
EASE: An Energy-Efficient In-Network Storage
Scheme for Object Tracking in Sensor Networks

Jianliang Xu
Department of Computer Science

Hong Kong Baptist University
Hong Kong

xujl@comp.hkbu.edu.hk

Xueyan Tang
School of Computer Engineering

Nanyang Technological University
Singapore

asxytang@ntu.edu.sg

Wang-Chien Lee
Department of Computer Science & Engineering

Penn State University
University Park, PA
wlee@cse.psu.edu

Abstract— Energy efficiency is one of the most critical issues
in the design of wireless sensor networks. Observing that many
sensor applications for object tracking can tolerate a certain
degree of imprecision in location data of tracked objects, this
paper studies precision-constrained approximate queries that
trade answer precision for energy efficiency. We develop an
Energy-conserving Approximate StoragE (EASE) scheme to ef-
ficiently answer approximate location queries by keeping error-
bounded imprecise location data at some designated storage node.
The data impreciseness is captured by a system parameter, i.e.,
approximation radius. We analyze the performance of EASE
in terms of message complexity and derive the optimal setting
of approximation radius. We show via extensive simulation
experiments that, as compared to a conventional approach, the
EASE scheme cuts down the network traffic by up to 96% and,
in most cases, prolongs the network lifetime by a factor of 2−5.

I. INTRODUCTION

With the rapid development of wireless communications and
electronics technologies [1], [2], wireless sensor networks have
emerged as a promising solution for a wide range of civil and
military applications [3]–[8]. A sensor network is constructed
of a large number of tiny sensor nodes scattered in an area of
interest. These sensor nodes are equipped with data processing,
sensing, and communication capabilities. They are usually
powered by battery. However, replacing battery is not only
costly but impossible in many situations (e.g., in a hard-to-
reach area). Thus, energy efficiency is a critical consideration
in the design of large-scale sensor networks.

In this paper, we consider object tracking sensor networks,
one of the most important classes of sensor networks. Ex-
ample applications of object tracking include wildlife animal
monitoring in remote areas and intrusion detection in military
sites. Users in these applications are interested in location
queries, which return locations of tracked moving objects.
There have been significant research efforts towards energy-
conserving object tracking sensor networks (e.g., [9]–[12], see
Section II for a detailed discussion). Most of them aimed at
reducing the number of sensing nodes activated for tracking
an object and/or reducing the location updating traffic in
providing accurate answers to location queries.1

1The accuracy is based on best effort since the object location cannot be
100% accurate due to network delays and discrete sampling instances, etc.

Imprecision is an inherent property of object tracking sen-
sor networks. The state-of-the-art location positioning tech-
nologies such as GPS and triangulation are not error-free.
Moreover, due to data transfer delay and constant object
mobility, it is almost impossible for a user to obtain the
precise position of an object. In addition, many applications
are willing to tolerate a certain degree of imprecision or
error in data due to either the application nature or the high
resource constraints in sensor networks. As such, here we take
a different approach to improve energy efficiency by exploiting
the tradeoff between data quality and energy conservation. In-
stead of always feeding the most accurate answers to location
queries, we investigate the problem of providing precision-
constrained approximate locations based on user tolerances. In
our model, an approximate location query is specified by an
object identifier and a precision constraint. The sensor network
responds with a location bounded by the required precision.

In this paper, we develop an Energy-conserving Approxi-
mate StoragE (EASE) scheme to efficiently answer approxi-
mate location queries. Most existing studies assumed central-
izd/designated storage for data collection and query answering
[9], [13], [14]. In contrast, EASE innovatively maintains two
versions of object location data in the network. High-precision
data is kept at some local storage node close to a moving
object in order to reduce long-distance traffic resulted from
remote updates. Meanwhile, the same data with a lower
precision is replicated at some designated storage node which
is known to users in order to reduce the querying traffic.
Within the EASE scheme, the imprecision of location data at
the designated storage node is bounded by an approximation
radius, which specifies a geographical area in which the low-
precision location data is considered to be valid. In other
words, a location update due to object movement will not
be sent to the designated storage node if the object remains
within the approximation radius. Correspondingly, a query
is answered by the designated storage node if its precision
constraint is weaker than that specified by the approximation
radius. Otherwise, the query is forwarded to the local storage
node for resolution. As such, the EASE scheme optimizes
the network performance (in terms of reducing network traffic
and energy consumption) by reducing both the updating and



querying traffic. This is achieved by properly setting the
approximation radius in order to minimize the overall traffic.
The optimal setting of approximation radius is mathematically
derived. We show via extensive simulation experiments that
the EASE scheme with the optimal setting of approximation
radius reduces the network traffic by up to 96% from a
conventional approach and that, in most cases, prolongs the
network lifetime by a factor of 2−5.

