
Time-Critical On-Demand Data Broadcast:
Algorithms, Analysis, and
Performance Evaluation

Jianliang Xu, Member, IEEE, Xueyan Tang, Member, IEEE, and Wang-Chien Lee, Member, IEEE

Abstract—On-demand broadcast is an effective wireless data dissemination technique to enhance system scalability and deal with
dynamic user access patterns. With the rapid growth of time-critical information services in emerging applications, there is an
increasing need for the system to support timely data dissemination. This paper investigates online scheduling algorithms for time-
critical on-demand data broadcast. We propose a novel scheduling algorithm called SIN-� that takes the urgency and number of
outstanding requests into consideration. An efficient implementation of SIN-� is presented. We also analyze the theoretical bound of
request drop rate when the request arrival rate rises toward infinity. Trace-driven experiments show that SIN-� significantly
outperforms existing algorithms over a wide range of workloads and approaches the analytical bound at high request rates.

Index Terms—Mobile computing, on-demand data broadcast, scheduling, content delivery, time constraint.

�

1 INTRODUCTION

THE ever-growing popularity of the Internet and the
resultant slow responses perceived by users have given

rise to vast research efforts on improving the performance
of Web accesses. As the system scale and user base continue
to grow, there is an increasing demand for information
providers to be capable of concurrently delivering a large
amount of information to a huge number of users,
especially in popular events such as elections and Olympics
games. As a result, innovative delivery technologies,
including satellite communications (e.g., StarBand [26]
and DIRECWAY [27]), cable networks, and wireless net-
works (e.g., 2.5G and 3G), have been developed and
deployed to provide shared broadband Internet accesses.

Different from traditional networks, a distinguished
feature of these new technologies is that they naturally
support broadcast. In contrast to unicast, where a data item of
interest to multiple clients must be sent individually to each
client, broadcast satisfies all outstanding requests for the
same item by a single transmission. This leads to a more
efficient use of shared bandwidth, hence improving the
system throughput and user-perceived response time [19],
[30]. In general, there are two data broadcast approaches [8],
[20]:1 Push-based broadcast computes the broadcast program
based on historical access statistics; on-demand broadcast

schedules broadcast items on the fly based on current
outstanding requests. While push-based broadcast is useful
for certain applications (e.g., a small set of data items with
stable access patterns), on-demand broadcast is more
widely used for dynamic, large-scale data dissemination
like that in the Internet.

With the rapid growth of time-critical information
services and business-oriented applications, there is an
increasing demand to support quality of service (QoS) in
content distribution [15], [24], [28]. In many situations, user
requests are associated with time constraints as a measure
of QoS. These constraints can be imposed either by the users
or the applications. For example, in wireless financial
services, many users are interested in the up-to-minute (or
even “second”) stock quotes in order to react to dynamic
and rapid market developments. As another example, in
wireless location-based services [18], the queried informa-
tion (e.g., the local theaters) is valid only within a local area.
When the mobile user moves away from the area, the
information becomes invalid. In addition, a service level
agreement (SLA) between a content/service provider and
its users usually specifies the desired performance for Web
requests, e.g., the response time of requests for CNN.com
should not exceed 5 seconds [24]. In all the above cases, a
deadline is associated with each request beyond which the
serving of the request is useless (or less useful).

This paper focuses on on-demand data broadcast with
time constraints, which we shall refer to as time-critical on-
demand broadcast. A key issue in the design of an on-
demand data broadcast system is the scheduling algorithm
used to select and broadcast requested items from out-
standing requests. While there has been significant work on
developing on-demand broadcast scheduling algorithms
(e.g., [1], [2], [10], [29]), none of them has considered the
time constraints associated with requests. On the other
hand, although some time-critical scheduling algorithms
have been proposed for unicast-based real-time systems
and push-based broadcast systems (e.g., [11], [14]), they are
not applicable or not effective to on-demand broadcast

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006 3

. J. Xu is with the Department of Computer Science, Hong Kong Baptist
University, Kowloon Tong, KLN, Hong Kong.
E-mail: xujl@comp.hkbu.edu.hk.

. X. Tang is with the School of Computer Engineering, Nanyang
Technological University, Nanyang Avenue, Singapore 639798.
E-mail: asxytang@ntu.edu.sg.

. W.-C. Lee is with the Department of Computer Science and Engineering,
Pennsylvania State University, University Park, PA 16802.
E-mail: wlee@cse.psu.edu.

Manuscript received 2 Nov. 2004; revised 15 Mar. 2005; accepted 26 Apr.
2005; published online 28 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0268-1104.

1. A third approach is hybrid broadcast that combines on-demand
broadcast with push-based broadcast.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

systems (see Section 2 for details). The objective of this
paper is to develop new scheduling algorithms for time-
critical on-demand broadcast.

