
Technical Report: Authenticating Top-k Queries in
Location-based Services with Confidentiality

Qian Chen, Haibo Hu, Jianliang Xu
Department of Computer Science, Hong Kong Baptist University

Kowloon Tong, Hong Kong
{qchen, haibo, xujl}@comp.hkbu.edu.hk

In this technical report, we offer more details about several
issues in the paper. Sec. 1 discusses more about the the
ranking function we adopted in the paper. Sec. 2 analyzes
the cost of two private ranking comparison methods: PPB
and PLB. Sec. 3 gives out the complete proof of Lemma 6.7
in the paper. Sec. 4 briefly introduces how to extend the
PLB method to 3D. Followed by Sec. 5, which shows how
to further encrypt area A2 in PLB method.

1. DISCUSSION ON RANKING FUNCTION
In this section, we’d like to clarify that the top-k ranking

function adopted in this paper is not tailored. In the fol-
lowing, we first explain our rationale behind adopting the
ranking function, then show it is a weighted function, and
finally argue that this function can be easily reduced to the
sum ranking function with guaranteed bound of overhead.

1. Our top-k ranking function, rank(r, q) = ||r.λ−q.λ||2+
r.ω = ||r.λ − q.λ||2 + (

√
r.ω)2 (known as Euclidean scoring

function [2]), is an alternative to the sum scoring function
and has been widely considered in the previous work (e.g.,
[2, 3, 6, 7]).1 We adopt this Euclidean scoring function for
location-based top-k queries since it treats the non-spatial
and spatial dimensions equally. It is essentially a (squared)
Euclidean distance between a query point q = (q.λx, q.λy, 0)
and a result object r = (r.λx, r.λy,

√
r.ω) in 3D space.2 To

make it clearer, in this revision we have rewritten the rank-
ing function as rank(r, q) = ||r.λ−q.λ||2+r.ω2, where the re-
sult object is represented by r = (r.λx, r.λy, r.ω), and mod-
ified all related descriptions accordingly.

2. Our ranking function does take weights into account,
though we omit an explicit weight between the spatial dis-
tance and the non-spatial score. In fact, we normalize the
non-spatial score ω to reflect the relative weighting on these

1It is termed as non-linear function in [3, 7] and semi-
monotone function in [6].
2That is, the (squared) Euclidean distance is (r.λx−q.λx)2+
(r.λy − q.λy)2 + (

√
r.ω)2 = ||r.λ− q.λ||2 + (

√
r.ω)2.

I

Spatial Distance (s)

Non-spatial score (w)

rk

rk'

IIa

b

Figure 1: Top-k in Sum Ranking vs. Top-k in Euclidean

two factors. Suppose there is a constant weight α in the
ranking function:

rank(r, q) = α · ‖r.λ− q.λ‖2 + (1− α) · r.ω2.

This ranking function can be transformed to:

rank(r, q)

α
= ‖r.λ− q.λ‖2 +

1− α
α
· r.ω2,

which can be rewritten in the form of our ranking function

by normalizing r.ω to r.ω′ =
√

1−α
α
· r.ω in preprocessing:

rank′(r, q) = ‖r.λ− q.λ‖2 + r.ω′2

Similar techniques of hiding explicit weights were also adopted
in [5, 1] based on the rationale that the query results will
only be affected by the relative importance, rather than the
absolute magnitude, in the query vector.

3. Our ranking function differs from a sum ranking func-
tion rank(r, q) = α · ||r.λ− q.λ||+ (1−α) · r.ω in the same
way Euclidean distance differs from Manhattan dis-
tance. Therefore, the top-k results of a sum ranking func-
tion can be derived from the top-k′ results of our ranking
function. As shown in Figure 1, all top-k results of the sum
ranking function are in Zone I (the grey triangle), bounded
by the solid line that crosses the top-kth object rk. On the
other hand, the top-k′ results of our ranking function form a
quadrant of an ellipse. To guarantee all top-k results are in
the top-k′ results, we make this ellipse enclose Zone I; and
to achieve the minimum k′, this ellipse should be the min-
imum circumscribed ellipse (the solid arc) of Zone I. Note
that enclosing Zone I is just a sufficient condition of enclos-
ing all top-k results — in a less worse case a smaller ellipse,
such as the dashed arc, may already enclose them.

