
Top-k Monitoring in Wireless Sensor Networks
Minji Wu, Student Member, IEEE, Jianliang Xu, Member, IEEE, Xueyan Tang, Member, IEEE, and

Wang-Chien Lee, Member, IEEE

Abstract—Top-k monitoring is important to many wireless sensor applications. This paper exploits the semantics of top-k query and

proposes an energy-efficient monitoring approach called FILA. The basic idea is to install a filter at each sensor node to suppress

unnecessary sensor updates. Filter setting and query reevaluation upon updates are two fundamental issues to the correctness and

efficiency of the FILA approach. We develop a query reevaluation algorithm that is capable of handling concurrent sensor updates. In

particular, we present optimization techniques to reduce the probing cost. We design a skewed filter setting scheme, which aims to

balance energy consumption and prolong network lifetime. Moreover, two filter update strategies, namely, eager and lazy, are

proposed to favor different application scenarios. We also extend the algorithms to several variants of top-k query, that is, order-

insensitive, approximate, and value monitoring. The performance of the proposed FILA approach is extensively evaluated using real

data traces. The results show that FILA substantially outperforms the existing TAG-based approach and range caching approach in

terms of both network lifetime and energy consumption under various network configurations.

Index Terms—Sensor network, data management, energy efficiency, top-k, continuous query.

Ç

1 INTRODUCTION

RECENT advances in signal processing, microelectronics,
and wireless communications have enabled the deploy-

ment of large-scale sensor networks for many applications
such as habitat and environment monitoring [28]. A
wireless sensor network typically consists of a base station
and a group of sensor nodes (see Fig. 1). The base station
serves as a gateway for the sensor network to exchange data
with external users. The sensor nodes, on the other hand,
are responsible for sensing and collecting data from their
local environments. They are also capable of processing
sensed data and communicating with their neighbors and
the base station.

Monitoring aggregate forms of sensed data is important
to many sensor applications and has drawn a lot of research
attention [6], [7], [16], [19], [29], [30]. Among those
aggregates, a top-k query requests the list of k sensor nodes
with the highest (or lowest) readings. For example:

. Environmental Monitoring. Consider an environ-
ment-monitoring sensor network. A top-k query is
issued to find out the nodes and their corresponding
areas with the highest pollution indexes for the
purpose of pollution control or research study.

. Network Management. Power supply is critical to
the operation of a wireless sensor network. Thus, a

top-k query may be issued to continuously monitor
the sensor nodes with the least residual energy so
that these sensor nodes can be instructed to adapt
themselves (for example, reducing sampling rates) to
extend network lifetime.

A naive implementation of monitoring top-k query is to
use a centralized approach in which all sensor readings are
periodically collected by the base station, which then
computes the top-k result set. To reduce network traffic in
data collection, an in-network aggregation technique, known
as TAG, has been proposed [16]. In this approach, a routing
tree rooted at the base station is first established, and the
data are then aggregated and collected along the routing
tree to the base station. Consider an example shown in
Fig. 2a, where sensor nodes A, B, and C form a routing tree.
The readings of these sensor nodes at three successive
sampling instances t1, t2, and t3 are shown in the tables in
Fig. 2a. Suppose we are monitoring a top-1 query. Employ-
ing TAG, at each sampling instance, nodes B and C send
their current readings to the parent (that is, node A), which
compares the data received with its own reading and sends
the highest reading to the base station. In this example, a
total of nine messages are sent. Node B is involved in the
message exchange at each sampling instance though the
top-1 result is always node C. Therefore, this approach
incurs unnecessary updates in the network and is not
energy efficient.

In this paper, we exploit the semantics of top-k query
and propose a novel filter-based monitoring approach
called FILA. The basic idea is to install a filter at each
sensor node to suppress unnecessary sensor updates. The
base station also keeps a copy of the filter setting to
maintain an (error bounded) approximate view of each node’s
reading. A sensor node updates its reading with the base
station only when the reading passes the filter. The
correctness of the top-k result is ensured if all sensor nodes
perform updates according to their filters. Fig. 2b shows an
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example, where the base station has collected the initial
sensor readings and installed three filters [20, 39], [39, 47],
and [47, 80] at sensor nodes A, B, and C, respectively. At
sampling instances t1 and t2, no update is reported, since all
updates are filtered out by the nodes’ respective filters. At
instance t3, the updated reading of node B (that is, 48)
passes its filter [39, 47]. Hence, node B sends the reading 48
to the base station via node A (Step 1). Since 48 lies in the
filtering window of node C (that is, [47, 80]), the top-1 result
becomes undecided at the base station, as either node B or
node C can have the highest reading. Therefore, the base
station probes node C for its current reading to reevaluate
the top-1 result (Steps 2 and 3). Thus, a total of four update
messages and one probe message are incurred in this
approach.1 Compared with the aforementioned TAG-based
approach, five update messages are saved at the cost of one
probe message. Clearly, this approach achieves a better
performance than the TAG-based approach.

However, in order to make FILA work efficiently, two
fundamental issues have to be addressed:

. What are the requirements of the filter settings such
that the top-k result set is correctly returned if all
nodes perform updates according to their filters?
Given the correctness requirements, how can we set
the filter for each sensor node to balance their energy
consumption and maximize network lifetime? In the
above example, if nodes B and C have the filters set
to [39, 50] and [50, 80], respectively, then no update
needs to be reported at any of the three sampling
instances.

. Upon receiving updates from the sensor nodes, how
does the base station reevaluate the top-k result, and
how can we adjust the affected filters? In particular,
it is likely that multiple nodes update during the
same sampling interval. Thus, query reevaluation
needs to handle concurrent updates.