The main contributions of this paper are three-fold:

. This is the first effort, to the best of our knowledge,
to take into account the time constraints in the
design of on-demand broadcast scheduling algo-
rithms. We propose a low-complexity scheduling
algorithm, called SIN-�, for time-critical on-demand
broadcast.

. We analyze the theoretical bound of request drop
rate when the request arrival rate rises toward
infinity. The analytical results are used as a yardstick
in the experimental evaluation. They can also be
employed to facilitate bandwidth provisioning in
on-demand data broadcast systems.

. We conduct trace-driven simulation experiments to
study the performance of the proposed scheduling
algorithm over a wide range of workloads and show
that SIN-� significantly outperforms existing algo-
rithms and approaches the analytical bound at high
request rates.

The rest of this paper is organized as follows: Section 2
summarizes the related work. The system model is
described in Section 3. Section 4 presents the proposed
scheduling algorithm, SIN-�, and discusses its implementa-
tion. Section 5 analyzes the theoretical bound of request
drop rate when the request rate rises toward infinity.
Section 6 experimentally compares the performance of the
proposed algorithm against existing algorithms and the
analytical bound. Finally, Section 7 concludes the paper
with a brief discussion on future work.

2 RELATED WORK

There has been much work on developing on-demand
broadcast scheduling algorithms. Acharya and Muthuk-
rishnan [1] introduced a new performance metric called
stretch for variable-size data items and investigated several
scheduling algorithms. Aksoy and Franklin [2] proposed a
low-overhead and scalable scheduling algorithm called
R�W. Datta et al. [9] took into consideration the energy
saving issue in the design of on-demand broadcast systems.
Liberatore [22] studied the scheduling algorithms for
requests asking for a list of dependent items. Edmonds
and Pruhs [10] proposed two constant approximation
algorithms for scheduling variable-size data items. Hu
and Chen [13] investigated dynamic traffic-aware schedul-
ing algorithms. However, none of these algorithms has
considered the time constraints of requests in making
scheduling decisions.

Most existing studies on broadcast scheduling with time
constraints investigated only periodic push-based broadcast
[14], which is fundamentally different from on-demand
broadcast in system architecture. Xuan et al. [31] evaluated
several alternative system designs for time-constrained data
accesses and showed that on-demand broadcast with the
earliest deadline first (EDF) scheduling algorithm performs
well. They concentrated on the system design aspect of on-
demand broadcast, which is complementary to the focus of

this paper on the algorithmic aspect of time-critical on-
demand broadcast.

A closely related area is task scheduling in real-time
systems [7], [17], [23]. One of the most classical scheduling
algorithms is EDF [23]. It offers optimal performance in light-
loaded systems in terms of deadline missing rate. However,
when task service times are not available, EDF performs
poorly because it may favor the tasks whose remaining
lifetimes are shorter than their service times. As a result, these
tasks would not only miss their deadlines but also waste
system resources to prevent more tasks from meeting their
deadlines. Various techniques have been proposed to handle
this “domino effect” [11]. Buttazzo et al. [7] studied value-
deadline task scheduling in real-time systems. In this
approach, each task is characterized by an importance value
and the scheduling algorithm aims to maximize the cumu-
lative value of the tasks that meet their deadlines. Unfortu-
nately, these existing scheduling algorithms are designed for
a unicast environment where a newly arrived task cannot be
combined with any existing tasks. In contrast, this paper
focuses on a broadcast environment where a new request can
be merged with existing outstanding requests if the same item
is requested. These requests would be satisfied by a single
broadcast of the item. This fundamental difference in system
model gives rise to the development of new scheduling
algorithms.

Other related work includes time-constrained transac-
tion processing over push-based broadcast data [21], [25],
where multiple versions of data items are broadcast to
reduce the transaction abort rate and user-perceived
response time. Schedules that minimize response time for
push-based broadcast have been extensively studied in the
algorithmic community (e.g., [5] and [16]). These studies
complement our work in different aspects.

In summary, existing time-critical scheduling algorithms
are confined to push-based broadcast and unicast systems
only. Meanwhile, existing on-demand broadcast scheduling
algorithms ignore the time constraints associated with
requests. To the best of our knowledge, there has been no
study on the scheduling algorithms for time-critical on-
demand broadcast.

3 SYSTEM MODEL

As shown in Fig. 1, we consider a satellite-based broadcast
architecture that captures all essential components of a
typical on-demand broadcast system [2], [3]. In this
architecture, a large group of clients retrieve data items
maintained by a data server. The clients send requests to the
server through an uplink channel. Each request is char-
acterized by a 3-tuple: < id; t; d > , where id is the identifier
of the requested item, t is the time of request, and d is a
relative deadline. The absolute (service) deadline of a request is
given by tþ d, beyond which the receipt of the requested
item is considered useless to the client. The client monitors
a downlink broadcast channel for the requested item until
the item is broadcast or the lifetime of the request expires.
The uplink and downlink channels are independent.

