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Abstract—Data caching at mobile clients is an important technique for improving the performance of wireless data dissemination

systems. However, variable data sizes, data updates, limited client resources, and frequent client disconnections make cache

management a challenge. In this paper, we propose a gain-based cache replacement policy, Min-SAUD, for wireless data

dissemination when cache consistency must be enforced before a cached item is used.Min-SAUD considers several factors that affect

cache performance, namely, access probability, update frequency, data size, retrieval delay, and cache validation cost. This paper

employs stretch as the major performance metric since it accounts for the data service time and, thus, is fair when items have different

sizes. We prove that Min-SAUD achieves optimal stretch under some standard assumptions. Moreover, a series of simulation

experiments have been conducted to thoroughly evaluate the performance of Min-SAUD under various system configurations. The

simulation results show that, in most cases, the Min-SAUD replacement policy substantially outperforms two existing policies, namely,

LRU and SAIU.

Index Terms—Cache replacement, cache consistency, wireless data dissemination, data management, mobile computing,

performance analysis.
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1 INTRODUCTION

OWING to the rapid development of mobile devices,

wireless application standards, wireless high-speed

networks, and supporting software technologies, we are

witnessing a takeoff of wireless data applications in the

commercial market. However, constraints of mobile wire-

less environments, such as scarce bandwidth and limited

client resources, remain barriers to the full utilization of the
capabilities of mobile computing. Client data caching has

been considered a good solution for coping with the

inefficiency of wireless data dissemination because it

reduces the amount of traffic over the wireless commu-

nication channel by answering queries from data cached at

the client [3], [9].
In contrast to the typical use of caching techniques in

operating systems and database systems, client-side data

caching in wireless data dissemination has the following

characteristics [21], [33]:

1. Cached data items may have different sizes,

2. Data retrieval delays (i.e., cache miss penalties) are
different for different items subject to the broadcast
schedule employed, and

3. Data may be constantly updated over time at the
server.

In addition, mobile clients may frequently disconnect
voluntarily (to save power and/or connection cost) or due
to failure. These factors make the design of client cache
management for wireless data dissemination a challenge.
There are three important issues involved in client cache
management:

1. A cache replacement policy determines which data
item(s) should be deleted from the cache when the
free space is insufficient for accommodating an item
to be cached [3],

2. A cache prefetching policy automatically preloads data
items into the cache for possible future access
requests [4], and

3. A cache invalidation scheme maintains data consis-
tency between the client cache and the server [9].

In this paper, we study the cache replacement problem.
As will be discussed in Section 2, cache replacement

policies for wireless environments have been studied only
for push-based broadcasts [3], [25], [30]. Furthermore, these
previous studies assumed that data items had the same size
and ignored data updates and client disconnections. Little
work has investigated cache replacement policies in a
realistic wireless environment where updates, disconnec-
tions, and variable data sizes are common.

In a preliminary study [33], we developed a cache
replacement policy, SAIU, for wireless on-demand broad-
cast. SAIU took into consideration four factors that affect
cache performance, i.e., access probability, update fre-
quency, retrieval delay, and data size. However, an optimal
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formula for determining the best cached item(s) to replace
based on these factors was not given in the preliminary
study. Also, the influence of the cache consistency require-
ment was not considered in SAIU.

In this paper, we propose an optimal cache replacement
policy, called Min-SAUD, which accounts for the cost of
ensuring cache consistency before each cached item is used.
We argue that cache consistency must be required since it is
crucial for many applications such as financial transactions
and that a cache replacement policy must take into
consideration the cache validation delay caused by the
underlying cache invalidation scheme. In addition, Min-
SAUD considers access probability, update frequency,
retrieval delay, and data size in developing the gain function
which determines the cached item(s) to be replaced.

This paper employs stretch as the major performance
metric since it accounts for the data service time and, thus, is
fair when items have different sizes. The analytical study
shows that Min-SAUD achieves optimal stretch under the
standard assumptions of the independent reference model
[17] and Poisson arrivals of data accesses and updates. The
adoption of the independent reference model makes sense
because it reflects the access behavior on theWeb as shown in
[11]. On the other hand, Poisson arrivals are usually used to
model data access and update processes [22].

We conduct a series of simulation experiments to evaluate
the performance of the Min-SAUD policy under different
system settings. The simulation removes the assumptions
made in the analysis so that we can observe the impact of the
assumptions during the analysis. The simulation simulates
on-demand broadcasts and compares Min-SAUD to two
cache replacement policies, i.e., LRU and SAIU [33]. The
results show that Min-SAUD achieves the best performance
under various system configurations. In particular, the
performance improvement of Min-SAUD over the other
schemes becomes prominent when the cache validation
delay is significant. This indicates that cache validation cost
plays an important role in cache replacement policies.

The rest of this paper is organized as follows: Section 2
reviews related work. Section 3 describes the system
architecture and the performance metric used in this study.
The cache replacement policy, Min-SAUD, and its optim-
ality analysis and implementation issues are presented in
Section 4. Section 5 introduces the simulation model for
performance evaluation. The simulation results are pre-
sented in Section 6. Finally, Section 7 concludes the paper.

2 RELATED WORK

Mobile wireless environments are limited by narrow
bandwidth and frequent disconnections, etc. Client-side
data caching is an important technique to improve access
performance in such environments [3], [9]. A lot of research
has been done on cache consistency, replacement, and
prefetching in the past few years. However, most of the
previous studies focused on the cache consistency issue,
with relatively little research being done on cache replace-
ment and prefetching methods. Given the limited cache on
mobile clients, the latter two issues are very important to
data access performance. In the following, we briefly review
related studies.

2.1 Cache Consistency Algorithms

Barbara and Imielinski were first to address the cache
consistency issue for mobile environments. In [9], three
invalidation report (IR) based schemes, namely, TS, AT, and
SIG, were presented. Most of the newly proposed invalida-
tion schemes are variants of these basic IR schemes (e.g.,
[12], [13], [15], [18], [20], [23], [24], [29], [32], [35]). They
differ from one another mainly in the organization of IR
contents and the mechanism of uplink checking. All of these
invalidation schemes incur certain cache validation delay
for ensuring data consistency before the data is used.