These issues are essential to the correctness and
efficiency of the FILA approach and are investigated in
this paper. Our contributions are summarized as follows:

. We investigate top-k monitoring in wireless sensor
networks, which distinguish themselves from tradi-
tional distributed networks in system architecture
and performance concern. On one hand, we can take
advantage of the architecture of sensor network (for
example, hierarchical multihop routing) to improve
performance. On the other hand, sensor nodes are
battery powered. When a certain portion of the

nodes run out of their battery power and lose their
coverage, the whole network would be down. Thus,
balancing the energy consumption of the sensor
nodes to prolong network lifetime becomes a
primary performance objective in sensor networks
(as opposed to reducing network traffic in tradi-
tional distributed networks).

. We exploit the semantics of top-k query and propose
a filter-based approach called FILA for monitoring
top-k query (and its variants) in wireless sensor
networks.

. We develop a query reevaluation algorithm that is
capable of handling concurrent updates for FILA. In
particular, we present optimization techniques to
reduce the probing cost.

. We design a skewed filter setting scheme, which
aims to balance energy consumption and prolong
network lifetime. Moreover, two filter update stra-
tegies (that is, eager and lazy) are proposed to favor
different application scenarios.

. Extensive experiments are conducted to evaluate the
performance of the proposed FILA approach by using
real data traces. The results provide a number of
insightful observations and show that FILA substan-
tially outperforms TAG [16] and range caching [25] in
terms of both energy consumption and network
lifetime under various network configurations.

The remainder of this paper proceeds as follows:

Section 2 reviews the related work on top-k query

processing in distributed environments. Section 3 presents

our proposed approach, FILA, and discusses how we can

set and maintain the filter for each sensor node and how we

can reevaluate the top-k query result when updates occur.

We extend FILA to handle approximate top-k monitoring,

order-insensitive top-k monitoring, and top-k value mon-

itoring in Section 4. The FILA approach is experimentally

evaluated in Section 5. Finally, we conclude this paper and

present some future research plans in Section 6.

2 RELATED WORK

Evaluating top-k queries in distributed networks has been

extensively studied in the literature (for example, [4], [5],
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1. For simplicity, the overhead for initial data collection and filter setting
is not shown here, but is counted in our experiments.

Fig. 2. An example of top-k monitoring. (a) TAG. (b) FILA.

Fig. 1. The system architecture.



[10], [11], [18], [33], [41]). A typical assumption is that the
ranking score of an object should be aggregated from a
number of attribute values stored at distributed data
sources (formally called vertically partitioned data sets). The
best known algorithm is the threshold algorithm (TA) [10],
[11], [21]. Although TA requires data sources to support
sorted accesses, Marian et al. [18] proposed the Upper
algorithm for sources that support random accesses only.
Cao and Wang [4] developed a three-phase uniform
threshold (TPUT) algorithm, which significantly reduces
remote accesses in large networks. In [33], Theobald et al.
further extended TA by introducing a family of approx-
imate variables based on probabilistic arguments to reduce
runtime costs. Michel et al. [20] proposed a flexible
framework for distributed top-k algorithms, which allows
for trade-off efficiency against result quality and band-
width saving against the number of communication
phases. While the above approaches assumed a single-
hop communication network, Zeinalipour-Yazti et al. [42]
proposed a distributed threshold join algorithm (TJA) to
exploit in-network aggregation for multihop sensor net-
works. More recently, Silberstein et al. [26] developed a
sampling-based approach to evaluate approximate top-
k queries in sensor networks. Top-k processing algorithms
have also been developed for peer-to-peer networks [2]
and private databases [36]. However, all these studies have
focused on snapshot top-k queries, whereas we are
interested in monitoring continuous top-k queries in this
paper. As pointed out in [1], although continuous
monitoring could be simulated by repeatedly executing a
snapshot query, many snapshot queries would be executed
in vain if the answer remains unchanged, thereby being
cost inefficient. Moreover, it is difficult to determine the
optimal frequency of repeated query executions.

Babcock and Olston [1] did an inspiring work on
monitoring continuous top-k queries over distributed data
sources. Their idea is to add an adjustment factor to each
source to ensure that the local top-k list aligns to the global
top-k list maintained at the coordinator. Focusing on
vertically partitioned data sets, their algorithm maintains
an invariant that the adjustment factors allocated to different
sources for each data object sum to zero. When the algorithm
is applied to nonpartitioned data (our problem setting), each
object is allocated with an adjustment factor of 0, which
degenerates to the TAG approach discussed in Section 1.
Thus, it is not effective to our problem. Moreover, their work
was limited to order-insensitive top-k monitoring; the more
challenging order-sensitive top-k monitoring problem was
not studied. Our work also bears some similarity to [24],
which installs filters for monitoring average and sum
aggregates over distributed data streams. However, the
filter usages are different: Olston et al. [24] uses filters to
bound error in query result, whereas we leverage filters to
maintain top-k ordering. In addition, both [1] and [24] aimed
at reducing update traffic in a single-hop network. In
contrast, our main performance objective is to extend
network lifetime for a multihop sensor network.

Monitoring of aggregation functions (such as average,
sum, count, min, and max) in sensor networks has been
investigated in the past few years. However, the main focus
has been on how to establish the routing architecture and

how to apply in-network aggregation techniques to reduce
network traffic [6], [14], [16], [30], [38]. Approximate
monitoring schemes have been proposed for average and
sum aggregates in [7], [29], [32]. In [39], a clustered
aggregation (CAG) technique was proposed for approx-
imate query processing. Compared with TAG, CAG can
reduce the message transmissions (particularly for lower
level nodes) for data collection. However, CAG does not
alleviate the hot spots, since the cluster heads need to report
all their readings to the base station, and these messages
have to be relayed by the hot-spot nodes (that is, the root’s
direct children). Different from [39], we exploit the
semantics of top-k query and propose a new method to
prolong network lifetime. In a separate study, Silberstein
et al. [27] explored techniques for monitoring extreme
values, with the objective of minimizing network traffic.
Data storage and query processing for snapshot queries in
sensor networks have also been studied (for example, [3],
[8], [9], [12], [15], [17], [37]). These works focused on
applications different from ours.