On receiving a request, the server inserts it into a service
queue. An outstanding request is said to be active if its
lifetime has not expired. Active requests remain in the

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

service queue until they are serviced or their lifetimes
expire, whichever takes place earlier.

All data items are assumed to be locally available on the
server. The server broadcasts data items based on a
scheduling algorithm. The primary goal of a scheduling
algorithm is to satisfy as many requests as possible. This can
be measured by request drop rate, which is defined as the ratio
of the number of requests missing their deadlines to the total
number of requests. At each broadcast instance, the scheduler
selects a new item from the active requests. The selected item
is sent to the network controller for broadcast and the
associated request(s) are removed from the service queue. In
this paper, we focus on new factors that affect the
performance of time-critical broadcast scheduling in addition
to those previously considered in unicast scheduling. For
simplicity, all data items are assumed to have equal size (and,
hence, they take equal time to broadcast). Note that variable-
size data items can be easily handled by incorporating the
factor of item size into our broadcast scheduling algorithm. In
general, smaller items should be given higher priority than
larger items in order to improve request drop rate.

4 PROPOSED SIN-� ALGORITHM AND ITS

IMPLEMENTATION

In this section, we propose a new scheduling algorithm,
called SIN-�. We start by illustrating the factors affecting
the performance of time-critical broadcast scheduling. The
time taken to broadcast each item is referred to as a broadcast
tick. We compare EDF (earliest deadline first) and MRF
(most requests first), two typical scheduling algorithms in
unicast and broadcast, respectively. At each broadcast tick,
EDF broadcasts the item with the shortest remaining
lifetime to cater for the urgency of requests. MRF, on the
other hand, broadcasts the item that has the largest number
of pending requests to account for the productivity of
broadcast. As will be shown in Section 6, EDF and MRF,
respectively, achieve good performance for certain work-
loads only. This motivates us to integrate the urgency and

productivity factors to improve scheduling performance.

Intuitively,

. given two items with the same number of pending
requests, the one with a closer deadline should be
broadcast first to reduce request drop rate;

. given two items with the same deadline, the one
with more pending requests should be broadcast
first to reduce request drop rate.

Motivated by the above observations, we propose a new

scheduling algorithm, called SIN-� (Slack time Inverse

Number of pending requests).2 Specifically, the sin:� value

of each item that has at least one pending request is given by

sin:� ¼ slack

num�
¼ 1stDeadline� clock

num�
;

where slack is the duration from the current time (i.e., clock)

to the deadline of the most urgent pending request for the

item (i.e., 1stDeadline), num is the number of pending

requests for the item, and � � 0 is a relative weight of

productivity to urgency. At each broadcast tick, the item

with the minimum sin:� value is broadcast on the downlink

channel. It is easy to see that the larger the value of �, the

more influential the number of pending requests.
We remark here that, in SIN-�, the earliest deadline of

pending requests rather than the mean/median deadline is

used as an estimate of urgency. This is because, in the

context of time-critical broadcast, the earliest deadline

reflects the urgency of satisfying all requests for the item,

but the mean/median deadline reflects that of satisfying

only the requests whose deadlines are beyond the mean/

median deadline. In preliminary experiments, we have

observed that the SIN-� algorithm using the earliest

deadline performs better than that with the mean/median

deadline.

XU ET AL.: TIME-CRITICAL ON-DEMAND DATA BROADCAST: ALGORITHMS, ANALYSIS, AND PERFORMANCE EVALUATION 5

2. Note that there are other ways to combine the factors of slack time and
number of pending requests in scheduling. We advocate the SIN-�
algorithm because of its simplicity, efficient implementation (presented
later in this section), and demonstrated good performance (see Section 6).

Fig. 1. A satellite-based broadcast architecture.

A straightforward implementation of SIN-� is to compute,
at each broadcast tick, the sin:� values of all items that have
pending requests and to broadcast the one with the minimum
sin:� value. Such an implementation has a scheduling
complexity of OðmÞ, where m is the number of items with
pending requests. In the following, we present a more
efficient implementation of SIN-�, which was inspired by [2].

We group the pending requests in the service queue by
the requested items. Two data structures, an S-list and an
N-list, are used to index the requested items in the service
queue. Each item has one entry in the S-list and N-list,
respectively. As shown in Fig. 2, the S-list is a bidirectional
linked list where the items are sorted in ascending order of
the associated earliest deadline (i.e., in ascending order of
slack). In the N-list, the items having the same number of
pending requests are first structured into a min-heap built
on the key of the earliest deadline. The roots of the heaps
are then organized into a bidirectional linked list in
descending order of the number of pending requests (i.e.,
num). The heap that indexes the items with n pending
requests is referred to as heap-n.

