
An Error-Resilient and Tunable Distributed
Indexing Scheme for Wireless Data Broadcast

Jianliang Xu, Member, IEEE, Wang-Chien Lee, Member, IEEE, Xueyan Tang, Member, IEEE,

Qing Gao, and Shanping Li

Abstract—Access efficiency and energy conservation are two critical performance concerns in a wireless data broadcast system. We

propose in this paper a novel parameterized index called the exponential index that has a linear yet distributed structure for wireless

data broadcast. Based on two tuning knobs, index base and chunk size, the exponential index can be tuned to optimize the access

latency with the tuning time bounded by a given limit, and vice versa. The client access algorithm for the exponential index under

unreliable broadcast is described. A performance analysis of the exponential index is provided. Extensive ns-2-based simulation

experiments are conducted to evaluate the performance under various link error probabilities. Simulation results show that the

exponential index substantially outperforms the state-of-the-art indexes. In particular, it is more resilient to link errors and achieves

more performance advantages from index caching. The results also demonstrate its great flexibility in trading access latency with

tuning time.

Index Terms—Index structure, data broadcast, energy conservation, mobile computing.

�

1 INTRODUCTION

WIRELESS data broadcast has received a lot of attention

from industries and academia in recent years. It has

been available as commercial products for many years (e.g.,

StarBand [20] and Hughes Network [21]). In particular, the

recent announcement of the smart personal objects technology

(SPOT) by Microsoft [16] further highlights the industrial
interest in and feasibility of utilizing broadcast for wireless

data services. With a continuous broadcast network (called

DirectBand Network) using FM radio subcarrier frequen-

cies, SPOT-based devices (e.g., PDAs and watches) can

continuously receive timely information such as stock

quotes, airline schedules, local news, weather, and traffic

information.
Access efficiency and energy conservation are two main

performance issues for the clients in a wireless data

broadcast system. Access efficiency concerns how fast a
request is satisfied, and energy conservation concerns how
to reduce a mobile client’s energy consumption when it

accesses the data of interest. While access efficiency is a
constantly tackled issue in most system and database
research, energy conservation is very critical due to the

limited battery capacity on mobile clients [25]. To facilitate
energy conservation, a mobile device typically supports
two operation modes: active mode and doze mode. The device
normally operates in the active mode; it can switch to the
doze mode to save energy when the system becomes idle.
For example, a typical wireless PC card, ORiNOCO,
consumes 60 mW during the doze mode and 805-1,400 mW
during the active mode [25]. In the literature, two perfor-
mance metrics, namely, access latency and tuning time, have
been used to measure access efficiency and energy con-
servation, respectively [6], [9], [10]:

. Access latency. The time elapsed between the

moment when a query is issued and the moment

when it is responded.
. Tuning time: The amount of time a mobile client

stays active to receive the requested data.

To retrieve a data item from wireless data broadcast,

the mobile client has to continuously monitor the broad-

cast until the data arrives. This will consume a lot of

energy since the client has to remain active during its

waiting time. A solution to this problem is air indexing.

The basic idea is to include some index information about

the arrival times of data items on the broadcast channel.

By accessing the index, the mobile client is able to predict

the arrival of its desired data. Thus, it can stay in the

doze mode during waiting time and tune into the

broadcast channel only when the data item of interest

arrives. Several traditional disk-based indexing techniques

such as Bþ-tree have been extended for air indexing [4],

[10], [19]. However, existing designs are mostly based on

centralized tree structures, which are not performance

efficient for the sequential-access broadcast media. Speci-

fically, to start an index search, the client needs to wait

until it reaches the root of the next broadcast search tree;

also, in case of link errors during index search, the client

392 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

. J. Xu and Q. Gao are with the Department of Computer Science, Hong
Kong Baptist University, Kowloon Tong, KLN, Hong Kong.
E-mail: {xujl, qgao}@comp.hkbu.edu.hk.

. W.-C. Lee is with the Department of Computer Science and Engineering,
The Pennsylvania State University, University Park, PA 16802.
E-mail: wlee@cse.psu.edu.

. X. Tang is with the School of Computer Engineering, Nanyang
Technological University, Nanyang Avenue, Singapore 639798.
E-mail: asxytang@ntu.edu.sg.

. S. Li is with the College of Computer Science, Zhejiang University,
Hangzhou 310027, China.
E-mail: shan@cs.zju.edu.hk.

Manuscript received 6 Jan. 2005; revised 6 June 2005; accepted 8 Sept. 2005;
published online 18 Jan. 2006.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0007-0105.

1041-4347/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

has to restart the search from the next broadcast root.1 To

reduce such access delay, multiple replicated indexes are

usually interleaved with data broadcast. Nevertheless, the

air indexing solution has the drawback of lengthening the

broadcast cycle due to the indexing information. In other

words, there is a trade-off between access latency and

tuning time.
Different application scenarios may require different

performance trade-offs. For example, in an office environ-
ment, users may favor a short latency since they can easily
recharge the batteries; while in the airport, users may prefer
to conserve energy at the cost of a longer latency. As such,
we need a tunable air indexing scheme to accommodate
different requirements. A good air indexing scheme should
be able to facilitate latency bounded tuning and tuning-time
bounded tuning. In general, a shorter tuning time is expected
when a longer latency can be tolerated, and vice versa.
However, most of the existing indexing techniques are not
flexible in the sense that the trade-off between tuning time
and access latency is not adjustable based on application
specific requirements.

In this paper, we propose a novel parameterized index
called the exponential index. The proposed exponential index
is very efficient because it naturally facilitates the index
replication by sharing links in different search trees and,
thus, minimizes storage overhead. Moreover, it has a linear
yet distributed structure which suits the sequential-access
broadcast environment very well. It not only allows
searching to start at any index segment but also makes
recovering an index search from a link error quickly. Based
on its two tuning knobs, the exponential index can also be
easily adjusted to optimize the access latency (or tuning
time) with the tuning time (or access latency) bounded by a
given limit.2

Wireless transmission is error-prone. Data might be
corrupted or lost due to many factors like signal inter-
ference, etc. The client access algorithm for the exponential
index under unreliable broadcast is described. We also
provide a performance analysis of the exponential index in
terms of the access latency and tuning time under unreliable
wireless broadcast environments. Extensive experiments
are conducted to compare the exponential index with two
state-of-the-art air indexing schemes, i.e., the distributed
tree [10] and the flexible index [9], under various link error
probabilities. Simulation results show that the proposed
exponential index substantially outperforms the existing
indexing schemes. In particular, it is more resilient to link
errors and achieves more performance advantages from
index caching. The results demonstrate its great flexibility
in trading access latency with tuning time.

The rest of this paper is organized as follows: Section 2
gives the background for indexing data on broadcast
channels and reviews the related work. In Section 3, we
introduce the proposed exponential index for clustered

broadcast and explain how to tune different trade-offs
between tuning time and access latency. We compare the
proposed index with the existing indexes in Section 4.
Section 5 extends the exponential index to nonclustered
broadcast and index caching. Finally, the paper is con-
cluded in Section 6.