Another related work is range caching, proposed by
Olston et al., for approximate query processing [25]. The
base station caches a value range (bounded by an approx-
imation range) for the value at each source node. A source
updates with the base station only when the new value is
beyond the approximation range of the previously reported
value. For query processing, the base station first computes
a tentative result based on cached value ranges. If the
tentative result is not sufficiently precise, then the base
station refreshes some necessary nodes and recomputes the
query result based on refreshed values. The range caching
approach has been adapted for answering top-k queries in
sensor networks [35]. However, as range caching does not
explore the semantics of top-k query, its performance is not
as good as FILA, as will be shown in Section 5.

3 TOP-k MONITORING

We first describe the system model and give a formal
problem definition in Section 3.1. Then, Section 3.2 provides
an overview of the proposed FILA monitoring approach.
The query reevaluation, filter setting, and filter update
algorithms are discussed in detail in Sections 3.3, 3.4, and
3.5, respectively.

3.1 System Model and Problem Definition

We consider a wireless sensor network, as depicted in
Fig. 1. It is assumed that the base station has a continuous
power supply. In contrast, the sensor nodes are powered by
battery. The radio coverage of a sensor node is constrained
to a local area. When the base station is beyond a sensor
node’s radio coverage, a routing infrastructure (for exam-
ple, a TAG tree [16]) is used to route data to the base station.

Each sensor node i measures the local physical phenom-
enon vi (for example, pollution index, temperature, or
residual energy) at a fixed sampling rate. Without loss of
generality, we consider a top-k monitoring query that
continuously requests the (ordered) list of sensor nodes R
with the highest readings, that is

R ¼< n1; n2; . . . ; nk >;
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where

8i < j; vni � vnj
and

8l 6¼ niði ¼ 1; 2; . . . ; kÞ; vl � vnk :

The monitoring result is maintained by the base station and
supplied to external users. To produce query results
continuously, the monitoring algorithm controls when and
how sensor readings should be collected to the base station.

3.2 FILA Overview

Initially, the base station collects the readings from all
sensor nodes. It sorts the sensor readings and obtains the
initial top-k result set. Then, the base station computes a
filter (represented by a window ½li; ui�) for each sensor
node i and sends it to the node for installation. At the next
sampling instance, if the new reading of sensor node i is
within ½li; ui�, then no update is sent to the base station.
Otherwise, if the new reading changes beyond the filtering
window and passes the filter, then an update is sent to the
base station. The base station will then reevaluate the top-k
result and adjust the filter setting(s) for relevant sensor
node(s) if necessary. The query reevaluation algorithm will
be discussed in detail in Section 3.3.

The purpose of using filters is to filter out unnecessary
sensor updates and thereby suppress the traffic in the
network. The correctness of the top-k result must be
guaranteed, provided that all sensor nodes perform updates
according to their filters. Thus, the filter settings have to be
carefully planned in a coordinated manner. Denote the
current reading of node i as vi. Without loss of generality, we
number the sensor nodes in decreasing order of their current
readings, that is, v1 � v2 � � � � � vN , where N is the number
of sensor nodes under monitoring. Intuitively, for the
correctness of monitoring, the filters assigned to the nodes
in the top-k result set should cover their current readings but
do not overlap with each other. On the other hand, the nodes
in the nontop-k set could share the same filter setting. Thus,
we consider the filter settings for the top-ðkþ 1Þ nodes only.
A feasible filter setting ½l1; u1�; ½l2; u2�; . . . ; ½lk; uk�; ½lkþ1; ukþ1�
must satisfy

v1 � u1;
viþ1 � uiþ1 � li � vi; ð1 � i � kÞ;
lkþ1 � vN:

8<
: ð1Þ

We propose to set uiþ1 equal to li in order to maximize
the filtering capability and, hence, reduce the sensor nodes’
energy consumption in sending updates. Fig. 3 shows a
feasible filter setting for top-3 monitoring, where nodes 4
and 5 share a filter setting, and uiþ1 is set equal to li for
1 � i � 3. As can be seen, a filter setting is a (constrained)

partitioning of the data space. The filter setting algorithms will
be presented in Section 3.4.

We note that, in addition to keeping track of the ordered
list of top-k sensor nodes, our FILA approach also
continuously returns for each node an approximate reading
bounded by the filtering window. This approximate read-
ing is useful and sufficient to many applications because
maintaining the exact sensor readings at the base station is
costly. We will measure the level of approximation by using
trace-driven simulation in Section 5.3.

3.3 Query Reevaluation

In this section, we discuss the query reevaluation algorithm.
Under the proposed FILA monitoring approach, a sensor
node sends an update to the base station only when the
reading passes its filter. We shall call it a sensor-initiated
update. If the updated reading overlaps with the filtering
window of any other sensor node, then the top-k result
becomes undecided at the base station. Thus, the base
station will have to probe some sensor node(s) to reevaluate
the top-k result.

We call the lower bound of the top-kth node’s filter (that
is, lk) the critical bound. We classify sensor-initiated updates
into three types: 1) Internal update. An update originated
from a top-k node jumps into the filtering window of
another top-k node (for example, v2 jumps into ½l1; u1�, as
shown in Fig. 4). 2) Join update. An update from a nontop-k
node jumps over the critical bound and falls into the
filtering window of a top-k node (for example, vkþ1 jumps
into ½lk�1; uk�1�, as shown in Fig. 4). 3) Leave update. An
update from a top-k node jumps over the critical bound and
falls into the filtering window of nontop-k nodes (for
example, v3 jumps into ½lkþ1; ukþ1�, as shown in Fig. 4).