In location-dependent information services, there is yet
another kind of cache invalidation, where a previously
cached data instance may become invalid when the client
moves to a new location. In a previous paper [34], we
proposed, analyzed, and evaluated three schemes for this
kind of location-dependent cache invalidation. In this
paper, we do not consider location-dependent services.

2.2 Cache Replacement and Prefetching Policies

The cache replacement issue for wireless data dissemination
was first studied in the Broadcast Disks (Bdisk) project.
Acharya et al. proposed a cache replacement policy called
PIX [2], [3], in which the data item with the minimum
value of p=x was evicted for replacement, where p is the
item’s access probability and x is its broadcast frequency.
Thus, an evicted item either has a low access probability or
has a short retrieval delay. In a subsequent study [4],
Acharya et al. explored the use of prefetching to further
improve data access performance.

Tassiulas and Su presented a cache update policy that
attempted to minimize average access latency [30]. In [30],
the broadcast channel was divided into time slots of equal
size, which were equal to the broadcast time of a single
item. Let �i be the access rate for item i and �iðnÞ be the
amount of time from slot n to the next transmission of item i.
A time-dependent reward (latency reduction) for item i at
slot n is given by rði; nÞ ¼ �i�iðnÞ þ �i

2 . The proposed W-step
look-ahead scheme made the cache update decision at slot n
such that the cumulative average reward from slot n up to
slot nþW was maximized. The larger the window W , the
better the access performance, but the worse the complexity
of the algorithm.

Caching algorithms for the Bdisk systems were also
investigated by Khanna and Liberatore [25]. Different from
the previous work, their work assumed that neither
knowledge of future data requests nor knowledge of
access probability distribution over the data items was
available to the clients. The proposed Gray algorithm took
into consideration the factors of both access history and
retrieval delay for cache replacement/prefetching. Theore-
tical study showed that, in terms of worst-case perfor-
mance, Gray outperformed LRU by a factor proportional to
CacheSize= logCacheSize.

In summary, existing studies on cache replacement for
wireless data dissemination are based on simplifying
assumptions, such as fixed data sizes, no updates, and no
disconnections, thereby making the proposed schemes
impractical for a realistic wireless environment.

2.3 Replacement Policies for Web Proxy Caching

Other related work includes studies on Web proxy caching
[6], [31]. Here, we briefly describe some typical solutions for
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cache replacement in Web proxy caching. Based on Web
traces, it was observed that small documents are accessed
frequently [1], [28]. To deal with small document retrieval,
the LRU-MIN cache replacement policy was proposed [1]. A
generalized LRU replacement policy that considered docu-
ment size was also investigated [6]. More recently, cost-
based cache replacement policies have been developed [10],
[28]. Bolot and Hoschka developed a cost-based algorithm
which considers document retrieval delay [10]. Shim et al.
proposed a cost-based replacement algorithm, LNC-R-W3-
U, which explicitly considers document retrieval delay and
document validation cost [28]. However, these existing
studies did not give analytical justifications for the cost
functions used, but solely relied on trace-based simulation,
which was valid only for the particular traces used, but
failed to give insightful observations. Moreover, the
characteristics of Web access behavior may evolve from
time to time. For example, the clients’ preference to access
small documents observed in [1] could not be observed in
more recent studies [11]. In addition, the Web and mobile
environments differ in many aspects, e.g., the data delivery
and update propagation methods are quite different. None
of the studies on Web proxy caching employed the stretch
performance measure, which is the primary metric used in
this paper (see Section 3.2).

In a recent paper [19], Hosseini-Khayat explored the
cache replacement problem for data items with variable
sizes and different cache miss penalties. However, [19] only
studied the offline version of the problem in which the entire
sequence of future requests is known in advance. In contrast,
this paper focuses on online cache replacement policies.

More recently, Chang and Chen [16] investigated
caching strategies for transcoding proxies. Transcoding is
a transformation that is used to convert a multimedia object
from one form to another, which trades off object fidelity for
size. A weighted transcoding graph was devised to manage
multiple versions of objects in the proxy cache. This paper
does not consider object transcoding.

3 BACKGROUND

In this section, we give a brief description of the system

architecture and the performance metric adopted in this

study.

3.1 System Architecture

Fig. 1 depicts a generic architecture of the wireless data
dissemination systems studied. We assume that the system
employs on-demand broadcasts for data dissemination.
That is, the clients send pull requests to the server through
the uplink channel. In response, the server disseminates the
requested data items to the clients through the broadcast
channel based on a scheduling algorithm [5], [7], [8]. The
clients retrieve the items of their interest off the air by
monitoring the broadcast channel.

Push-based broadcast is a common alternative to on-
demand broadcast for wireless data dissemination [3]. In
push-based broadcasts, a fixed set of data are periodically
broadcast based on precompiled data access patterns. In
fact, push-based broadcasts can be seen as a special case of
on-demand broadcasts, where uplink cost is zero and data
scheduling is based on the aggregate access patterns.
Consequently, the result presented in this paper can also
be applied to push-based broadcasts.

As illustrated, there is a cache management mechanism
in a client. Whenever an application issues a query, the local
cache manager first checks whether the desired data item is
in the cache. If it is a cache hit, the cache manager still needs
to validate the consistency of the cached item with the
master copy at the server. To validate the cached item, the
cache manager retrieves the next invalidation report from
the broadcast channel (see below for details). If the item is
verified as being up-to-date, it is returned to the application
immediately. If it is a cache hit but the value is obsolete or it
is a cache miss, the cache manager sends a pull request to
the server, which will schedule the broadcast of the desired
data. When the requested data item arrives on the wireless
channel, the cache manager returns it to the application and
retains a copy in the cache. The issue of cache replacement
arises when the free cache space is not enough to
accommodate a data item to be cached. Since validation is
important to ensure data consistency and the delay it causes
cannot be neglected, we develop, in this paper, an optimal
cache replacement scheme that incorporates the validation
delay in determining the cached item(s) to be replaced.

