe several nice properties of the exponential
index from this simple example:

• The index has a linear yet distributed structure.
Hence, it immediately enables an index search from
the next index bucket (i.e., the next bucket with an
index table), thereby saving access latency. The index
bucket where a search starts represents the root of a
search tree for the indexed data on the air.

• The index is naturally replicated in such a way that an
index link is shared by different search trees, i.e., two
index searches traversing through different search trees
(i.e., starting with different root buckets) may use the
same index links in the searching processes. Thus, the
storage overhead of the index is minimized.

• The tuning time is logarithmically proportional to the
bcast length.

In addition, the next section shows that the indexing over-
head can be controlled by adjusting the index structure (via
an exponential base) and the number of index buckets.

3.2 The Generalized Exponential Index
In the above example, the sizes of the indexed segments

exponentially increase by a base of 2 (hereafter referred to
as the index base). To generalize the exponential index, the
index base can be set to any value r ≥ 1. Specifically, as
shown in Figure 3, the ith entry in the index table describes
the maximum key value of a segment of around ri−1 buckets

(i.e., the buckets that are b
� i−2

j=1
rj + 1c = b ri−1−1

r−1
+ 1c to

b
� i−1

j=1
rjc = b ri−1

r−1
c away).

Since the exponential index maintains an index table in
each bucket, the bucket capacity to accommodate data items
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is reduced, thereby increasing the bcast length. To reduce
the indexing overhead, we group I buckets into a data chunk
and build the exponential index on a per-chunk basis (i.e.,
including one index table in each chunk). This decreases
the number of index tables in a bcast and the number of
entries in each index table. However, the price to pay for
per-chunk indexing is that an average of I−1

2
buckets need

to be searched to locate a data item within a data chunk.
To remedy this, we propose, in a data chunk, to construct

a plain index for all buckets, where an index entry is used
to describe the maximum key value for each bucket. With
the plain index, the intra-chunk tuning time is either 1 (for
the first bucket in the chunk) or 2 buckets (for the other
buckets). In this way, the index table for each data chunk
is split into two parts: a global index for the other data
chunks and a local index for the I − 1 buckets within the
local chunk. Figure 4 shows an example of the generalized
exponential index, where the index base r is set at 2 and the
chunk size I is set at 2.

We now describe the client access protocol. Assume that
each data bucket includes an offset to the first bucket of
the next chunk. The client access protocol follows the same
three steps described in Section 2.1. We discuss the index
search step for the proposed exponential index using an ex-
ample (see Algorithm 1 for a formal description). Again,
suppose that the client makes a query for item “NOK”
right before the bucket containing item “DELL” is broad-
cast. Since the requested item is not in the current bucket,
the client checks the local index. Because “NOK” is larger
than the maximum key value “IBM” in the local index, the
client proceeds to check the global index. In the global in-
dex, “NOK” lies in the key range specified by the second
entry, hence the client goes into the doze mode and waits
for the first bucket of chunk 3 (i.e., bucket 5). In the index
table of bucket 5, “NOK” falls in the key range specified by
the first local index entry. Therefore, the client accesses the
next bucket (i.e., bucket 6) to complete the query. The total
tuning time is again 3 buckets.

There are two tuning knobs for the generalized exponen-
tial index: index base r and chunk size I. These two param-
eters offer the exponential index great flexibility in tuning
access latency against tuning time. In general, the number
of index entries and hence the indexing overhead increases
with decreasing index base r, and the tuning time decreases
with r. Moreover, the larger the chunk size I, the less the
tuning time but the longer the initial index probing time. A
detailed performance analysis is provided in Section 3.3.

3.3 Performance Analysis
This section analyzes the access latency and tuning time

of the exponential index. We assume that the access proba-
bilities of data items are uniformly distributed and the initial
points to tune in the broadcast channel are randomly dis-
tributed over the bcast. Table 1 summarizes the notations
used in the analysis.