Consider a simple case where only one sensor-initiated
update is received by the base station at a sampling
instance. If it is an internal or a join update, then only the
relevant top-k node whose filter covers the updated sensor
reading needs to be probed to reevaluate the top-k result.
For example, if v2 jumps into ½l1; u1�, then node 1 is probed;
if vkþ1 jumps into ½lk�1; uk�1�, then node k� 1 is probed. On
the other hand, if the update is a leave update from a node i,
then we may have to probe all nontop-k nodes to look for
the new top-kth node. This can introduce high energy
consumption. To minimize the cost, we propose to include
in the probe message the newly reported reading v0i from
the leave update. Only the sensor nodes whose current
readings are higher than v0i respond to the probe, since only
these nodes have a chance to beat node i and join the new
top-k set.

We now extend the discussion to general cases, in which
multiple sensor-initiated updates may be received by the
base station at a sampling instance. We denote the set of
internal updates as T internal, the set of join updates as T join,
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and the set of leave updates as T leave. Suppose the old top-k
set is T , where jT j ¼ k. Consider the set of sensor nodes
T 0 ¼ T � T leave þ T join. The current reading of any node in
T 0 must be not less than the critical bound lk. On the other
hand, the current reading of any node that is not in T 0 must
not exceed lk. Therefore, if jT 0j ¼ jT j � jT leavej þ jT joinj � k
(that is, jT joinj � jT leavej), then the new top-k set must be a
subset of T 0. In this case, we do not need to probe any node
that is not in T 0. Otherwise, if jT 0j < k, then the nodes that
are not in T 0 have to be probed.

The query reevaluation algorithm (Algorithm 1) works
as follows: Note that each node in T 0 either has a
deterministic value at the base station (that is, the newly
reported reading in the sensor-initiated update) or falls in a
value range bounded by ½li; ui� for some 1 � i � k. Thus, it is
easy to compute the number of sensor readings falling in
each of the windows ½u1;þ1�; ½l1; u1�; . . . ; ½li; ui�; . . . ; ½lk; uk�.
We shall denote them as c0; c1; . . . ; ci; . . . ; ck.

If
Pk

i¼0 ci ¼ jT
0j � k, then there must exist an integer

m ð1 � m � kÞ such that
Pm�1

i¼0 ci < k and
Pm

i¼0 ci � k. To
construct the new top-k set, we only need to compute the
order of all sensor readings falling in

½u1;þ1�; ½l1; u1�; . . . ; ½lm; um�:

Specifically, for each node i ð1 � i � mÞ, if node i did not
generate a sensor-initiated update, and some sensor-initiated
updates fall in ½li; ui�, then node i needs to be probed to
compute the relative order of its reading with respect to the
newly updated readings in ½li; ui�. On computing the order of
all sensor readings in ½u1;þ1�; ½l1; u1�; . . . ; ½lm; um�, the top-k
nodes are selected as the new top-k set. In the example in
Fig. 5, only node 1 is probed to compute its relative order to
node 5, and the new top-3 set is < 5; 1; 4 > .

If
Pk

i¼0 ci ¼ jT
0j < k, then we first compute the order of

all sensor readings in T 0 in a similar way as above. Besides
T 0, we also need to compute the top k� jT 0j ¼ jT leavej �
jT joinj nodes that are not in T 0 in order to construct the new
top-k set. A simple method is to probe all the nodes that are

not in T 0. However, this may introduce excessive network
traffic and energy consumption. In the following, we
propose two optimizations to reduce the probing cost.

The first takes advantage of the hierarchical multihop
routing architecture in wireless sensor networks. When the
probed readings are propagated up the routing tree toward
the base station, in-network aggregation can be performed
at the intermediate nodes. Since we are interested in the top
jT leavej � jT joinj nodes that are not in T 0, each intermediate
node needs to send upstream only the highest jT leavej �
jT joinj readings received from its descendants.

The second optimization follows the semantics of top-k
queries. Note that the base station has the newly updated
readings of the nodes in T leave that are not in T 0. Thus, only
the nontop-k nodes whose current readings are higher than
the ðjT leavej � jT joinjÞth reading in T leave (denoted by u)
have a chance to join the new top-k set. Instead of probing
all nodes that are not in T 0, we include the value u as a
probe threshold in the probe message, and only the nodes
with readings higher than u will respond to the probe. In
the example in Fig. 6, the newly updated reading v03 of
node 3 is included in the probe message. As a result, only
node 4 reports its current reading to the base station in
response to the probe. The new top-3 set is < 2; 1; 4 > .

Algorithm 1 Query Reevaluation Algorithm for Each

Update Instance (Performed at the Base Station)
1: to-probe ¼ �
2: top-k ¼ the nodes with updated values falling in ½u1;þ1�
3: for i ¼ 1; i <¼ k; iþþ do

4: let ½li; ui� be the filtering window of the top-ith node

in the old top-k set

5: top-k ¼ top-k [ the nodes with updated values

falling in ½li; ui�
6: if the top-ith node does not have a sensor-initiated

update then

7: top-k ¼ top-k [ top-ith node

8: if there is a new updated value falling in ½li; ui�
then

9: to-probe ¼ to-probe [ top-ith node
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Fig. 5. An example of concurrent sensor-initiated updates in top-3
monitoring. (a) Sensor-initiated updates from nodes 2, 4, and 5.
(b) Sensor readings maintained at the base station after probe (the
newly updated readings of nodes 2, 4, and 5 are v02, v04, and v05,
respectively, and the probed reading of node 1 is v01).

Fig. 6. Another example of concurrent sensor-initiated updates in top-3
monitoring. (a) Sensor-initiated updates from nodes 1 and 3. (b) Sensor
readings maintained at the base station after probe (the newly updated
readings of nodes 1 and 3 are v01 and v03, respectively, and the probed
reading of node 4 is v04).