Techniques based on invalidation report (IR) have been
proposed to address the cache consistency issue [9], [20].
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IRs are interleaved with the broadcast data and periodically
broadcast on the broadcast channel. An IR consists of the
server’s update history up to the most recent w broadcast
intervals (w can be a constant or a variable). Every mobile
client maintains the timestamp Tl of the last cache
validation. Thus, upon reception of an IR, a client checks
to see whether its Tl is within the coverage of the IR
received. If it is, the client starts the invalidation process in
accordance with the type of the IR received. Otherwise, it
drops the cache contents entirely (when w is a constant) [9]
or ignores the IR and sends its Tl to the server in order to
enlarge w of the next IR (when w is a variable) [20].

3.2 Performance Metrics

In operating systems and database systems, cached items
usually have the same size (e.g., a page or a block). In these
systems, since cache miss penalties for all cached items are
the same, the cache hit ratio metric is consistent with the
access latency metric, i.e., the higher the hit ratio, the shorter
the overall access latency. Consequently, the cache hit ratio
is often used to measure the effectiveness of cache
replacement policies in traditional cache management.

For applications in which cached items have different
sizes, the cache hit ratio is obviously no longer a reliable
performance metric. In the previous work on Web proxy
caching, the byte hit ratio, which is the ratio of the total
number of bytes hit to the total number of bytes requested,
was introduced to evaluate cache performance. In a wireless
data dissemination system, however, subject to the broad-
cast schedule employed, cache miss penalties differ for
different data items. Thus, the byte hit ratio cannot fairly
reflect the overall system performance either. In this paper,
we use stretch to evaluate the performance of cache
replacement policies:

. Stretch [5]: the ratio of the access latency of a request
to its service time, where service time is defined as the
ratio of the requested item’s size to the broadcast
bandwidth.

Generally, for a smaller item, which has a shorter service
time, a shorter access latency is expected by users. In
contrast, users can tolerate a longer latency for a larger item.
Since access latency does not count the difference in data
size/service time, it is not a fair performance metric. Stretch
overcomes such a shortcoming in performance measure.
Thus, this study aims to optimize the overall stretch
performance of a cache replacement policy while keeping
access latency as short as possible. On the other hand, as we
will discuss in Section 7, the proposed analysis technique
can be extended to optimize other performance metrics
such as access latency and cache hit ratio.

4 AN OPTIMAL CACHE REPLACEMENT ALGORITHM

Cache replacement policy plays a central role in cache
management. Traditional cache replacement policies (e.g.,
LRU), while suitable for cached items with the same size
and miss penalty, do not perform well in wireless data
dissemination [33]. In the following, we first introduce a
new gain-based cache replacement policy, Min-SAUD.
Then, we show that the proposed policy results in the

optimal access performance in terms of stretch. Finally, we

address some of the implementation issues.

4.1 The Min-SAUD Replacement Policy

In this section, a gain-based cache replacement policy,

Minimum Stretch integrated with Access rates, Update frequen-

cies, and cache validation Delay (denoted as Min-SAUD), is

proposed for the wireless data dissemination systems under

cache consistency. To facilitate our discussion, the following

notations are defined (note that these parameters are for one

client only):

. D: the number of data items in the database.

. C: the size of the client cache.

. ai: mean access arrival rate of data item i,

i ¼ 1; 2; . . . ; D:

. ui: mean update arrival rate of data item i,

i ¼ 1; 2; . . . ; D:

. xi: the ratio of update rate to access rate for data item
i, i.e., xi ¼ ui=ai, i ¼ 1; 2; . . . ; D.

. pi: access probability of data item i, pi ¼ ai=
PD

k¼1 ak
for i ¼ 1; 2; . . . ; D.

. li: access latency of data item i, i ¼ 1; 2; . . . ; D.

. bi: retrieval delay from the server (i.e., cache miss
penalty) for data item i, i ¼ 1; 2; . . . ; D.

. si: size of data item i, i ¼ 1; 2; . . . ; D.

. v: cache validation delay, i.e., access latency of an
effective invalidation report.

. dk: the data item requested in the kth access,1

dk 2 f1; 2; . . . ; Dg.
. Ck: the set of cached data items after the kth access,

Ck � f1; 2; . . . ; Dg.
. Uk: the set of cached data items that are updated

between the kth access and the ðkþ 1Þth access,
Uk � Ck.

. Vk: the set of victims chosen to be replaced in the kth
access, Vk � ðCk�1 � Uk�1Þ.

The key issue for cache replacement is to determine a

victim itemset, Vk, when the free space in the client cache is

not enough to accommodate the incoming data item in the

kth access. In [33], we have observed that a cache

replacement policy should choose the data items with low

access probability, short data retrieval delay, high update

frequency, and large data size for replacement. As

described in the Introduction, a cache replacement policy

should also take into account the cost of cache validation.

Thus, in Min-SAUD, a gain function incorporating these

factors is defined for each cached item i:2

gainðiÞ ¼ pi
si

bi
1þ xi

� v

� �
: ð1Þ
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The idea is to maximize the total gain for the data items
kept in the cache. Thus, to find space for the kth accessed
data item, the Min-SAUD policy identifies the optimal
victim itemset, V �

k , V
�
k � ðCk�1 � Uk�1Þ, such that

V �
k ¼ arg min

Vk�ðCk�1�Uk�1Þ

X
i2Vk

gainðiÞ ð2Þ

s:t:
X
i2Vk

si �
X

j2ðCk�1�Uk�1Þ
sj þ sdk � C: ð3Þ

It is easy to see that Min-SAUD reduces to PIX when
Bdisk is used and when data items have equal size and are
read-only. This is because, under that circumstance, the
data retrieval delay of an item is inversely proportional to
its broadcast frequency [3]. Therefore, Min-SAUD can be
considered a generalization of PIX .