1

 0

 20

 40

 60

 80

 100

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

P
e

rc
e
n

ti
le

 (
%

)

Multiple of k’ to k

(π/2, 97.3%)

(1.1, 72.9%)

Figure 2: Cumulative Probability Distribution of k′ (as multiple
of k, k=16)

Next we show how to use our top-k′ query to derive the
top-k query results. Besides normalizing ω by multiplying
1−α
α

, we set k′ for our ranking function as follows:

k′ = k · (1 +

∫∫
II
f(s, ω)ds dω∫∫

I
f(s, ω)ds dω

), (1)

where f(s, ω) is the probabilistic density function (pdf) of
spatial distance s and non-spatial score ω. As s and ω are
independent, f(s, ω) can be decomposed into g(s) · h(ω).
According to [M12], g(s), the pdf of the Euclidean distance
of two random points in a circle, is approximately constant
when they are very close (as in the top-k query). If we
further assume h(ω) is constant, i.e., the non-spatial scores
are uniformly distributed, the fraction in Eqn. (1) will be
the ratio of the areas of Zone I and II:

k′ ' k · (1 +
Area(II)

Area(I)
) = k · πab/4

ab/2
=
π

2
k.

The above equation suggests that in the worse case, by set-
ting k′ = π

2
k, the top-k′ results of our ranking function will

enclose all top-k results of a sum ranking function.
To verify this result, we issue top-k queries of sum rank-

ing functions with a variety of α on the Gowalla dataset and
find the minimum k′ for each query that encloses all top-k
results. Figure 2 plots the cumulative probability distribu-
tion (cdf) of k′ in terms of a multiple of k. It can be observed
that in more than 70% of cases, k′ is as low as 1.1k. And
by setting k′ = π

2
k as we derived above, this percentile can

reach as high as 97.3%. (The remaining 2.7% cases could be
caused by failing to conform to the constant pdf assumption
of g(s) when k is large.) Further by setting k′ = 1.8k, all
top-k results are enclosed.

We have now added a footnote (Footnote 2 on Page 3)
to explain the difference between the sum and Euclidean
ranking functions.

In summary, our ranking function is indeed a gen-
eral linear (weighted) Euclidean function, which is
justified for location-based top-k queries. Also, if
some applications really want a linear (weighted)
sum ranking function, the solution can be approxi-
mated by our ranking function with bounded over-
head.

2. COST ANALYSIS OF PRIVATE RANK-
ING COMPARISON

In this section, we analyze the costs of the PPB and PLB
methods as follows. Let Menc, Msign, and Mdigest denote

the lengths of a Paillier ciphertext, a signature, and a digest,
respectively. Let Cmul, Csign, and Chash denote the CPU
costs of a modular multiplication, a signature verification,
and a hash operation, respectively. Following the notations
in the paper, let m = logB(U), where B is the base and U
is the upper bound of the data domain.

• Cost analysis for PPB. The total number of en-
crypted seeds {E(δi · Bi) | i = 1, 2, · · · ,m, δi ∈ [0, 1,
· · · , B−1]} stored on the server is B·m. The number of
encrypted seeds needed for one comparison ism. Thus,
the communication involves: (1) E(2x), E(2y), E(x2),
E(y2), E(ω2) of two points; (2) m encrypted seeds
{E(δi · Bi) | i = 1, 2, · · · ,m}; and (3) an aggregated
signature. So its total cost is:

MPPB = (10 +m) ·Menc +Msign.

This is also the client space cost. To verify the com-
parison result, the client: (1) reconstructs E(δ) with
the encrypted seeds, which costs m · Cmul; (2) tests
Eqn. (5), whose cost is bounded by (2m + 9) · Cmul;
and (3) verifies the signature, which costs Csign. So
the total client CPU cost is:

CPPB = (3m+ 9) · Cmul + Csign.

Note that the client does not perform any Paillier en-
cryption in PPB.

• Cost analysis for PLB. The communication involves:
(1) two points o′1, o

′
2, (2) digests for g(A1) and the sig-

nature for g(A3). According to [19], the length of the
digests for g(A1) is (m+ 4 + dlog2me) ·Mdigest. So the
total communication cost is:

MPLB = m/2 + (m+ 4 + dlog2me) ·Mdigest +Msign.