10: end if

11: end if

12: if jtop-kj � k then

13: break

14: end if

15: end for

16: if jtop-kj < k then

17: to-probe ¼ to-probe [ all the nontop-k nodes that have

a reading higher than the ðk� jtop-kjÞth highest
reading in the leave updates

18: end if

19: probe the set of nodes in to-probe

20: recompute the top-k result

3.4 Filter Setting

On reevaluating the top-k result set after receiving the
sensor-initiated updates, the filter settings of sensor nodes
are recomputed. To maximize the filtering capability, the
upper bound of the top-1 node’s filter (that is, u1) and the
lower bound of nontop-k node’s filter (that is, lkþ1) are set to
þ1 and �1, respectively. We now consider the settings for
all nodes except u1 and lkþ1. Recall that uiþ1 is set equal to li
to optimize performance (Section 3.2). The intuitive way is
to set them at the midpoint of two sensor readings, that is

uiþ1 ¼ li ¼
vi þ viþ1

2
ð1 � i � kÞ: ð2Þ

This is obviously a feasible filter setting satisfying (1),
and we call it uniform filter setting. It is simple and
favorable when the readings of all sensor nodes follow a
similar changing pattern. However, the uniform setting fails
to consider the possible diversity in the changing patterns
of sensor readings. If the readings of node iþ 1 change
much faster than those of node i, then node iþ 1 is more
likely to initiate a sensor update than node i, under the
uniform filter setting. In the following, we develop a skewed
filter setting algorithm by taking into account the changing
patterns of sensor readings. Our aim is to balance the
energy consumption of the “neighboring” nodes in the
top-k result set and thus improve network lifetime.

Suppose the average time for the reading of node i to

change beyond � is fið�Þ. Then, the rate of sensor-initiated

updates by node i is given by 1
fið�Þ . In order to balance the

energy consumption (that is, the update rates) of nodes i

and iþ 1, uiþ1 and li should be set such that

1

fiðvi � liÞ
¼ 1

fiþ1ðuiþ1 � viþ1Þ
: ð3Þ

In practice, it is difficult to know in advance how the
sensor readings evolve dynamically, as well as the exact
form of fið�Þ. One approach is to use the historical sensor
readings to predict fið�Þ. However, this approach is costly,
as the base station has to collect all sensor readings. Here,
we propose a practical low-cost approach by assuming that
the reading changes follow a well-known random walk
model [25]. Under the random walk model, the reading
changes in steps. For simplicity, we assume that the reading
increases or decreases by an amount d at each step. Denote
the interstep interval by l. The average time for the reading

to change beyond � can be expressed as (see the Appendix

for the derivation)

fð�Þ ¼ �

d

� �2

�l: ð4Þ

We let every node measure the average delta change di of

their sensor readings at a fixed rate. When the sensor node

reports a new reading to the base station, it piggybacks the

measured value of di. Let L be the time interval chosen to

measure the average delta change. Then, fið�Þ can be

approximated by

fið�Þ ¼
�

di

� �2

�L: ð5Þ

By substituting fið�Þ by (5) into (3), we obtain

di
vi � li

� �2

=L ¼ diþ1

uiþ1 � viþ1

� �2

=L:

By solving this equation, we get

uiþ1 � viþ1

vi � li
¼ diþ1

di
:

By letting uiþ1 ¼ li, we have

uiþ1 ¼ li ¼ viþ1 þ
diþ1

di þ diþ1
� ðvi � viþ1Þ; ð1 � i � kÞ ð6Þ

for skewed filter setting.

3.5 Filter Update

On recomputing the filter settings of sensor nodes, the new

filtering windows are to be sent to the nodes for installation.

We propose two approaches for updating the filter of each

node i:

. Eager Filter Update. If a new filtering window ½l0i; u0i�
is different from the old one ½li; ui�, then the new
filter ½l0i; u0i� is immediately sent to node i to replace
½li; ui�.

. Lazy Filter Update. If a new filtering window
½l0i; u0i� fully contains the old one ½li; ui�, that is,
½li; ui� � ½l0i; u0i�, then the base station delays the
filter update until node i’s reading violates the old
filter ½li; ui�. During this period, node i continues
using ½li; ui� to filter out local sensor updates. It is
easy to verify that the top-k order is still
maintained with such a conservative filter setting.
When node i’s new reading v0i is outside ½li; ui�, a
sensor-initiated update is sent to the base station.
If v0i is within ½l0i; u0i�, then the top-k set remains
unchanged, and the new filtering window ½l0i; u0i�
will be passed to node i. In this case, lazy filter
update incurs one more sensor-initiated update
compared to eager filter update. Otherwise, if v0i is
out of ½l0i; u0i�, then it is treated as a normal sensor-
initiated update. The query reevaluation algorithm
is executed to update the top-k set, and the filter
settings will also be recomputed. In this case, the
lazy filter update saves a filter update message
compared to the eager filter update. Thus, the lazy
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filter update trades more sensor-initiated updates
for fewer filter update messages.

The relative performance of the eager and lazy ap-

proaches depends on the changing pattern of sensor

readings. We will investigate their performance by using

trace-driven simulation in Section 5.2.

4 EXTENSIONS

So far, we have focused on order-sensitive exact top-k set

monitoring. However, the ordering information in the top-k

set may not be needed for some applications. A certain

degree of approximation in top-k ordering may also be

tolerable for some applications to trade result quality for

energy efficiency. Moreover, some applications may be

interested in knowing, besides the top-k set, the top-k values

with bounded precision. Motivated by these observations, in

this section, we extend FILA to handle order-insensitive

top-k monitoring, approximate top-k monitoring, and top-k

value monitoring.

4.1 Order-Insensitive Top-k Monitoring

The order-sensitive algorithm discussed in Section 3 is also

applicable to order-insensitive top-k monitoring. However,

since order-insensitive top-k monitoring does not care about

the exact order of sensor nodes in the top-k set, internal

updates do not have to be reported by the sensor nodes.