4.2 Analysis of the Min-SAUD Policy

In this section, we show that Min-SAUD is an optimal cache
replacement policy in terms of stretch. The independent
reference model [17] is assumed in the analysis. To facilitate
our analysis, we assume that the arrivals of data accesses
and updates for data item i follow the Poisson processes.
Specifically, tai and tui , the interarrival times for data
accesses and updates of data item i, follow exponential
distributions with means of ai and ui, respectively. In other
words, the density functions for tai and tui are fðtai Þ ¼ aie

�ait
a
i

and gðtui Þ ¼ uie
�uit

u
i , respectively. Further, we assume that

the access latency of the cache is zero since it is negligible
compared to the access latency to the server.

The access cost, in terms of stretch, for a data item is the
product of its access probability and its stretch. Recall that
the stretch of a data item is the ratio of its access latency to
its service time, where the service time can be derived by
the ratio of the item size to the broadcast bandwidth. With a
fixed broadcast bandwidth, we can ignore the bandwidth
factor and define the relative stretch of a data item as the
ratio of its access latency to its size. Without loss of
generality, assuming k accesses to the data items have taken
place, we have the relative access cost Sk for any caching
strategy after the kth access as follows:

Sk ¼
X

1�i�D

pi �
li
si
: ð4Þ

Under the data consistency requirement, even when a
query generates a cache hit, the client still needs to wait for
the arrival of the effective IR, which is the next IR containing
the update information necessary for the validation of the
cached copy. Let PrðUiÞ be the probability that data item i is
updated during the period from the current time to the
arrival time of the effective IR of the next query on item i.
Thus, (4) can be rewritten as:

Sk ¼
X
i2Ck

pi � li
si

þ
X
i=2Ck

pi � li
si

¼
X
i2Ck

pi � li
si

PrðUiÞ þ
X
i2Ck

pi � li
si

ð1� PrðUiÞÞ þ
X
i=2Ck

pi � li
si

:

ð5Þ

The above equation consists of three terms, corresponding
to three cases, namely,

1. a cache hit but an obsolete copy,
2. a cache hit and an up-to-date copy, and
3. a cache miss.

The access latency lis in these three cases are vþ bi, v, and
bi, respectively:

li ¼
vþ bi if i 2 Ck and an obsolete copy;
v if i 2 Ck and an up-to-date copy;
bi if i =2 Ck:

8<
: ð6Þ

We are now going to derive PrðUiÞ. We use PrðU 0
iÞ to

denote the probability that data item i is updated during
the period from the current time to the arrival time of the
next query on data item i. We expect the chance that item
i is updated during the IR waiting period but not
updated between the current time and the arrival time
of the next query on item i is very slim, thus PrðUiÞ can
be approximated by PrðU 0

iÞ:

PrðUiÞ¼: PrðU 0
iÞ ¼ Prðtui < tai Þ ¼

Z 1

tai¼0

Z tai

tui ¼0

fðtai Þgðtui Þdtui dtai

¼ ui
ui þ ai

:

ð7Þ

Therefore, combining (5), (6), and (7), we obtain

Sk ¼
X
i2Ck

piðvþ biÞ
si

� ui

ui þ ai

� �
þ

X
i2Ck

pi � v
si

� ai
ui þ ai

� �
þ

X
i=2Ck

pi � bi
si

¼
X
i2Ck

piðvþ uibi
uiþai

Þ
si

þ
X
i=2Ck

pi � bi
si

:

ð8Þ

The following theorem proves that Min-SAUD is an
optimal cache replacement policy:

Theorem 1. The replacement policy Min-SAUD gives better
access cost, in terms of stretch, than any other replacement
policy.

Proof. We derive the optimality of the Min-SAUD policy by
showing that the cost Sk using this policy is always the
minimum for all k. The proof uses the induction method.

Suppose Sw is the optimal cost for some k ¼ w given
any cache replacement policy. Let Vwþ1 be the victim set
chosen to make room for dwþ1. Therefore, we obtain
Cwþ1 ¼ Cw � Uw [ fdwþ1g � Vwþ1. Hence,

Swþ1 ¼
X

i2Cwþ1

pi vþ uibi
uiþai

� �
si

þ
X

i=2Cwþ1

pi � bi
si

¼ Sw þ
X
i2Uw

pi
si

bi
1þ xi

� v

� �� �
� pdwþ1

sdwþ1

bdwþ1

1þ xdwþ1

� v

� �

þ
X

i2Vwþ1

pi
si

bi
1þ xi

� v

� �� �

¼ Bþ
X

i2Vwþ1

pi
si

bi
1þ xi

� v

� �
;

ð9Þ
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where

B ¼ Sw þ
X
i2Uw

pi
si

bi
1þ xi

� v

� �� �
� pdwþ1

sdwþ1

bdwþ1

1þ xdwþ1

� v

� �
:

Since a cache replacement policy cannot control the value
of B, (9) implies that the lowest access cost is achieved
when the items with the lowest

X
i2Vwþ1

pi
si

bi
1þ xi

� v

� �

are chosen as the victims. This is exactly what the Min-
SAUD policy does. As the Min-SAUD policy makes this
optimal decision for every replacement, subject to the
restriction of cache capacity, no other policy can provide
a lower access cost. tu

4.3 Implementation Issues

In this section, we first address three critical implementa-
tion issues, namely, heap management, estimate of running
parameters, and maintenance of cached item attributes, for
the Min-SAUD policy. Finally, the client cache access
mechanism is described.

4.3.1 Heap Management

In Min-SAUD, the optimization problem defined by (2) and
(3) is essentially the 0=1 knapsack problem, which is known
to be NP-hard. Thus, a well-known heuristic for the
knapsack problem is adopted to find a suboptimal solution
for Min-SAUD:3

Throw out the cached data item i with the minimum
gainðiÞ=si value until the free cache space is sufficient to
accommodate the incoming item.

This heuristic can obtain the optimal solution when the data
sizes are relatively small compared to the cache size [28].