We summarize the contributions made in this paper as
follows:

• To the best of our knowledge, this is the first study on
data dissemination of object tracking sensor networks that
attempts to address energy efficiency by exploiting the
trade-off between data quality and energy conservation.

• An energy-efficient in-network storage scheme, called
EASE, is proposed to efficiently answer precision-
constrained approximate location queries.

• The setting of the proposed storage scheme is analyzed
and optimized through a theoretical study.

• An extensive performance evaluation is conducted to
evaluate the performance of the proposed EASE scheme.
The results demonstrated the superior performance of
EASE over the existing approach.

The rest of this paper is organized as follows. Section II
reviews the related work. The system model is described in
Section III. Section IV presents the proposed EASE scheme
in detail. We analyze the performance of EASE and derive
the optimal setting of approximation radius in Section V.
A performance evaluation is reported in Section VI. Finally,
Section VII concludes the paper.

II. RELATED WORK

Energy efficiency is a major concern of sensor networks.
There are two research directions in improving the lifetime of
an object tracking sensor network. One is to reduce energy
consumption in the sensing component [11], [15]. The basic
idea is to activate only the essential sensor nodes needed
to track the moving objects while leaving the other nodes
in a power-saving mode. In [16], [17], the sensor nodes are
organized into a cluster-based architecture such that a cluster
head calculates object location based on signal readings from
its slave nodes. Based on these work, we assume object
location can be obtained in certain detecting cluster head and
only focus the task on where and how to store the location data
in support of energy-efficient approximate location queries.

The other direction, aligned with ours, is to improve energy
efficiency by reducing network traffic in disseminating location
updates. Goel and Imielinski [9] proposed a prediction-based
monitoring paradigm. A base station collects sensor readings
and periodically generates predictions to be sent back to
the sensor nodes. A sensor node reports a location update
only when its reading differs from the predicted. Xu et
al. [13] suggested a dual-prediction scheme where a fixed
prediction model is deployed at both the base station and
the sensor nodes. Kung and Vlah [14] observed the existence

of movement locality and proposed a publish-and-subscribe
tracking method to reduce the updating traffic. While there has
been research on the trade-off between energy conservation
and quality of tracking [10], [18], the trade-off has not been
investigated in the dissemination of location data, which is the
topic of this paper.

Data storage models have been extensively studied for sen-
sor networks. In particular, in-network storage is advocated by
most of the recent research proposals. In the TinyDB project,
Madden et al. [19] presented pull-based acquisitional query
processing (ACQP), where sensors control where, when, and
how often data is acquired and delivered to query processing
operators. The Cougar project [20] employed a hybrid pull-
push model, in which sensed data is pushed to some selected
view nodes, from where the data can be pulled when queries
are issued. Ratnasamy et al. [21] proposed an in-network
data-centric storage model: the sensed data is pushed to the
sensor node nearest to some geographical location hashed
from a predefined key. Only equality queries are supported
by the data-centric storage. Zhang et al. [22] suggested storing
sensed data locally. A centric ring-based index was proposed to
facilitate query processing. Liu et al. [23] recently developed a
“comb-needle” model to support one-shot queries in the sensor
network. Unfortunately, none of these previous work has
studied approximate data storage to improve energy efficiency.

Han et al. [24] is a pioneer to study approximate queries
in sensor networks. They developed an efficient data collec-
tion protocol to fulfill the application-specified data quality
while minimizing the energy consumption of sensor nodes.
However, the solutions developed in [24] are not applicable to
object tracking applications due to several reasons. First, [24]
considered a simple single-hop system where all sensor nodes
can send data directly to the server. In contrast, we consider a
multi-hop network, which relies on routing protocols to relay
data among sensor nodes. Data dissemination in a multi-hop
system is much more complicated than that in a single-hop
system. Second, [24] assumed that the phenomenon being
sensed is stationary, whereas we are interested in tracking
moving objects which change their locations (and hence local
storage nodes) from time to time. Moreover, the cost of
location updates/queries depends on the location of the moving
object. These above differences make our system modeling
and performance analysis completely different from [24].
Precision-constrained queries have also been studied for in-
network data aggregation [25], which has a different focus
from object tracking sensor networks.