The two-lists indexing structure reduces the search space
of candidate items in two aspects. First, since the requested
items in each min-heap of the N-list have the same number
of requests and the min-heap is constructed based on the
key of the earliest deadline, the root item of each heap has
the minimum sin:� value among all the items in the heap.
Thus, nonroot items in the N-list can be excluded from the
search space. Second, the search space can be further
pruned by sequentially searching the S-list and N-list in an
alternate fashion. Two values, MinN and Max1stDeadline,
are maintained to cut off the search space in the N-list and
S-list, respectively. Let MIN denote the minimum sin:�
value found so far. Since the S-list is sorted in ascending
order of slack, an unexamined item has a sin:� value less
than MIN only if its num value exceeds

MinN ¼

NextS

MIN

!1
�

;

where NextS is the slack value of the next item in the S-list.
Similarly, since the N-list is sorted in descending order of
num, an unexamined item has a sin:� value less than MIN
only if its slack value is less than

MaxS ¼ ðNextNÞ� �MIN;

i.e., the corresponding 1stDeadline value is less than

Max1stDeadline ¼ ðNextNÞ� �MIN þ clock;

where NextN is the num value of the next item in the N-list.
MIN , MinN , and Max1stDeadline are updated after
examining each item. The search process continues until
the list tails are reached or the next items in the lists violate
the necessary conditions indicated by MinN and
Max1stDeadline. The pseudocode of the scheduling algo-
rithm is presented in Algorithm 1, where pn and ps point to
the next items in the N-list and S-list, respectively.

Fig. 2 shows an example. Suppose that the current clock is 0
and � is set to 1. First, we examine the first item d in the N-list
and set MIN ¼ 2:4, MinN ¼ 4

2:4 ¼ 1:7, and Max1stDeadline
¼ 4� 2:4 ¼ 9:6, meaning that an unexamined item would
have a smaller sin:� value only if its num value exceeds 1.7 or
its slack value is less than 9.6. Then, we go ahead to examine
the first itema in the S-list and obtain a smaller sin:�value 2.0.
Therefore, we update MIN ¼ 2:0, MinN ¼ 7

2:0 ¼ 3:5, and
Max1stDeadline ¼ 4� 2:0 ¼ 8:0. Next, we go to the second
item b in the N-list, whose sin:� value is 1.75, and we update
MIN ¼ 1:75 and MinN ¼ 14

1:75 ¼ 8:0 (Max1stDeadline re-
mains at 8.0 since pn becomes nil). The searching finishes
here since the unexamined items (with slack � 9 and
num � 1) do not have a 1stDeadline value less than
Max1stDeadline ¼ 8:0 and a num value greater than
MinN ¼ 8:0. Thus, there will not exist any item whose
sin:� value is less than MIN ¼ 1:75 (i.e., for item b). In total,
we only need to examine three index entries to find the item to
broadcast.

Algorithm 1 Efficient Search Algorithm for SIN-�.
1: MIN:= 1
2: pn:= the head of the N-list

3: ps:= the head of the S-list

4: while (pn 6¼ nil or ps 6¼ nil) do

5: if pn 6¼ nil then

6: calculate sin:�pn, the sin:� value of the item pointed by

pn

7: if sin:�pn < MIN then MIN :¼ sin:�pn
8: if ps and pn refer to the same item then advance ps to

the next unexamined item in the S-list whose entry in

the N-list is a heap root

9: advance pn to the next unexamined item in the N-list

10: if ps 6¼ nil then MinN :¼ ðps!1stDeadline�clock
MIN Þ

1
�

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

Fig. 2. Indexing structures of the service queue.

11: if pn 6¼ nil and pn ! num < MinN then pn:= nil

12: if pn 6¼ nil then Max1stDeadline:= (pn !
num)� �MIN þ clock

13: if ps 6¼ nil and ps ! 1stDeadline > Max1stDeadline

then ps:= nil

14: end if

15: if ps 6¼ nil then

16: calculate sin:�ps, the sin:� value of the item pointed by

ps

17: if sin:�ps < MIN then MIN:= sin:�ps
18: if ps and pn refer to the same item then advance pn to

the next unexamined item in the N-list

19: advance ps to the next unexamined item in the S-list

whose entry in the N-list is a heap root
20: repeat lines 10-13

21: end if

22: end while

When a new request arrives, the request is inserted into the
service queue and the corresponding request group is
updated. If the request group is empty, a new item entry is
created for the requested item and two index entries are
inserted into the S-list and heap-1 of the N-list, respectively.
Otherwise, the earliest deadline of the requested item is
updated if necessary, and the S-list is adjusted accordingly.
Moreover, the entry of the requested item in the N-list is
moved from heap-x to heap-ðxþ 1Þ, if there were x pending
requests for the item before the new request arrival. After
selecting an item to broadcast, the scheduler removes from
the service queue the requests for the item as well as the
requests whose lifetimes will expire in the next broadcast tick.