A (binary) min-heap data structure is used to implement
the Min-SAUD policy. The key field for the heap is the
gainðiÞ=si value for each cached data item i. When cache
replacement occurs, the root item of the heap is deleted.
This operation is repeated until sufficient space is obtained
for the incoming data item. Let N denote the number of
cached items and M the victim set size. Every deletion
operation has a complexity of OðlogNÞ. An insertion
operation also has an OðlogNÞ complexity. Thus, the time
complexity for every cache replacement operation is
OðMlogNÞ. In addition, when an item’s gainðiÞ=si value is
updated, its position in the heap needs to be adjusted. The
time complexity for every adjustment operation is OðlogNÞ.
The practical complexity of Min-SAUD is further investi-
gated by simulation experiments in Section 6.5.

4.3.2 Estimate of Running Parameters

Several parameters are involved in computation of the
gainðiÞ function. Among these parameters, pi is propor-
tional to ai, si can be obtained when item i arrives, and v is a
system parameter. In most cases, ui, bi, and ai are not
available to the clients. Thus, we need methods to estimate
these values.

A well-known exponential aging method is used to

estimate ui and bi. Initially, ui and bi are set to 0. When a

new update on item i arrives, ui is updated according to the
following formula:

ui ¼ �u=ðtc � tlui Þ þ ð1� �uÞ � ui; ð10Þ

where tc is the current time, tlui is the timestamp of the last

update on item i, and �u is a factor to weight the importance

of the most recent update with those of the past updates.

The larger the �u value, the more important the recent

updates.
Similarly, when a query for item i is answered by the

server, bi is reevaluated as follows:

bi ¼ �s � ðtc � tqti Þ þ ð1� �sÞ � bi; ð11Þ

where tqti is the query time and �s is a weight factor for the

running bi estimate. ui and bi, estimated at the server-side,

are piggybacked to the clients when data item i is delivered;

tlui is also piggybacked so that the client can continue to

update ui based on the received IRs. The client caches the

data item as well as its ui, tlui , and bi values. The

maintenance of these parameters (along with some other

parameters) will be discussed in the next section.
Different clients may have different access patterns,

while some of their data accesses are answered by the
cache. It is difficult for the server to know the real access

pattern that originated from each client. Consequently, the

access arrival rate ai is estimated at the client-side. The

exponential aging method might not be accurate because it

does not age the access rate for the time period since the last

access. Therefore, a sliding average method is employed in

the implementation [28]. We keep a sliding window of k

most recent access timestamps (t1i ; t
2
i ; � � � ; tki ) for item i in the

cache. The access rate ai is updated using the following
formula:

ai ¼
k

tc � tki
; ð12Þ

where tc is the current time and tki is the timestamp of the

oldest access to item i in the sliding window. When fewer

than k access timestamps are available for item i, the mean

access rate ai is estimated using the maximal number of

available samples.
To reduce the computational complexity, the access rates

for all cached items are not updated during each replace-

ment. Instead, in the implementation, we update the mean
access rate when the data item is accessed. In addition,

similarly to [28], we employ an “aging daemon” which

periodically generates dummy accesses to all data items. If,

for an item, the time period since the last access is larger

than an aging threshold, we use the current time to age its

access rate. The advantages for the periodic aging approach

are two-fold. First, the aging accounts for the time since the

last access and, hence, is able to catch up the changing

workload. Second, with infrequent periodic aging, only
minimal reorganization of the heap structure is required.

The settings of the estimate parameters are described in

Section 6.
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3. We do not distinguish Min-SAUD and this heuristic in the rest of this
paper.



4.3.3 Maintenance of Cached Item Attributes

To realize the Min-SAUD policy, a number of parameters
must be maintained for each cached data item. They are
si; ui; t

lu
i ; bi, ai, and tki s. We refer to these parameters as the

cached item attributes (or simply attributes). To obtain these
attributes efficiently, one may store the attributes for all
data items in the client cache. Obviously, this strategy does
not scale up to the database size. In the other extreme, one
may retain the attributes only for the cached data items.
However, this will cause the so-called “starvation” pro-
blem, as observed in [26], [28], which states that a newly
cached data item i could be selected as the first few
candidates for replacement since it has only incomplete
information (it may incorrectly produce a relatively smaller
gain value). If the cached item attributes are evicted from
the cache together with data item i, then, upon reaccessing
item i, these attributes must be collected again from scratch.
Consequently, item i is likely to be evicted again.

Similarly to [26], we employ a heuristic to maintain the
cached item attributes. The attributes for the currently
cached data items are kept in the cache. Let Nc be the
number of cached items. For those data items that are not
cached, we only retain the attributes for Nc items with the
largest gainðjÞ=sj values. Since the attributes themselves can
be viewed as a kind of special data, as in the management
for cached data, a separate heap is employed to manage the
attributes for noncached data. This heuristic is adaptive to
the cache size. When the cache size is large, it can
accommodate more data items and, hence, attributes for

more noncached data can be retained in the cache. On the
other hand, when the cache size is small, fewer data items
are contained and, thus, fewer attributes are kept.

4.3.4 Description of Client Cache Access Mechanism

We have discussed the various implementation issues for
the Min-SAUD policy; we now show the client cache access
mechanism in Fig. 2. Whenever an application issues a
query for data item i, this cache access procedure is
invoked.

5 SIMULATION MODEL

The simulation model used for performance evaluation is
similar to that used in a previous study [33]. It is
implemented using CSIM [27]. A single cell environment
is considered. The model consists of a single server and
NumClient clients.4 On-demand broadcast is employed for
wireless data dissemination.

The default system parameter settings are given in
Table 1. The database is a collection of DatabaseSize data
items and is partitioned into disjointed regions, each with
RegionSize items. The data access pattern and update
pattern are applied on the regions (see Sections 5.1 and 5.2
for details). Data item sizes vary from smin to smax and have
the following three types of distributions:
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Fig. 2. Algorithm 1: Client Cache Access Mechanism.