III. SYSTEM MODEL

We consider a sensor network consisting of a large number
of stationary sensor nodes deployed in some operational area.
Each sensor node is aware of its own location, through GPS
for example. We assume that the nodes organize themselves
into clusters and that every cluster has a cluster head. A
cluster head is more powerful than an ordinary sensor node.
It is equipped with some local storage to store data, and is



also capable of communicating with other cluster heads to
exchange data. The sensor nodes in a cluster can work together
to recognize and track the objects in their vicinity, e.g., a
cluster head can determine object location based on signal
readings from its slave nodes [16], [17]. Location tracking is
an important area of research in the sensor applications, but out
of scope of our study. We also assume that the moving objects
being tracked are identifiable (i.e., a unique object identifier
is assigned to each object). Since this paper focuses on the
issues of energy-efficiently storing and disseminating object
location data in support of approximate location queries rather
than the object recognition and location tracking techniques,
we do not consider the energy cost of sensing, data fusion,
and object tracking in this paper. We shall focus ourselves on
communication amongst cluster heads only. Unless explicitly
specified, a sensor node refers to a cluster head for the rest of
this paper.

Approximate Location Queries. The sensor network under
consideration supports a large number of users making one-
shot queries for the locations of moving objects. The queries
can be made via a sensor node (known as querying node) from
anywhere in the network (e.g., from the mobile devices such
as PDAs held by the users). Each approximate location query
is specified by a tuple <object id, p>, where object id is the
identifier of the target object, and p is the precision constraint
in object location that the query can tolerate.2

Centralized Storage (CS) scheme. The sensor nodes sample
and decide the objects’ locations at a fixed sampling rate.
Intuitively, the object location data can be stored at 1) the
sensor node (cluster head) detecting the object; or 2) a
centralized storage node. If the location data is stored locally
at a detecting node, a query that wants to find the location
of some object has to flood the whole network. Obviously,
this scheme is not cost efficient. In contrast, if the centralized
storage (CS for short) scheme is adopted in the system, any
location update of a moving object is sent to some designated
storage node, which could be a centralized base station with
the external storage or an in-network sensor node with the data
centric storage (DCS) [21] (see Figure 1(a)).3 When a query
is issued for an object, it is sent to the corresponding centric
storage node, which would return the result to the querying
node. However, the high updating traffic incurred is a major
deficiency of the CS scheme. In the next section, we are going
to propose a hybrid in-network storage scheme that achieves
the best overall performance by balancing the querying cost
and updating cost for approximate location queries. Without
loss of generality, we shall assume for the rest of this paper that

2For simplicity, we assume in this paper that p is the error tolerance in
addition to the unavoidable system error such as inaccuracy of the positioning
technique. In practice, p can be determined by the user’s error tolerance minus
the maximum system error.

3The centric storage node of an object is determined by applying a pre-
defined hash function H(·) (e.g., Geographic Hash Table (GHT) [21]) on
the object identifier. Thus, the centric storage nodes might be different for
different objects.
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Fig. 1. Illustration of Query Processing Procedure

the in-network DCS [21] is employed for centralized storage.

IV. EASE: ENERGY-CONSERVING APPROXIMATE

STORAGE

This section proposes an Energy-conserving Approximate
StoragE (EASE) scheme that takes advantage of the error
tolerances of queries. We first give an overview of the EASE
scheme in Section IV-A. Section IV-B describes the location
updating protocol working with EASE. Finally, we discuss
how EASE handles node failures and message losses in
Section IV-C.

A. Overview

Consider a moving object. Since approximate queries do
not always require high-precision location data, the EASE
scheme attempts to cut down the updating traffic by storing
an imprecise version of the object location data at the centric
storage node. Specifically, EASE stores an approximate loca-
tion bounded by a certain error at the centric storage node.
The error bound is represented by an approximation radius. A
stored location o with an approximation radius of r means that
the object must be in an approximation area defined by a circle
with o as the center and r as the radius. The high-precision
location data of the tracked object is kept at a local storage
node close to the object’s current position (to be defined in the
next subsection). The local storage node, dynamically adapting



to the object mobility, aims at reducing the cost of remote
updates.