This is also the client space cost. To verify the com-
parison result, the client: (1) calculates area A2, whose
CPU cost can be omitted; (2) reconstructs g(A3) from
the digests of g(A1) with the help of A2, which costs
[B(m + 1) + dlog2me + 2] · Chash; and (3) verifies the
signature. So the total client CPU cost is:

CPLB = (B(m+ 1) + dlog2me+ 2) · Chash + Csign.

Note that the PLB method only works for the pairs
that have been pre-signed. Nonetheless, once the PLB
method is enabled, its cost will not be affected by the
total number of pairs that are pre-signed.

3. PROOF OF LEMMA 6.7 IN SECURITY
ANALYSIS OF POWER DIAGRAM BASED
SCHEME

In this section, we give out the detailed proof of Lemma
6.7 in the paper as follows.

Lemma 6.7: Let u 6∈ R, P (u = a, ω = b) = P (u = a, ω =
b | rank(u, q) ≥ rank(rk, q)

∧
u ∈ VN (ri)).

2

Proof.

P (u = a, ω = b | rank(u, q) ≥ rank(rk, q)
∧

u ∈ VN (ri))

=
P (rank(u, q) ≥ rank(rk, q)

∧
u ∈ VN (ri) | u = a, ω = b)

P (rank(u, q) ≥ rank(rk, q)
∧

u ∈ VN (ri))

·P (u = a, ω = b)

=
P (rank(u, q) ≥ rank(rk, q)

∧
u ∈ VN (ri)

∧
u = a

∧
ω = b)

P (rank(u, q) ≥ rank(rk, q)
∧

u ∈ VN (ri))

= P (u = a, ω = b)

Here the third equality is due to the fact that both u ∈
VN (ri) and rank(u, q) ≥ rank(rk, q) are independent of
u = a and ω = b as the locations and scores of ri and rk are
unknown to the client.

4. EXTENSION OF PLB METHOD TO 3D
SPACE

We briefly show the 3D solution as follows. Given two
3D objects s, t, we define a score-shifted plane of s, t,
on which s, t have equal ranking values. Let SP(s, t) denote
this plane, which can be found by shifting the perpendicular
bisector of s, t by their score difference:

SP(s, t) = {p | (t− s)T p =
1

2
(‖t‖2 − ‖s‖2 + ω2

t − ω2
s)}.

o1

o2

o′1

o′2

V1

V2
V3

h1

h2

h3

V3 = V1 + V2

t

s

Data Region

SP(s, t)

q

o3

o′3

Figure 3: Presigned Line in 3D Space

Similar to the 2D case, we choose three arbitrary points
o1, o2, o3 on SP(s, t), as shown in Figure 3. To avoid dis-
closing SP(s, t), we find another far away plane pl(o′1, o

′
2, o
′
3)

parallel to pl(o1, o2, o3) and let triangular areas Ao1o2o3 =
Ao′1o′2o′3 . Let V1 denote the directed volume of tetrahe-
dron qo3o2o1, V2 denote the directed volume of tetrahedron
qo′1o

′
2o
′
3, and V3 the directed volume of tetrahedron o′2o3o2o1,

we have:

V3 = 1
3
Ao1o2o3 · h3

= 1
3
Ao1o2o3 · (h1 + h2)

= 1
3
Ao1o2o3 · h1 + 1

3
Ao′1o′2o′3 · h2

= V1 + V2.

The above equation resembles Eqn. (8) in the paper for
the 2D case. As such, the 3D PLB authentication scheme
follows.

5. ENCRYPTION ENHANCEMENT OF AREA
A2 COMPUTATION IN PLB METHOD

This section shows how A2 is further encrypted in the PLB
method, in order not to disclose o′1 and o′2 to the client.

Hiding only o′1 and o′2 can’t solve the problem of disclosing
o′1 and o′2 to the client essentially, if the client conducts four
or more queries with various query locations, it can compute
out the coordinates of o′1 and o′2 by simultaneous equations
after receiving enough values of A2. As thus, we further
encrypt the value A2 to avoid this attack, meanwhile the
PLB method still works.

