
1536-1268/02/$17.00 © 2002 IEEE PERVASIVEcomputing 65

Data Management in
Location-Dependent
Information Services 

L
ocation-dependent information services
(LDISs) are an important class of con-
text-aware applications. They answer
location-related queries, where a loca-
tion is either explicit or implied. These

services emerged from advances and convergence in
high-speed wireless networks, personal portable
devices, and location-identification techniques. With
a variety of promising applications, such as local
information access (traffic reports, news, navigation
maps, and so on) and nearest-neighbor queries (such
as finding the nearest restaurant), LDISs will soon
become an integral part of our daily lives.

Although LDISs exist in traditional computing
environments (Guides@Yahoo,
for example), their greatest poten-
tial is in a mobile-pervasive com-
puting environment, where users
enjoy unrestricted mobility and
ubiquitous information access. 

In this article, we discuss loca-
tion-dependent information ac-
cess in a mobile-pervasive envi-

ronment, in particular in a cellular mobile system,
and present new research issues arising from
on-demand access, broadcast, and data caching.

Preliminaries
Managing data in an LDIS faces several challenges:

• Mobile environment constraints. Mobile-perva-
sive environments offer scarce bandwidth,

low-quality communication, frequent network
disconnections, and limited local resources, com-
plicating the provision of location-dependent
information to mobile users. 

• Spatial data. In an LDIS, answers to user queries
can vary with location. That is, query results
depend on a query’s spatial properties. For a loca-
tion-bound query, the query result must be both
relevant to the query and valid for the bound
location. 

• User movement. Because mobile users change
locations, some tasks—such as query scheduling
and cache management—are particularly tough
in an LDIS. 

These challenges have opened many new research
problems in LDIS data management. Although many
traditional data management techniques are applic-
able to the implementation of an LDIS, we must reex-
amine and recreate them to address these issues.
Many studies address data management for mobile
computing, such as cache management and transac-
tion management.1 However, most existing studies
target general data services instead of exploring the
special properties of LDISs. 

Location models
Locations in an LDIS must be specified explicitly

or implicitly before a client can access information.
A location model depends on the system’s underly-
ing location identification technique. Two models
for representing locations exist:

Location-dependent information services have great promise for mobile
and pervasive computing environments. They can provide local and
nonlocal news, weather, and traffic reports as well as directory services.
Before they can be implemented on a large scale, however, several
research issues must be addressed.

C O N T E X T - A W A R E  C O M P U T I N G

Dik Lun Lee, Jianliang Xu, and
Baihua Zheng
Hong Kong University of Science
and Technology

Wang-Chien Lee
Pennsylvania State University



• Geometric model. The system specifies
a location as an n-dimensional coordi-
nate (typically n = 2 or 3)—for example,
the latitude-longitude pair returned by
the Global Positioning System—or a set
of coordinates defining an area’s bound-
ing geometric shape (such as a polygon).
The system can compute regular geo-
metric shapes from concise representa-
tions (for example, a circle can be rep-
resented by the center and radius). The
geometric model’s main advantage is its
compatibility across heterogeneous sys-
tems. However, it can be very costly and
complex in terms of the volume of data
involved and the need to map the geo-
metric representation to a semantic level
suitable for the applications. 

• Symbolic model. Logical, real-world
entities describe the location space. Enti-
ties can be buildings, streets, cities, or sys-
tem-defined elements such as wireless
cells, and are uniquely identifiable by a
hierarchical naming system. The sym-
bolic model typically has coarser loca-
tion granularity than the geometric
model because it stresses the representa-
tion of relationships between logical enti-
ties rather than their precise coordinates.
At a semantic level, it is more suitable for
LDIS applications. Also, being discrete
and well-structured, symbolic location
information is easier to manage. Con-
verting locations among heterogeneous
systems, however, is difficult.

The geometric and symbolic location
models have different overheads in identi-
fying locations and represent location
information at different levels of precision.
The appropriate location model depends
on the application. 