In the proposed EASE scheme, a centric storage node plays
two important roles: 1) a storage server of low-precision
location data for approximate queries; and 2) an index server
that keeps track of the local storage nodes (without this
information, the local storage nodes can only be found by
flooding). Thus, a centric storage node maintains two items for
an object: an approximate location of the object and the local
storage node of the object. The former is used to answer the
queries with less stringent precision constraints while the latter
is used to forward the queries with more stringent precision
constraints. More specifically, upon receiving an approximate
location query with a precision constraint p, the centric storage
node checks the current approximation radius r of the stored
location. If p ≥ r, the stored location satisfies the precision
requirement and, hence, it is returned to the querying node
immediately (as shown by Case a in Figure 1(b)). If p < r,
the stored location is inadequate in precision. Consequently,
the query is forwarded to the local storage node and the result
is returned from that node (as shown by Case b in Figure 1(b)).

B. Location Updating Protocol

As discussed above, there are two storage nodes associated
with a moving object, i.e., a fixed centric storage node and
a dynamically changing local storage node. The two items
(i.e., approximate object location and local storage node)
maintained by the fixed centric storage node are updated
independently. The approximate location needs to be updated
whenever the object moves out of the approximation area
(defined in the last subsection). The local storage node, on
the other hand, is associated with a coverage area. All sensor
nodes in the coverage area are aware of the local storage
node and send location updates of the object to it at sampling
instances. When the object moves beyond the coverage area,
a new local storage node is selected and, hence, the item
maintained by the centric storage node has to be updated. To
reduce network traffic, we define the coverage area the same
as the approximation area so that the updates to the two items
at the centric storage node can be made in a single message.
Thus, at each sampling instance, if the detected object location
is within its current approximation area, the detecting node
sends a local update to the local storage node as shown in
Figure 2(a). Otherwise, if the object moves out of the current
approximation area, the detecting sensor node becomes the
new local storage node. It sends a remote update to the centric
storage node (see Figures 2(b) and 2(c)).

Upon receiving a remote update, the centric storage node
updates the location as well as the local storage node of the
object. If the approximation radius is updated dynamically, the
centric storage node calculates a new radius r′ and returns it
to the new local storage node; otherwise the default radius
is used as the new radius r′. A new approximation area is
formed as a circle centered at the object’s current location.
To notify the sensor nodes in this area of the new local
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Fig. 2. Location Update Dissemination with EASE

storage node, the detecting node sends out a geocast message
(see below for how it works) [27]. If the detecting sensor
node is covered by the previous local storage node and
thus knows the obsolete approximation area,4 it also sends
another geocast message to the sensor nodes in the obsolete
approximation area to invalidate the recorded local storage
node (see Figure 2(b)). Otherwise, if the detecting node is
not aware of the previous local storage node, it informs the

4The sensor nodes covered by a local storage node include all nodes inside
the approximation (coverage) area as well as those immediate neighbors; this
will become more clear when we discuss goecasting in the next paragraph.



centric storage node about this in the remote update and asks
the centric node to invalidate the obsolete approximation area
using geocast (see Figure 2(c)).

A geocast message takes the parameters of a geographical
area to receive the message and the type of action (either
notification of a new approximation area or invalidation of
the obsolete approximation area). For notification geocast, the
identifier of the new local storage node is also included in
the message. A geocast works in two phases. In the first
phase, the message is routed towards the geographical area
using some geographical routing protocol such as GPSR [26].
If the current sensor node is already within the geographical
area, the first phase is not needed. After reaching the target
geographical area, the message is flooded to all sensor nodes
in the area through broadcast. When a sensor node receives
such a broadcast message, if it is within the target geographical
area, the sensor node further broadcasts the message to all its
neighbors. Otherwise, if the receiving sensor node is outside
the target geographical area, no further action is taken. In this
way, a geocast message will be received by all the nodes within
the geographical area as well as their immediate neighbors.

C. Discussion

Wireless sensor networks are unreliable and error-prone in
nature. In this section, we discuss how EASE deals with node
failures and message losses.

The EASE scheme relies on a centralized base station
or data centric storage (DCS) to store imprecise location
data. To address reliability and availability, DCS enhances the
centric storage nodes by replication [21], [28]. EASE stores
high-precision location data at local storage nodes, which
can be replicated for performance enhancement using similar
techniques employed by DCS [21], [28].

Due to a high cost of reliable communication, message
routing and transmission often work in a best-effort manner for
sensor networks. If a message is lost during transmission, it is
costly to recover it at the networking layer. Nevertheless, we
can remedy it at the application layer. For query messages, we
set a patience value (i.e., twice of the round trip time between
two farthest nodes). If a query is not answered within the
patience time, the user application may assume the previous
query has lost in the network and resend the query. For update
messages, we need not do anything for message losses since
this only introduces a little imprecision in object locations.
Note that the problem of query and update message losses is
faced by any data dissemination schemes including CS and
EASE.

