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ABSTRACT
The popularity of mobile social networking services (mSNSs)
is propelling more and more businesses, especially those
in retailing and marketing, into mobile and location-based
forms. To address the trust issue, the service providers are
expected to deliver their location-based services in an au-
thenticatable manner, so that the correctness of the service
results can be verified by the client. However, existing works
on query authentication cannot preserve the privacy of the
data being queried, which are sensitive user locations when it
comes to location-based services and mSNSs. In this paper,
we address this challenging problem by proposing a compre-
hensive solution that preserves unconditional location pri-
vacy when authenticating range queries. Three authentica-
tion schemes for R-tree and grid-file index, together with
two optimization techniques, are developed. Cost models,
security analysis, and experimental results consistently show
the effectiveness, reliability and robustness of the proposed
schemes under various system settings and query workloads.

Categories and Subject Descriptors
H.2.8 [DATABASE MANAGEMENT]: Database appli-
cations—Spatial databases and GIS

General Terms
Algorithms, Security

Keywords
query authentication, privacy-preserving, LBS

1. INTRODUCTION
Location-based services (LBSs) have been gaining tremen-

dous popularity over the recent years, in particular since
the emergence of mobile social networking services (mSNSs).
Social networking giants such as Facebook and Twitter are
all turning their services into mobile, along with specialized
vendors like Foursquare, Gowalla and Loopt. Besides, ma-
jor mobile carriers also strive to provide more value-added
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Figure 1: Authenticatable Location-Based Service

services to their subscribers, among which the most thrilling
applications are LBSs such as location-aware advertisement
(“check-in deals”) and nearby-friend reminders.

A typical LBS business model consists of a location reg-
istry (typically a social network or a mobile carrier who ac-
cepts user location updates or“check-ins”), a service provider
(SP, typically a third party application developed on the so-
cial network) that offers LBS applications based on user lo-
cations, and a client (typically a mobile user) who requests
the service. In this model, the third-party application is au-
thorized to access user locations but it is not trustworthy
regarding its service returned to the client. For example
in Fig. 1, an SP offers location-based restaurant browsing
which tells the client not only the nearby restaurants, but
also the numbers of diners as an indication of their popu-
larity. Each of these numbers can be retrieved by the SP
through a spatial range query on a user location dataset
specified by the client. However, the client may not trust
these numbers as the SP has the motive to manipulate them
in favor of “sponsored restaurants”. As another example in
public services, the government may outsource the online
traffic monitoring service to third-party vendors. For mar-
ket profits, however, they may prioritize the services by send-
ing updated and accurate congestion reports to paid users
while sending delayed or inaccurate ones to free users. These
trustworthy issues are extremely important as more day-to-
day businesses and public services are turning mobile and
location-based. It would be soon indispensable for service
providers to deliver their services in an authenticatable man-
ner, in which the correctness of service results — whether
each result is genuine (soundness) and whether any result is
missing (completeness) — can be verified by the client.

In the literature, there are a lot of works on the authen-
tication of query results (e.g., [19, 17, 14, 26, 27]). In these
works, the data owner (i.e., the location registry in this pa-
per) publishes not only data (i.e., user locations) to the
third-party SP, but also the endorsements of the data be-
ing published. These endorsements are signed by the data



owner against tampering by the SP. Given a query, the SP
returns both the query results and a proof, called verifica-
tion object (VO), which can be used by the client to recon-
struct the endorsements and thus verify the correctness of
the results. As a location-based service usually concerns a
spatial query, the authentication of such services can adopt
the same paradigm as in query authentication. As Fig. 1
illustrates, after receiving a request, the SP evaluates the
query based on the user locations obtained from the loca-
tion registry, and delivers the result to the client. A VO,
which includes endorsed values derived from user locations
and ids, is also sent to the client to verify the correctness of
the result.

However, while prior works address the query authentica-
tion issue, they fail to preserve the privacy of the data. In
fact, they assume that during the verification process, the
client can always be trusted and entitled to receive data val-
ues on the querying attribute(s). This assumption no longer
holds in LBSs where the locations of mobile users are sensi-
tive and should be protected against the clients. Therefore,
the challenge of this work is how to design privacy-preserving
query authentication schemes without disclosing any user lo-
cation information to the client.

Unfortunately, the hiding of user locations from the client
compounds the difficulty of authentication, and in fact, it
brings out a new aspect of authentication. Traditional au-
thentication verifies the soundness of a query by only check-
ing whether the returned results are genuine because the
compliance of the results, i.e., whether they comply with
the query statement and are thus true results, is already im-
plied by their returned values. However, without knowing
these values, verifying the compliance is no longer trivial,
which is indeed the challenge of privacy-preserving query
authentication.

In this paper, we start with one-dimensional range queries
on a B+-tree and adopt a cryptographic construct that was
originally proposed by Pang et al. in [17] for the value hid-
ing of non-result objects. It is based on a proof for verifying
x ≥ α (α is the query bound) without disclosing x. The idea
is to let the client and SP jointly compute a digest function
g() of value x. However, generalizing the one-dimensional
solution to multi-dimensional indexes such as R-tree leads
to significant performance overhead as the linearity in one-
dimensional space no longer exists. As such, the authenti-
cation may involve more tree nodes so that the size of the
VO outweighs the result itself, especially when the query is
small. To cater for small queries, we propose to use grid-file
as an alternative index and design the complete authentica-
tion scheme. Besides the R-tree and grid-file based schemes,
we propose a third authentication scheme based on accumu-
lative digests for static datasets to further reduce the au-
thentication cost. Along the road of performance optimiza-
tions, we propose two directions, both of which are orthogo-
nal to the underlying authentication schemes. First, we de-
velop an enhanced digest function g() that is not only faster
than the original one by Pang et al., but also performance-
independent of the input value, which is critical for a cryp-
tographic function. Second, we propose linear ordering and
embedding as the internal organization of each node (or cell).
This optimization regains the linearity for multi-dimensional
data and enables effective pruning techniques. To summa-
rize, our contributions in this paper are as follows:

• To the best of our knowledge, this is the first work

that addresses privacy-preserving query authentication
for location-based services. The problem is critical for
both mobile value-added service market and database
research community.

• We develop three authentication schemes for R-tree
and grid-file index, which are good for large queries,
small queries, and queries on static datasets, respec-
tively. Analytical models of computation and band-
width costs are developed to justify these schemes. Se-
curity analysis shows they are secure by not disclosing
any individual location information.

• We propose two optimization techniques that are or-
thogonal to the underlying authentication schemes.

• We conduct extensive experiments to evaluate the per-
formance of the proposed schemes, with and without
the two optimization techniques in effect. The results
coincide with our analysis and further justify the effi-
ciency of our approaches.

The rest of this paper is organized as follows. Section 2 in-
troduces the research background and related work in query
authentication. Section 3 formally defines the problem and
privacy model, followed by the solution in single-dimensional
space in Section 4. Section 5 presents three authentication
schemes based on R-tree and grid-file index, followed by the
security analysis. Section 6 analyzes their cost models and
presents two optimization techniques, namely linear order-
ing and embedding. Section 7 shows the experimental re-
sults, followed by a conclusion in Section 8.

2. BACKGROUND AND RELATED WORKS
There is a large body of research works on query authen-

tication for indexed data. These works originate from either
digital signature chaining or Merkle hash tree.