Algorithm 1 Index Search for the Exponential Index

1: wait until the first bucket of the next chunk is broadcast
2: for each data item in the bucket do
3: if it is the requested data item then
4: stop the search and the query is finished
5: end if
6: end for
7: check the local index in the index table:
8: if the requested data item is within the key range spec-

ified by the ith entry then
9: go into the doze mode, wait for the ith bucket, retrieve

the data, and the query is finished
10: end if
11: check the global index in the index table:
12: if the requested data item is within the key range spec-

ified by the ith entry then

13: go into the doze mode, wait for (b ri−1−1

r−1
+ 1c · I − 1)

buckets to retrieve the first bucket of the (b ri−1−1

r−1
+

1c)th chunk, and repeat this search procedure
14: end if

Notation Description
N number of data items
B capacity of a data bucket without an index
B′ capacity of a data bucket with an index
so size of a data item
se size of an index entry
I chunk size, i.e., # buckets in a data chunk
r index base
C number of chunks in a bcast
si size of index table for each chunk
ni number of entries in an index table
nb number of local index entries for local buckets
nc number of global index entries for data chunks
E(d) average access latency
E(t) average tuning time
O(t) worst tuning time

Table 1: Summary of Notations

Let B denote the number of data items that a data bucket
can hold. Since an index table needs to occupy the space
used to store data items, fewer items can be accommodated
by a bucket with an index table. Let B′ denote the number
of items such a bucket can hold. The value of B′ is a function
of the parameters of I and r. Note that B′ is an integer and
r is a real number. An arbitrary r may not result in an index
table of a size equal to a multiple of the data item size. Since
the tuning time generally decreases with the index base r, it
is desirable to adjust r according to B′ to fully exploit the
available space for an index table.

Given B and B′, the number of entries in an index table
follows:

ni ≤
(B − B′) · so

se

, (1)

where so and se are the sizes of a data item and an index
entry, respectively.

Since a data chunk consists of I buckets, the number of
local index entries is simply given by: nb = I − 1. Thus, we
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obtain the number of global index entries:

nc = ni − nb ≤
(B − B′) · so

se

− I + 1. (2)

As a data chunk consists of I − 1 buckets without index
tables and one bucket with an index table, it can hold a
total of B(I − 1) + B′ data items. Hence, the number of
data chunks in a bcast is given by:

C = d
N

B(I − 1) + B′
e. (3)

The index table in each chunk indexes all the other chunks
in a bcast; thus, we must have

nc−1�
i=0

r
i =

rnc − 1

r − 1
≥ C − 1. (4)

Therefore, the smallest value of r can be obtained by nu-
merically solving the following inequality:

r
nc + (1 − C)r + C − 2 ≥ 0. (5)

The average access latency is the initial index probe time
plus half the bcast length, i.e.:

E(d) =
I

2
+

IC

2
. (6)

Next, we derive the average tuning time. To do so, we
derive the tuning time t(l) for a data chunk that is l chunks
away from the current chunk. This can be computed recur-
sively:

t(l) = � 1, if l = 0;
t(l − x) + 1, if l > 0,

(7)

where x is the maximum value less than or equal to l in the

set of {1, 2, br + 2c, · · · , b rnc−1−1

r−1
c+1}.

The average tuning time is thus given by:

E(t) =
(I − 1)

I
+

B(I − 1)

B(I − 1) + B′
+

1

C

C−1�
l=0

t(l), (8)

where the first and second terms represent the average tun-
ing time for locating the first bucket with an index table
and the local bucket within a data chunk, respectively, and

the third represents the average tuning time for locating the
desired chunk. From (7) and (8), it is not difficult to see
that with the same value of B′, the smaller is the value of
r, the less is the average tuning time in general. Therefore,
in performance optimization and tuning, we examine only
the smallest values of r that result in an index table whose
size is a multiple of the data item size, rather than testing
all possible values of r.