5 ANALYTICAL RESULTS

In this section, we analyze the theoretical bound of request
drop rate when the request arrival rate rises toward infinity.
The analytical results will be used as a yardstick in our
experimental evaluation. The notations used in the analysis
are summarized in Table 1.

Consider two consecutive broadcast instances of an item i
at times 0 and � (see Fig. 3). Observe that a request arriving in
an infinitely short interval ½t; tþ�t� ð0 < t � �Þ cannot be
satisfied if and only if its relative deadline is shorter than
ð� � tÞ. Moreover, when the request rate approaches infinity,
the number of requests for item i arriving in any (infinitely)

short duration �t can be approximated by �i�t, where �i is

the request rate for item i. Therefore, the drop rate of requests

for item i arriving in interval ½0; � � is given byR �
0 F ð� � tÞ�idtR �

0 �idt
¼ 1

�

Z �

0

F ð� � tÞdt; ð1Þ

where F ðtÞ is the CDF (cumulative distribution function) of

relative deadlines, i.e., the probability that a relative

deadline is shorter than t.
We first show that the request drop rate of an item is

minimized when the broadcast instances of the item are

equally spaced.

Theorem 1. To broadcast a data item for a given number of times

between two broadcast instances, periodic broadcast offers the

lowest request drop rate.

Proof. Please refer to Appendix A (which can be found online

at http://www.computer.org/tpds/archives.htm) for

details. tu

Let the interbroadcast duration of item i be si

(i ¼ 1; 2; � � � ; N). Then, the drop rate of requests for item i

is given by

�ðsiÞ ¼
1

si

Z si

0

F ðsi � tÞdt:

Therefore, the total request drop rate is given by

�ðs1; s2; � � � ; sNÞ ¼
XN
i¼1

�i
�
�ðsiÞ ¼

XN
i¼1

pi
si

Z si

0

F ðsi � tÞdt; ð2Þ

XU ET AL.: TIME-CRITICAL ON-DEMAND DATA BROADCAST: ALGORITHMS, ANALYSIS, AND PERFORMANCE EVALUATION 7

TABLE 1
Summary of Notations

Fig. 3. System model.

where� is the total request rate and�i and pi are, respectively,

the request rate and access probability of item i.
Given a broadcast tick of l, an interbroadcast duration of

si implies a fraction l
si

of the bandwidth is used to broadcast

item i. Therefore,

XN
i¼1

l

si
¼ 1¼)

XN
i¼1

1

si
¼ 1

l
: ð3Þ

In the following, we analyze the lowest request drop rate

(2) under constraint (3) for three typical distributions of

relative deadlines: exponential, uniform, and fixed distribu-

tions. For simplicity, we assume the same deadline

distribution for all items.

5.1 Exponentially Distributed Relative Deadlines

The CDF of an exponential distribution with a mean value

of M is given by

F ðtÞ ¼ 1� e� t
M ðt � 0Þ:

Given such a distribution of relative deadlines, the total

request drop rate (2) can be rewritten as

�ðs1; s2; � � � ; sNÞ ¼ 1�
XN
i¼1

piMð1� e�
si
MÞ

si
: ð4Þ

Theorem 2. Under exponentially distributed relative deadlines

with a mean value of M, the total request drop rate is

minimized when the set of interbroadcast durations

(s1; s2; � � � ; sN) satisfies

pið1�
si
M
e�

si
M � e�

si
MÞ ¼ K ði ¼ 1; 2; � � � ; NÞ; ð5Þ

for some constant K.

Proof. The theorem is proved by applying the Lagrange

multiplier method [12]. See Appendix B (which can be

found online at http://www.computer.org/tpds/archi

ves.htm) for a sketch of the proof. tu

Equation (5), together with constraint (3), can be solved

numerically to compute the optimal bandwidth allocation

and the lowest request drop rate (e.g., using a bisection

method).

5.2 Uniformly Distributed Relative Deadlines

The CDF of a uniform distribution between 0 and L is

F ðtÞ ¼
t
L 0 � t � L;
1 t > L:

�

In this case, the total request drop rate (2) can be

rewritten as

�ðs1; s2; � � � ; sNÞ ¼
XN
i¼1

pi�ðsiÞ; ð6Þ

where

�ðsiÞ ¼
si
2L 0 < si � L;
1� L

2si
si > L:

�

Lemma 1. Let (s�1; s
�
2; � � � ; s�N) be a set of interbroadcast durations

producing the lowest request drop rate. For any two items i

and j, where pi > pj, if s�j � L, it follows that s�i � L.