Digital signature is a mathematical scheme for demon-
strating the authenticity of a digital message. It is based on
asymmetric cryptography. Given a message, the signer pro-
duces a signature with its private key. Then the verifier veri-
fies the authenticity of the message by the message itself, the
signer’s public key and the signature. Based on this scheme,
early works on query authentication impose a signature for
every data value. The VB-tree [19] augments a conventional
B+-tree with a signature in each leaf entry. By verifying the
signatures of all returned values, the client can guarantee the
soundness of these results. To further reduce the number of
signatures returned to the client, they can be aggregated
into one signature of the same size as each individual sig-
nature [3]. However, the simple signature-based approach
cannot guarantee the completeness, as the server can delib-
erately miss some results without being noticed. Therefore,
Pang et al. proposed signature chaining [17], which connects
a signature with adjacent data values to guarantee no result
can be left out. Fig. 2(a) illustrates signature chaining for
four sorted values d1, d2, d3, d4. The signature of each value
depends not only on its own value but also on the immedi-
ate left and right values.1 If the server returns d2 and d3 to
the client, it will also send a verification object (VO) that
contains: (1) the signatures of d2 and d3, and (2) the bound-
ary values d1 and d4. Given the VO, the client can verify
the results through the facts that: (1) the two boundary
values fall outside the query range, and (2) all signatures

1For the first and the last values d1 and d4, two special
objects d0 = −∞ and d5 = +∞ are appended.
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(a) Signature Chaining

 N11= h(d1) N12 = h(d2)

N1 = h(N11 | N12)
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N2 = h(N21 | N22)
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(b) Merkle Hash Tree

Figure 2: Basic Authentication Tools

are valid. The first condition ensures that no results are
missing and the second guarantees no values are tampered
with. Signature aggregation and chaining were adapted to
multi-dimensional indexes by Cheng and Tan [5].

The Merkle hash tree (MHT) was introduced to authenti-
cate a large set of data values [16]. Fig. 2(b) shows an MHT
for the four data values in Fig. 2(a). It is a binary tree.
Each leaf node with data value di is assigned a digest h(di),
where h() is a one-way hash function. Each internal node
Ni is assigned a digest which is derived from its child nodes,
e.g., N1 = h(N11|N12), where “|” denotes concatenation. In
MHT, only the digest value of the root is signed by the
data owner, and therefore it is more efficient than signature
chaining schemes. An MHT can be used to authenticate any
subset of data values. For example in Fig. 2(b), the server
sends d1 and d2 to the client; and to prove their authentic-
ity, the server also sends a VO to the client, which includes
the digest of N2 and the signed root digest N . The client
computes h(d1) and h(d2), then N1 = h(h(d1)|h(d2)), and
finally N = h(N1|N2). This computed root digest is then
compared with the signed root digest in the VO. If they
are the same, the client can verify that d1 and d2 are not
tampered with by the server.

The notion of MHT has been generalized to an f -way tree
and widely adapted to various index structures. Typical
examples include Merkle B-tree and its variant Embedded
Merkle B-tree (EMB-tree) [14]. The latter reduces the VO
size by embedding a tiny EMB-tree in each node. For multi-
dimensional datasets and queries, similar techniques were
proposed by Yang et al., who integrated an R-tree with the
MHT (which is called Merkle R-tree or MR-tree) for au-
thenticating multi-dimensional range queries [26, 27].

Besides selection and range queries, recent studies focus
on the authentication of more complex query types, includ-
ing kNN queries [4, 28], join queries [27], and aggregation
queries [13]. Besides relational and spatial datasets, authen-
tication of semi-structured and non-structured datasets was
studied for streaming data [15, 21] and text data [18].

Our work differs from all these works by being the first
work on privacy-preserving query authentication. The lack
of querying attribute values from the client makes the au-
thentication problem significantly harder. This calls for a
new design of the authentication data structures and proce-
dures, together with optimization techniques, without which
the authentication would be less practical.

As for location privacy, the literature of mobile comput-
ing and spatial databases extensively investigates this prob-
lem in various research domains, including query process-
ing [12, 1, 8, 6, 23, 20, 11], message communication [7, 25],

and location data publishing [24, 10]. In most works, loca-
tion cloaking has been the predominant technique of privacy
protection. However, it only protects privacy conditionally
against certain privacy metrics, such as k-anonymity. Ex-
cept for very few works [8, 23, 20, 11], unconditionally pro-
tecting user locations by disclosing nothing about them is
an unprecedented task. Our work is the first of this kind on
query authentication.

3. PROBLEM FORMULATION
Let us formally model the user locations as a spatial dataset

D in an integer-domain d-dimensional space, and the location-
based service as a range query Q in this space. Q can be rep-
resented by a hypercube [α, β] where α = (α1, α2, · · · , αd)
and β = (β1, β2, · · · , βd), denoting the lower bound and up-
per bound of Q respectively. Without loss of generality,
we assume the query results are the identifiers of users (de-
noted as ids) whose locations fall into the hypercube. In a
real location-based service, Q may return specific contents
to the querying client, such as the users’ Facebook pages
or the total number of matching users as in the motivating
example. These contents can be derived faithfully from the
identifiers.2 The query Q is executed by the service provider
(SP, or simply “server”) on the dataset D that is authorized
and signed by the location registry. The client needs to
verify that the SP executes Q faithfully. As such, together
with the query results, the SP also returns the authentica-
tion data structure (i.e., the verification object or VO) to
the client. The challenge of this paper is to authenticate the
range query results while preserving users’ location privacy,
or as stated in [2], “to prevent other parties from learning
one’s current or past locations.” Obviously, cloaking user
locations cannot fulfill this requirement completely, while
simply pseudo-anonymizing user identifiers cannot work ei-
ther as these ids are often needed by the client in many
location-based services (e.g., in the Facebook page example
above or, if the client is a business, for billing and service
delivery to these users). Even if these ids are not needed,
pseudo-identifiers are still vulnerable to association attacks
that join the locations with background knowledge [12, 7, 8].
Therefore, we shall design new VO and associated authen-
tication protocols which protect locations unconditionally.
That is, when the client verifies the query results, it cannot
infer any information about the locations of returned users,
beyond what is implied from the results.3

3.1 Security Model
We assume that: (1) the location registry is trusted by

the querying client and SP; (2) the SP has read access to
the user locations; and (3) the location registry does not
collude with the client or the SP. Therefore, the two security

2In the“total number”case, the identifiers are not needed as
results — those endorsed values derived from them will suf-
fice in the verification process. More details are in Footnote
4.
3Our problem is to prevent the client from knowing beyond
what the query tells. A malicious client may attempt to
narrow down or pinpoint the user locations by exhaustively
sending range queries with extremely small extents. De-
pending on the business model, such threats can be pre-
vented by access control, query parameters screening, or
imposing penalties on heavy users; however, this topic is
beyond the scope of this paper.



threats in this problem are: (1) the client may attempt to
infer location information of returned users from the VO;
and (2) the SP may dishonestly return wrong results of the
query in favor of its own benefits.

For ease of presentation, we also assume all parties (the
client, SP and location registry) follow a semi-honest model.
That is, they follow the designated protocol properly except
that they may record intermediate results and try everything
they can to deduce about the private information of other
parties. It has been shown that any protocol that is proven
secure in the semi-honest model can be adapted to be secure
in a malicious model, where the participants may not follow
the protocol at all, by imposing the participants to follow
the protocol [9].