An LDIS often needs location informa-
tion expressed in both models. On one
hand, the system must map a geometric

location into a symbolic model before
using it to query objects expressed in the
symbolic model. For example, an LDIS
maps a geometric location obtained from
GPS to a shopping mall, and then the client
can query all the mall restaurants. On the
other hand, many operations such as find-
ing the distance between two objects (for
example, between a shopping mall and a
train station) must be computed in geo-
metric coordinates.

Query types
Different query types require different

indexing and query-processing strategies.
We can roughly classify location-depen-
dent queries into two dimensions. (Ayse Y.
Seydim and her colleagues provide a for-
mal classification.2)

Local vs. nonlocal queries. Local queries
are bound to a user’s current location (for
example, “list the local weather” and “find
the nearest restaurant”). Nonlocal queries
are bound to locations other than the user’s
current location (“find the weather in New
York City” and “find the nearest station
to the White House,” for example). A sys-
tem can resolve local queries based on the
user’s local context, whereas for nonlocal
queries, it must first identify the contexts in
which it will evaluate the queries.

Simple vs. general queries. Simple queries
place simple equality conditions on the
underlying data. For example, the query,
“download the local traffic report,” retrieves
the traffic report associated with the user’s
current wireless cell. A query like “find the
nearest restaurant” can also be viewed as
a simple query because “nearest restau-
rant” is a functional attribute that finds
the nearest restaurant based on the user’s
location.

General queries involve complex condi-

tions on the underlying data. They can be
further divided into spatially constrained
queries, in which at least one predicate has
spatial properties, such as “list the hotels
within 10 miles”; and nonspatially con-
strained queries, which only contain pred-
icates without spatial properties (for exam-
ple, “list the hotels with a room rate below
$100”). Common operators in spatially-
constrained queries include intersect, contain,
within, and distance.2 Techniques for processing
general queries are more sophisticated
because the data types (scalar versus vec-
tor) and operations are different.

Valid scopes
Recall that in an LDIS a query result

depends on the location the query is con-
cerned with. For caching and indexing
purposes, it is useful for the LDIS to return
the result and its valid scope—that is, the
area or areas within which the query result
is valid. Valid scopes are important in
developing effective data placement,
indexing, cache replacement, and cache
invalidation methods.

A query returns a data instance, which
is represented as a tuple (query, result).
We use query to refer to a string encod-
ing the returned data item’s name and the
condition imposed on it. For example, if
hotel A is the nearest hotel within a par-
ticular area and the cheapest hotel within
a potentially different area, two data
instances exist: (nearest-hotel, A) and (cheapest-
hotel, A). For the general query, “return the
cheapest hotel that is next to a cinema,”
the data instance is represented as (cheapest-
hotel-next-to-a-cinema, C). Note that by this def-
inition, each data instance has only one
valid scope. 

In the geometric location model, a valid
scope often takes the shape of a polygon in
a 2D space. The symbolic location model
represents a valid scope as a set of logical
zone IDs. Figure 1 shows a four-cell sys-
tem with a wireless cell-based location
model. Suppose that the nearby restau-

66 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

 Restaurant A

 Restaurant B
Restaurant C

Cell 3 Cell 2 Cell 4 Cell 1 

Figure 1.Valid scope for a four-cell system
with a wireless cell-based location model. 



rants are A and B for cells 1 and 2 and
C for cells 3 and 4. Then, for the nearby
restaurant query, the valid scope of the
data instance (nearby-restaurant, {A, B}) is {1, 2};
the valid scope of the data instance (nearby-
restaurant, {C}) is {3, 4}.

Research issues
In a wireless system, users can access

data on demand, by broadcast, or by a
combination of the two. We can apply data
caching to each mode of access to improve
system performance. When adopting a
data access method for an LDIS, devel-
opers should consider resource availabil-
ity, cost, and performance. The choice of
method is also limited by what is available
from the underlying wireless communica-
tion infrastructure.

The different data access methods can
affect LDIS implementation significantly,
and each method brings with it various
technical issues. We discuss these issues
under a cellular architecture, which is illus-
trated in Figure 2.1 The system’s geo-
graphical coverage area is partitioned into
wireless cells. Each wireless cell is serviced
by a base station, which is a leaf node in
the fixed network. A mobile client connects
to a corresponding base station over wire-
less links to access relevant information
from the fixed server.