Proof. Please refer to Appendix C (which can be found online
at http://www.computer.org/tpds/archives.htm) for
details. tu

Without loss of generality, we number the items in
decreasing order of access probability, i.e., p1 � p2 �
� � � � pN . In the optimal bandwidth allocation, generally, the
lower is the access probability, the less the bandwidth should
be allocated. Lemma 1 implies that there exists an identifica-

tion item I such that 8i � I, s�i � L, and 8i > I, s�i > L.
Lemmas 2 and 3 further analyze the optimal bandwidth
allocation.

Lemma 2. There exists a set of interbroadcast durations

(s�1; s
�
2; � � � ; s�N) and an identification item I producing the

lowest request drop rate such that

1. 8i � I, s�i � L;
2. s�Iþ1 > L;
3. 8i > I þ 1, s�i ¼ 1 (i.e., 1

s�i
¼ 0).

Proof. Please refer to Appendix D (which can be found online
at http://www.computer.org/tpds/archives.htm) for
details. tu

Lemma 3. Assume a portion f � I�l
L of bandwidth is allocated to

items 1; 2; � � � ; I. The optimal set of interbroadcast durations

minimizing the request drop rate of these items (from (6))

XI
i¼1

pisi
2L

ð7Þ

subject to the constraints

XI
i¼1

1

si
¼ f
l

and

81 � i � I; si � L

is given by

s�i ¼

Pm

j¼1

ffiffiffi
pj
p

ðfl�I�mL Þ
ffiffiffi
pi
p i � m;

L m < i � I;

(

where

m ¼ max xj
Px

j¼1
ffiffiffiffiffi
pj
p

ðfl � I�x
L Þ

ffiffiffiffiffi
px
p � L

()
:

The lowest request drop rate for items 1 through I is given by

�ðs�1; s�2; � � � ; s�IÞ ¼
1

2L f
l � I�m

L

� � Xm
i¼1

ffiffiffiffi
pi
p

 !2

þ
XI
i¼mþ1

pi
2
: ð8Þ

Proof. Please refer to Appendix E (which can be found online
at http://www.computer.org/tpds/archives.htm) for
details. tu

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

Now,assumeaportionf > 1� l
L of bandwidth is allocated

to items 1; 2; � � � ; I. It follows from Lemma 2 that s�Iþ1 ¼ l
1�f >

Land8i > I þ 1; s�i ¼ 1. Hence, from(6),we havethe request

drop rate for items I þ 1 throughN as follows:

�ðs�Iþ1; s
�
Iþ2; � � � ; s�NÞ ¼ pIþ1 1� L

2
� 1� f

l

� �
þ
XN
i¼Iþ2

pi: ð9Þ

Thus, combining (8) and (9), the lowest request drop rate

for items 1 through N can be computed by optimizing the

following expression of f :

min
ff jf�IlL;f>1� l

Lg

(
1

2Lðfl � I�m
L Þ

Xm
i¼1

ffiffiffiffi
pi
p

 !2

þ

XI
i¼mþ1

pi
2
þ pIþ1 1� L

2
� 1� f

l

� �
þ
XN
i¼Iþ2

pi

)
;

where

m ¼ max xj
Px

j¼1
ffiffiffiffiffi
pj
p

ðfl � I�x
L Þ

ffiffiffiffiffi
px
p � L

()
:

Hence, we have the following theorem.

Theorem 3. Under uniformly distributed relative deadlines

between 0 and L, the lowest request drop rate is given by

min
fI;fj0�I�N;f�IlL;f>1� l

Lg

(
1

2Lðfl � I�m
L Þ

Xm
i¼1

ffiffiffiffi
pi
p

 !2

þ

XI
i¼mþ1

pi
2
þ pIþ1 1� L

2
� 1� f

l

� �
þ
XN
i¼Iþ2

pi

)
;

where

m ¼ max xj
Px

j¼1
ffiffiffiffiffi
pj
p

ðfl � I�x
L Þ

ffiffiffiffiffi
px
p � L

()
:

5.3 Fixed Relative Deadlines

The CDF of fixed relative deadline C is

F ðtÞ ¼ 0 0 � t � C;
1 t > C:

�

Therefore, the total request drop rate (2) can be rewritten as

�ðs1; s2; � � � ; sNÞ ¼
XN
i¼1

pi�ðsiÞ;

where

�ðsiÞ ¼
0 0 < si � C;
1� C

si
si > C:

�
ð10Þ

Theorem 4. Under fixed relative deadline C, the total request

drop rate is minimized when the set of interbroadcast

durations (s�1; s
�
2; � � � ; s�N) satisfies

s�i ¼
C i � byc;
C

y�byc i ¼ byc þ 1;