Finally, we follow the common assumption in cryptogra-
phy that any party may know the protocol and algorithms
of other parties, except for the secret keys the other parties
may own. Nonetheless, the capability of any adversary is
bounded by its polynomial computational power and stor-
age space.

4. PRELIMINARY: PRIVACY-PRESERVING
AUTHENTICATION FOR SINGLE- DIMEN-
SIONAL RANGE QUERIES

To start with, we first focus on the basic case where d = 1.
That is, the user location is a single field x and is indexed
by a B+-tree. Since the x values of users are sorted and
threaded in the leaf level of the index, the query is equivalent
to finding user ra, such that ra.x ≥ α and ra−1.x < α,
and user rb, such that rb.x ≤ β and rb+1.x > β. Then
the result users are {ra, ra+1, · · · , rb}. The authentication
should verify the following three conditions:

1. compliance condition: ra.x ≥ α, ra−1.x < α, rb.x ≤
β and rb+1.x > β;

2. genuineness condition: no id attributes of ra, ra+1,· · · ,
rb are tampered with;

3. completeness condition: no other user beyond the
result set has such x that α ≤ x ≤ β.

If the disclosure of location x were not a concern, condi-
tion (1) could be trivially verified by sending the x values
of users ra−1, ra, rb and rb+1 to the client, and conditions
(2)(3) could be verified by a Merkle B-tree where the di-
gest of each user is the joint hash on its x and id fields.
However, as required in privacy-preserving authentication,
verifying (1) without disclosing x values to the client needs
some cryptographic constructs. In [17], Pang et al. designed
a proof for verifying x ≥ α without disclosing x (according
to our problem definition, both x and α are integers). The
idea is to let the client and server jointly compute the digest
g of value x − L, where L is the lower bound of domain x.
The server first computes g(x−α) and sends it to the client,
who then computes g(x−L) = g(x−α)⊗g(α−L), where ⊗
is a well-defined operation on the digest. Note this equation
is guaranteed by the homomorphic property of the digest
function g(), and g() has another property that accepts only
non-negative numbers. As such, by sending g(x − α), the
server proves x ≥ α. The client verifies x ≥ α by comparing
the computed g(x−L) value with the g(x−L) value signed
by the data owner (i.e., the location registry in this paper).
Similarly, by jointly computing g(U−x), where U is the up-
per bound of domain x, the client can verify x ≤ β without
disclosing x.

g(x-L)|g(U-x)|h(id) g(x-L)|g(U-x)|h(id)

root

....

.... ....

query results

ra-1 ra ra+1

....

leaf node

digests from server (VO)

digests by client

digests by both (VO)

g(    -ra-1.x-1) g(U- +1)

X

Figure 3: Verification Object for 1D Range Query

With the digest function g(), we design the verification
for single-dimensional range queries on a Merkle B-tree as
follows. The digest of each leaf entry (i.e., user) e in a leaf
node is defined as:

dig(e) = h(g(e.x− L)|g(U − e.x)|h(e.id)), (1)

where “|” is concatenation and h() is a one-way hash func-
tion. The digest has three components — the first can be
used to verify e.x ≥ some value α as e.x has a positive sign,
the second component can be used to verify if e.x ≤ some
value β as e.x has a negative sign, and the last component
can be used to verify if the id attribute is tampered with.

Recursively, the digest of a leaf node is computed from the
digests of all its leaf entries; the digest of a non-leaf node
N (including the root node) is computed from the digests
of all its child nodes N1, N2, · · · , Nm. It is noteworthy that,
by convention MHT uses a concatenation-based recursive
digest definition (as shown in Fig. 2(b)), which may disclose
the order of child nodes. To avoid this, we propose an order-
insensitive recursive definition as below:

dig(N) = h2(dig(N1))·h2(dig(N2)) · · ·h2(dig(Nm)) mod n

where n = pq and p, q are two large primes. Obviously,
this definition is order-insensitive as modular multiplica-
tion is a commutative operator. Further, this definition
guarantees the authenticity of dig(N) in a stronger fash-
ion than the concatenation-based definition. In fact, if the
server attempts to accommodate a modified dig(Ni), to re-
tain the same dig(N) value, it has to forge some dig(Nj)
such that h2(dig(Ni)) · h2(dig(Nj)) mod n is intact. The
hardness of this task is guaranteed by two levels of security
constructs. The outer level is the modular square — due
to the computational hardness of the quadratic residuosity
problem [9], given h2(dig(Nj)) mod n, to find its modular
square root h(dig(Nj)) is asymptotically as hard as to fac-
torize n. The inner level is the one-way hash function h()
— even if h(dig(Nj)) could be found, the server would yet
have to find dig(Nj) and send it to the client. This is re-
ferred to as the“first preimage attack”on h(), which alone is
as difficult as (if not more difficult than) forging in the orig-
inal concatenation-based definition, which is a constrained
“second preimage attack” [9].

Now that the digests are defined, for query Q = [α, β]
whose result user set Q = {ra, ra+1,· · · , rb}, the VO should
include the following digests or components of digests:

1. g(α− ra−1.x− 1) to verify ra−1.x < α;
2. g(ra.x− α) to verify ra.x ≥ α;
3. g(β − rb.x) to verify rb.x ≤ β;
4. g(rb+1.x− β − 1) to verify rb+1.x > β;
5. all digests or digest components that are necessary for

the client to compute the digest of the root node;
6. the signed digest of the root node;



Fig. 3 illustrates the VO and protocol, where only the
“α” side is depicted for simplicity. The client uses item (1)
g(α− ra−1.x − 1) to compute one of the components of di-
gest ra−1, g(U − ra−1.x) = g(α− ra−1.x−1)⊗ g(U −α+1).
A similar approach applies to items (2)(3)(4). These di-
gest components, illustrated by dark-grey boxes in Fig. 3,
are computed collaboratively by the client and the server.
The digest components in item (5), illustrated by light-grey
boxes, are directly returned by the server. These digest com-
ponents are used for the client to compute the digests of
(i) boundary non-result object ra−1 (using digest compo-
nents g(ra−1.x − L) and h(ra−1.id) from (5) and comput-
ing g(U − ra−1.x) from (1)); (ii) boundary result object ra
(using digest component g(U − ra.x) from (5), computing
g(ra.x−L) from (2), and computing h(ra.id) from returned
result ra.id); (iii) internal result objects such as ra+1 (using
digest components g(ra+1.x − L) and g(U − ra+1.x) from
(5) and computing h(ra+1.id) from return result ra+1.id

4);
and (iv) intermediate nodes that are needed to compute the
root node digest. To summarize, the VO includes all dark-
grey and light-grey boxes, which can be either digests or
digest components. With this VO, the client authenticates
the results by computing the digest of the root node in a
bottom-up fashion along the tree path. In Fig. 3, all these
client-computed digests are shown by white boxes.

5. AUTHENTICATION FOR MULTI- DIMEN-
SIONAL RANGE QUERIES

In this section, we study the d > 1 case for our problem.
To support location-based services, we are particularly in-
terested in 2D datasets and queries. In what follows, we
propose three schemes for privacy-preserving authentication
on two common multi-dimensional indexes, namely, the R-
tree and grid-file, respectively.