To have more intuition on tuning time, we also derive the
worst tuning time. Suppose the client initially tunes into
data chunk A and is interested in some data item in chunk T
(see Figure 3). The initial search space is C (approximately
rnc−1

r−1
) buckets. According to the index table in A, the

search will be guided to a certain range of sequential data
chunks, whose size is at most rnc−1 chunks (when T falls in
the last index entry). Thus, the search space is reduced by
a factor of at least

rnc−1

r−1

rnc−1
=

r − r1−nc

r − 1
≈

r

r − 1
. (9)

Then, the client will access the first chunk in the refined
search space (e.g., chunk B in Figure 3) and trim the search
space by another factor of at least r

r−1
through the examina-

tion of B’s index table. The procedure is repeated until the
refined search space contains one data chunk only. There-
fore, at most dlog r

r−1
(C − 1)e + 1 buckets are accessed to

reach the target chunk. If a chunk contains more than one
bucket, we might need one more bucket access to probe the
first index bucket and another one to locate the desired data
item after reaching the target chunk. Therefore, the tuning
time is bounded by:

O(t) = � dlog r

r−1
(C − 1)e + 1, if I = 1;

dlog r

r−1
(C − 1)e + 3, if I > 1.

(10)

3.4 Performance Tuning
As mentioned before, tuning time and access latency are

two conflicting performance measures; they cannot be min-
imized at the same time. To cater for different application
scenarios, we need tunable indexing structures that opti-
mize either the tuning time or the access latency with cer-
tain performance requirements on the other metric. The



proposed exponential index can be employed to serve this
purpose. Specifically, we are interested in tuning the perfor-
mance along two dimensions:

• Latency-bounded tuning: Given a limit L on the
average access latency, how can the parameters (i.e.,
r and I) of the exponential index be tuned to obtain
the minimum tuning time?

• Tuning-time bounded tuning: Given a limit T on
the average tuning time, how can the parameters of
the exponential index be tuned to achieve the shortest
access latency?

Based on the analysis presented in the last section, the
optimal solutions to the above two problems can be obtained
by searching the optimal values of B′ (recall that r is a
function of B′ as shown by (2), (3), and (5)) and I. Thus,
the latency-bounded tuning problem is defined as follows:

min
I={1,2,··· ,d N

B
e},B′={0,1,··· ,bB−

I·se

so
c}

E(t), (11)

s. t. E(d) ≤ L. (12)

The tuning-time-bounded tuning problem is defined as
follows:

min
I={1,2,··· ,d N

B
e},B′={0,1,··· ,bB− I·se

so
c}

E(d), (13)

s. t. E(t) ≤ T. (14)

It is easy to see that these two search problems have a
worst case time complexity of O( N

B
· B) = O(N).

4. PERFORMANCE EVALUATION
This section evaluates the performance of the proposed

exponential index. We would like to investigate its perfor-
mance compared with the state-of-the-art indexes (i.e., the
distributed tree [10] and the flexible index [9]) as well as its
ability to adjust the trade-off between access latency and
tuning time.

We set the system parameters similar to those in [9, 10].
The database size ranges from 300 to 300,000 items. Flat
broadcast is employed to broadcast the data items. We as-
sume that the access distribution over the data items is uni-
form. For the exponential index and the flexible index, an
index entry contains a key value only;3 hence, its size is set
to 4 bytes. For the distributed tree, the index entry size is
set to 8 bytes since it contains a key value as well as the offset
to the bucket containing the key value. We have evaluated
different combinations of item size so and bucket capacity
B. Due to space limitations, we report the results for two
informative settings only, i.e., 1) so = 16 bytes, B = 80
(denoted as “S-16 B-80”); and 2) so = 128 bytes, B = 10
(denoted as “S-128 B-10”). Recall that each data bucket
includes an offset to the beginning of the next index bucket.
For simplicity, we omit this overhead since it is very small
and exists for all the indexing schemes under investigation.
The system parameter settings are summarized in Table 2.

We compare the indexing schemes in terms of the tun-
ing time and access latency, both of which are measured

3In the original proposal of the flexible index [9], an index
entry also contains an offset, which is not necessarily in-
cluded and can be derived from the number of buckets in a
bcast.

in the unit of buckets. To make a fair comparison, the ac-
cess latency of an indexing scheme shown in the results is
normalized by the latency of a non-index scheme, i.e., d N

2B
e.

The results reported for the exponential index were obtained
based on the analysis presented in Section 3.