2 BACKGROUND

2.1 Preliminaries

Consider a data dissemination system that periodically
broadcasts a collection of data items (e.g., stock quotes) to
mobile clients through a wireless broadcast channel. Each
data item is a tuple of attribute values and can be identified
by a key value. Similar to [10], the smallest access unit of a
broadcast is referred to as a bucket, which physically
consists of a fixed number of packets—the basic unit of
message transfer in the network. Each bucket is identified
by a sequentially increased id number. We distinguish
between index buckets that hold the index and possibly some
data if space permits, and data buckets that hold the data
(one or more items) only. A sequence of multiplexed index
buckets and data buckets constitute a bcast, in which each
data item appears at least once (see Fig. 1). Bcasts can be
classified as flat broadcast, where each item appears exactly
once, and skewed broadcast, where some items may appear
more than once. A bcast is repeatedly broadcast on the
wireless channel.

To facilitate a data search via an air index, each data
bucket includes an offset to the beginning of the next index
bucket. Taking Fig. 1 as an example, the general access
protocol for retrieving data involves the following phases:

. Initial probe. The client tunes into the broadcast
channel at bucket b and determines when the next
index bucket 3 is broadcast. The client tunes in again
at bucket 3.

. Index search. The client selectively accesses a
number of index buckets (i.e., index buckets 3, 5,
and 6) to find out when to get the desired data held
in bucket p.

. Data retrieval. When bucket p arrives, the client
downloads it and retrieves the desired data. Thus,
the access latency is 19 buckets; as the client needs to
stay active for buckets b, 3, 5, 6, and p only, the
tuning time is five buckets.

There are two basic data organizations with respect to an
attribute within a bcast: clustered broadcast and nonclustered
broadcast. A sequence of data items are clustered if all the

XU ET AL.: AN ERROR-RESILIENT AND TUNABLE DISTRIBUTED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 393

1. This problem can be alleviated a little by enhancing the index with
some auxiliary data structure [23].

2. Note that it is not necessary for the whole system to employ a single
tuning parameter. A wireless network typically consists of a large number
of cells. The users in the same cell are likely to have similar performance
favors. Thus, each cell can independently employ its own tuning parameter
and apply the proposed work.

Fig. 1. Data organization on a wireless broadcast channel.

data items with the same value of the attribute appear
consecutively; otherwise, they are nonclustered. Clustered
broadcast corresponds to flat broadcast with respect to the
primary attribute, whereas nonclustered broadcast corre-
sponds to flat broadcast with respect to a secondary
attribute or skewed broadcast [10]. Without loss of general-
ity, data items in clustered broadcast can be arranged in
ascending order of the attribute values. For nonclustered
broadcast, a bcast can be partitioned into a number of
segments called metasegments, each of which holds a
sequence of items with nondescending (or nonascending)
values of the attribute [10]. Thus, when we look at each
individual metasegment, the data items are clustered on
that attribute and the indexing techniques developed for
clustered broadcast are still applicable to a metasegment.
Therefore, we mainly focus on clustered broadcast when we
describe the proposed index in Section 3 and extend the
technique to nonclustered broadcast in Section 5.

2.2 Related Work

Several disk-based indexing techniques have been extended
for air indexing. Imielinski et al. redesigned the Bþ-tree
such that the leaf nodes store the arrival times of the data
items [10]. A distributed indexing method was proposed to
efficiently replicate and distribute the index tree in a bcast.
Chen et al. and Shivakumar and Venkatasubramanian
considered unbalanced tree structures to optimize energy
consumption for nonuniform data access [4], [19]. These
structures minimize the average index search cost by
reducing the number of index searches for hot data at the
expense of spending more on cold data. Tan and Yu
discussed data and index organization under skewed
broadcast [24]. Hashing and signature methods have also
been suggested for wireless broadcast that supports equal-
ity queries [7], [9]. Hu et al. showed that the signature
method is particularly attractive for multiattribute indexing
[6]. However, none of these techniques is flexible in tuning
access latency and tuning time. Moreover, as they are
extended from disk-based environments, which support
random access, they are not natural for broadcast environ-
ments, where only sequential access is allowed and, hence,
tedious adaptation is needed.

A flexible indexing method was proposed in [9]. The
flexible index first sorts the data items in ascending (or
descending) order of the search key values and then divides
them into p segments. The first bucket in each data segment
contains a control index, which is a binary index mapping a
given key to the segment containing the key, and a local
index, which is an m-entry index mapping a given key to the
bucket containing the key within the current segment. By
tuning the parameters of p and m, mobile clients can
achieve either a good tuning time or a good access latency.
However, [9] does not make it clear how flexibility can be
measured. As we shall see in Section 4, the flexibility of this
indexing method is quite limited.

While all the aforementioned work assumed an error-
free broadcast environment, Tan and Ooi [23] investigated
air indexing techniques for unreliable data broadcast. They
enhanced the distributed tree index and the flexible index to
efficiently deal with link errors. In this paper, we generalize
our previously proposed exponential index [27] to an

unreliable broadcast environment where link errors may
occur. The proposed exponential index differs from the
flexible index in at least three aspects: 1) Instead of binary
spaced indexing, the exponential index allows indexing
spaces to be exponentially partitioned at any base value.
2) The exponential index intelligently exploits the available
bucket space for indexing, whereas the flexible index
blindly incurs overhead. 3) The exponential index allows
the current bcast to index into the next bcast to support an
efficient search, but the flexible index indexes the data
within the current bcast only.

Other related work investigated different aspects of
broadcast, including data scheduling [5], [15], semantic
broadcast [12], broadcast of location-dependent data [28],
consistency management [13], [17], and cache management
[14], [18], [26]. There also exist studies on designing error
correction codes to improve data transmission reliability [8].
Complementary to these studies, we propose error-resilient
data indexing methods to facilitate data accesses even if the
broadcast is not reliable.

3 THE EXPONENTIAL INDEX

This section presents a new air indexing method called the
exponential index. We focus on clustered broadcast in this
section and shall extend the proposed index to nonclustered
broadcast in Section 5. We first illustrate the basic idea of
the exponential index by an example and then generalize it
with two tunable parameters: index base and chunk size (to be
defined later). Next, we analyze the performance of the
generalized exponential index. Finally, we show how to
adjust the trade-off between tuning time and access latency
for the exponential index.

3.1 A Motivating Example

Consider a server that periodically broadcasts stock
information (e.g., stock ticks, prices, trading volumes, etc).
Suppose the server maintains 16 stock items that are
arranged in a bcast in ascending order of their identifiers.