5.1 Authentication on R-tree Index
In Section 4, only users at the boundaries of the result

set (i.e., ra−1, ra, rb, rb+1) need to be verified with the query
range [α, β] because all of them are in linear order, i.e., they
are sorted by their x values at the leaf level of the B+-
tree index. However, this trick no longer works in a multi-
dimensional range query as the leaf level of the index is
not sorted. To verify that the server traverses the index
correctly and visits nodes no more and no less, the boundary
verification in Section 4 needs to be applied on every node
where the query stops branching. In an R-tree index, this
requires the digest of any node N to comprise the minimum
bounding boxes (MBB) of its child entries. Let us start with
the definition of the digest for a leaf entry (i.e., user) e as:

dig(e) = h(dig(e.mbb)|h(e.id)), (2)

where dig(e.mbb) is defined similarly to Eqn. 1 for privacy-
preserving purposes as:

dig(e.mbb) = h(g(e.mbb.l− L)|g(e.mbb.u− L)

|g(U− e.mbb.l)|g(U− e.mbb.u)). (3)

4ra+1.x ≥ α is guaranteed by the Merkle B-tree and thus
does not need to be verified. For aggregation queries (e.g.,
returning the “total number”), since ids are not returned as
results, digest components h(ra.id), h(ra+1.id), ..., h(rb.id)
are returned directly from the server for the client to verify
the aggregate result.

N11

N12

N13
N21

N22

N31

N32

Q

N1

N2
N3

(a) Nodes and Objects

N1 N2 N3

N

N11 N12 N13 N21 N22

from server (VO)

by client

by both (VO)

query results

N31 N32

ignored

(b) R-tree Index and Verification Object

Figure 4: Query Authentication on R-tree Index

Here u, l,U and L are all vectors, denoting the upper and
lower bounds of the multi-dimensional MBB and the entire
domain, respectively. Then dig(N), the digest of an R-tree
node N is defined as:

h2(dig(N.mbb)) · h2(dig(N1)) · · · h2(dig(Nm)) mod n (4)

The definition above effectively splits dig(N) into two parts:
the left part h2(dig(N.mbb)) depends on the node itself and
the right part h2(dig(N1)) · · ·h2(dig(Nm)) depends on its
child nodes. Conceptually, for dig(e), the left part is dig(e.mbb)
while the right part is h(e.id).

Fig. 4 illustrates the query processing and VO construc-
tion procedure, where N1, N2, · · · are the leaf nodes and
N11, N12, · · · are the leaf entries (i.e., users). The query
processing starts from the root node N . Since N1 intersects
with query Q, it will be branched, i.e., its subtree is further
explored. N2 is totally inside Q, so N2 will not be branched
for verification; but all leaf entries in its subtree will be ac-
cessed and returned as results. N3 is totally outside of Q,
so it will not be branched, either; and there are no results
from N3. As such, among the child nodes of N , N2 and N3

require boundary verification as they stop branching. Then
N1 is branched, since it is already a leaf node, its entries
N11, N12 and N13 will stop branching anyway, which means
all of them require boundary verification. The final result
users are {N13, N21, N22} and Fig. 4(b) shows the VO, which
includes:

1. the digest components for boundary verification, in-
cluding g(α−N11.mbb.u), g(α−N12.mbb.l), g(N12.mbb.u−
α), g(N13.mbb.l− α), g(β −N13.mbb.u), g(N2.mbb.l−
α), g(β−N2.mbb.u), g(N3.mbb.l−β), which are shown
in dark-grey boxes;

2. all digests or digest components that are necessary for
the client to compute the root digest, shown in light-
grey boxes;

3. the signed digest of the root node.
In Fig. 4(b), the right parts of the digests of result users (i.e.,
h(e.id)) are shown in white boxes, i.e., they are computed
by the client, because these id values are sent to the client
as results.

5.2 Authentication on Grid-File Index
TheR-tree index may not be favorable for privacy-preserving

authentication due to the following two reasons. First, it
loses the linearity of leaf-level entries. Consequently, the
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boundary verification must be conducted on every single
node that stops branching, instead of only on the four bound-
ary leaf entries in the B+-tree. This could be very costly as
each boundary verification requires a computation-intensive
digest function g(). Second, the R-tree index does not fa-
vor queries with small ranges. Since only the root digest
is signed, the verification of any query must go all the way
up to the root, which requires a significant number of nec-
essary digests in VO and high computational overhead. As
an extreme case, even if the query is contained in only one
leaf node, the total number of boundary verifications is fh,
where f is the average node fanout and h is the tree’s depth.
To address these two issues, in this subsection we turn to an
alternative index — grid-file — and force the index nodes
to regain linearity by imposing an order on the grid cells.

Fig. 5(a) shows the grid partition on the same dataset
in Fig. 4. The grid is formed by horizontal partition lines
x0,x1,· · · ,x4, and vertical partition lines y0,y1,· · · ,y3. To
protect location privacy, the numbers of these lines, i.e.,
5 and 4, and their coordinates/values are unknown to the
client. Given the same query Q as in Fig. 4, it overlaps with
9 cells in Fig. 5(a). Since the cells are sorted in their x and
y values, to verify Q = [α, β] the client only needs to verify
the four boundary lines of Q with respect to the grid par-
tition lines. In this example, x1 ≤ αx < x2, x3 < βx ≤ x4,
y0 ≤ αy < y1 and y2 < βy ≤ y3. Then users who are in those
cells that are completely inside the boundary lines must be
result users, e.g., users N13 and N21 in the cell (3, 2) (i.e.,
the cell whose right and bottom bounds are x3 and y2); users
who are in those cells that intersect with the boundary lines
of Q need to be further verified with these bound lines, e.g.,
user N12 in the cell (2, 3). To support boundary verification,
the digest of each cell C that contains users e1, e2, · · · , em is
defined as follows:

dig(C) = h(dig(C.mbb)|dig(e1)|dig(e2)| · · · |dig(em)), (5)

where the digest of its MBB, dig(C.mbb), is defined as:

dig(C.mbb) = h(g(C.mbb.u− L)|g(U− C.mbb.l)). (6)

Note that the digest definition of C.mbb is simpler than that
of N.mbb for an R-tree node in Eqn. 3 because the bound-
ary verification is always in the form of Ci,j .mbb.l < Q <
Ci,j .mbb.u for some cell (i, j) and a boundary line of Q. On
the other hand, the digest of user e, dig(e), has the same
definition as in Eqn. 2.

dig(e) = h(dig(e.mbb)|h(e.id)), (7)

where dig(e.mbb) has the same definition as in Eqn. 3.

dig(e.mbb) = h(g(e.mbb.l− L)|g(e.mbb.u− L)

|g(U− e.mbb.l)|g(U− e.mbb.u)). (8)

The distinguishing difference between R-tree and grid-file
index on query authentication lies in their signatures. For
the R-tree index, the common practice (as in MR-tree and
in Section 5.1) is to sign the root digest only. The advantage
is to limit the number of signature computations (which are
believed to be costly) to 1. The disadvantage, however, is
that the computation of the root digest requires a lot of nec-
essary digests included in the VO and hash computations.
While the hierarchy in the R-tree makes such costs less sig-
nificant, the grid-file, unfortunately, is not given this edge if
the same single-signature strategy is applied. Furthermore,
in privacy-preserving authentication, the computational cost
of signature operations is less dominant than the digest func-
tion g(). With these design factors, we argue that the digest
of each cell in a grid-file should be signed. In addition to
this, the lack of a hierarchy also leaves the completeness of
the query result in jeopardy, as the server may omit in the
result some cells together with their signatures. To remedy
this, besides the digest of itself, the signature of a cell also
chains up the digests of 4 neighboring cells. That is, the
signature of cell (x, y) is defined as:

sig(Cx,y) = signature(dig(Cx−1,y)|dig(Cx,y)

|dig(Cx+1,y)|dig(Cx,y−1)|dig(Cx,y+1)) (9)

For completeness, for the cells on the boundary of the entire
space, we define some artificial cells (e.g., C0,y and Cx,0)
with their digests set to 0.