On-demand access
In on-demand access, a mobile client sub-

mits a request, consisting of a query and the

query’s associated location, to the server. The
server locates the appropriate data and
returns it to the mobile client either individ-
ually or by multicast. As the most funda-
mental data access mechanism, on-demand
access can be used for all types of queries.
We have identified four main issues in
on-demand access: data placement, data
replication, query scheduling, and indexing.

Data placement. The first issue developers
must face when dealing with location-
dependent data is where to place them in
the system architecture. In a centralized
solution, all data go into a central database
(for example, the root in Figure 2). Obvi-
ously, this scheme is unattractive in terms
of performance and robustness because the
database can become a bottleneck or a sin-
gle point of failure. 

Alternatively, we can use a distributed
placement solution. To do this, we store
the data in selected wired nodes, which
form a hierarchy. We then place a data
instance at the least common ancestor node
for the data instance’s valid scope. For
example, in Figure 2, we would store a
data instance whose valid scope falls into
cells A to D at wired node 1.

The two placement solutions represent
valid scopes and process queries differently.
A centralized solution cannot scale to a
large system because it is impractical for
the central database to store the valid
scopes of all data instances and serve
queries from all cells. In a distributed solu-

tion, the valid scopes are distributed across
many nodes, which eases the storage
demand on a single node. Furthermore,
data placement partly implies the valid
scopes. For example, in Figure 2, if we use
a cell-based symbolic location model, a
data instance placed in a base station
implies that it is valid for that cell and thus
no explicit valid scope need be stored. A
data instance stored at wired node 1
implies that the instance is valid in some
or all of cells A to D but invalid in cells E to
G. Thus, we can use a more compact rep-
resentation (for example, by using a
four-bit vector instead of a seven-bit vec-
tor to identify the valid scopes). We can
realize similar savings when using a geo-
metric model. In summary, a distributed
method results in a more uniform work-
load and more efficient querying; however,
managing valid scopes is more complex.

The data placement solution used also
affects query processing. In a centralized
solution, the centralized data server
processes all types of queries, although not
always efficiently. 

Although a distributed solution simpli-
fies processing of simple queries, it com-
plicates the processing of general queries.
To process a local simple query, the system
searches the servers from the correspond-
ing base station up the database hierarchy
until it finds the relevant instance. The
length of the path from the query point to
the solution is typically quite short. More-
over, the smaller candidate set and less
resource contention make query latencies
in distributed solutions shorter than in cen-
tralized solutions. The simplest way to
process a nonlocal simple query such as
“find the local news for New York City” is
to redirect it to the specified remote cell(s)
and then follow the same process used for
a local query. On the other hand, a general
query such as “find the nearest hotels with
a room rate below $100” can incur an

JULY–SEPTEMBER 2002 PERVASIVEcomputing 67

Wired node

Wireless cell

Base station

Fixed network

1

6 7 8 10 11 129

A B D GFEC

0

3 4 5

2

Figure 2. The cellular architecture for
LDIS systems. Wireless cells are serviced
by base stations and connected by wired
nodes through wireless links.



evaluation of the query on many nodes,
because, for example, the system might
need to process such a query at several dis-
tributed nodes and combine the interme-
diate results returned from the nodes to get
the final answer.

Further research should address the fol-
lowing questions: How should a system
process a general query? Is it better to fetch
the data from neighboring cells and then
process the query or dispatch the query to
neighboring cells and combine the results?
What query optimization techniques
will improve the communication cost and
response time? What is the granularity of
the neighboring cells from which to fetch
data or dispatch queries?

Data replication. Developers often use
data replication to improve reliability and
reduce costs, such as network traffic and
response time. Using data replication, the
system creates one or more copies of the
data, which it places at different locations
in the network. A key issue in data repli-
cation is placement—that is, what are the
replication units, how many replicas
should the system create, and where should
it put them? Some studies have addressed
these issues given network topology and
access patterns.3 To apply these solutions

to the LDIS replication problem, we must
estimate the access patterns for each data
instance at the cell level. This is relatively
easy for on-demand access but difficult for
broadcast data.