For simplicity, each bucket is assumed to accommodate
only one stock item and some index information.3 As shown
in Fig. 2, a bcast consists of 16 buckets. Each bucket contains
a data part and an index table. The index table consists of
four entries (rows). Each entry indexes a segment of buckets
in the form of a tuple fdistInt;maxKeyg, where distInt
specifies the distance range of the buckets from the current
bucket (measured in the unit of buckets), and maxKey is the
maximum key value of these buckets. The sizes of the
segments grow exponentially. The first entry describes a
single bucket segment (i.e., the next bucket) and, for each
i > 1, the ith entry describes the segment of buckets that are
2i�1 to 2i � 1 away (i.e., 2i�1 buckets). Note that the distInt
values need not be maintained in the index table since they
can be inferred from their entry ids. The key range of the
buckets indexed by the ith entry is given by the maxKey
values of the ði� 1Þth and ith entries.

Suppose that a client issues a query for item “NOK” right
before item “DELL” (i.e., bucket 1) is broadcast. The client

394 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

3. As mentioned, a bucket may accommodate one or more data items
(i.e., stock items here), depending on the bucket capacity.

tunes into the broadcast channel and first retrieves the
index table in bucket 1 (i.e., the left index table in Fig. 2).
Since “NOK” falls between the second maxKey “MOT” and
the third maxKey “SUNW,” the target item must lie in the
buckets that are four to seven away. The client then stays in
the doze mode until bucket 5 is broadcast and examines the
item in bucket 5. As the target item cannot be found in
bucket 5, the client further checks the index table in bucket 5
(i.e., the right index table in Fig. 2). Since “NOK” matches
the first maxKey, the target item must be in the next bucket.
Therefore, the client completes the query by accessing
bucket 6. The total tuning time for the query is three buckets
(i.e., buckets 1, 5, and 6). Similarly, if a client wants to access
item “SUNW” right before bucket 1 is broadcast, it can get
the desired data by searching buckets 1, 5, 7, and 8. As we
shall show in Section 3.3, the worst tuning time for this
exponential index is dlog2ðN � 1Þ þ 1e buckets when the
data broadcast is error-free, where N is the total number of
buckets in a bcast. In our example, where N ¼ 16, the worst
tuning time is five buckets.

As mentioned, wireless data broadcast is unreliable. A
bucket might be corrupted during broadcasting. We can
handle such link errors easily with the exponential index.
Again, using Fig. 2 as an example, a client searches for
“NOK” from the first bucket. If the broadcast is error-free,
the client accesses buckets 1, 5, and 6, as discussed above.
However, if bucket 1 is corrupted, the client immediately
restarts the search from the next bucket (i.e., bucket 2).
Thus, the client accesses bucket 1 (corrupted) and buckets 2
and 6 to get the desired data. If both buckets 1 and 2 are
corrupted, the client restarts the search from bucket 3 and
accesses buckets 5 and 6. Hence, there is only a small
performance penalty. This is indeed an advantage over the
centralized tree index, where, if the root is corrupted, the
client has to wait until the root is next broadcast before
restarting the search, thus causing a significant access delay.

We can observe several nice properties of the exponential
index from this simple example:

. The index has a linear yet distributed structure.
Hence, it immediately enables an index search from
the next index bucket (i.e., the next bucket with an
index table), thereby saving access latency. The

index bucket where a search starts represents the
root of a search tree for the indexed data on the air.

. The index is naturally replicated in such a way that
an index link is shared by different search trees, i.e.,
two index searches traversing through different
search trees (i.e., starting with different root buckets)
may use the same index links in the searching
processes. Thus, the storage overhead of the index is
minimized.

. The worst tuning time is the logarithm of the bcast
length under error-free broadcast.

. The index can recover an index search from a link
error quickly thanks to its distributed structure.

In addition, the next section shows that the indexing
overhead can be controlled by adjusting the index structure
(via an exponential base) and the number of index buckets.

3.2 The Generalized Exponential Index

In the above example, the sizes of the indexed segments
exponentially increase by a base of two (hereafter referred
to as the index base). To generalize the exponential index, the
index base can be set to any value r � 1. Specifically, as
shown in Fig. 3, the ith entry in the index table describes the
maximum key value of a segment of ri�1 buckets (i.e., the
buckets that are

Xi�2

j¼1

rj þ 1

$ %
¼ ri�1 � 1

r� 1
þ 1

� �

to b
Pi�1

j¼1 r
jc ¼ bri�1

r�1c away).
Since the exponential index maintains an index table in

each bucket, the bucket capacity to accommodate data items
is reduced, thereby increasing the bcast length. To reduce
such indexing overhead, we group I buckets into a data
chunk and build the exponential index on a per-chunk basis
(i.e., including one index table in each chunk). This decreases
the number of index tables in a bcast and the number of

XU ET AL.: AN ERROR-RESILIENT AND TUNABLE DISTRIBUTED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 395

Fig. 2. A simple exponential index.

Fig. 3. Illustration of exponential indexing space.

entries in each index table. However, the price to pay for per-
chunk indexing is that an average of I�1

2 buckets need to be
searched to locate a data item within a data chunk.

To remedy this, we propose, in a data chunk, to
construct a plain index for all buckets, where an index
entry is used to describe the maximum key value for each
bucket. With the plain index, if we do not consider link
errors, the intrachunk tuning time is either one (for the
first bucket in the chunk) or two buckets (for the other
buckets). In this way, the index table for each data chunk
is split into two parts: a global index for the other data
chunks and a local index for the I � 1 buckets within the
local chunk. Fig. 4 shows an example of the generalized
exponential index, where the index base r is set at 2 and
the chunk size I is set at 2.

We now describe the client access protocol under
unreliable data broadcast. Assume that each data bucket
includes an offset to the next index bucket (i.e., the first
bucket of the next chunk). The client access protocol follows
the same three phases described in Section 2.1. We discuss
the access protocol for the proposed exponential index
using an example (see Algorithm 1 for a formal descrip-
tion). Again, suppose that the client makes a query for item
“NOK” right before the bucket containing item “DELL” is
broadcast. Since the requested item is not in the current
bucket, the client checks the local index. Because “NOK” is
larger than the maximum key value “IBM” in the local
index, the client proceeds to check the global index. In the
global index, “NOK” lies in the key range specified by the
second entry, hence, the client goes into the doze mode and
waits for the second next index bucket (i.e., bucket 5). In the
index table of bucket 5, “NOK” falls in the key range
specified by the first local index entry. Therefore, the client
accesses the next bucket (i.e., bucket 6) to complete the
query. The total tuning time is three buckets. As another
example for the same index search, now suppose bucket 1 is
corrupted. The client continues to access the next bucket 2
to find out the index bucket 3. From there, it proceeds to
search bucket 5 and accesses bucket 6 to retrieve the desired
data. If bucket 6 is also corrupted, the client waits for
one bcast to download bucket 6 in the next broadcast cycle.