Parameter Setting Parameter Setting
N 300 – 300,000 B 10, 80
so 16, 128 bytes se 4 bytes

Table 2: Parameter Settings

4.1 Comparison with the Distributed Tree In-
dex

This set of experiments compares the proposed exponen-
tial index to the distributed tree, which is a non-flexible
scheme. To compare the tuning time, we first compute the
performance of the distributed tree given the system set-
tings; we then obtain the best tuning time for the exponen-
tial index by tuning the index base and chunk size such that
its access latency is no higher than that of the distributed
tree. Figures 5a and 5b respectively show the average tun-
ing time and the worst tuning time under different database
sizes. As expected, the tuning time worsens with increasing
database size for both index schemes. The exponential in-
dex performs no worse than the distributed tree in the worst
cases and achieves a much better average tuning time for all
database sizes tested.

Similarly, to compare the access latency, we tune the pa-
rameters of index base and chunk size to obtain the best
result for the exponential index while making sure its tun-
ing time is no worse than that of the distributed tree. As
shown in Figure 5c, the exponential index outperforms the
distributed tree in all cases. In particular, the performance
improvement is up to 60% when the database size is small.
This is mainly because at small database sizes, the index
tree is degenerated into a single bucket and, hence, we can-
not partially replicate the index tree to reduce the access
latency.

4.2 Comparison with the Flexible Index
This section compares the proposed exponential index to

the flexible index in terms of their effectiveness in reducing
tuning time. Note that these two schemes have a similar
performance for a local data search within a chunk. There-
fore, to facilitate comparison, we set the chunk size to one
bucket to observe their performance differences for global
search across data chunks. For the exponential index, we
adjust the index base r such that it achieves a similar access
latency to that of the flexible index. Figures 6a, 6b, and 6c
show the average tuning time, the worst tuning time, and
the normalized access latency, respectively.

As shown in Figure 6, under the same access latency, the
exponential index consistently outperforms the flexible in-
dex in terms of the tuning time. The improvement is more
significant for the setting of item size 128 bytes, bucket ca-
pacity 10 (i.e., S-128, B-10) than the setting of item size
16 bytes, bucket capacity 80 (i.e., S-16, B-80). This can
be explained as follows. The flexible index employs a binary
control index, which blindly incurs overhead without consid-
ering the available space. Thus, the larger the item size, the
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Figure 5: Comparison with the Distributed Tree In-
dex

higher the probability of leaving large internal fragments.
On the other hand, the exponential index adjusts the pa-
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rameter of r according to the available space for indexing.
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Figure 7: Access Latency with Bounded Tuning
Time (Database Size=30,000)

Hence, at large item sizes, it can fully utilize the large item
space to achieve a better performance.

4.3 Flexibility of the Indexes
This section investigates the indexes’ ability to adjust the

trade-off between access latency and tuning time. We set
the database size at 30,000 items. First, we look at the
tuning-time-bounded tuning problem. It is desirable that
the longer is the tuning time allowed, the shorter is the ac-
cess latency achieved. Figures 7a and 7b show the results
for the settings of S-16, B-80 and S-128, B-10, respectively.
As expected, the distributed tree is not flexible: it is impos-
sible for it to achieve a tuning time shorter than 4.6 buckets
and 5.0 buckets for these two settings, respectively, and the
latency remains the same after these two points. While the
flexible index is able to trade the latency for the tuning time
requirement, obviously the exponential index performs even
better: with the same tuning time requirement, the expo-
nential index achieves a shorter (or the same) access latency.
In particular, for the setting of S-128, B-10, the flexible in-
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dex cannot manage a tuning time shorter than 4.8 buckets,
whereas the exponential index can achieve a tuning time of
less than 4 buckets at 3% access latency overhead on top of
the non-index scheme.

To gain more insight into the exponential index, we show
in Figure 8 the values of chunk size I and index base r
selected for each bounded tuning time. To achieve a tuning
time smaller than 3.6, I is set at 1 and a small value of r
(less than 1.2) is employed. In these cases, the access latency
overhead is a little bit high (see Figure 7a). By relaxing the
tuning time, the indexing overhead, in particular the global
index size, and, hence, the access latency overhead, can be
reduced by increasing I and r alternatively. It is interesting
to note that to obtain the least indexing overhead with a
bounded tuning time, an increase of r generally leads to a
decrease of I, and vice versa.