In addition, for location-dependent data,
access patterns might be time dependent
and periodically repetitive. For instance,
people tend to access local weather in the
morning and news in the evening. Due to
time differences between areas, the access
pattern probably slowly migrates from one
cell to another. Existing automatic replica
migration protocols can adapt to user
access behavior changes in distributed sys-
tems and Internet environments.4 We do
not yet know, however, whether these pro-
tocols would work well for location-depen-
dent data.

Query scheduling. Query scheduling deter-
mines query-processing order. In previous
work, we sought to improve the aver-
age-case queuing delay on the server.5 User
mobility poses a new challenge for query
scheduling. Often, a server will return a
query result to the cell from which the
query was issued after the mobile user has
left, as Figure 3 shows.

Although this might not be a big prob-
lem for nonlocal queries—the change of

user location only affects the path along
which the answer is returned—it is an issue
for local queries. If the user’s location has
changed when an answer arrives, the
answer might not be valid. The user could
reject the invalid answer or require the
server to reprocess the query for its current
location. Neither case is desirable. In the
former, user satisfaction would be poor; in
the latter, both network and server perfor-
mance would suffer. Thus, a server should
first schedule the queries that will leave the
current answer’s valid scope (to avoid
reprocessing the query) or the current cell
(to avoid rerouting the answer) soonest.
Because mobile users can move freely,
however, it is often difficult to predict if
and when they will leave a certain area.
Future work will investigate optimal
query-scheduling algorithms for different
performance objectives.

Indexing. Data are stored on the servers,
which are typically administered by data-
base management systems. Developers
often use disk indexing—a process in
which the server precomputes index
information and stores it with the data
to allow index searching—to enhance
query performance.6

For simple queries, we can build an

68 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

(b)(a)

Query is 
delivered to 
the server

Server

Issue a query

Answer is 
returned to 
the client

Move

Fixed network

1

6 7 8 10 11 129

A B D GFEC

0

3 4 5

2

Server
Fixed network

1

6 7 8 10 11 129

A B D GFEC

0

3 4 5

2
Wired node

Wireless cell

Base station
Answer
rerouting

Client Client

Figure 3. Answer rerouting. A client (a) issues a location-dependent query in cell A, but has (b) already moved to cell C when the
answer arrives. 



index for each query type (“nearest restau-
rant” is one query type, for example). We
abstract the indexing problem as follows:
Given the valid scopes of all data instances
of a certain query type, how can we index
them to allow efficient processing of loca-
tion-dependent queries? In the symbolic
location model, we can construct an index
array to map each symbolic area (such as
a wireless cell) to a valid data instance in
the corresponding area. 

In the geometric location model, the
problem is more challenging. Traditional
spatial index structures often approximate
spatial objects using simpler shapes, such
as minimal bounding rectangles (MBRs),
before the server inserts them in the index.6

Linking geometric valid scopes renders tra-
ditional index structures inefficient, because
after approximation, overlapping of MBRs
leads to poor search performance. 

Figure 4 gives an example of traditional
indexing. Figure 4b shows the MBRs R1,
R2, R3, and R4 of the four valid scopes P1,
P2, P3, and P4 in Figure 4a. Figure 4d

shows the corresponding R*-tree index.
Given a query point p, as in Figures 4b
and 4c, the search first reaches the leaf
node R1 through the root and R5. Because
p is outside P1, the server rolls the search
back to R2. It is also outside P2, so it next
rolls the search back to R6. Finally, it
obtains the correct answer in node R3.
Even in this simple example, overlapping
among sibling MBRs causes many false
searches and deteriorates the overall search
time. We expect future work to address this
issue and to develop sophisticated index
structures for point queries.

Overlapping of MBRs is an issue for spa-
tial range queries (for example, “download
the traffic report within 10 miles”) as well.
Future work could investigate efficient
index structures supporting various types
of location-dependent queries.