It is noteworthy that the above definitions of cell digests
and signatures require only local information, as opposed to
the digest of an R-tree node which depends recursively on its
descendant nodes. Therefore, upon a simple user insertion
or deletion that does not change the topology of the index,
the grid-file requires up to 5 cell digest reads, 1 cell digest
write and 5 cell signature writes, whereas the R-tree index
requires up to fh node digest reads, h node digest writes
and 1 signature write (f is the average node fanout and h
is the tree’s depth). With this said, the grid-file has the
advantage of handling more frequent user updates than the
R-tree index.

Let us reexamine the query Q in Fig. 5(a). Fig. 5(b) il-
lustrates the VO of this query and the client verification
procedure. Since Q overlaps with 9 cells, to verify the re-
sults, the client needs the signatures of all these cells from
the SP, which are included first in the VO. Note that since
the signature of each cell has chained up the 4 neighboring
cells, the VO should also include the digests of the cells that
are immediately adjacent to these overlapping cells (i.e., the
first column of cells in Fig. 5(b)). All rest work of the client
is to compute the digests of all overlapping cells and check if



they match the signatures. As with the R-tree index authen-
tication, these digests or their components can be obtained
in three ways (shown in different colors in Fig. 5(b)). First,
if a boundary of an MBB needs to be verified with Q, then
the digest component is computed collaboratively with the
server and shown in dark-grey boxes. Note that the MBB
may belong to a cell or a user, and therefore there are cell-
level and user-level boundary verifications. In the cell level,
since cells share the same and sorted partition lines, only the
two corner cells (top-left and bottom-right) need to verify
their boundaries with Q. As such, the digests of these two
cells’ MBBs (denoted by dig(mbb)) are marked in dark-grey
boxes. In the user level, only those users who are in the in-
tersecting cells need to verify their MBBs with Q. As such,
the digests of the following users’ MBBs are marked as dark-
grey: N12, N22, N31, N32. Second, the query returns the id
values of the result users, so the digest component h(Nij .id)
of these users are computed by the client and are shown in
white boxes. Third, all rest digests or digest components are
retrieved from the server and are shown in light-grey boxes.
Algorithm 1 summarizes the pseudo-code of the server query
processing and VO construction procedure.

Algorithm 1 Query Processing and VO Construction

Input: Q: the query and ∪Ci,j : the grid-file
Output: C: the result set and V O: the verification object
Procedure:

1: Clx,ly and Cux,uy are the two corner cells;
2: for each Ci,j that overlaps Q do
3: if Ci,j is not a boundary cell then
4: insert all users in Ci,j to C;
5: insert digests of all user and cell MBBs to V O;
6: else
7: for each user u do
8: if u is contained in Q then
9: insert u.id to C;
10: else
11: insert h(u.id) to V O;
12: insert part of dig(u.mbb) to V O;
13: if Ci,j is not a corner cell then
14: insert dig(Ci,j.mbb) to V O;
15: else
16: insert part of dig(Ci,j .mbb) to V O;

5.3 Accumulative Digest for Grid-File Index
The grid-file index overcomes two drawbacks of the R-tree

index on query authentication: overhead for small queries
and frequent user location updates. However, as the number
of signatures to be sent and verified by the client is propor-
tional to the number of overlapping cells, the above scheme
cannot scale well to large queries. Although signature aggre-
gation techniques [3] can be applied on these signatures by
the server to reduce bandwidth costs, it cannot reduce the
computational costs, as verifying the aggregate signature is
as computation-intensive as verifying all individual signa-
tures. In this subsection, we propose accumulative digest as
a remedy for authentication on large queries, by assuming
infrequent user location updates.

The basic idea of accumulative digest is to associate the
digest of each cell (which is then signed by the data owner,
i.e., the location registry) with the digests of all cells spanned
from the origin. Fig. 6 illustrates how the accumulative
digests are derived, where the origin is on the top-left corner.
The accumulative digest of cell Cx,y, denoted byDIG(Cx,y),
is recursively defined as the hash value of the DIG of its
immediate left and top cells, concatenated with its own cell

C(1,1) C(2,1) C(3,1) C(4,1)

C(1,2) C(2,2) C(3,2) C(4,2)

C(1,3) C(2,3) C(3,3) C(4,3)

accumulative digest dependency

Figure 6: Accumulative Digest

digest dig. Formally,

DIG(Cx,y) = h(DIG(Cx−1,y)|DIG(Cx,y−1)|dig(Cx,y)),
(10)

where x > 1 and y > 1. For the margin cases,

DIG(C1,1) = dig(C1,1),

DIG(Cx,1) = h(DIG(Cx−1,1)|dig(Cx,1)),

DIG(C1,y) = h(DIG(C1,y−1)|dig(C1,y)).

As the accumulative digest of a cell already chains up
neighboring cells, signature chaining is no longer necessary.
As such, the signature of this cell is simply defined on its own
accumulative digest: sig(Cx,y) = signature(DIG(Cx,y)).

Given these definitions, the VO of queryQ in Fig. 5(b) will
be revised as follows. Instead of sending the signatures of all
overlapping cells, only the signature of the bottom-right cell
among them (i.e., cell C4,3) needs to be included in the VO.
In addition, the client also needs some accumulative digests
to start with when computing the accumulative digest of this
bottom-right cell. Therefore, theDIG values of the two cells
that are immediate left and top to the top-left overlapping
cell (i.e., cell C2,1) need to be included in the VO. In this
example, since there is no immediate-top cell to C2,1, only
DIG(C1,1) is included in the VO.

5.4 Security Analysis
In this subsection, we analyze the security of the pro-

posed schemes. Recall the two threats in this paper are:
(1) the client inferring the locations of returned users from
the VO, and (2) the SP dishonestly returning wrong results.
As our schemes follow the general Merkle hash tree or signa-
ture chaining paradigm for query authentication, the second
threat is resolved as long as the digest function g() holds the
designed properties as discussed in Section 4. Therefore, in
what follows we focus on the analysis of the first threat.

To demonstrate that the SP does not leak location infor-
mation of any returned user to the client, we adopt security
proof by simulation originated from zero-knowledge proof [9].
This is achieved by “simulating the view” of the client, i.e.,
while the client has a-priori knowledge of any user u being
at position a with P (u = a) probability, after receiving the
VO, its posterior probability P (u = a|V O) is the same as
P (u = a). In what follows, we assume a is a point for ease
of presentation.

Thanks to the one-way property of the digest function
g(), the only information disclosed by the VO to the client
in all our schemes can be summarized by the following three
types: (1) an MBB A is fully contained in Q (denoted by
A ⊆ Q); (2) an MBB A (of a node or a cell) overlaps with
but is not fully contained in the query range Q (denoted
by A

⋂

Q 6= ∅); (3) an MBB A is to the left (right, top,
bottom) of another MBB B. In the following lemmas, we
show types (1) and (2) have the posterior probability equal
to the a-priori probability.