Therefore, only a critical bound needs to be set between the

top-k nodes and the nontop-k nodes, as shown in Fig. 7.

When join and leave updates are reported by sensor nodes,

the query reevaluation algorithm is similar to what was

discussed in Section 3.3.

4.2 Approximate Top-k Monitoring

We now consider approximate top-k monitoring, assuming

that a certain degree of approximation in the result is

acceptable. That is, given an approximation degree �, we

do not care about the order of two sensor nodes in the result

set if their sensor readings are within a difference of �.

Formally, an approximate top-k monitoring query continu-

ously requests the list of sensor nodes:

R ¼< n1; n2; . . . ; nk >

such that

8i < j; vni � vnj � �

and

8l 6¼ niði ¼ 1; 2; . . . ; kÞ; vl � minfvn1
; vn2

; . . . ; vnkg þ �:

A feasible filter setting scheme for approximate top-k

monitoring, thus, must satisfy

v1 � u1;
viþ1 � uiþ1; uiþ1 � li þ �; li � vi; ð1 � i � kÞ:
lkþ1 � vN:

8<
:

This means that an overlap of � is allowed between two
neighboring filters (see Fig. 8). Setting � ¼ 0 degenerates
approximate top-k monitoring to exact top-k monitoring.

The filter settings should be revised accordingly. Under
the uniform filter setting, for each 1 � i � k

uiþ1 ¼ viþviþ1þ�
2 ;

li ¼ viþviþ1��
2 :

�

Under the skewed filter setting, for each 1 � i � k,

uiþ1 ¼ viþ1 þ diþ1

diþdiþ1
� ðvi � viþ1 þ �Þ;

li ¼ vi � di
diþdiþ1

� ðvi � viþ1 þ �Þ:

(

4.3 Top-k Value Monitoring

Top-k value monitoring returns not only the set of top-k
nodes, but also their precision-bounded readings. The
extension to top-k value monitoring is straightforward.
Besides the filter maintained for monitoring top-k result set
(called order filter), we maintain another tighter filter for
each node in the top-k result set (called value filter) for value
reporting purposes. Consider a top-k node i with an order
filter ½li; ui�. Assuming that its last reported value is vi, and
the precision constraint required in value reporting is p, the
value filter is then set to ½maxðli; vi � pÞ;minðui; vi þ pÞ�.
When a new reading of the node violates either the order
filter or the value filter, the reading is sent to the base
station. In case only the value filter is violated, the base
station updates the reading maintained for the node and its
corresponding value filter. Otherwise, if the order filter is
also violated, then the top-k result set is reevaluated
following the algorithms discussed in Section 3.

5 PERFORMANCE EVALUATION

5.1 Simulation Setup

We have developed a simulator based on ns-2 (version
2.26) [22] and the US Naval Research Laboratory (NRL)’s
sensor network extension [23] to evaluate the proposed
FILA approach. The simulator includes the detailed
models of the media access control (MAC) and physical
layers for wireless sensor networks. The sensor nodes can
operate in one of three modes: sending message, receiving
message, and sleeping. These modes differ in energy
consumption. The energy consumption for sending a
message is determined by a cost function s � ð�þ � � dqÞ,
where s is the message size, � is a distance-independent
term, � is the coefficient for a distance-dependent term, q
is the component for the distance-dependent term, and d is
the distance of message transmission. As in [13] and [32],
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we set � ¼ 50 nJ=b, � ¼ 100 pJ=b=m2, and q ¼ 2 in the
simulation. The energy consumption for receiving a
message is given by s � �, where � is set at 50 nJ/b. The
power consumption in the sleeping mode is set at
0.016 mW. For simplicity, the energy overhead of mode
switching is ignored. We assume that a sensor identity and
a sensor reading both take 4 bytes, and a filtering window
is characterized by 8 bytes. The initial energy budget at
each sensor node was set at 0.01 Joule.

We simulated a single-hop network of 10 sensor nodes
and a multihop network of 120 sensor nodes. Their layouts
are shown in Figs. 9a and 9b, respectively. We assume that
the TAG routing tree [16] is employed for the base station to
communicate with the sensor nodes. The sensor readings
are simulated using the real traces provided by the Live
from Earth and Mars (LEM) project [31] at the University of
Washington. We used the temperature (TEMP) and dew
point (DEW) traces logged by the station at the University
of Washington from August 2004 to August 2005 in our
experiments. Each trace consists of more than 500,000 sensor
readings. We extracted many subtraces starting at different
dates. Each subtrace contained 20,000 readings. The sub-
traces were used to simulate the physical phenomena in the
immediate surroundings of different sensor nodes. The
subtraces starting at successive dates are similar. To
simulate the spatial correlation of sensor readings, the
subtraces starting at successive dates were assigned to
neighboring nodes in the simulated network. Fig. 10 shows
some representative segments of the TEMP and DEW data
traces, where the interval between two successive readings
was assumed to be one time unit (that is, 10 sec).

We modified the sensor sampling interval to simulate two
different workloads. In the homogeneous (HM) setting, the
sampling interval for all sensors is set at one time unit; in the
heterogeneous (HT) setting, the sampling interval for half of
the sensors is set at one time unit, and that for the other half is
set at five time units. As a result, the readings of the sensors in
the former half change more rapidly than those in the latter
half. The default values of k in top-k queries are set at 3 and 10
for the single-hop and multihop network configurations,
respectively.

In the following, we first compare the two filter update

strategies (that is, eager and lazy) of the proposed FILA

approach. We then evaluate FILA (with two different filter

setting schemes, that is, uniform and skewed) against the

TAG-based periodic aggregation approach (which was

illustrated in Section 1) and the range caching approach

(which was explained in Section 2). For FILA with skewed

filter setting (Section 3.4), the time interval of measuring the

average delta change is set to one time unit. The following

metrics are employed for performance comparison:

. Network Lifetime. As in the previous work [32],
[40], the network lifetime is defined as the time
duration before the first sensor node runs out of
power. It serves as the primary metric in the
performance evaluation.