Broadcast
In this method, data are broadcast on a

public wireless channel. When a mobile
client receives a query from its user, it tunes

into the broadcast channel and filters out
the data according to the query and its
associated location. Broadcast lets an arbi-
trary number of users simultaneously
access data.7 We envisage many LDISs,
such as regionwide traffic reports and
tourism information, using broadcast to
disseminate information to the rapidly
increasing mobile population. For general
queries, however, broadcast is inefficient
because such queries require complex
query-processing techniques, such as join
of two relations. We thus focus on simple
queries and related issues.

Indexing on air. Air indexing is often used
to save battery power, which is scarce for
mobile clients.8 In air indexing, the server
precomputes index information and inter-
leaves it with the data on the broadcast
channel. Consequently, by searching the
index, a mobile client can predict the
desired data’s arrival time. Thus, it can stay
in power-saving mode and tune into the
broadcast channel only when the requested
data arrives. The drawback is that the addi-
tional indexing information makes the
broadcast cycles longer.

Two aspects distinguish air indexing
from disk indexing. 

• In air indexing, the index size relates to
access latency. Thus, when evaluating an
index structure, index size, in addition
to search performance, is a big concern. 

• Air indexing only allows sequential
access, making some traditional indices
and search algorithms inefficient. 

Consider a nearest-neighbor search.
Suppose we have three index entries: the
root, R1, and R2 (see Figure 5a). Further
suppose that given some query point, we
can achieve better performance by access-
ing index entries in the order root, R2, R1.

JULY–SEPTEMBER 2002 PERVASIVEcomputing 69

3P P4

42

2

1R 3R R

R 5 6R

R

1P P

To data buckets

3

4

2

1

65

1

2

3

R

R

R

R

p

RR

p

P

P

P

P4

(b)(a)

(d)(c)

Figure 4. Traditional indexing: (a) valid
scopes of data instances for a certain
query type, (b) minimal bounding 
rectangles (MBRs) of the valid scopes, 
(c) MBRs in the index’s internal nodes,
and (d) R*-tree index structure. 



However, if we broadcast the index on the
wireless channel in the order root, R1, R2,
the original search order will cause a signif-
icant access delay because after the search
accesses R2, it has to wait for the next index
broadcast to access R1 (as Figure 5b illus-
trates). Ideally, the client would prefetch
R1, but this would require a scheme that
balances the amount of prefetched data
with power and memory consumption.
Therefore, a good index structure for
broadcasting location-dependent data
should keep the index as small as possible
while achieving a good search performance
under sequential access.

Several indexing techniques for the
wireless broadcast channel exist in the lit-
erature. The proposed techniques serve
equality-based queries by directing them
to right positions using a hashing func-
tion9 or filtering out irrelevant informa-
tion based on the signature approach.10

However, we cannot apply these studies to
location-dependent query processing that
involves spatial queries (such as point
queries and range queries) other than
equality-based queries. Tomasz Imielinski
and his colleagues investigated interleav-
ing the index and the data on the linear
wireless channel to optimize tuning time
while maintaining a short access latency.8

Other work could investigate efficient
index structures to support access of loca-
tion-dependent data on the linear wireless
broadcast channel.

Broadcasting strategies. We see two basic
broadcasting strategies for providing loca-
tion-dependent data to mobile users: 

• A single wireless channel covers the whole
service area. Mobile clients use the broad-
cast global index to locate desired data. 

• The wireless channel is divided into sub-
channels, and different cells are assigned
different subchannels. Each cell broad-
casts only the data of interest to its local
mobile users, so the amount of data and
hence the broadcast index size is smaller.
This strategy will have a better access
performance if location-dependent que-
ries exhibit high locality.

We use a simple example to illustrate the
performance of these two strategies. Sup-
pose that a system consists of three cells, as
in Figure 6, and that the available overall
bandwidth is 3 kbits per second. Frequency
can be reused in cells 1 and 3 because they
are not adjacent. In the first strategy, the
three cells merge into a larger cell, and the
system assigns the new cell a bandwidth of
3 kbps. In the second strategy, the system
assigns each cell a bandwidth of 1.5 kbps.
There are three data instances, each with 1

kbit. We also assume that the system uses
flat broadcast. If the access probabilities for
the three instances are the same (that is, 1/3)
in all three cells, the expected waiting time
is 1/2 × (1 + 1 + 1)/3 = 0.5 for the first strat-
egy and 1/2 × (1 + 1 + 1)/1.5 = 1.0 for the
second strategy. 