Lemma 5.1. Let u ∈ Q and u ∈ A, ∀a ∈ A, P (u = a) =
P (u = a|A ⊆ Q).

Proof.

P (u = a|A ⊆ Q) =
P (A ⊆ Q|u = a) · P (u = a)

P (A ⊆ Q)

=
P (A ⊆ Q

∧

u = a)

P (A ⊆ Q)
= P (u = a) (11)

The first equality is due to Bayes’ Theorem and the third
equality is due to the fact that A ⊆ Q is independent of
u = a in our privacy-preserving boundary verification. In
fact, knowing u = a does not limit the size or placement
of the uncertain A because as a known point a, a ∈ A and
u ∈ Q are known conditions.

Lemma 5.2. Let u ∈ Q and u ∈ A, ∀a ∈ A, P (u = a) =
P (u = a|A⋂

Q 6= ∅).
Proof. Proof follows that of Lemma 5.1.

As the R-tree based scheme only discloses types (1) and
(2) information, the following theorem shows its security.

Theorem 5.3. The R-tree based scheme does not leak the
location of any user u, given any VO.

Proof. Equivalently, we show there is a polynomial-time
simulator SIM that can simulate the view of the client with-
out knowing the data of SP. Specifically, it reproduces the
VO of the client with the same probability distribution as if
it were sent from the real SP.

According to Lemmas 5.1 and 5.2, without changing the
distribution P (u = a), SIM is allowed to know (1) if A ⊆ Q
and (2) if A

⋂

Q 6= ∅, for any MBB A. As such, SIM
can reproduce the VO according to Section 5.1 as follows.
If A ⊆ Q, SIM adds A’s digest components for boundary
verification to VO; else if A

⋂

Q 6= ∅, SIM adds to VO
only necessary digest components of A to compute the root
digest; otherwise, SIM adds only A’s digest itself to VO.
This VO has the same probability distribution as generated
by the real SP. Also SIM runs in polynomial time.

Unfortunately, it is hard to show type (3) information
holds the same property as types (1) and (2). Since the
two grid-based schemes disclose this type of information, we
cannot reach a similar theorem for them as above directly.
In fact, type (3) information adds complexity by possibly
disclosing the relative positions of users. For example, from
the VO in Fig. 5(b), the client can infer that user N22 is
to the south of users N13 and N21 because the cell of the
former is to the south of the cell of the latter two. Fortu-
nately, there is an immediate remedy for grid-based schemes
— instead of a strict grid where the upper bound of a cell,
e.g., xu

i , must coincide with xl
i+1, the lower bound of the

cell next to it, we adopt a loose grid where this requirement
is eliminated. For example, in the x-axis in Fig. 5(a), in-
stead of cell (2,1) having its lower bound coincide with the
upper bound of cell (1,1) at line x1, it can use another line
x′
1 as its lower bound; and x′

1 can be either to the left or
right of x1. The former leads to overlapping cells while the
latter leads to gaps between cells, both of which are valid
as long as each object is assigned to one and only one cell.
In a loose grid, while all lower bounds or upper bounds are
still sorted, i.e., xl

i < xl
j and xu

i < xu
j if i < j, there is

Sym. Definition Sym. Definition

N # of users u user rectangle size
NA # of node accesses q query length
Nl # of nodes in level l f avg. node fanout

N l
A # of level-l node accesses h R-tree height

sl extent of level-l node MBB R result cardinality
Dl density of level-l nodes c avg. cell length

Table 1: List of Symbols

no direct relation between a lower bound xl
i and an upper

bound xu
j anymore. As such, we effectively replace type (3)

information with “next (or prior) to” information for grid-
based schemes. The following lemma shows the latter has
the posterior probability equal to the a-priori probability.

Lemma 5.4. In a loose grid, let u ∈ Q and u ∈ A, ∀a ∈
A, P (u = a) = P (u = a|A ⇀ B), where ⇀ stands for “next
(or prior) to” in dimension x (or y).

Proof. Proof follows that of Lemmas 5.1 and 5.2.

Now we reach the following theorem on the security of grid-
based scheme .

Theorem 5.5. The grid-based scheme does not leak the
location of any user u, given any VO and loose grid.

Proof. According to Lemmas 5.1, 5.2 and 5.4, without
changing the distribution P (u = a), SIM is further allowed
to know (1) if A ⊆ Q, (2) if A

⋂

Q 6= ∅, and (3) if A ⇀ B, for
any MBBs A and B. As such, SIM can reproduce the VO
according to Section 5.2 as follows. If A ⊆ Q, SIM adds A’s
digest components for cell-level boundary verification to VO;
else if A

⋂

Q 6= ∅, SIM adds to VO A’s digest components
for user-level boundary verification; else if A ⇀ B, SIM
only adds to VO necessary components for partial (lower or
upper) boundary verification, thanks to the loose grid. This
VO has the same probability distribution as generated by
the real SP. Also SIM runs in polynomial time.

The loose grid does not change much to the VO construction
and authentication. In fact, the only major change is that,
during the cell-level boundary verification on the two corner
(top-left and bottom-right) cells, there are possibly a set of
“top-left” and “bottom-right” cells for verification. Nonethe-
less, since a strict grid is also a loose grid, we consistently
use strict grid throughout the paper for crisp presentation,
unless strict security is required.

6. PERFORMANCE ANALYSIS AND OPTI-
MIZATIONS

In this section, we analyze the performance of the pro-
posed authentication schemes and propose optimizations that
are orthogonal to the underlying schemes used.

6.1 Cost Models of Authentication Schemes
In this subsection, we derive the cost models of client ver-

ification computation (CPU) and VO size for the proposed
authentication schemes on R-tree and grid-file index. For
simplicity, CPU is in terms of the total number of g() di-
gest function calls and signature verifications, while V O is in
terms of the number of digests, digest components and sig-
natures. We also assume a 2D unit space and query Q is a
square with length q. Table 1 summarizes the symbols used
in this subsection. In the R-tree, boundary verifications oc-
cur on all accessed nodes or entries that stop branching, and



they can be categorized into three cases (1) the leaf entries
(results and non-results); or (2) the nodes that do not over-
lap with Q; or (3) the nodes that are totally contained in Q.
Let K1,K2 and K3 respectively denote their numbers. For
the nodes in (3) and result entries in (1) (whose number is
denoted by R), all 4 boundary lines need to be verified with
both Q’s lower and upper bounds, so each boundary verifica-
tion requires 8 g() calls. For the nodes in (2) and non-result
entries in (1) (i.e., K1 − R), only one of the boundary lines
needs to be verified with either Q’s lower or upper bound, so
the boundary verification only needs one g() call. In addi-
tion, only the root signature needs to be verified. Therefore,
the client verification computation is:

CPUrtree = 8(R +K3) + (K1 −R) +K2 + 1. (12)

By definition, K1 = fN1
A, where N

1
A is the number of level-1

node (i.e., leaf node) accesses forQ. K2 =
∑h−1

l=1
fN l+1

A −N l
A.