There are two types of geocast messages (i.e., invalidation
and notification) specific to EASE. If a notification message is
lost, the sensor network still functions properly. In the worst
case, if a sensor node is not notified of the local storage node,
upon detecting the object, it will send a remote update to
the centric storage node (and become the new local storage
node) rather than sending the update to the local storage node.
However, failing to invalidate an obsolete approximation area

Notation Description
n number of sensor nodes
λ query rate
µ sensor sampling rate
Cqn cost of answering a query by centric storage
Cqf cost of answering a query by local storage
Cur cost of a remote update
Cul cost of a local update
r approximation radius, i.e., the error bound
f sensor node density
pm maximum imprecision
C(r) overall complexity with approximation radius of r
pqf (r) probability of not being satisfied by centric storage
η(r) remote update rate
d moving distance of each step in random walk
l time taken to move a single step in random walk

TABLE I

NOTATIONS USED IN ANALYSIS

might lead to an improper function of the sensor network. A
detecting node in the obsolete area may falsely send updates
to the local storage node that has been replaced by some other
node. To handle this issue, we assign an expiration time to the
local storage node. In a perfect network, the local storage node
would receive a local update at every sampling instance. As
such, if the local storage node has not received any update
for a period of expiration time, which is set at three times
of the sampling interval, it assumes that some other node
has taken up the local storage and broadcasts an invalidation
message to its approximation area. Note that such an approach
may cause a false operation. For example, in case all of three
consecutive local update messages are lost, the local storage
node will regard this as an indication of invalidation message
loss and incorrectly invalidate the valid approximation area.
Fortunately, such a chance is very small. Moreover, the sensor
network can recover from the false operation by making the
next detecting node as the new local storage node.

V. PERFORMANCE ANALYSIS AND OPTIMIZATION

In this section, we first analyze the performance of EASE
in terms of message complexity. Then, we derive the optimal
setting of approximate radius for EASE.

A. Performance Analysis

This section analyzes the message complexity of EASE
(i.e., the total number of message transfers observed in the
network). A summary of the notations used in the analysis
is provided in Table I. For simplicity, data transmission is
assumed to be error-free. Assume that the query rate is λ and
the sensor sampling rate is µ. Let Cqn and Cqf be the costs of
answering a query by the centric storage and the local storage
respectively, and Cur and Cul be the costs of a remote update
and a local update respectively. Given an approximation radius
of r, it is easy to see that the overall message complexity is
given by

C(r) = (1− pqf (r)) · λ · Cqn + pqf (r) · λ · Cqf
+η(r) · Cur + µ · Cul, (1)



where pqf (r) is the probability that the approximate location
stored at the centric storage does not satisfy the query specific
precision and η(r) is the rate of remote updates (i.e., the rate
of moving out of the approximation area). The four terms in
the above formula represent the cost incurred by the queries
answered by the centric storage node, the cost incurred by the
queries answered by the local storage node, the cost of remote
updates, and the cost of local updates respectively.

Assume that the sensor network consists of n uniformly
distributed sensor nodes. As in [21], [22], we use n to
approximate the cost of flooding a message to the whole
network, and use

√
n to approximate the cost of sending a

message between two nodes in the network. It is easy to see
(from Figure 1(b)) that

Cqn = 2
√
n, (2)

Cqf = 3
√
n. (3)

Note that the costs of Cur and Cul are a function of
approximation radius r. We now derive these two costs and
pqf (r). The rate of remote updates η(r) depends on the
mobility pattern, and will be discussed in the next section.

A remote update involves sending the update to the cen-
tric storage and two geocast messages to notify the new
approximation area and invalidate the obsolete approximation
area respectively. The remote update cost is approximated by√
n. Since a geocast message is sent to an approximation

area which is usually nearby; for simplicity, we neglect the
routing cost and approximate its cost by the number of
sensor nodes in the approximation area, i.e., πr2f , where r
is the approximation radius and f is the sensor node density.
Therefore, we obtain Cur as

Cur =
√
n+ 2πr2f. (4)

For a local location update, the average travel distance is
given by:

∫ r

0
(x× 2πx)dx
∫ r

0
(2πx)dx

=
2/3πr3

πr2
=

2

3
r. (5)

Thus, the local update cost can be approximated by the
average number of sensor nodes encountered when travelling
a distance of 2