However, if cells 1, 2, and 3 only access
instances 1, 2, and 3, respectively, each cell
broadcasts only one instance with the sec-
ond strategy. The first strategy has the same
waiting time (that is, 0.5), whereas the
waiting time for the second strategy is 
1/2 × 1/1.5 = 0.33. In a cellular mobile sys-
tem, local optimization and frequency
interference and reuse complicate this
issue. Researchers could pursue further
work in this direction.

Data caching
In the data-caching method, data is cached

at the mobile client. When the client receives
a query, it first searches its cache. If there is
a valid copy in the cache, it returns an answer
immediately. If not, the client attempts to
obtain the data item from the server through
on-demand access or broadcast. 

Client data caching is particularly im-
portant in mobile environments. In addi-
tion to improving access latency, data
caching can save power due to lower data
transmission and improve data availabil-
ity in case of disconnection. 

Location-dependent cache invalidation.
Maintaining cache consistency is a major
issue in data caching. In general, cached
data become obsolete if they are updated

70 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

R1 R2 R1 R21o 3o 2o 4o 1o 3o 2o 4o

Broadcast cycle

Data Data

R2R1

Root

(b)(a)

431o 2o o

R 1 2R

o

To data buckets

Figure 5. Sequential access in wireless broadcasts: (a) the index contains three entries; (b) the search accesses the index entries
sequentially.

1 2 3

Figure 6. Three cells with possible
frequency reuse in cells 1 and 3.



on the data server. We call such invalida-
tion time-dependent cache invalidation. In
LDISs, location-dependent cache invalida-
tion is also an issue. In location-dependent
cache invalidation, cached data become
invalid when a mobile user changes loca-
tion. For example, a mobile user queries the
nearby restaurant at location A and caches
the answer under “nearby restaurant.”
Later, the user moves to location B and
issues the same query. The cached data
might or might not be valid at location B.
In the example in Figure 7, when the user
moves from cell 2 to cell 3, the cached result
for the query becomes invalid. In addition,
data updates on the server can result in
out-of-date location-dependent data such
as traffic reports. Determining how to effec-
tively perform both time- and location-
dependent invalidation is a new area to be
explored.

A common way to perform loca-
tion-dependent cache invalidation is to
attach the valid scope to a data instance
returned to the client. The client caches the
data as well as its valid scope so it can use
the cached valid scope for later validity
checking.11 Hence, an important aspect of
location-dependent invalidation is identi-
fying and representing the valid scopes,
which in turn depend on the location
model used. We have proposed different
schemes for the symbolic location mode11

and the geometric location model.12 How-
ever, current work is limited to simple
queries.

Cache replacement and prefetching.
Because a mobile client has only limited
cache space, cache replacement is another
issue. In traditional cache management,
access probability is considered the most

important factor affecting cache perfor-
mance. A probability-based policy involves
replacing the data with the least access
probability. In LDISs, there are two addi-
tional factors for local queries: data dis-
tance and valid scope area.

Data distance refers to the distance
between a mobile client’s current location
and a data instance’s valid scope. When a
data instance’s valid scope is far from the
client’s current location, the data will have
a smaller chance at reusability because it
will be some time before the client re-
enters the valid scope area, and the data
is useless before the user reaches the valid
scope area. In this respect, we should favor
ejecting the “farthest” data during replace-
ment. However, this reasoning is invalid
in two cases: 

• If the client continues to move away
from a location, this location is less likely
to be revisited even though it is very close
to the client’s current location. Thus, a
directional data distance would make
more sense.

• With random movement patterns, the
time it takes the client to traverse a dis-
tance is not always directly proportional
to the distance. 

In summary, data distance can affect
cache performance for local queries,
depending on the mobile client’s movement
and query patterns.