. Average Energy Consumption. It is defined as the
average amount of energy consumed by a sensor
node per time unit.

. Monitoring Accuracy. This is defined as the mean

accuracy of monitored results against the real results.

Specifically, letMðtÞ denote the monitored result set

at time t and RðtÞ denote the real result set. The

monitoring accuracy is thus defined as 1
te�tb

R te
tb
aðtÞdt,
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where ½tb; te� is the monitoring period, aðtÞ ¼ 1 if

MðtÞ ¼ RðtÞ, and aðtÞ ¼ 0 otherwise.

5.2 Eager versus Lazy Filter Update

The first set of experiments compares the eager and lazy

filter update strategies discussed in Section 3.3. The uniform

filter setting is employed. As shown in Fig. 11a, the lazy

approach achieves a longer network lifetime for both the

TEMP and DEW traces in the multihop network. Moreover,

the lazy approach performs much better in terms of average

energy consumption, as plotted in Fig. 11b. The energy

saving is up to 64 percent. Based on the discussions in

Section 3.5, this implies that most sensor reading changes

have a magnitude wider than the new filtering windows.

The lazy approach helps save the filter update messages,

which contributes to a significant portion of the overall

traffic (more than 50 percent for the eager approach, as

observed in the experiments). In addition, we plot in

Fig. 11c the average energy consumption of the nodes in

different layers of the routing tree. As can be seen, the

relative performance improvement for layer-1 nodes (that

is, the root’s direct children) is much lower than that for

layer-5 nodes. Since the network lifetime is determined by

the hot-spot layer-1 nodes, this explains why the lazy

approach shows a smaller performance gain over the eager

approach in network lifetime than in energy consumption.

Overall, the lazy approach is considered having a better

performance than the eager approach for the traces tested.

Similar performance trends are obtained for the single-hop

network. In the following experiments, we use the lazy

approach as the default filter update strategy in FILA.

5.3 Performance Comparison against TAG and
Range Caching

In this section, we compare the performance of FILA against
TAG and range caching (or Cache for brevity). We denote
FILA with uniform filter setting as FILA-U and FILA with
skewed filter setting as FILA-S. For Cache, at every query
evaluation instance, if any two candidate top-k nodes have
their cached value ranges overlap, then refreshment is
needed to resolve the query result [35]. In each experiment,
we varied the approximate range setting for Cache from 0.1
to 3.2, and the result reported below is obtained from the
best setting.

Figs. 12 and 13 show the results for the single-hop and
multihop networks, respectively. Several observations are
obtained. First, both FILA-U and FILA-S significantly
improve the network lifetime over TAG and Cache and
achieve a much lower average energy consumption. This
result is consistent across all data traces examined, indicat-
ing a significant performance advantage of our proposed
approach. Second, when comparing FILA-U and FILA-S,
FILA-S is slightly worse than FILA-U in terms of the
average energy consumption. Nevertheless, FILA-S
achieves 6-15 percent longer network lifetime for the HT
sampling scenarios by differentiating the filter widths of
different nodes based on their changing patterns in sensor
reading. On the other hand, for the HM scenarios, all
sensors have similar changing patterns in reading. As a
result, FILA-S does not improve the network lifetime
against FILA-U. Third, FILA-U and FILA-S get a higher
monitoring accuracy than TAG. This is because in TAG, all
sensor nodes update at the sampling instance and, hence, a
longer update propagation delay is incurred due to
message collisions and retransmissions. With much less
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Fig. 11. Eager versus lazy update (multihop, k ¼ 10). (a) Network lifetime. (b) Average energy consumption. (c) Energy consumption by layer
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update traffic, FILA-U and FILA-S have a faster query
reevaluation time. Fourth, Cache has a relatively better
performance in the single-hop network than in the multi-
hop network. This reason is explained as follows: Since
there are more nodes in the multihop network, the chance
of two nodes having their cached value ranges overlap is

higher and, hence, more refreshments are incurred. More-
over, the hot-spot nodes in the multihop network consume
energy not only for reporting their own updates but also for
relaying the updates of other lower level nodes. Finally, we
observed in the experiments that the average width of top-k
nodes’ filtering windows (except that for the top-1 node) is
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0.26 degree for the TEMP trace. This confirms our argument

in Section 3.2 that FILA not only returns the top-k result set

but also provides a tightly bounded approximation for each

of the top-k sensor readings.
Fig. 14 shows the network lifetime as a function of k for

the TEMP trace. Similar performance trends are obtained
for the DEW trace. As expected, the network lifetime
decreases with increasing k for all schemes except for TAG
in the single-hop network.2 In all cases examined, again,
FILA-U and FILA-S significantly outperform TAG and
Cache. As TAG shows a poor performance, for clarity, we
compare FILA against Cache only in the rest of the
experiments.

5.4 Approximate Top-k Monitoring

This section investigates the performance of approximate
top-k monitoring. We vary the approximation degree � from
0.0 to 0.5 for the TEMP trace. The values of k are set at 3 and
10 for the single-hop and multihop networks, respectively.
To have a fair comparison, in Cache, a refreshment is
needed only when the value ranges of two candidate top-k
nodes have an overlap larger than the approximation
degree. Thus, Cache can also take advantage of error
tolerance to improve the performance.

As shown in Fig. 15, FILA-U and FILA-S consistently

outperform Cache in terms of network lifetime. Similar to

the observations made for exact top-k monitoring, FILA-S

gets a similar or slightly worse performance than FILA-U

for the HM sampling scenario but performs better (with

6.2 percent to 11.5 percent of improvement) for the HT

scenario.
It is also interesting to observe that, for all traces, the

network lifetime can be noticeably extended with a small
degree of approximation allowed in the result. For example,
with an approximation degree of 0.5, using FILA-U or
FILA-S, the network lifetime is prolonged by more than two
times in most cases compared to the exact monitoring.