3r, i.e.,

Cul =
2

3
r
√

f. (6)

We assume that the query precision constraint is uniformly
distributed in the range of [0, pm]. Thus, the probability of a
query not being satisfied by the centric storage is

pqf (r) = min{ r

pm
, 1}. (7)

Combining (1) through (7), we can rewrite (1) as

C(r) = λ · 2
√
n+min{ r

pm
, 1} · λ ·

√
n

+η(r) · (
√
n+ 2πr2f) + µ · 2

3
r
√

f. (8)

As can be seen, the overall message complexity is basi-
cally a function of approximation radius r. The next section
discusses the setting of r in detail.

B. Optimal Approximation Setting

This section studies the optimal approximation setting based
on some known mobility pattern.5 We assume a 2-dimensional
random walk model [14], in which the object moves in steps.6

It moves a distance of d along an arbitrary direction (i.e., with
angle θ uniformly distributed in [0, 2π)) at each step. Each
step takes a duration of l.

Let T (r) be the average time an object takes to move out
of a circle of radius r. With a random walk model, we have
the following approximation (see the Appendix in [29] for
details):

T (r) = (
r

d
)2 · l. (9)

Therefore, the rate at which the object moves out of the
circle (i.e., the approximation area) is given by

η(r) =
d2

lr2
. (10)

Plugging (10) into (8), we get the overall message complex-
ity as follows:

C(r) = λ · 2
√
n+min{ r

pm
, 1} · λ ·

√
n

+
d2
√
n

lr2
+

2πfd2

l
+

2

3
µr

√

f. (11)

Let ∂C(r)
∂r

= 0. We obtain the optimal settings of r in two
cases:

r∗ =







3

√

6pmd2
√
n

l·(3λ
√
n+2µpm

√
f)

if r ≤ pm,

3

√

3d2
√
n

lµ
√
f

if r > pm.

The one producing the lower message complexity C(r) will
be selected as the final setting of r.

VI. PERFORMANCE EVALUATION

In this section, we conduct experiments to compare the
proposed EASE scheme against the conventional CS scheme
(described in Section III). Since the goal of this study is to
reduce network traffic and to improve energy efficiency, the
first two sets of experiments focus on the volume of messages
and the energy consumption incurred in the sensor network.
Then, we compare the query latency of the CS and EASE
schemes.

5When the mobility pattern changes over time, the approximation setting
should dynamically adapt to the system workload [29]. We shall present an
adaptive approximation setting algorithm in the full version of this paper.

6The 2-dimensional random walk model is used in this paper as a case study.
The optimization technique presented here is applicable to other mobility
patterns as long as their η(r) can be estimated.



A. Simulation Setup

To facilitate our comparison, we developed a simulator
based on ns-2 (version 2.26) [31] and NRL’s sensor network
extension [32]. Table II summarizes the system parameters and
their settings used in our experiments.

We simulate 225 sensor nodes (i.e., cluster heads) as de-
ployed on a 500×500-m2 field. The field is divided into 225
34×34-m2 grid cells, each of which has a sensor node at the
center. Each sensor node can detect the objects located in its
grid cell and position them [16], [17]. As in the previous work
[21], [26], the simulator uses a modified IEEE 802.11 radio
with a 40-m radio range in its MAC layer. The maximum
number of retransmissions at the MAC layer is set at 7. The
sensor nodes can intelligently switch among three states (with
different power consumptions): sending messages, receiving
message, and sleeping. The simulator includes an energy
model that measures the energy consumption of each sensor
node. For simplicity, the energy overhead for state switching is
ignored. Queries for the location of a moving object are issued
randomly from the sensor nodes in the field. The precision
constraints of the queries are uniformly distributed between 0
and pm.

As stated in the system model (Section III), this research
assumes that sensor nodes are stationary and location-aware.
We have also assumed the in-network DCS scheme [21] for
centralized storage such that the centric storage node of an
object is determined by applying a pre-defined hash func-
tion H(·) on the object identifier. To facilitate geographical
message routing (such as for update reporting and query
forwarding), the greedy perimeter stateless routing (GPSR)
protocol [26] is employed by the simulator. GPSR operates
in two modes: greedy mode and perimeter model. In the
greedy mode, the forwarding node forwards the message to
the neighbor nearest to the destination. If no such neighbors
exist, the algorithm switches to the perimeter mode, which
recovers by routing around the perimeter of the region.