Valid scope area refers to the geometric
area of the data instance’s valid scope. It
most accurately estimates access probabil-
ities for different data instances of the same
item when the user movement pattern is
not known a priori. That is, the larger the
data’s valid scope area, the higher the prob-

ability that the client requests this data.
This is because generally speaking, the
client has a higher chance of being in large
regions than in small ones. Thus, if we con-
sider this factor only, it seems we should
favor caching the data instances with larger
valid scopes.

Manhattan Distance and Further Away
Replace (FAR) are proposed data-dis-
tance-based cache replacement poli-
cies.13,14 In these two policies, the data
instance that is farthest from the client’s
current location is removed during replace-
ment. In a recent study, we proposed two
cache replacement policies that consider
the valid scope area and data distance and
combine them with access probability.12

In data prefetching, data is preloaded in
the client cache for possible later use. For
instance, if a user is going to pass a super-
market, the cache manager may prefetch
shopping information. Given a limited
cache size, the system requires intelligent
prefetching to maximize the cache usage
based on the user’s speed and orientation.15

Unfortunately, as with cache invalidation,
existing work on cache replacement and
prefetching only investigates simple
queries. We expect that future studies will
explore cache management issues for com-
plex location-dependent queries.

The constraints of mobile com-
puting environments, the spa-
tial property of location-depen-
dent data, and user mobility

have opened new research problems for
data management in LDISs. The issues pre-
sented in this article, while interesting, are
by no means exclusive. We hope this arti-
cle will stimulate discussion on LDIS data
management issues. Many research oppor-
tunities in other aspects of LDISs, such as
issues related to networking, and the pro-
vision of multimedia content, remain.

JULY–SEPTEMBER 2002 PERVASIVEcomputing 71

Nearby restaurants: A and B Nearby restaurants: A and B 

Invalid

Restaurant A

Restaurant B
Restaurant C

Cell 3 Cell 2 Cell 4 Cell 1 

Move

Figure 7. Location-dependent cache
invalidation. When the mobile user
moves from cell 2 to cell 3, the results
from query “find the nearest restaurant”
are no longer valid.



ACKNOWLEDGMENTS
We thank the guest editors and the anonymous
reviewers for their valuable comments and sugges-
tions, which have improved the quality of this arti-
cle. The Research Grant Council, Hong Kong SAR,
China supported this research under grant number
HKUST6079/01E.

REFERENCES
1. D. Barbara, “Mobile Computing and Data-

bases: A Survey,” IEEE Trans. Knowledge
and Data Eng., vol. 11, no. 1, Jan./Feb.
1999, pp. 108–117.

2. A.Y. Seydim, M.H. Dunham, and V.
Kumar, “Location Dependent Query Pro-
cessing,” Proc. 2nd ACM Int’l Workshop
Data Eng. for Wireless and Mobile Access
(MobiDE 01), ACM Press, New York,
2001, pp. 47–53.

3. J. Xu, B. Li, and D.L. Lee, “Placement Prob-
lems for Transparent Data Replication
Proxy Services,” to be published in IEEE J.
Selected Areas in Comm., 2002.

4. O. Wolfson, S. Jajodia, and Y. Huang, “An
Adaptive Data Replication Algorithm,”
ACM Trans. Database Systems, vol. 22, no.
2, June 1997, pp. 255–314.

5. B. Zheng and D.L. Lee, “Processing Loca-
tion-Dependent Queries in a Multicell Wire-
less Environment,” Proc. 2nd ACM Int’l
Workshop Data Eng. for Wireless and
Mobile Access (MobiDE 01), ACM Press,
New York, 2001, pp. 54–65.

6. V. Gaede and O.Gunther, “Multidimen-
sional Access Methods,” ACM Computing
Surveys, vol. 30, no. 2, June 1998, pp.
170–231.

7. J. Xu, D.L. Lee, and B. Li, “On Bandwidth
Allocation for Data Dissemination in Cel-
lular Mobile Networks,” to be published in
J. Wireless Networks, ACM/Kluwer, 2002.

8. T. Imielinski, S. Viswanathan, and B.R.
Badrinath, “Data on Air: Organization and
Access,” IEEE Trans. Knowledge and Data
Eng., vol. 9, no. 3, May/June 1997, pp. 353-
372.