1 i > byc þ 1;

8<
:

where y ¼ C
l . The lowest request drop rate is given by

�ðs�1; s�2; � � � ; s�NÞ ¼ pbycþ1ð1� yþ bycÞ þ
XN

i¼bycþ2

pi:

Proof. It is easy to infer that the lowest drop rate is achieved
by assigning the most popular items an interbroadcast
duration of C subject to the total bandwidth constraint.tu
In addition to serving as a yardstick in our performance

evaluation, the analysis presented in this section can also be
used to facilitate bandwidth provisioning in on-demand
data broadcast systems. Specifically, given the access
pattern and the deadline distribution of requests, the
analytical results can be employed to estimate the band-
width required to achieve a desired level of request drop
rate at high request rates.

6 PERFORMANCE EVALUATION

6.1 Experimental Setup

A trace-driven simulator has been developed to evaluate
the performance of proposed SIN-� algorithm. The
simulator models the architecture shown in Fig. 1. Real
traces collected from the World Cup ’98 Website [32] were
used to simulate the requests made by the clients. Similar
performance trends were observed for different daily
traces. Due to space limitations, we shall report only the
experimental results of one trace (i.e., the day-38 trace) in
this paper. The day-38 trace contains more than 7 million
requests for 4,923 distinct Web objects (e.g., HTML pages
and images).3 The average request rate is 83 per second.
The access counts of different objects sorted in descending
order are shown in Fig. 4. It can be seen that the access
pattern follows a Zipf-like distribution, which is consistent
with the observation made in the literature [6]. To
simulate different levels of workloads, we changed the
time scale of the trace by introducing a request rate scaling
factor f . The interarrival time between two consecutive
requests in our experiments was set to the actual time
logged in the trace divided by f . It is obvious that the
higher the value of f , the heavier the workload. The data
transmission rate of the broadcast channel is described in
the number of objects that can be transmitted per second.

XU ET AL.: TIME-CRITICAL ON-DEMAND DATA BROADCAST: ALGORITHMS, ANALYSIS, AND PERFORMANCE EVALUATION 9

Fig. 4. Object access counts for the day-38 trace (4,923 objects).

3. Interested readers are referred to [4] for more details of the
WorldCup98 Web server traces.

The default data transmission rate was set at 10 objects/
sec (i.e., 0.1 second taken to broadcast an object). To
model the time constraints of requests, each request was
assigned a relative deadline randomly generated based on
a specified distribution (i.e., exponential, uniform,4 or
fixed distribution) with the designated mean value. The
workload parameters used in our experiments are
summarized in Table 2. Each simulation run started with
an empty service queue. The first 1,000,000 requests were
considered the start-up period and performance statistics
were collected for the subsequent 2,000,000 requests.

In the following, we first investigate the setting of
parameter � in the SIN-� algorithm and examine its
performance against the analytical bound at high request
rates. Next, we compare SIN-� with the state-of-the-art
scheduling algorithms under various workloads. Finally,
we evaluate the scheduling complexity of SIN-�.

6.2 Impact of � Values

Recall that, in SIN-�, � � 0 is a factor rating the relative
importance of productivity and urgency for broadcasting
candidate data items (i.e., Web objects). This set of
experiments compares SIN-� with different � values
against the analytical bound. To facilitate the comparison
of the analytical bound, the mean relative deadlines for all
objects were set at 60 seconds. As shown in Fig. 5, the
request drop rate is not very sensitive to the setting of �. We
can observe that � values of 1 and 2 give the best overall
performance, but neither value consistently dominates the
other. The performance difference between the � values of 1
and 2 is not very significant. Therefore, in the remaining
sections, we shall report and compare the performance of
SIN-1 with existing scheduling algorithms.

The analytical lower bound on request drop rate when
the request rate rises toward infinity is plotted in the right
parts of Fig. 5 (referred to as OPT-INF). It can be seen that
the proposed SIN-1 and SIN-2 algorithms perform very
close to OPT-INF for scaling factors larger than 16.

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

TABLE 2
Workload Parameters and Settings

4. Given a mean value M, the uniform distribution sets relative deadlines
randomly selected from a range of [0, 2M].

Fig. 5. Request drop rates of SIN-� for different � values. (a) Exponential deadlines, (b) uniform deadlines, and (c) fixed deadlines.

6.3 Impact of Request Arrival Rate

In this and subsequent sections, we compare SIN-1 with the
existing algorithms EDF, MRF, and R�W [2]. With R�W,
the server broadcasts the object that has either a large
number of pending requests or a long waiting time. The
objective of R�W is to reduce the response time of requests.
To simulate a more practical setting, the mean relative
deadlines for different Web objects were randomly assigned
between 0 and 120 seconds based on a uniform distribution.
Under this setting, the mean relative deadline of all requests
is 60 seconds. The relative deadlines of requests for each
object were randomly set based on its designated mean
value following exponential, uniform, or fixed distribution.
We first evaluate the scheduling algorithms under different
request arrival rates. Fig. 6 shows the request drop rate as a
function of the scaling factor f .