Next, we examine the latency-bounded tuning problem.
We expect to achieve a shorter tuning time by tolerating
a longer latency. As shown in Figures 9a and 9b, the dis-
tributed tree only obtains a better performance than the
flexible index at normalized access latencies of 1.07–1.09 for
the setting of S-128, B-10. Again, the proposed exponential
index performs the best throughout the range of bounded
latencies tested. For a similar reason to that explained in
Section 4.2, the improvement of the exponential index over
the flexible index is more remarkable for the setting with a
larger item size (i.e., S-128, B-10).

Figure 10 shows the values of I and r selected by the
exponential index for each bounded access latency. At a
small access latency overhead (less than 10% of the non-
index scheme), a large value of I or r is required. When
a higher access latency overhead is allowed, the values of I
and r are decreased to achieve the best tuning time.

5. PRACTICAL ISSUES

5.1 Non-Clustered Broadcast
The previous sections have focused on clustered broad-

cast, which is capable of indexing the primary attribute in
flat broadcast. We now extend the proposed exponential in-
dex to non-clustered broadcast, which is useful for indexing

secondary attributes and skewed broadcast.
As discussed in Section 2, for non-clustered broadcast, a

bcast can be partitioned into a number of clustered seg-
ments (i.e., meta-segments). The number of meta-segments
in a bcast for an attribute is called the scattering factor (de-
noted by M) [10]. Without loss of generality, we assume
the items are sorted in ascending order of the attribute val-
ues in each meta-segment. Similar to clustered broadcast,
the exponential index can be applied to each meta-segment.
Instead of indexing a whole bcast, each index table for non-
clustered broadcast describes the buckets up to the farthest
one in the next meta-segment whose attribute value is less
than that of the current bucket. In the example shown in
Figure 11, the index table in bucket 2 indexes buckets 3–5,
and the index table in bucket 10 indexes buckets 11–13.

The client access protocol remains the same except that
a query continues to search the next segment if the target
item is not found in the current meta-segment. The maxi-
mum number of meta-segments to be searched is M . Thus,
based on (10), the tuning time of a query is bounded by
O(Mlog r

r−1
S), where S is the number of buckets in a meta-

segment.

5.2 Mode Transition Time
Recall that each index entry in the exponential index im-

plicitly contains a distance offset. The client relies on the
distance offsets to selectively tune in the broadcast. For the
index shown in Figure 2, suppose a client wants to search
“MSFT” right before “DELL” (i.e., bucket 1) is broadcast.
By accessing the first bucket, the client finds that the next
segment to search is 4 buckets away and, thus, switches to
the doze mode to save energy. Ideally, the client can sleep
in the doze mode for d × Tb time and wake up afterwards,
where d is the distance to the next bucket to search and Tb

is the time taken to broadcast a bucket. However, in deter-
mining the sleeping time, we need to take into consideration
the mode transition time, in particular the delay caused by
switching from the doze mode to the active mode. There-
fore, the sleeping time should be set at d×Tb−Tw, where Tw

is the mode transition delay. In case the computed sleeping
time is a negative value, the client should stay active to wait
for the arrival of the next bucket to search. Fortunately, the
mode transition delay Tw is generally negligible compared to
the bucket broadcast time Tb. For example, in GPRS/GSM,
Tw and Tb are on the order of 1 ms and 100 ms, respectively
[2, 10].

5.3 Index Computation Time
With the exponential index, after downloading an index

bucket, the client computes the distance offset to the next
bucket to search and then determines the sleeping time. We
can simply apply the binary search over the local index, and
the global index if necessary, to compute the distance off-
set. There is some computational delay. As such, the client
cannot go to the doze mode immediately after accessing an
index bucket, because otherwise it may miss the next bucket
to search if it happens to be the next bucket to broadcast.
Instead, the client should stay on until the sleeping time is
obtained. Due to the simple structure of the exponential
index, this delay is insignificant. As observed in our ex-
periments, for a database size of 300,000 items, the average
delay is about 3 µs on a Pentium 4 1.8GHz CPU, which is
much shorter than the bucket broadcast time of about 120
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ms with a data rate 115 Kbps in GPRS [2].