Algorithm 1 Client Access Protocol for the Exponential

Index under Unreliable Broadcast

1: sequentially access the broadcast until an error-free

bucket is retrieved

2: if the bucket is a data bucket then

3: go into the doze mode and wake up at the next index

bucket

4: if the index bucket is corrupted then

5: go into the doze mode again, wait for (I � 1)

buckets to retrieve the next index bucket, and

goto Line 4

6: end if

7: end if // so far an error-free index bucket is retrieved

8: for each data item in the index bucket do

9: if it is the requested data item then

10: stop the search and the query is finished

11: end if

12: end for

13: // check the local index in the index table:

14: if the requested data item is within the key range

specified by the ith local entry then

15: go into the doze mode, wait for i� 1 buckets to

retrieve the ith data bucket, and goto Line 26

16: end if

17: // check the global index in the index table:

18: if the requested data item is within the key range

specified by the ith global entry then

19: go into the doze mode and wait for

ðbri�1�1
r�1 þ 1c � I � 1Þ buckets to retrieve the index

bucket of the ðbri�1�1
r�1 þ 1cÞth chunk

20: if the retrieved index bucket is corrupted then

21: go into the doze mode, wait for (I � 1) buckets to

access the next index bucket, and goto Line 20

22: else

23: goto Line 8 to repeat this search procedure

24: end if

25: end if // so far the data bucket containing the desired

item is located

26: if the data bucket is corrupted then

27: go into the doze mode, wait for (IC � 1) buckets to

396 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

Fig. 4. The generalized exponential index (r ¼ 2, I ¼ 2).

access the same bucket in the next broadcast

cycle, and goto Line 26
28: else

29: retrieve the data and the query is finished

30: end if

There are two tuning knobs for the generalized expo-

nential index: index base r and chunk size I. These

two parameters offer the exponential index great flexibility

in tuning access latency against tuning time. In general, the

number of index entries and, hence, the indexing overhead

increases with decreasing index base r, and the tuning time

decreases with r. Moreover, the larger the chunk size I, the

less the tuning time but the longer the initial index probing

time. A detailed performance analysis is provided in the

next section.

3.3 Performance Analysis

This section analyzes the access latency and tuning time of

the exponential index. We assume that the access prob-

abilities of data items are uniformly distributed and the

initial points to tune in the broadcast channel are randomly

distributed over the bcast. Table 1 summarizes the notations

used in the analysis.
Let B denote the number of data items that a data bucket

can hold. Since an index table needs to occupy the space

used to store data items, fewer items can be accommodated

by a bucket with an index table. Let B0 denote the number

of items such a bucket can hold. The value of B0 is a

function of the parameters of I and r. Note that B0 is an

integer and r is a real number. An arbitrary r may not result

in an index table of a size equal to a multiple of the data

item size. Since the tuning time generally decreases with the

index base r, it is desirable to adjust r according to B0 to

fully exploit the available space for an index table.
Given B and B0, the number of entries in an index table

follows:

ni �
ðB�B0Þ � so

se
; ð1Þ

where so and se are the sizes of a data item and an index

entry, respectively.
Since a data chunk consists of I buckets, the number of

local index entries is simply given by: nb ¼ I � 1. Thus, we

obtain the number of global index entries:

nc ¼ ni � nb �
ðB�B0Þ � so

se
� I þ 1: ð2Þ

As a data chunk consists of I � 1 buckets without index

tables and one bucket with an index table, it can hold a total

of BðI � 1Þ þB0 data items. Hence, the number of data

chunks in a bcast is given by:

C ¼ N

BðI � 1Þ þB0

� �
: ð3Þ

The index table in each chunk indexes all the other

chunks in a bcast; thus, we must have

Xnc
i¼1

ri�1 ¼ r
nc � 1

r� 1
� C � 1: ð4Þ

Therefore, given B0 and I, the smallest value of r can be

obtained by numerically solving the following inequality:

rnc þ ð1� CÞrþ C � 2 � 0: ð5Þ

Now, we derive the average access latency and tuning

time given B0 and I. The average access latency is

obtained as follows (see the Appendix, which can be

found on the Computer Society Digital Library at

http://www.computer.org/tkde/archives.htm, for de-

tailed derivation):

EðdÞ ¼ IC
2
þ 1þ IC � p

1� p

þ I

2
þ IC � p

1� p

� �
� BðI � 1Þ
BðI � 1Þ þB0 :

ð6Þ

The average tuning time is given by (see the Appendix,

which can be found on the Computer Society Digital

Library at http://www.computer.org/tkde/archives.htm,

for detailed derivation):

EðtÞ ¼ 2I � 1

Ið1� pÞ

þ 1

C
tð0Þ þ

XC�1

l¼1

tðlÞ þ tðC � 1Þ � p
1� p

� � !

þ BðI � 1Þ
ðBðI � 1Þ þB0Þ � ð1� pÞ ;

ð7Þ

where

tðlÞ ¼
0; if l ¼ 0;

tðl� xÞ � ð1� pÞ þ tðl� 1Þ � pþ 1; if l > 0;

� ð8Þ

where x is the maximum value less than or equal to l in the

set of f1; 2; brþ 2c; � � � ; brnc�1�1
r�1 c þ 1g.

XU ET AL.: AN ERROR-RESILIENT AND TUNABLE DISTRIBUTED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 397

TABLE 1
Summary of Notations

From (5) and (7), it is not difficult to see that, with the
same value of B0, the smaller is the value of r, the less is the
average tuning time in general. Therefore, in performance
optimization and tuning, we examine only the smallest
values of r that result in an index table whose size is a
multiple of the data item size, rather than testing all
possible values of r.

To have more intuition on tuning time, we also derive
the worst tuning time, assuming the broadcast is error-free.4

Suppose the client initially tunes into data chunk A and is
interested in some data item in chunk T (see Fig. 3). The
initial search space is C (approximately rnc�1

r�1) buckets.
According to the index table in A, the search will be guided
to a certain range of sequential data chunks whose size is at
most rnc�1 chunks (when T falls in the last index entry).
Thus, the search space is reduced by a factor of at least

rnc�1
r�1

rnc�1
¼ r� r

1�nc

r� 1
� r

r� 1
: ð9Þ

Then, the client will access the first chunk in the refined
search space (e.g., chunk B in Fig. 3) and trim the search
space again by a factor of at least r

r�1 through examination
of B’s index table. The procedure is repeated until the
refined search space contains one data chunk only. There-
fore, at most dlog r

r�1
ðC � 1Þe þ 1 buckets are accessed to

reach the target chunk. If a chunk contains more than
one bucket, we might need one more bucket access to probe
the first index bucket and another one to locate the desired
data item after reaching the target chunk. Therefore, the
tuning time is bounded by:

OðtÞ ¼ dlog r
r�1
ðC � 1Þe þ 1; if I ¼ 1;

dlog r
r�1
ðC � 1Þe þ 3; if I > 1:

�
ð10Þ

3.4 Performance Tuning

As mentioned before, tuning time and access latency are
two conflicting performance measures; they cannot be
minimized at the same time. To cater for different
application scenarios, we need tunable indexing structures
that optimize either the tuning time or the access latency
with a certain performance requirement on the other metric.
The proposed exponential index can be employed to serve
this purpose. Specifically, we are interested in tuning the
performance along two dimensions:

. Latency-bounded tuning. Given a limit L on the
average access latency, how can the parameters (i.e.,
r and I) of the exponential index be tuned to obtain
the minimum tuning time?