And K3 =
∑h−1

l=1
fN l+1

A · (q − sl)
2, where sl is the average

extent of node rectangles in level l, and q ≥ sl. Substituting
these equations in Eqn. 12, we have:

CPUrtree = 7R+(f−1)NA+8

h−1
∑

l=1

fN l+1

A (q − sl)
2+1, (13)

where NA is the total number of node accesses. This equa-
tion shows that when q is small, the computation cost is
dominated by (f − 1)NA, which coincides with our earlier
discussion in Section 5.2. As q becomes larger, the third
item will increase quadratically and dominates the others.
To get the numeric value of CPU , Theodoridis et al. [22]
developed a cost model of N l

A, sl and NA for uniformly dis-
tributed objects as follows.

sl =

√

Dl · f l

Nl

, (14)

N l
A = Nl · (sl + q)2, NA =

h
∑

l=1

N l
A, (15)

where Nl is the number of nodes in level l, i.e., Nl = N/f l,
and Dl is the density of level-l nodes, i.e., the number of

nodes that cover an average point. Dl = (1 +

√
Dl−1−1
√

f
)2,

and D0 = N · u.
As for the VO, new items will be included in three cases:

(1) when a node N is accessed, f +1 digests will replace the
node digest in VO according to Eqn. 4; (2) when a result
entry is found, 2 digests will replace the entry digest in VO
according to Eqn. 2; (3) when a boundary verification is
required, 4 digests will replace the digest of MBB in VO
according to Eqn. 3. Adding 1 for the root signature, the
total VO size is:

V Ortree = fNA +R + 3(K1 +K2 +K3) + 1

= (4f − 3)NA +R + 3

h−1
∑

l=1

fN l+1

A · (q − sl)
2 + 1. (16)

Similar to COMP , the VO size is dominated by (4f −3)NA

when q is small and by the third item when q is large.
In the grid-file index, let c denote the average cell length,

then each cell hasNc2 users. Cell-level boundary verification
only occurs on two corner cells, each of which requires 4
calls of g(). User-level boundary verification occurs on the
4 q

c
boundary cells, each of which needs only one g() call.

As for the signature verification, there are ( q
c
)2 overlapping

cells, each of which has a signature to verify. So the client
verification computation is:

CPUgrid = 8 + 4Ncq + (
q

c
)2. (17)

The accumulative digest scheme reduces the number of sig-
nature verifications to 1, and therefore

CPUaccu grid = 9 + 4Ncq. (18)

The above two equations show that the accumulative digest
scheme reduces the computation from quadratic to q to lin-
ear to q.

As for the VO, by default the digest of each overlapping
cell is included in VO. It is then replaced with digests of its
MBB and users according to Eqn. 5 in three cases: (1) the
two corner cells whose MBB’s digest is further replaced ac-
cording to Eqn. 6; (2) the non-empty boundary cells whose
user’s digest is further replaced according to Eqns. 7 and 8;
(3) any other non-empty cells whose user’s digest is fur-
ther replaced according to Eqn. 7. In addition, the signa-
tures of overlapping cells, together with the digests of their
immediate-adjacent cells, are also included in VO. There-
fore,

V Ogrid = 2(
q

c
)2 + 12Ncq + 2q2N + 4

q

c
+ 2. (19)

The accumulative digest scheme reduces the number of sig-
natures in VO to 1, but adds two accumulative digests.
Therefore,

V Oaccu grid = (
q

c
)2 + 12Ncq + 2q2N + 4

q

c
+ 5. (20)

While the accumulative scheme has a smaller VO size, both
schemes have their VO sizes dominated by 2q2N .

6.2 Linear Ordering and Embedding
In this subsection, we propose an optimization technique

that addresses the non-linearity issue in multi-dimensional
space. Whatever indexes we use for privacy-preserving au-
thentication, R-tree or grid-file, at certain point we have to
conduct boundary verification with almost every child entry.
For R-tree, this occurs every time a node is branched; for
grid-file, this occurs in the cells that partially overlap with
(but is not totally contained in) the query range.

To filter out those entries that are faraway and hence re-
duce the number of entries for boundary verification, a base-
line approach is to impose a linear order on these entries. It
has the advantage of incurring no change on digest defini-
tion and no additional cost — the entries require an ordering
anyway when they are serialized to external storage. Fig. 7
illustrates a linear order on their x values. Specifically, ev-
ery entry is sorted by the x values of their rightmost bound-
aries. For example, in node N1, users (i.e., child entries) are
sorted as N11, N12 and N13. Given query Q′, when N1 is
branched, since its leftmost boundary already exceeds the
rightmost boundary of N12, there is no need to verify the
boundary with N11. Nonetheless, this optimization is not at
no cost: during new entry insertion, rather than appending
in the end, it requires the new entry to respect the order,
and therefore this insertion could cause rearrangement of
the entries in the node.

The disadvantage above inspires us to use global order-
ing instead of local ordering within an index node. Specif-
ically, each entry e can be embedded (i.e., mapped) to a
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value range according to its MBB, and thus denoted by
map(e.mbb). This mapping is public, which means it can
be calculated on-the-fly by the data owner, the SP and the
client, and therefore does not need to be stored in the node.
The mapped value map(e.mbb) is then included in the entry
e’s digest, in the same way as e.mbb in Eqn. 2. That is,

dig′(e) = h(dig(e)|dig(map(e.mbb)))

To enable the same filtering mechanism as in linear ordering,
this mapping should preserve most of the locality. There are
a lot of mature techniques on dimension-reduction mapping,
most famous of which are space filling curves. Fig. 8 shows a
Hilbert curve of order 3 that partitions the space of Fig. 4(a)
into 23 by 23 grid cells. The curve labels each cell with a
Hilbert value from 0 to 63. The mapped value range of an
MBB is the lower and upper bound of the cell values with
which this MBB overlaps. For example, N1’s MBB over-
laps the lower-left 16 cells, so map(N1.mbb) = [0, 15]. The
query Q” is also mapped to a value range, which is [4, 11]
in this example. With these ranges, the boundary verifica-
tions of N2 and N3 can be carried out on their 1D mapped
values, instead of their 2D MBBs. Specifically, the client
only needs to verify (in privacy-preserving manner) that the
upper bound of Q”, 11, is larger than the lower bounds of
N2 and N3, which are 52 and 42, respectively, and unknown
to the client. Note that linear ordering can be applied on
top of linear embedding. Instead of sorting entries by the x
values of their rightmost boundaries, the entries are sorted
by the lower bounds of their mapped ranges. In this exam-
ple, entries are sorted as N1, N2 and N3. Then since N2’s
lower bound already exceeds the upper bound of Q”, there
is no need to verify N3.

It is noteworthy that both linear ordering and linear em-
bedding are orthogonal to the index. As such, they can be
applied to both R-tree and grid-file index.

7. EMPIRICAL RESULTS
In this section, we evaluate the experimental results of

the proposed three authentication schemes, namely, R-tree

Parameter Symbol Value

dataset size N 2, 249, 727
page size – 4KB

query length q [6.25× 10−4, 4 × 10−2]
R-tree node capacity f 200
grid cell capacity cap 200

Table 2: Parameter Settings for Experiments

based, grid-file based (grid for short) and accumulative di-
gest for grid-file (accu grid or a.grid for short). To sim-
ulate a real-life and yet sufficiently large location registry,
we assume users are distributed on a road network and
thus use the California Roads dataset from Census Bureau’s
MAF/TIGER database. The dataset contains 2,249,727
streets of California, from which all user location coordi-
nates in our experiment are extracted and converted to their
closest integers. Both an R-tree index and a grid-file index
are built on user locations, with the page size set to 4KB.
As such, the fanout of an R-tree node f and the capacity of
a cell cap are both 200.