4. Each client could be further treated as an aggregate of clients with
lower access rates.



. INCRT:

sizei ¼ smin þ
ði� 1Þðsmax � smin þ 1Þ

DatabaseSize
;

i ¼ 1; . . . ; DatabaseSize;

. DECRT:

sizei ¼ smax �
ði� 1Þðsmax � smin þ 1Þ

DatabaseSize
;

i ¼ 1; . . . ; DatabaseSize;

. RAND:

sizei ¼ smin þ bprobðÞ � ðsmax � smin þ 1Þc;
i ¼ 1; . . . ; DatabaseSize;

where probðÞ is a random function uniformly distributed
between 0 and 1. Combined with the skewed access
pattern, INCRT and DECRT represent clients’ preference
for frequently querying smaller items and larger items,
respectively; RAND models the case where no correlation
between the access pattern and data size exists (see
Section 5.1 for further details).

IRs are broadcast periodically on the broadcast channel
with an interval ofBroadcastInt. The broadcast channel has a
bandwidth of BroadcastBW . It works in a preempt-resume

mannerwith IRs having the highest broadcast priority and all
other messages having equal priority. This strategy ensures
that IRs can always reach the clients in time [20]. The uplink
channel has a bandwidth of UplinkBW .

5.1 Client Model

Each client is simulated by a process running a continuous
loop that generates a stream of queries. After the current
query is finished, the client waits for a period of ThinkTime

and then makes the next query request.5 The ThinkTime

parameter allows the cost of client processing relative to
data broadcast time to be adjusted, thus it can be used to
model workload processing as well as the relative speeds of
the client CPU and the broadcast medium [3]. When a client
is in the thinking state, it has a probability of p to enter the

disconnected state every IR broadcast interval. The time
that a client is in a disconnected state follows an exponential
distribution with a mean of DiscTime. Each client has a
cache of size CacheSize, which is defined as

0:5� ðsmax þ smin � 1Þ �DatabaseSize� CacheSizeRatio:

In order to maintain fairness to different caching schemes,
the CacheSize parameter includes both the space needed for
storing item attributes and the space available for storing
data. Each cached parameter occupies ParaSize bytes.

The client access pattern follows a Zipf distribution with
skewness parameter � [36]. The data items are sorted such
that item 0 is the most frequently accessed and item
DatabaseSize� 1 is the least frequently accessed. In other
words, with the INCRT size setting, the clients access the
smallest item most frequently; with the DECRT size setting,
the clients access the largest item most frequently. Zipf
distributions are frequently used to model nonuniform
access patterns. The probability of accessing any item
within a database region is uniform, while accesses to the
database regions follow the Zipf distribution. Table 2
summarizes the default client parameter settings.

5.2 Server Model

The server is modeled by a single process. Table 3 gives the
server parameter settings. Requests from the clients are
buffered at the server, assuming an infinite queue buffer is
used. After broadcasting the current item, the server
chooses an outstanding request from the buffer as the next
candidate according to the scheduling algorithm used.
Compared with queuing delay and data transmission delay,
the overhead of broadcast scheduling and request proces-
sing at the server is negligible. Therefore, they are not
considered in the model.

The server process generates data updates with an
exponentially distributed update interarrival time having
a mean of UpdateTime. A Cold=Hot update pattern is
assumed in the simulation model. Specifically, the uniform
distribution is applied to all the database regions. Within a
region, Update-Cold% of the updates are for the first
Update-Hot% items and Update-Hot% of the updates are
for the rest. For example, we assume in the experiments
that, within a region, 80 percent of the updates occur on the
first 20 percent of data items (i.e., update-hot items) and
20 percent of the updates occur on the remaining 80 percent
of data items (i.e., update-cold items).
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TABLE 1
Default System Parameter Settings

5. Since a query is initiated after the completion of the last query, the
access arrivals do not follow the Poisson process. Thus, the analytical
assumptions are relaxed in the simulation.



6 PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
cache replacement policy by simulation. Average stretch is
the primary performance metric employed in this study. In
the experiments, we employ LTSF [5] as the on-demand
broadcast scheduling algorithm and AAW_AT [20] as the
cache invalidation scheme since they demonstrated super-
ior performance over other schemes [5], [20]. In LTSF, the
data item with the largest total current stretch is chosen for
the next broadcast, where the current stretch of a pending
request is the ratio of the time the request has been in the
system to its service time. In AAW_AT, the updating history
window w and content organization of the next IR are
dynamically decided based on the system workload.

The results are obtained when the system has reached a
stable state, i.e., each client has issued at least 5,000 queries
after its cache is full, so that the warm-up effect on the client
cache and the broadcast channel is eliminated. For the
exponential aging estimate method, we set �s ¼ �u ¼ 0:25
[3], [28]. For the sliding average method, the aging period is
set to 10,000 seconds and the aging threshold is set to
roughly the product of the average access latency and the
database size. Unless it is mentioned explicitly, the broad-
cast bandwidth is fully utilized.

The overall cache performance in a wireless data
dissemination system is determined by several factors,
such as cache size, cache validation delay, access skewness,
and item size ratio. In the following, we first explore the
robustness of the proposed cache replacement policy, Min-
SAUD, under various workloads. Then, we analyze the time
complexity of the Min-SAUD policy. The LRU policy is
included as a yardstick in the performance evaluation. We
also compare Min-SAUD to SAIU, which makes use of a
cost function of bi � ai=ðsi � uiÞ to determine the victims [33].

6.1 Experiment #1: Impact of the Cache Size

This section investigates the performance of the cache
replacement schemes under different cache sizes. The
simulation results are shown in Fig. 3. To estimate data
retrieval delays and access and update frequencies, Min-
SAUD(EST) uses (10), (11), and (12). Min-SAUD(IDL) and
SAIU(IDL) are assumed to have perfect knowledge of

data access and update frequencies. Moreover, in Min-
SAUD(IDL) and SAIU(IDL), the cache space used for
storing the cached attributes is not counted.