. Tuning-time bounded tuning. Given a limit T on
the average tuning time, how can the parameters of
the exponential index be tuned to achieve the
shortest access latency?

Based on the analysis presented in the last section, the
optimal solutions to the above two problems can be
obtained by searching the optimal values of B0 (recall that
r is a function of B0 as shown by (2), (3), and (5)) and I.
Thus, the latency-bounded tuning problem is defined as
follows:

min
I¼f1;2;���;dNBeg;B0¼f0;1;���;bB�

I�se
so
cg
EðtÞ; ð11Þ

s:t: EðdÞ � L: ð12Þ

The tuning-time-bounded tuning problem is defined as
follows:

min
I¼f1;2;���;dNBeg;B0¼f0;1;���;bB�

I�se
so
cg
EðdÞ; ð13Þ

s:t: EðtÞ � T: ð14Þ

It is easy to see that these two search problems have a
worst-case time complexity of OðNB �BÞ ¼ OðNÞ.

4 PERFORMANCE EVALUATION

This section evaluates the performance of the proposed
exponential index. We developed a simulator based on ns-2
to simulate the GPRS wireless network [2], [11]. We would
like to compare the exponential index against the state-of-
the-art indexes (i.e., the distributed tree [10] and the flexible
index [9] enhanced for unreliable broadcast [23]) and to
investigate its ability to adjust the trade-off between access
latency and tuning time.

In the simulation, a broadcast server and a client are
simulated, and the user requests are sequentially issued and
processed by the client.5 We set the system parameters
similar to those in [9], [10], [23]. The database size is set at
30,000 items. The link error probability ranges from 0 to
10 percent. Flat broadcast is employed to broadcast the data
items. Without loss of generality, we assume that the access
distribution over the data items is uniform.6 For the
exponential index and the flexible index, an index entry
contains a key value only; hence, its size is set to 4 bytes. For
the distributed tree, the index entry size is set to 8 bytes
since it contains a key value as well as the offset to the
bucket containing the key value. We have evaluated
different combinations of item size so and bucket
capacity B. Due to space limitations, we report the results
for two informative settings only, i.e., 1) so ¼ 16 bytes, B ¼
80 (denoted as “S-16 B-80”) and 2) so ¼ 128 bytes, B ¼ 10
(denoted as “S-128 B-10”). Recall that each data bucket
includes an offset to the beginning of the next index bucket.
For simplicity, we omit this overhead since it is very small
and exists in all the indexing schemes under investigation.
The system parameter settings are summarized in Table 2.

We compare the indexing schemes in terms of the tuning
time and access latency, both of which are measured in the

398 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

TABLE 2
Parameter Settings

4. The worst tuning time is 1 when considering link errors.

5. Note that the data access rate will not have an impact on the overall
performance.

6. With flat broadcast, the average performance of the indexes would
remain the same no matter what the data access pattern is.

unit of buckets. To make a clear comparison, the access

latency of an indexing scheme shown in the results is

normalized by the latency of a nonindex scheme, i.e., dN2Be.
The results reported for all indexes under investigation

were obtained from simulation. We have also calculated the

results for the exponential index based on the analysis

presented in Section 3; the simulation results match the

analytical results, which confirms the correctness of the

analysis.

4.1 Comparison with the Distributed Tree Index

This set of experiments compares the proposed exponential

index to the distributed tree, which is a nonflexible scheme.

To compare the tuning time, we first measure the

performance of the distributed tree given the default system

setting; we then obtain the best tuning time for the

exponential index by tuning the index base and chunk size

such that its access latency is no higher than that of the

distributed tree. Fig. 5a shows the average tuning time as a

function of link error probability. As expected, the tuning

time increases with increasing error probability for both

index schemes. The exponential index outperforms the

distributed tree by 25-42 percent.
Similarly, to compare the access latency, we tune the

parameters of index base and chunk size to obtain the best

result for the exponential index while making sure its

tuning time is no worse than that of the distributed tree. As

shown in Fig. 5b, the exponential index achieves a better

performance than the distributed tree for all cases.

4.2 Comparison with the Flexible Index

This section compares the proposed exponential index to
the flexible index in terms of their effectiveness in reducing
the tuning time. Note that these two schemes have a similar
performance for a local data search within a chunk.
Therefore, to facilitate the comparison, we set the chunk
size to one bucket to observe their performance differences
for global index search across data chunks. For the
exponential index, we adjust the index base r such that it
achieves a similar access latency to that of the flexible index.
Fig. 6a and Fig. 6b show the average tuning time and the
normalized access latency, respectively.

As shown in Fig. 6, with the same (or even less) access
latency (Fig. 6b), the exponential index consistently outper-
forms the flexible index in terms of the tuning time (Fig. 6a).
The improvement is more significant for the setting of item
size 128 bytes, bucket capacity 10 (i.e., S-128, B-10) than the
setting of item size 16 bytes, bucket capacity 80 (i.e., S-16,
B-80). This can be explained as follows: The flexible index
employs a binary control index, which blindly incurs
overhead without considering the available space. Thus,
the larger the item size, the higher the probability of leaving
large internal fragments. On the other hand, the exponential
index adjusts the parameter of r according to the available
space for indexing. Hence, with a large item size, it can fully
utilize the large item space to achieve a better performance.

4.3 Flexibility of the Indexes

This section investigates the indexes’ ability to adjust the
trade-off between access latency and tuning time. First, we
look at the tuning-time-bounded tuning problem. It is

XU ET AL.: AN ERROR-RESILIENT AND TUNABLE DISTRIBUTED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 399

Fig. 5. Exponential versus distributed tree index. (a) Average tuning time. (b) Normalized access latency.

Fig. 6. Exponential versus flexible index (chunk size = one bucket). (a) Average tuning time. (b) Normalized access latency.

desirable that the longer is the tuning time allowed, the
shorter is the access latency achieved. Fig. 7a and Fig. 7b,
respectively, show the results for the settings of S-16, B-80
and S-128, B-10 under the default link error probability
1 percent. As expected, the distributed tree is not flexible:
It is impossible for it to achieve a tuning time shorter than
4.8 buckets, and the latency remains the same after this
point. While the flexible index is able to trade access
latency for tuning time; obviously, the exponential index
performs even better. With the same tuning time require-
ment, the exponential index achieves a shorter (or the
same) access latency. For a similar reason to that explained
in Section 4.2, the improvement of the exponential index
over the flexible index is more remarkable for the setting
with a larger item size.