The client is set up on a desktop computer with Intel
Core 2 Quad processor and 4GB RAM, running Windows
XP SP3, and the server is set up on an IBM server xSeries
335, with Dual 4-core Intel Xeon X5570 2.93GHz CPU and
32GB RAM, running GNU/Linux. The code of our experi-
ments is implemented and executed in OpenJDK 1.6 64-bit.
The hash function h() is 160-bit SHA-1, accordingly to which
we set the length of n in the commutative digest definition.
The signature function is 1024-bit RSA. We use the same
digest function g() as in [17] with the base of the canon-
ical representation set to 16. For performance evaluation,
we measure the computational cost (in terms of the server
and client CPU time, for query processing and verification,
respectively), the communication overhead (in terms of the
size of the VO) and the query response time (as the total
CPU time plus the communication time over a typical 3G
network at 2Mbps download rate and 1Mbps upload rate).
The query ranges are squares whose centroids are randomly
generated and whose side lengths are from 6.25 × 10−4 to
4 × 10−2 of the total space length, as controlled by param-
eter q. For each measurement, 1,000 queries are executed
and their average value is reported. Table 2 summarizes the
parameter settings used in the experiments.

7.1 Basic Query Authentication Performance
In this subsection, we evaluate the authentication perfor-

mance of the three schemes without introducing any opti-
mization. For visualization purpose, we normalize the dataset
to a unit space. We repeatedly double the query length q
from 6.25× 10−4 to 4× 10−2 and plot the server CPU time,
client CPU time, VO size and query response time (together
with the result size) in Fig. 9. These figures show that grid
and grid accu outperform R-tree in small and medium-sized
queries, until at q = 10 × 10−3 where the query result size
reaches 388. Furthermore, grid accu consistently outper-
forms grid, in terms of the client CPU time and VO size. For
example, at q = 5×10−3, grid accu v.s. grid is 43 ms v.s. 82
ms (client CPU time) and 180 KB v.s. 344 KB (VO size). As
q increases, this performance gap becomes even larger. This
coincides with our analysis in Section 6.1 that grid accu re-
duces the computation of grid from quadratic to linear and
halves the VO size for large q. Nonetheless, for very large
queries (e.g., q = 20×10−3 whose result size is 1, 912), R-tree
is the best in all metrics, thanks to the hierarchy imposed in
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Figure 9: Basic Query Authentication Performance

CPU Time (s) Index Size (MB)
Rtree Grid A.Grid Rtree Grid A.Grid

original 2311 11520 11619 124 2441 2441
x ordering 2453 11728 11770 124 2441 2441
Hil. embed. 2526 11859 11842 124 2441 2441

Table 3: Construction Cost

space. All these metrics of R-tree also have similar trends,
which can be explained by the cost model in Section 6.1 that
they are all dominated by

∑h−1

l=1
fN l+1

A · (q − sl)
2 when q is

large. As a summary, the query response time in Fig. 9(d)
indicates the winner is accu grid for queries of small and
medium size, and is R-tree for extremely large queries.

7.2 Performance with Optimizations
In this subsection, we evaluate the performance of the

three schemes with the linear ordering and linear embed-
ding introduced in Section 6.2. In particular, we implement
the ordering by x-value (labeled by“x ordering”) and the em-
bedding by Hilbert values with curve order set to 10 (labeled
by “Hilbert embedding” and imposed linear order on top of
it). Table 3 shows the construction time and index size for
different schemes. We observe that by introducing the accu-
mulative digest, linear ordering or embedding does not have
noticeable effect on the construction time, nor does they
have any effect on the index size. The grid-based schemes
take more time to construct than R-tree, simply because a
grid file has more cells than R-tree nodes to compute digests
or signatures. Nonetheless, the longest construction time is
just about 3 hours, which is acceptable as the construction
is an offline operation.

To evaluate the effects of optimizations for various queries,
we plot the same metrics as above in Fig. 10 for q = 6.25×
10−4 and q = 40× 10−3, respectively. Except for the server
CPU time, in all occasions the optimizations enhance the
query authentication performance. This justifies our claim
that the optimizations are transparent and orthogonal to the
authentication schemes employed. The performance gain is
particularly significant for grid and accu grid schemes in
small queries, which is up to 40% reduction. For example,
in A.Grid(.625), the performance of x-ordering v.s. no op-
timization is: 8ms v.s. 10 ms (client CPU time), and 13 KB
v.s. 21 KB (VO size). This corresponds to our discussion in
Section 6.2 that imposing a linear order can prune unnec-
essary boundary verifications of faraway entries, although
larger queries may make this pruning less beneficial. The
server CPU time of optimized schemes is worse than the
basic ones because we implement the VO construction with
no cache, that is, the server computes the digests of entries
on-the-fly. As such, pruning unnecessary boundary verifica-
tions essentially ships some g() calls from the client back to
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Figure 11: Data Owner Update Cost

the server. With the caching of digests in effect, we expect
the optimized schemes will also outperform the basic ones
in terms of server CPU time.

7.3 Update Costs of User Locations
In this subsection, we evaluate the cost of dataset updates

for the authentication schemes, with and without the opti-
mizations. Since the accu grid scheme is designed mainly
for static datasets, we omit it in the comparison. We simu-
late a user random walk by moving dev distance away from
his/her current position in each dimension, where dev fol-
lows a Gaussian distribution with µ = 0 and σ2 as the scaling
factor that controls how faraway the user’s new location is
from the old one. The larger the σ, the farther away the
new location is. Each location update is a deletion immedi-
ately followed by an insertion in the dataset. We simulate
5, 000 location updates and plot the average CPU time and
bandwidth (to update the server’s copy) of the data owner
for each update in Figs. 11(a) and 11(b), respectively. We
observe that grid is more efficient than R-tree for location
updates as only the user-residing cell and other 4 adjacent
cells need to be updated, as opposed to R-tree where the
update needs to be propagated along the tree path all the
way to the root. Furthermore, as the deviation factor σ2 in-
creases, the cost of R-tree increases, which can be explained
as follows. As σ2 becomes larger, the new location shares
less common tree path with the old location, and is also
more likely to cause an upper node overflow or underflow,
both of which lead to more digests of nodes to be updated.
Another observation is that the proposed optimizations do
incur overhead in the R-tree scheme, when the entries are
resorted or even their embedded values (and hence their di-
gests) recomputed. In Fig. 11, this overhead is about 1-2ms
CPU time and 1KB bandwidth per update.

8. CONCLUSION
In this paper, we study the problem of privacy-preserving

query authentication for location-based services. With the
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Figure 10: Optimized Query Authentication Performance

single-dimension building block of authentication on B+-
tree, we propose three authentication schemes for multi-
dimensional indexes, including R-tree and grid-file index.
We further enhance the efficiency of the schemes by two op-
timization techniques, namely, the linear ordering and em-
bedding. The performance of all schemes is evaluated both
analytically and empirically, which consistently shows their
effectiveness and robustness under various system settings.
The security perspective of these schemes is also studied.

As for future work, we plan to investigate on more query
types for location-based services. In particular, we are in-
terested in privacy-preserving authentication on k-nearest-
neighbor queries. As neither the user locations nor their dis-
tances to the query point can be disclosed to the client, the
authentication is even more challenging than range queries.
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