5.4 Link Errors
Wireless environments are error prone. A bucket might

be corrupted during broadcasting. We are able to handle
link errors easily with the exponential index due to its dis-
tributed structure. Using Figure 2 as an example, a client
searches for “NOK” from the first bucket. If the broadcast
is error-free, the client accesses buckets 1, 5, and 6, as dis-
cussed in Section 3.1. However, if bucket 1 is corrupted,
the client can immediately restart the search from the next
bucket (i.e., bucket 2). Thus, the client accesses bucket 1
(corrupted), and buckets 2 and 6 to get the desired data. If
both buckets 1 and 2 are corrupted, the client can restart
the search from bucket 3 and access buckets 5 and 6. Hence,
there is only a small performance penalty. This is indeed
an advantage over the tree index, where, if the root is cor-
rupted, the client has to wait until the next root is broadcast
before restarting the search, thus incurring additional access
latency.

5.5 Data Updates
Periodic broadcast is targeted at applications such as

stock quotes, airline schedules, and traffic information. The
data values (e.g., stock prices) may change frequently. If the
search key values (e.g., stock ids) are not updated, we need
not update the index structure. If the search key values are
changed, we shall reorganize the bcast structure as well as
the index structure. Therefore, we expect the exponential
index, like other existing indexes, works well for applications
where the non-search key values may change but the search
key values do not change often.

6. CONCLUSIONS
Data broadcast has been considered an attractive infor-

mation dissemination method in pervasive computing envi-
ronments due to its scalability and low cost. This paper has
investigated the use of air indexing techniques to improve
the efficiency of energy consumption on mobile devices in
a broadcast environment. Several air indexing techniques
had been developed for wireless data broadcast. However,

most of the existing indexing techniques, based on central-
ized tree structures, are not flexible in adjusting the trade-
off between access efficiency and energy conservation based
on application specific requirements. Thus, in this study,
we have focused on the problems of latency-bounded tuning
and tuning-time-bounded tuning. To the best of our knowl-
edge, this is the first comprehensive study that addresses
these two tuning problems.

We have proposed a novel parameterized index scheme,
called the exponential index, to meet different application
requirements on access latency and tuning time. The expo-
nential index is very efficient because it naturally facilitates
the index replication by sharing links in different search trees
and therefore minimizes storage overhead. Moreover, it has
a linear yet distributed structure, which suits the broad-
cast environment very well. The distributed property of the
exponential index enables a search to start quickly from an
arbitrary index table in the broadcast. The energy consump-
tion of mobile clients is also very efficient (i.e., the tuning
time is logarithmically proportional to the bcast length). Fi-
nally, the access latency and tuning time of the exponential
index can be adjusted by two tuning knobs: index base and
chunk size.

We have provided an analytical model to measure the
access latency and tuning time of the exponential index
and analyzed how to minimize the access latency (or tun-
ing time) with a bounded tuning time (or access latency)
by tuning the parameters of the index base and chunk size.
Through experiments, we have demonstrated that the expo-
nential index outperforms two state-of-the-art air indexing
schemes, the distributed tree and the flexible index, in terms
of the access latency and tuning time. In addition, the re-
sults show that the exponential index can achieve great flex-
ibility in adjusting the trade-off between access latency and
tuning time.

We are building a prototype in a wireless LAN environ-
ment and plan to evaluate the performance of the proposed
exponential index in a real environment. The proposed
index can adjust the trade-off between access latency and
tuning time on a per-application basis. We plan to inves-
tigate per-client flexible indexes. We also plan to employ
the exponential index for location-based services in perva-



sive computing environments. We are particularly interested
in exploiting the processing of window queries and nearest
neighbor search in wireless data broadcast environments. In
addition, we are interested in exploring the research issues of
balancing access latency and tuning time in a multi-channel
data broadcast environment.
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