To examine the indexes’ resilience to link errors, we
show in Fig. 7c the achieved latency with a bounded tuning
time of 5.0 under a variety of link error probabilities. As can
be seen, the performance improvement of the exponential
index over the other two indexes becomes more significant
(e.g., from 12 to 20 percent against the flexible index) with
increasing error probability, implying the exponential index
is more resilient to link errors. This confirms our claim that
the exponential index recovers an index search from a link
error more quickly (as discussed in Section 3).

Next, we examine the latency-bounded tuning problem.
We expect to achieve a shorter tuning time by tolerating a
longer latency. As shown in Fig. 8a and Fig. 8b, the
distributed tree obtains a better performance than the
flexible index only at normalized access latencies of 1.07-
1.09 for the setting of S-128, B-10. The exponential index

performs the best throughout the range of bounded
latencies tested.

Fig. 8c shows the tuning time under a variety of link
error probabilities when the access latency is bounded at
1.4. Once again, the exponential index demonstrates a
stronger resilience to link errors. As the link error
probability is increased from 0 to 10 percent, the perfor-
mance improvement of the exponential index over the
distributed index and the flexible index increases from
36 percent to 53 percent and 26 percent to 44 percent,
respectively.

5 EXTENSIONS

The previous sections have focused on clustered broadcast,
which is capable of indexing the primary attribute in flat
broadcast. This section extends the proposed exponential
index to nonclustered broadcast, which is useful for
indexing secondary attributes and skewed broadcast. In
addition, we leverage the idea of index caching to further
improve the access performance.

5.1 Nonclustered Broadcast

As discussed in Section 2, for a nonclustered broadcast, a
bcast can be partitioned into a number of clustered
segments (i.e., metasegments). The number of metaseg-
ments in a bcast for an attribute is called the scattering factor
(denoted by M) [10]. Without loss of generality, we assume
the items are sorted in ascending order of the attribute
values in each metasegment. Similar to clustered broadcast,
the exponential index can be applied to each metasegment.

400 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

Fig. 7. Access latency with bounded tuning time. (a) Link error = 1 percent, S-16, B-80. (b) Link error = 1 percent, S-128, B-10. (c) Link error = 0-

10 percent, S-16, B-80.

Fig. 8. Tuning time with bounded access latency. (a) Link Error = 1 percent, S-16, B-80. (b) Link error = 1 percent, S-128, B-10. (c) Link error = 0-

10 percent, S-16, B-80.

Instead of indexing a whole bcast, each index table for
nonclustered broadcast covers the buckets up to the farthest
one in the next metasegment whose attribute value is less
than that of the current bucket. In the example shown in
Fig. 9, the index table in bucket 2 indexes buckets 3-5, and
the index table in bucket 10 indexes buckets 11-13.

The client access protocol remains the same except that a
query continues to search the next segment if the target item
is not found in the current metasegment. The maximum
number of metasegments to be searched is M. Thus, based
on (10), the tuning time of a query is bounded by
OðMlog r

r�1
SÞ, where S is the number of chunks in a

metasegment.
We now evaluate the flexibility of the exponential index

for nonclustered broadcast. We simulate a broadcast-disk
system [1] which consists of three disks with 800, 1,600, and
23,600 data items, respectively. The three disks are inter-
leaved in a bcast but rotate at different speeds: The first disk
rotates at a speed twice as fast as the second one and
four times as fast as the third disk. In other words, the items
in the first, second, and third disks are broadcast 4, 2, and
1 time(s), respectively, in each bcast. The resulting bcast has
four metasegments, each of which contains 7,500 clustered
items. The access probability of each item is set proportional
to its broadcast frequency. The distributed tree and the
flexible index are included for comparison. For both of the
index schemes, an index is built for each metasegment;
similar to the exponential index, if the item of interest is not

found in the current metasegment, the search continues in
the next metasegment until the item is retrieved.

As shown in Fig. 10, the exponential index has the best
performance among all indexes under investigation. Com-
pared with the clustered broadcast case (Fig. 7a and Fig. 8a),
the improvement here is more significant. For example, in
tuning-time bounded tuning, the exponential index
achieves a tuning time of 4.9 buckets at a normalized
latency of 1.6, whereas the flexible index cannot get a tuning
time shorter than 7.6 buckets (cf. 3.0 versus 3.7 buckets in
Fig. 7a). This is mainly because the exponential index allows
the current metasegment to index into the next metaseg-
ment to support continuous search, thus improving search
efficiency; in contrast, the distributed tree and the flexible
index constrain the indexing space within a metasegment
only and, hence, when the item is not found in the current
metasegment, the search has to restart from the index root
in the next metasegment.

To evaluate the impact of skewed data access, a Zipf
distribution (with a skewness parameter �) is used to
simulate client access behavior [26]. The broadcast-disk
system described earlier is employed to generate broadcast
program. Fig. 11 shows the results under different settings of
�. We set the bounded tuning time at 11 for Fig. 11a and the
bounded access latency at 1.8 for Fig. 11b. It can be observed
the exponential index consistently outperforms the distrib-
uted tree and the flexible index. This demonstrates that the
exponential index is robust to skewed data access.

XU ET AL.: AN ERROR-RESILIENT AND TUNABLE DISTRIBUTED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 401

Fig. 9. Indexing nonclustered broadcast (r ¼ 2, I ¼ 1).

Fig. 10. Flexibility of the indexes for nonclustered broadcast (S-16, B-80, link error = 1 percent). (a) Tuning-time bounded tuning. (b) Access-latency
bounded tuning.

5.2 Index Caching

We now discuss how to cache the index to further improve
data access performance. In particular, we shall show that
the exponential index can benefit from more performance
advantages from index caching than the other indexes.

The client access protocol with index caching is similar to
that without it. Upon a data request, the client first tunes
into the broadcast and retrieves the first index bucket by
following Algorithm 1. If the index (table) is not cached yet,
it is cached on the client. Then, it follows the exponential
index to determine which index bucket to access next. If the
next index (table) is in the cache, it can be accessed
immediately from the cache. Otherwise, as usual, the client
tunes into the broadcast to retrieve it. An issue here is how
to tell if the next index (table) is cached or not, or,
equivalently, how to figure out the id of the next index
(table). Recall that each bucket contains a sequentially
increased id number. As such, the id of the next index
(table) can be computed from the id of the current and the
indexing distance. The saving for index data retrieval due to
index caching can also be achieved by the distributed tree
and the flexible index.

Yet, the exponential index can do more than that thanks
to its nice data structure. Since multiple search trees are
embedded in the exponential index, we can make use of this
feature to further refine the search space with caching. We
take one example to illustrate this additional advantage.
Assume again the broadcast program is as shown in Fig. 2.
To retrieve item “SUNW” starting from the “DELL”
without index caching, the client accesses buckets 1, 5, 7,
and 8, as discussed in Section 3.1. Now, suppose that the

index table of bucket 3 is cached. By first accessing bucket 1,
we know that the desired item must be stored in buckets 5
through 8. Moreover, we figure out from the cached index
table that the item must be in buckets 7 through 10. Hence,
the desired item should lie in buckets 7 and 8. Therefore, we
next access buckets 7 and 8 to retrieve the item “SUNW.”
Compared to the no-caching case, one bucket access can be
saved. With more index tables cached, more performance
improvement can be expected. The index cache access
algorithm is formally described in Algorithm 2.