In Fig. 3, it is obvious that Min-SAUD achieves the best
stretch performance. On average, the improvement of Min-
SAUD(IDL) over LRU for INCRT, RAND, and DECRT is
30.7 percent, 21.7 percent, and 11.8 percent, respectively,
and the improvement of Min-SAUD(IDL) over SAIU(IDL)
for INCRT and RAND is 24.6 percent and 8.9 percent,
respectively. Min-SAUD(IDL) and SAIU(IDL) have a similar
performance for DECRT. The improvement follows a
decreasing order of INCRT, RAND, and DECRT. This can
be explained as follows: First, since Min-SAUD takes into
consideration the data size, it caches more frequently
accessed items in the INCRT size setting, whereas it has to
balance between caching more items and caching more
frequently accessed items in the other two settings,
especially for DECRT. Thus, Min-SAUD outperforms LRU
to a greater extent for INCRT than for RAND and DECRT.
Second, because the influence of cache validation delay on
the stretch performance follows a decreasing order of
INCRT, RAND, and DECRT (see the next section for
details), Min-SAUD, which takes into consideration the
cache validation delay, improves performance the most for
INCRT and the least for DECRT. As the cache size increases,
the improvement of Min-SAUD over LRU and SAIU
becomes more significant (for example, for INCRT, from
14.3 percent to 42.1 percent over LRU and from 20.1 percent
to 31.5 percent over SAIU). This implies that Min-SAUD can
utilize the cache space more effectively.

Since the system parameters (i.e., access and update
frequencies) inMin-SAUD(EST) are only estimates and they
occupy some cache space, it shows that Min-SAUD(EST)
performs slightly worse (within 10 percent) than Min-
SAUD(IDL). But still, in most cases, it outperforms
SAIU(IDL), which has perfect knowledge of data access
and update frequencies.

The performance of access latency and cache byte hit
ratio for RAND is shown in Fig. 4. Although Min-SAUD
attempts to optimize stretch by design, it performs much
better than LRU and only slightly worse than SAIU in terms
of these two metrics. Similar results are observed for INCRT
and DECRT.
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TABLE 2
Default Client Parameter Settings

TABLE 3
Default Server Parameter Settings



6.2 Experiment #2: Impact of the Cache Validation
Delay

As pointed out in the previous sections, cache validation cost
can have a great impact on the performance of a cache
replacement policy. Such influence is investigated by experi-
ments in this section. Fig. 5 illustrates the performance when
the IR broadcast interval varies from 1 second to 50 seconds.
Note that the larger the IR broadcast interval, the longer the
cache validation delay. In Fig. 5, we also include aNoCaching
scheme for comparison. In theNo Caching scheme, the clients
do not cache any data locally and, hence, its performance is
not affected by the IR interval.

Let’s first compare the INCRT, RAND, and DECRT size
settings. The influence of the cache validation delay on
stretch follows a decreasing order. The reason is as follows:
When most of the queries are cache hits, the access latency
is dominated by the cache validation delay. In contrast,
when the cache hit ratio is low, the access latency is
dominated by the data broadcast speed. In other words, the
higher the cache hit ratio, the more dominant the cache
validation delay in the performance. Furthermore, for a
certain cache validation delay, the influence on stretch is
more significant for smaller data items (with shorter service
times). As a result, since INCRT has more (smaller) cached
data items than the other two and DECRT has the least
(larger) cached data items, the cache validation delay has
the most impact on stretch for INCRT and the least impact
for DECRT.

When different cache replacement policies are consid-
ered, Min-SAUD performs the best in all cases. Compared
with SAIU, Min-SAUD adapts to different IR broadcast
intervals much better. For example, in the INCRT size
setting, the performance of Min-SAUD degrades 98 percent
when the IR broadcast interval is increased from 1 second to
50 seconds, whereas the stretch of SAIU degrades 265 per-
cent. This convinces us of the need to integrate the cost of
cache validation in a cache replacement policy.

Another observation from Fig. 5 is that the performance
of the cache schemes improves first and degrades again as
the IR broadcast interval is decreased. This is particularly
true for the RAND size setting. This can be explained using
Fig. 6. As the IR broadcast interval is decreased, the cache
validation delay becomes shorter. Hence, the stretch for a
cache-hit query improves, leading to an overall perfor-
mance improvement. However, when the IR broadcast
interval becomes smaller than a certain value (e.g., 5 seconds
for RAND), the overhead for IR broadcasts becomes very
high. As a result, the data retrieval delay and, hence, the
stretch for a cache-miss query or an invalid cache-hit query
(i.e., a cache hit but an obsolete copy) turns out to be very
long. Therefore, the overall performance begins to degrade.

6.3 Experiment #3: Influence of the Item Size Ratio

This section explores the influence of item size ratio, the
ratio of the maximum item size smax to the minimum item
size smin, on the system performance. In the experiments,
smax is fixed to 100 KB and smin varies from 100 KB to 0.1 KB,
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Fig. 3. Stretch performance under various cache sizes. (a) INCRT. (b) DECRT. (c) RAND.



i.e., the size ratio varies from 1 to 1,000. In order to make a
fair comparison, when smin is decreased, the cache size is
reduced according to the following formula:

CacheSize ¼ 0:5� ðsmax þ smin � 1Þ �DatabaseSize

� CacheSizeRatio:

The experimental results are shown in Fig. 7. The best

performance is achieved by Min-SAUD. When the size

settings are INCRT and RAND, the performance improve-

ment ofMin-SAUD over LRU and SAIU becomes prominent

as the size ratio is increased. The reason is two-fold. First, in

these two settings, for a larger size ratio, the frequently

accessed items have smaller relative sizes to the cache size

and more data items can be cached. Thus, Min-SAUD, as

shown in Section 6.1, can more effectively make use of the

cache space than the other schemes and, hence, has a greater

improvement over LRU and SAIU for a larger size ratio.

Second, as the size ratio is increased, since more (smaller)

items are cached, the cache validation delay becomes a

significant factor. As a result, a much better performance is
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Fig. 4. Performance under various cache sizes (RAND). (a) Access latency. (b) Cache byte hit ratio.

Fig. 5. Stretch performance under different IR broadcast intervals. (a) INCRT. (b) DECRT. (c) RAND.



obtained for Min-SAUD. However, the above phenomena
cannot be observed in the DECRT size setting since the
clients access the largest items more frequently. Conse-
quently, its performance is almost the same for different item
size ratios.