The PLB method works based on a function proposed and
optimized by Pang et al. in [4], which is for verifying q ≥ α
without the client knowing the value of α. The optimization
is inspired by the canonical representation of integer. Let B
be the base, then

δ =

m∑
i=0

δi ·Bi,

where δi ∈ [0, B). Applied with the representation, the op-
timized function for verifying q ≥ α works as follows. The
SP gets the representation (q − α)i, and sends components
g((q−α)i) to the client, who then gets representation (α−L)i
and computes g((q−L)i) = g((q−α)i)⊗g((α−L)i), where ⊗
is a well-defined operation on the digest. At last, client ver-
ifies q ≥ α by comparing every jointly computed g((q−L)i)
value with the g((q − L)i) value signed by the DO.

Similarly in PLB method, to hide the value of A2, the SP
returns only A2,i, the canonical representation of A2, to the
client, since the client only need the A2,i to jointly compute
out g(A3,i) = g(A1,i) ⊗ g(A2,i). Without knowing the base
B, the client can not infer what value A2 is3.

On the other hand, the client without knowing A2 has to
verify the correctness of A2. Let xp and yp denote the x and
y coordinate of a point p, respectively. By expanding the
formula calculating the area of 4qo′1o′2, we can get:

xo′1yq + yo′2xq + xo′2yo′1 = xo′2yq + yo′1xq + xo′1yo′2 + 2A2.

If both sides of this equation are encrypted by Pailler, ac-
cording to properties of Pailler, and A2 is rewrote as its
canonical representation A2,i, it is equivalent to proving fol-
lowing equation instead:

E(xo′1)yqE(yo′2)xqE(xo′2yo′1)

≡ E(xo′2)yqE(yo′1)xqE(xo′1yo′2)
m∏
i=0

E(Bi)2A2,i mod n2,

(2)
where except for xq, yq and 2A2,i, all the rest items can be
pre-computed and signed by the DO offline. And since only
the DO possesses the private key of Pailler, these items can
not be decrypted by the client. Thus, the client can verify
Eqn. 2 without knowing o′1, o′2 or A2.

The following summaries the whole procedure of PLB
method without disclosing o′1, o′2 or A2 to the client. Dur-
ing the service initialization, the DO prepares seeds E(Bi)
for the SP, so that the SP can construct any future A2 for
the client. It also encrypts E(xo′1), E(yo′1), E(xo′2) and

E(yo′2) (donated as E() values), g(A3,i) and a signature
for every selected pairs of points. Upon a comparison on
rank(s, q) ≥ rank(t, q), besides sending E() values of o′1, o′2
and g(A1,i), the SP also sends back A2,i and corresponding
E(Bi) to the client. By verifying every jointly computed
g(A3,i) is the same as g(A3,i) signed by the DO, the client
can verify A1 ≥ 0; by verifying Eqn. 2 holds, it can verify

3To be more securer, the canonical representation can be
replaced with other representation.

3

the returned representation A2,i is correct; and at last, by
verifying the signature, the client can verify all the returned
values are not tampered with.

6. REFERENCES
[1] Y. K. A. Vlachou, C. Doulkeridis and K. Norvag.

Reverse top-k queries. In ICDE, 2010.

[2] S. Chaudhuri and L. Gravano. Evaluating top-k
selection queries. VLDB, pages 397–410, 1999.

[3] K. Mouratidis, S. Bakiras, and D. Papadias.
Continuous monitoring of top-k queries over sliding
windows. In Proceedings of the 2006 ACM SIGMOD
international conference on Management of data,
SIGMOD ’06, pages 635–646, 2006.

[4] H. Pang, A. Jain, K. Ramamritham, and K. lee Tan.
Verifying completeness of relational query results in
data publishing. In Proc. SIGMOD, 2005.

[5] P. Tsaparas, N. Koudas, Y. Kotidis, T. Palpanas, and
D. Srivastava. Ranked join indices. In ICDE, pages
277–288, 2003.

[6] D. Xin, J. Han, and K. C. Chang. Progressive and
selective merge: computing top-k with ad-hoc ranking
functions. In Proceedings of the 2007 ACM SIGMOD
international conference on Management of data,
SIGMOD ’07, pages 103–114, 2007.

[7] L. Zou and L. Chen. Pareto-based dominant graph: An
efficient indexing structure to answer top-k queries.
IEEE Trans. on Knowl. and Data Eng., pages 727–741,
2011.

4