5.5 Top-k Value Monitoring

Now, we evaluate the performance of top-k value monitor-
ing that maintains the set of top-k nodes as well as their
precision-bounded readings. We vary the precision require-
ment p for value reporting from 0.1 to 3.2 for the single-hop
network and 0.05 to 1.6 for the multihop network. Fig. 16
shows the results for the TEMP/HM trace, where FILA-U
(Set) stands for the scheme in which only the top-k result set
is maintained (that is, with an infinitely large value of p),
and FILA-U (Value) maintains also precision-bounded top-
k readings (discussed in Section 4.3). FILA-U (Set) repre-
sents the performance upper bound that FILA-U (Value)
could achieve.
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2. In a single-hop network, the rate and sizes of update messages under
TAG are independent of k.

Fig. 14. Lifetime as a function of k. (a) TEMP/HM, single hop. (b) TEMP/HT, single-hop. (c) TEMP/HM, multihop. (d) TEMP/HT, multihop.



It is observed that, with increasing p, FILA-U (Value)

improves the network lifetime gracefully. After reaching a

certain point (for example, 0.8 for the multihop network),

the lifetime of FILA-U (Value) approaches that of FILA-U

(Set) and flattens out. This is because, in these cases, the

filter used for maintaining a precision-bounded top-k

reading is wider than that of the corresponding order filter

and, hence, the value filter is set almost the same as the

order filter. This result again confirms, from another angle,

that our proposed FILA approach, even without the value

monitoring requirement, is able to maintain a tightly

bounded approximation for each top-k reading.

5.6 Order-Insensitive Top-k Monitoring

Finally, this section evaluates the performance of order-

insensitive top-k monitoring. Fig. 17 shows the results
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Fig. 16. Top-k value monitoring (TEMP/HM). (a) Single hop, k ¼ 3. (b) Multihop, k ¼ 10.



under the default system settings. For order-insensitive top-
k monitoring, only the critical bound is maintained as the
filter by all sensors; hence, the filter setting does not have a
very high impact on the performance. As a result, FILA-U
and FILA-S perform similarly in most cases. Compared
with Cache, once again, FILA runs a much longer network
lifetime by making use of the effective filters.

6 CONCLUSIONS

This paper has performed a comprehensive study on
monitoring top-k query in wireless sensor networks.
Different from existing work focusing on in-network data
aggregation techniques, we exploited the semantics of top-k
query and proposed a novel energy-efficient monitoring
approach called FILA. We presented detailed algorithms to
address two critical issues arising in the FILA approach,
that is, filter setting and query reevaluation. Two filter
setting algorithms (that is, uniform and skewed) and two
filter update strategies (that is, eager and lazy) have been
proposed. We have also extended the algorithms to order-
insensitive top-k monitoring, approximate top-k monitor-
ing, and top-k value monitoring.

A series of simulation experiments have been conducted
to evaluate the performance of the proposed FILA approach
by using real traces. The results show that:

1. FILA consistently outperforms the existing TAG-
based approach and Cache approach in terms of
both energy consumption and network lifetime,
under various network configurations,

2. in addition to returning the top-k result set, FILA can
also provide a tightly bounded approximation for
each of top-k sensor readings,

3. the lazy filter update approach obtains a better
overall performance than the eager approach for the
traces examined, and

4. the uniform filter setting performs slightly better
than the skewed filter setting for the HM sampling
scenario, whereas the skewed filter setting is better
for the HT sampling scenario.

As for future work, we plan to extend the proposed
monitoring approach to other aggregate functions such as
kNN, average, and sum. We are going to build a prototype
based on Motes and measure the performance in real
environments. We are also interested in monitoring spatial
queries in object-tracking sensor networks.

APPENDIX

ANALYSIS OF RANDOM WALK MODEL

Consider a one-dimensional random walk model, where at
each step, an object moves distance d along a straight line in
one of the two directions with equal probabilities. Let l be
the interstep interval. Assume that the object starts a
random walk from point O. Then, at any time, the distance
between the object location and O is a multiple of d.

Suppose at some timepoint, an object is located k � d
away from O, where k is an integer. If k 6¼ 0 (that is, the
object is not at O), then the object would move toward and
away from O, with equal probabilities in the next step.
Thus, its distance to O after the next step is ðk� 1Þ � d, with
probability 0.5, and ðkþ 1Þ � d, with probability 0.5. If k ¼ 0
(that is, the object is at O), then the object can only move
away from O in the next step. Thus, its distance to O after
the next step must be d.

We model the object location during random walk as a
probability vector ½p0; p1; p2; . . .�, where pi is the probability
that the object is located i � d away from O. Starting from the
vector ½1; 0; 0; . . .� (that is, the object starts a random walk
from point O), the vector after each move can be computed
iteratively with the above transition probabilities. It is then
easy to calculate the probability of the object first moving
beyond a given distance � ¼ x � d from O at each step. This
way, the average number of steps t that the object takes to
first move beyond � from O can be derived numerically.

Fig. 18 shows the simulation results, where the x-axis
represents the normalized distance x ¼ �=d from the
starting point O, and y-axis represents the ratio of t to x2.
As seen in Fig. 18, when � is beyond a few times d, the ratio
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Fig. 17. Order-insensitive monitoring. (a) Single hop, k ¼ 3. (b) Multihop, k ¼ 10.

Fig. 18. Simulation results of random walk.



approaches a constant 1. Therefore, t can be approximated
by x2 ¼ ð�=dÞ2. Let fð�Þ denote the average time taken by
the object to move beyond � from O. Then, we have
fð�Þ ¼ t � l ¼ ð�=dÞ2 � l.
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