It is also observed in Fig. 7 that, for INCRT and RAND,
the performance curve forms a “U” shape when the size
ratio is varied. This is explained as follows: As shown in
Fig. 8, when the size ratio is increased from 1 (i.e., uniform
sizes) to 10 (i.e., nonuniform sizes), the cache hit ratio

improves greatly since, for the case of nonuniform sizes,
some smaller items are accessed more frequently. As a
result, a better overall stretch is observed. However, with
further increasing of the size ratio, because the sizes of the
cold items become relatively larger to those of the hot items,
caching a cold item will replace more hot items. This results
in a worse cache hit ratio and also a worse overall stretch.

6.4 Experiment #4: Influence of the Data Access
Skewness

The influence of the access skewness is evaluated in this

section. Fig. 9 presents the experimental results as the

� parameter of the Zipf distribution varies from 0 to 0.95.

When � is 0, the access pattern is uniform. The larger the

� value, the more skewed the access pattern.

It is shown that Min-SAUD has the best stretch

performance in all cases. In particular, due to reasons

similar to those described in Section 6.1, Min-SAUD

improves the performance over LRU and SAIUmost greatly

when � is set to 0.95 for INCRT, where the smallest items are

accessed frequently.
With increasing skewness, the stretch performance

becomes better in most cases. This is mainly due to a
higher cache hit ratio. However, there is an exception for
DECRT. The performance degrades when � is increased
from 0 to 0.2 (see Fig. 9b). This is because, when the access
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Fig. 6. Individual stretch for cache hit and cache miss (RAND,

Min-SAUD(EST)).

Fig. 7. Stretch performance for different item size ratios. (a) INCRT. (b) DECRT. (c) RAND.



pattern changes from a uniform pattern (� ¼ 0) to a lightly

skewed pattern (� ¼ 0:2), under the DECRT scheme more

large items are accessed and a worse data retrieval delay is

obtained. On the other hand, for a lightly skewed access

pattern, the cache hit ratio cannot be improved very much.

Thus, the overall access latency worsens a little bit and,

hence, a slightly worse stretch performance is observed.

6.5 Experiment #5: Algorithm Complexity

We have shown in the previous few sections that Min-

SAUD, in most cases, demonstrates a much better stretch

performance than LRU and SAIU. In this section, we
study the time complexity of replacement operations for
the Min-SAUD policy. The LRU policy is included as a
yardstick. Recall that a heap structure is used to
implement Min-SAUD (Section 4.3). LRU is also imple-
mented with a heap structure in the simulation. As can
be seen, the time complexity for replacement consists of
two parts: the removal of victims and the insertion of the
incoming item. Thus, we approximate the time complex-
ity by the number of item nodes that are visited in the
heap for every replacement.

Fig. 10 shows the results obtained for the default system
setting. The time complexity for both the average case and
the worst case is measured. The worst case occurs when a
very large item is to be cached (in this case, many cached
items need to be removed for making room). From Fig. 10,
we can see that Min-SAUD has only a little bit worse
average complexity than LRU. The time complexity for
INCRT is higher than those for DECRT and RAND in both
LRU and Min-SAUD. This is because, in the INCRT size
setting, more small data items are preferentially kept in the
cache, thus the heap size is much larger than those for
DECRT and RAND, which leads to worse complexity.

7 CONCLUSION

In this paper, we have investigated the cache replacement
issue in a realistic wireless data dissemination environment
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Fig. 8. Cache hit ratio under various item size ratios (Min-SAUD(EST)).

Fig. 9. Stretch performance under various levels of access skewness. (a) INCRT. (b) DECRT. (c) RAND.



where restrictions on data size, data update, and client
disconnection imposed by most of the previous work are
relieved. Moreover, unlike the existing work, we took into
account the cost of cache validation in the design of a cache
replacement policy under cache consistency. An optimal
gain-based cache replacement policy, Min-SAUD, which
incorporates various factors, namely, data item size,
retrieval delay, access probability, update frequency, and
cache validation delay, was proposed.

We showed by analysis that the stretch of Min-SAUD is
optimal when the independent reference model and the
Poisson processes of data accesses and updates are assumed.
A series of simulation experiments were also conducted to
evaluate the performance ofMin-SAUD. The results demon-
strated that, in most cases, Min-SAUD performs substan-
tially better than the well-known LRU policy and the SAIU

policy under various workloads, especially when the cache
validation delay is an important concern.Min-SAUD(EST), a
practical realization of theMin-SAUD policy, showed a close
performance to Min-SAUD(IDL), which has perfect knowl-
edge of access and update frequencies. Through analysis in
Section 4.3.1 and Section 6.5, it is not difficult to see that the
time complexity of Min-SAUD, OðMlogNÞ, is reasonable.

To the best of our knowledge, this is the first study that
analytically studied how the various factors, such as access
latency and cache validation delay, affect cache perfor-
mance. The analysis serves as the basic guideline for the
design of cache management strategies. In this paper, we
have employed the stretch as the major performance
measure. On the other hand, we can see that the proposed
technique can be easily extended to optimize Min-SAUD

under other metrics such as access latency and cache hit
ratio. For example, to optimize access latency, we can
simply revise the gain function as

gainðiÞ ¼ pi
bi

1þ xi
� v

� �
;

to optimize cache hit ratio and byte hit ratio, the gain
function is revised as gainðiÞ ¼ pi

1þxi
and pisi

1þxi
, respectively.

Performance evaluation of these policies can be done in a
similar manner.

While this study was performed in the context of
wireless data dissemination, it is obvious that the analytical
study can be applied to data caching on remote clients
under the cache consistency requirement. Along with

studies on cache consistency for the Web [14], this study
can be applied to Web client caching or Web proxy caching.

As part of future work, we also plan to extend the cache
replacement policy to a cache admission policy for client
data caching. As shown in the simulation results, there is
still room for improving the parameter estimate methods. If
better estimation methods can be proposed, the perfor-
mance of the practical Min-SAUD policy will be further
improved toward that of the ideal policy. It would be an
interesting topic to combine the prefetching technique into
the current scheme.
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