Algorithm 2 Index Cache Access Algorithm

1: tune into the broadcast and retrieve the first index

bucket B by following steps 1 to 7 Algorithm 1
2: Denote by R the range of a bcast

3: for each cached index table � do

4: calculate the segment of buckets,R� , containing the

desired item

5: R ¼ R \R�

6: end for

7: calculate from B the segment of buckets, Ri, containing

the desired item
8: R ¼ R \Ri

9: access the cache or tune into the broadcast to access the

first bucket B in R
10: repeat Lines 7-9 till the desired item is retrieved

To focus on the performance of index caching, we
assume there are no index updates in the experiments.7 We
employ LRU as the cache replacement policy. Fig. 12 shows
the tuning time as a function of cache size, where the flat
broadcast is employed and the bounded access latency is set
at 1.4. The cache size is represented as a percentage of the
size of the distributed tree index. As observed, as the cache
size is increased from 0 to 15 percent, all schemes improve
their performance. Among the three schemes, the exponen-
tial index reduces the tuning time most significantly as
expected (i.e., 24 versus 11 percent for distributed tree and
15 percent for flexible index). As a result, its performance
gain over the distributed tree and the flexible index is
increased from 62 to 96 percent and from 37 to 56 percent,
respectively.

402 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

Fig. 12. Performance as a function of cache size (S-16, B-80, link error =

1 percent).

7. The cache consistency issue for data broadcast has been well studied
in the literature. This is out of the scope of this paper; however, interested
readers are referred to [3], [22].

Fig. 11. Impact of skewed access for nonclustered broadcast (S-16, B-80, link error = 1 percent). (a) Tuning-time bounded tuning. (b) Access-latency

bounded tuning.

6 CONCLUSIONS

This paper has investigated the use of air indexing
techniques to improve the efficiency of energy consumption
on mobile devices in an unreliable broadcast system. We
have proposed a novel parameterized index scheme called
the exponential index. It has a linear yet distributed
structure which suits the broadcast environment very well.
The distributed property of the exponential index enables a
search to start immediately from an arbitrary index table in
the broadcast as well as to restart quickly in case of a link
error. The energy consumption of mobile clients is also very
efficient (i.e., the tuning time is logarithmically proportional
to the bcast length). Moreover, the access latency and tuning
time of the exponential index can be adjusted by two tuning
knobs: index base and chunk size.

We have provided an analytical model to derive the
access latency and tuning time of the exponential index and
analyzed how to minimize the access latency (or tuning
time) with a bounded tuning time (or access latency). We
have demonstrated via simulations that

1. the exponential index substantially outperforms two
state-of-the-art air indexing schemes,

2. it is more resilient to link errors,
3. it benefits from more performance advantages from

index caching, and
4. it achieves a greater flexibility in adjusting the trade-

off between access latency and tuning time.

There are a number of issues that deserve further study.
The proposed index exponentially partitions the indexing
space, yet the optimal partitioning remains an open
problem. The exponential index does not differentiate the
performance requirements of individual clients or items.
We plan to investigate client-based and item-based flexible
indexes. In addition, we are interested in exploring the
research issues of balancing access latency and tuning time
in a multichannel data broadcast environment.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their constructive comments. Professor Michael Franklin
at UC Berkeley offered many valuable suggestions on an
earlier version of this paper. Jianliang Xu’s work was
partially supported by grants from the Research Grants
Council of the Hong Kong SAR, China (Project Nos. HKBU
2115/05E and HKBU FRG/04-05/II-26). Wang-Chien Lee’s
work was supported in part by US National Science
Foundation grant IIS-0328881. Xueyan Tang’s work was
supported in part by a grant from Nanyang Technological
University (Grant No. CE-SUG 1/04). This work was done
when Shanping Li was a visiting scholar at Hong Kong
Baptist University.

REFERENCES

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik, “Broadcast
Disks: Data Management For Asymmetric Communications
Environments,” Proc. ACM SIGMOD Conf. Management of Data,
pp. 199-210, May 1995.

[2] C. Bettstetter, H.-J. Vogel, and J. Eberspacher, “GSM Phase 2+
General Packet Radio Service GPRS: Architecture, Protocols, and
Air Interface,” IEEE Comm. Surveys, vol. 2, no. 3, 1999.

[3] G. Cao, “A Scalable Low-Latency Cache Invalidation Strategy for
Mobile Environments,” IEEE Trans. Knowledge and Data Eng.,
vol. 15, no. 5, pp. 1251-1265, Sept./Oct. 2003.

[4] M.-S. Chen, K.-L. Wu, and P.S. Yu, “Optimizing Index Allocation
for Sequential Data Broadcasting in Wireless Mobile Computing,”
IEEE Trans. Knowledge and Data Eng., vol. 15, no. 1, pp. 161-173,
Jan./Feb. 2003.

[5] C.-L. Hu and M.-S. Chen, “Dynamic Data Broadcasting with
Traffic Awareness,” Proc. IEEE Int’l Conf. Distributed Computing
Systems (ICDCS ’02), pp. 112-119, July 2002.

[6] Q.L. Hu, W.-C. Lee, and D.L. Lee, “Power Conservative Multi-
Attribute Queries on Data Broadcast,” Proc. 16th Int’l Conf. Data
Eng. (ICDE ’00), pp. 157-166, Feb. 2000.

[7] Q.L. Hu, W.-C. Lee, and D.L. Lee, “A Hybrid Index Technique for
Power Efficient Data Broadcast,” Distributed and Parallel Databases
(DPDB), vol. 9, no. 2, pp. 151-177, Mar. 2001.

[8] W.C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes.
Cambridge Univ. Press, 2003.

[9] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Power
Efficient Filtering of Data on Air,” Proc. Fourth Int’l Conf. Extending
Database Technology (EDBT ’94), pp. 245-258, Mar. 1994.

[10] T. Imielinski, S. Viswanathan, and B.R. Badrinath, “Data on
Air—Organization and Access,” IEEE Trans. Knowledge and Data
Eng., vol. 9, no. 3, pp. 353-372, May/June 1997.

[11] R. Jain, “GPRS Simulations Using NS—Network Simulator,”
master’s thesis, Dept. of Electrical Eng., India Inst. of Technolo-
gy—Bombay, http://www.isi.edu/nsnam/ns/ns-contributed.
html, June 2001.

[12] K.C.K. Lee, H.V. Leong, and A. Si, “Semantic Data Broadcast for a
Mobile Environment Based on Dynamic and Adaptive Chunk-
ing,” IEEE Trans. Computers, vol. 51, no. 10, pp. 1253-1268, Oct.
2002.