The random walk mobility model is used to simulate the
moving pattern of objects in this simulation. Several mobility
profiles, including slow, moderate, and fast, are listed in
Table III. The optimal settings of approximate radius, r, can
be obtained using the optimization technique described in
Section V-B. Table IV shows the optimal settings of r for
slow, moderate, and fast mobility profiles under a number
of decreasing precision requirements (denoted by maximum
imprecision, pm).

As shown in the table, when the precision requirement is
high (i.e., pm = 0 for slow and moderate profiles; pm ≤ 20
for fast profile), a large r (> pm) is chosen in EASE to
suppress remote location updates. In such cases, all queries
will be forwarded to the local storage nodes for high-precision
answers; the selection of a large r implies that the cost
reduction for location updates outweighs the overhead for
query forwarding. As the precision requirement gets lower, the
EASE algorithm chooses a smaller r (< pm) to limit query

Parameter Setting
Field Size 500×500 m2

Number of Nodes (n) 225
Node Density (f ) 1 node / 34×34 m2

Radio Range 40 m
Power Consumption in Sending Message 14.88 mW
Power Consumption in Receiving Message 12.50 mW
Power Consumption in Sleeping Mode 0.016 mW
GPSR Beacon Interval 3 sec
GPSR Beacon Expiration 13.5 sec
GPSR Implicit Beacon yes
Sensor Sampling Rate (µ) 5 /sec
Query Rate (λ) 0.1 - 10 /sec
Maximum Imprecision (pm) 10 - 100 m
Query Message Payload Size 10 bytes
Update Message Payload Size 40 bytes
Result Message Payload Size 40 bytes
Geocast Message Payload Size 10 bytes
Query Start Time 20 sec
Simulation Time 500 sec

TABLE II

SYSTEM PARAMETERS AND SETTINGS

Mobility Profile Step Distance (d) Step Interval (l)
Slow 1 m 1 sec
Moderate 5 m 1 sec
Fast 15 m 1 sec

TABLE III

MOBILITY PROFILE SETTINGS

forwarding and reduces the overall traffic. As the precision
requirement further decreases, the approximation radius r is
then slightly increased to reduce the updating traffic.

The simulation measures the performance in terms of mes-
sage complexity (# message transfers in the network) and
energy consumption of the sensor nodes. Since this paper
focuses on data dissemination, the energy performance mea-
sure excludes the sensing component. Similar to [21], we do
not measure the message overhead incurred by the underlying
routing protocol (e.g., beacons in GPSR). Such overhead is
usually of lower order than the application data traffic. To
facilitate an easy illustration and comparison of EASE and CS,
we use normalized cost for the primary metrics (i.e., message
complexity and energy consumption). The normalized cost
is defined as the ratio of a measured cost of EASE to that
of CS. The smaller is the normalized cost, the better does
EASE perform. Each simulation run lasted for 500 seconds
of simulated time; the first 20 seconds were considered the
warm-up period to eliminate the initialization effect.

B. Message Complexity

This section examines the message complexity of EASE
under the optimal approximation setting. Figure 3 shows
the message complexity of EASE normalized by that of CS
under a number of different maximum imprecision constraints.
As observed in the figure, EASE improves the performance
over CS by 47.5%-70%. For a reason explained in the last



Max Imprecision
0 10 20 50 80 100

(pm)
Slow 7.42 2.67 3.32 4.32 4.86 5.12

Moderate 21.7 7.81 9.69 12.6 14.2 15.0
Fast 45.1 45.1 45.1 26.2 29.6 31.1

TABLE IV

OPTIMAL SETTINGS OF APPROXIMATION RADIUS r
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Fig. 3. Message Complexity vs. Precision Requirement (pm)

subsection, even when the maximum imprecision is set at
zero, EASE still achieves 47.5%-57.5% of improvement. In
general, the lower is the precision requirement (i.e., larger
maximum imprecision), the more improvement is achieved by
EASE. This is expected since EASE is designed to exploit
the tolerance of imprecision in object location. A lower
precision requirement implies more space for performance
improvement. Among the three mobility profiles, the slow
objects obtain the most significant performance improvement.
This is mainly because of the high movement locality exhibited
by the slow objects; most updating traffic is due to local
updates which are propagated to the local storage nodes only.