9. T. Imielinski, S. Viswanathan, and B.R.
Badrinath, “Power Efficiency Filtering of
Data on Air,” Proc. 4th Int’l Conf. Extend-
ing Database Technology (EDBT 94),
Springer, Heidelberg, Germany, 1994, pp.
245–258.

10. W.C. Lee and D.L. Lee, “Using Signature
Techniques for Information Filtering in

Wireless and Mobile Environments,” J. Dis-
tributed and Parallel Databases, vol. 4, no.
3, July 1996, pp. 205–227.

11. J. Xu et al., “Cache Coherency in Loca-
tion-Dependent Information Services for
Mobile Environments,” Proc. 1st Int’l
Conf. Mobile Data Access (MDA 99),
Springer, Heidelberg, Germany,1999, pp.
182–193.

12. B. Zheng, J. Xu, and D.L. Lee, “Cache
Invalidation and Replacement Strategies for
Location-Dependent Data in Mobile Envi-
ronments,” to be published in IEEE Trans.
Computers, 2002.

13. S. Dar et al., “Semantic Data Caching and
Replacement,” Proc. 22nd Int’l Conf. Very
Large Data Bases (VLDB 96), Morgan
Kaufmann, San Fransisco, 1996, pp.
330–341.

14. Q. Ren and M.H. Dunham, “Using Seman-
tic Caching to Manage Location Dependent
Data in Mobile Computing,” Proc. 6th
Ann. Int’l Conf. Mobile Computing and
Networking (MobiCom 2000), ACM Press,
New York, 2000, pp. 210–221.

15. U. Kubach and K. Rothermel, “Exploiting
Location Information for Infostation-Based
Hoarding,” Proc. 7th Ann. Int’l Conf.
Mobile Computing and Networking
(MobiCom 01), ACM Press, New York,
2001, pp. 15–27.

For more information on this or any other comput-
ing topic, please visit our Digital Library at http://
computer.org/publications/dlib.

72 PERVASIVEcomputing http://computer.org/pervasive

C O N T E X T - A W A R E  C O M P U T I N G

the AUTHORS

Dik Lun Lee is a professor in the Department of Computer Science at the Hong
Kong University of Science and Technology. His research interests include document
retrieval and management; discovery, management, and integration of information
resources on the Internet; and mobile and pervasive computing. He received his MS
and PhD in computer science from the University of Toronto. Contact him at the
Dept. of Computer Science, Hong Kong Univ. of Science and Technology, Clear
Water Bay, KLN Hong Kong; dlee@cs.ust.hk.

Wang-Chien Lee is an associate professor in the Computer Science and Engineer-
ing Department at Pennsylvania State University. His research interests include
mobile and pervasive computing, data management, and Internet technologies. He
received a PhD in computer and information science from the Ohio State University.
He is a member of the IEEE Computer Society, IEEE Communications Society, and
the ACM. Contact him at the Dept. of Computer Science and Eng., Pennsylvania
State Univ., University Park, PA 16802; wlee@cse.psu.edu.

Jianliang Xu is an assistant professor in the Department of Computer Science  at
Hong Kong Baptist University. His research interests include mobile and pervasive
computing, location-aware computing, Internet technologies, and wireless net-
works. He received a BEng in computer science and engineering from Zhejiang Uni-
versity, Hangzhou, China, and a PhD in computer science from Hong Kong Univer-
sity of Science and Technology. Contact him at the Dept. of Computer Science,
Hong Kong Baptist Univ., Kowloon Tong, KLN Hong Kong; xujl@cs.ust.hk.

Baihua Zheng is a PhD candidate in the Department of Computer Science at the
Hong Kong University of Science and Technology. Her research interests include
mobile computing and spatial databases. She received a BEng in computer science
and engineering from Zhejiang University, Hangzhou, China. Contact her at the
Dept. of Computer Science, Hong Kong Univ. of Science and Technology, Clear
Water Bay, KLN Hong Kong; email baihua@cs.ust.hk.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