[13] V.C.S. Lee, J.K. Ng, J.Y.P. Chong, and K.-W. Lam, “Maintaining
Temporal Consistency in Broadcast Environments,” Proc. Fifth
IEEE Int’l Conf. Mobile Data Management (MDM ’04), Jan. 2004.

[14] V. Liberatore, “Caching and Scheduling for Broadcast Disk
Systems,” Technical Report 98-71, Inst. for Advanced Computer
Studies, Univ. of Maryland at College Park (UMIACS), Dec. 1998.

[15] V. Liberatore, “Multicast Scheduling for List Requests,” Proc. IEEE
INFOCOM ’02 Conf., pp. 1129-1137, June 2002.

[16] DirectBand Network, Microsoft Smart Personal Objects Technol-
ogy (SPOT), http://www.microsoft.com/resources/spot/, 2005.

[17] E. Pitoura and P. Chrysanthis, “Exploiting Versions for Handling
Updates in Broadcast Disks,” Proc. Conf. Very Large Data Bases
(VLDB ’99), pp. 114-125, 1999.

[18] Q. Ren, M.H. Dunham, and V. Kumar, “Semantic Caching and
Query Processing,” IEEE Trans. Knowledge and Data Eng., vol. 15,
no. 1, pp. 192-210, Jan./Feb. 2003.

[19] N. Shivakumar and S. Venkatasubramanian, “Energy-Efficient
Indexing for Information Dissemination in Wireless Systems,”
ACM/Baltzer J. Mobile Networks and Applications (MONET), vol. 1,
no. 4, pp. 433-446, Dec. 1996.

[20] StarBand, http://www.starband.com/, 2005.
[21] Hughes Network Systems, DIRECWAY Homepage, http://www.

direcway.com/, 2005.
[22] K.L. Tan, J. Cai, and B.C. Ooi, “An Evaluation of Cache

Invalidation Strategies in Wireless Environments,” IEEE Trans.
Parallel and Distributed Systems, vol. 12, no. 8, pp. 789-807, Aug.
2001.

[23] K.L. Tan and B.C. Ooi, “On Selective Tuning in Unreliable
Wireless Channels,” J. Data and Knowledge Eng., vol. 28, no. 2,
pp. 209-231, Nov. 1998.

[24] K.L. Tan and J.X. Yu, “Energy Efficient Filtering of Nonuniform
Broadcast,” Proc. 16th Int’l Conf. Distributed Computing Systems
(ICDCS ’96), pp. 520-527, May 1996.

[25] M.A. Viredaz, L.S. Brakmo, and W.R. Hamburgen, “Energy
Management on Handheld Devices,” ACM Queue, vol. 1, no. 7,
pp. 44-52, Oct. 2003.

[26] J. Xu, Q.L. Hu, W.-C. Lee, and D.L. Lee, “Performance Evaluation
of an Optimal Cache Replacement Policy for Wireless Data
Dissemination,” IEEE Trans. Knowledge and Data Eng., vol. 16,
no. 1, pp. 125-139, Jan. 2004.

[27] J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A Parameter-
ized Distributed Indexing Scheme for Data on Air,” Proc. Second
ACM/USENIX Int’l Conf. Mobile Systems, Applications, and Services
(MobiSys ’04), pp. 153-164, June 2004.

XU ET AL.: AN ERROR-RESILIENT AND TUNABLE DISTRIBUTED INDEXING SCHEME FOR WIRELESS DATA BROADCAST 403

[28] J. Xu, B. Zheng, W.-C. Lee, and D.L. Lee, “Energy Efficient Index
for Querying Location-Dependent Data in Mobile Broadcast
Environments,” Proc. 19th IEEE Int’l Conf. Data Eng. (ICDE ’03),
pp. 239-250, Mar. 2003.

Jianliang Xu received the BEng degree in
computer science and engineering from Zhe-
jiang University, Hangzhou, China, in 1998 and
the PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2002. He is currently an assistant
professor in the Department of Computer
Science at Hong Kong Baptist University. His
research interests include mobile and pervasive
computing, wireless sensor networks, and dis-

tributed systems, with an emphasis on data management. He has
published more than 40 technical papers in these areas, many in
prestigious journals and conferences, including ACM SIGMOD, Mo-
biSys, IEEE ICDE, INFOCOM, IEEE Transactions on Knowledge and
Data Engineering, IEEE Transactions on Parallel and Distributed
Systems, and VLDB Journal. He is a coeditor of a book entitled Web
Content Delivery published by Springer. He has also served as a
session chair and program committee member for many international
conferences, including IEEE INFOCOM. He is a member of the IEEE.

Wang-Chien Lee received the BS degree from
the Information Science Department, National
Chiao Tung University, Taiwan, the MS degree
from the Computer Science Department, Indiana
University, and the PhD degree from the
Computer and Information Science Department,
the Ohio State University. He is an associate
professor of computer science and engineering
at Pennsylvania State University. Prior to joining
Penn State, he was a principal member of the

technical staff at Verizon/GTE Laboratories, Inc. Dr. Lee performs cross-
area research in database systems, pervasive/mobile computing, and
networking. He is particularly interested in developing data management
techniques for supporting complex queries in a wide spectrum of
networking and mobile environments, such as peer-to-peer networks,
mobile ad hoc networks, wireless sensor networks, and wireless
broadcast systems. He has served as a guest editor for several journal
special issues on mobile database-related topics, including the IEEE
Transactions on Computers, IEEE Personal Communications Maga-
zine, ACM MONET, and ACM WINET. He was the founding program
committee cochair for the International Conference on Mobile Data
Management. He is a member of the IEEE, the IEEE Computer Society,
and the ACM.

Xueyan Tang received the BEng degree in
computer science and engineering from Shang-
hai Jiao Tong University, Shanghai, China, in
1998 and the PhD degree in computer science
from the Hong Kong University of Science and
Technology in 2003. He is currently an assistant
professor in the School of Computer Engineer-
ing at Nanyang Technological University, Singa-
pore. He has served as a program committee
member of IEEE INFOCOM ’04 and WWW ’05.

He is an editor of a book entitled Web Content Delivery published by
Springer. His research interests include mobile and pervasive comput-
ing, wireless sensor networks, Web and Internet, and distributed
systems, particularly the data management aspects in these areas.
He is a member of the IEEE.

Qing Gao received the BS degree in computer
science from Zhejiang University, Hangzhou,
China, in 2000. He is pursuing a PhD degree in
computer science at Zhejiang University and
currently is an exchange research student at
Hong Kong Baptist University. His research
interests include mobile communications, sen-
sor networks, and grid computing.

Shanping Li received the BEng and MS
degrees in computer science and engineering
from Zhejiang University, Hangzhou, China, and
the PhD degree in computer science from
Zhejiang University in 1993. He is currently a
professor in the College of Computer Science at
Zhejiang University. He was a visiting scholar at
Hong Kong Baptist University in Feb. 2004. His
research interests include semantic Web, grid
computing, and pervasive computing.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

404 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 18, NO. 3, MARCH 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