To gain more insight into how EASE improves the perfor-
mance, we provide a breakdown of the traffic in Figure 4,
where pm is set at 50 m. In the CS scheme, a significant

Fig. 4. Breakdown of Message Complexity (Moderate, pm = 50 m)
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Fig. 5. Message Complexity vs. Query Rate

amount of traffic contributes to remote updates. By keeping
imprecise data at the centric storage, EASE reduces remote
updates by several orders of magnitude. Figure 4 also shows
that EASE’s overhead for forwarding queries and geocasting is
trivial compared to the reduced updating traffic. Overall, EASE
reduces the total message complexity over CS by 62.5%.

Figure 5 shows the normalized message complexity of
EASE as a function of query rate. When the query rate is low,
most network traffic is due to location updates. In this case,
EASE significantly cuts down the updating traffic and reduces
the overall message complexity by up to 96%. However,
when the query rate is extremely high (e.g., 10), queries
(and their answers) are the main source of network traffic. In
this case, the reduced updating traffic cannot contribute much
to the overall message complexity and, hence, EASE has a
performance similar to CS.

C. Energy Consumption

We now proceed to evaluate the energy consumption of
EASE under the optimal approximation setting. Figure 6
shows the total energy consumed by the sensor network
during a simulation run, which is normalized by that of CS.
Basically, the trends for energy consumption are similar to
those for message complexity (Figures 3 and 5). Nevertheless,
it is encouraging to see that the performance improvement is
even higher in terms of energy consumption. This is because
EASE reduces large-size update messages at the cost of small-
size forwarded-query messages and geocast messages. Since
more energy is consumed for sending and receiving a larger
message, EASE achieves more saving in energy consumption
than in message complexity.

We also evaluate the balance of energy consumption in the
sensor network and the lifetime of the network by measuring
the energy consumption at each individual sensor node. The
most energy-consuming node generally determines the lifetime
of the sensor network and thus its energy consumption is used
as the performance metric in Figure 7. We can see that, in most
cases, the energy consumption of EASE is only 20%−50% of
that of CS. This implies that EASE can prolong the network
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Fig. 6. Total Energy Consumption

lifetime by a factor of 2−5. It is interesting to note that unlike
the case of total energy consumption, EASE achieves a better
performance for fast objects than moderate objects. This is
explained as follows. With CS, all queries and updates are sent
to the centric storage nodes. Hence, the centric storage nodes
are hotspots. However, with reduced updating traffic by EASE,
the hotspots are no longer the centric storage nodes. Rather,
some local storage nodes become hotspots. On one hand, a
faster moving object generates more updating traffic. On the
other hand, a faster moving object changes local storage nodes
more frequently and, hence, balances the load of the nodes.
Combining these effects, EASE has a longer network lifetime
for slow and fast objects than for moderate objects.

D. Query Latency

The CS scheme is expected to have a very good performance
in query latency because the high-precision location data is
always available at the centric data node and, thus, a query can
quickly be answered there. With the EASE scheme, if a query
is not satisfied by the centric storage node due to insufficient
precision, it is forwarded to the corresponding local storage
node. Thus, the average querying path is lengthened due to
such query forwarding. In this section, we measure the average
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Fig. 7. Energy Consumption of the Most Consuming Node

latency of answering approximate location queries to see how
well EASE can achieve the query latency performance of CS.

As shown in Figure 8, when the precision requirement is
high (i.e., pm = 0 − the worst case), EASE performs worse
than CS by no more than 50%. However, as the tolerance of
imprecision increases, EASE consistently improves the query
latency (and even outperforms CS for large values of pm). This
is mainly because for a larger value of pm, EASE incurs less
network traffic (as shown in Figure 3) and hence less message
transmission collisions, which reduces the overall latency even
though the querying path is lengthened.

VII. CONCLUSIONS

This paper presents a study on precision-constrained ap-
proximate location queries for object tracking sensor net-
works. An energy-efficient in-network storage scheme called
EASE has been developed to efficiently reduce the network
traffic, conserve the energy of sensor nodes, and improve
the network lifetime. We have analyzed the optimal setting
of approximation radius for EASE. We have also evaluated
the proposed techniques through extensive simulation-based
experiments. The experimental results demonstrate that the
EASE scheme with the derived optimal approximation setting
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saves significant energy consumption for sensor networks and
prolongs the network lifetime.

As for future work, we are going to evaluate the perfor-
mance of EASE under different mobility models [33]. We
are interested in incorporating more complex spatial queries
(e.g., range queries and k-nearest-neighbor queries) into the
approximate storage framework. We also plan to extend the
EASE framework to other types of sensor networks, e.g.,
environmental monitoring sensor networks.
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