Comparing different scheduling algorithms, we can see
that the proposed SIN-1 algorithm performs the best
throughout the tested range of scaling factor. The improve-
ment of SIN-1 relative to EDF is up to 13.1 percent,
15.3 percent, and 38.0 percent for exponential, uniform, and
fixed deadline distributions, respectively, and the improve-
ment relative to MRF is at least 10.8 percent, 16.8 percent,
and 49.8 percent, respectively. Since MRF and R�W ignore
the request deadlines, their drop rates are high even when
the system is lightly loaded (see the left parts of Fig. 6). In
contrast, no request is dropped by SIN-1 and EDF at low
system loads. When the system is heavily loaded (see the
right parts of Fig. 6), SIN-1 performs substantially better
than both MRF and EDF.

It is interesting to note that, among the three deadline
distributions, the relative performance of MRF and R�W
against SIN-1 is the worst when the relative deadline is
fixed. This is because if the relative deadline spans over a
range, a newly arrived request has a chance of overwriting
the slack time of the requested item if there exist pending
requests for the item already. Therefore, MRF and R�W, to
some extent, take the urgency factor into consideration by
first broadcasting the item with the largest number of
pending requests and/or the longest waiting time. How-
ever, a new request never overwrites the slack time of the
requested item under fixed deadline distribution. In this
case, MRF and R�W completely ignore the urgency factor
and perform much worse than SIN-1.

6.4 Impact of Data Transmission Rate

In this set of experiments, the scheduling algorithms are
evaluated under different data transmission rates. Fig. 7
shows the results when the transmission rate is varied from
2.5 to 40 objects/sec. In general, MRF and EDF obtain good
performance only under low transmission rates and high
transmission rates, respectively. When the transmission rate
is low (i.e., 2.5 objects/sec), a significant portion of requests
cannot be served on time. In this case, it is more important
to improve the productivity of each broadcast item. There-
fore, MRF outperforms EDF. On the other hand, when the
transmission rate is high (i.e., 40 objects/sec), most requests
can be served by their deadlines with a careful schedule. In
this case, it is more important to differentiate the requests
by their deadlines. As a result, EDF performs better than

XU ET AL.: TIME-CRITICAL ON-DEMAND DATA BROADCAST: ALGORITHMS, ANALYSIS, AND PERFORMANCE EVALUATION 11

Fig. 6. Request drop rates for different arrival rates. (a) Exponential deadlines, (b) uniform deadlines, and (c) fixed deadlines.

MRF. By integrating the productivity and urgency, the

proposed SIN-1 algorithm adapts well to a wide range of

transmission rates and outperforms EDF and MRF for all

deadline distributions examined. To achieve the same

request drop rate, EDF, MRF, and R�W would require

much higher bandwidth than SIN-1. For example, as shown

in Fig. 7c, to achieve a drop rate of 10 percent, MRF, R�W,

and EDF require transmission rates of 39, 20, and 10 objects/

sec, respectively, whereas SIN-1 needs a transmission rate

of 8.5 objects/sec only. This implies SIN-1 can save more

than 75 percent bandwidth against MRF, 50 percent against

R�W, and 15 percent against EDF.

6.5 Impact of Relative Deadline

The lifetime of requests is a key parameter of time-critical

applications. In this set of experiments, we examine the

performance of scheduling algorithms with respect to

different relative deadlines. Fig. 8 shows that SIN-1 consis-

tently outperforms the other algorithms over a wide range of

deadlines. The flexibility of scheduling reduces with increas-

ing urgency of requests, i.e., on average, fewer requests are

served by a broadcast instance. Therefore, the workload of the

system, to some extent, increases with decreasing relative

deadlines. For the reasons explained in Section 6.4, MRF

outperforms EDF under short relative deadlines (see the left

parts of Fig. 8) and EDF outperforms MRF under long relative

deadlines (see the right parts of Fig. 8).

6.6 Evaluation of Scheduling Complexity

Scheduling complexity estimates the time taken to make
scheduling decisions. The lower the complexity is, the more
scalable is the scheduling algorithm. This becomes more
important with growing network bandwidth since a higher
bandwidth implies a shorter broadcast tick. In our experi-
ments, the number of items examined to make a scheduling
decision is taken as a measure of scheduling complexity.
Fig. 9 shows the worst and average performance of two
different implementations of SIN-1: a straightforward
implementation that goes through all items with pending
requests at each broadcast tick (referred to as naive) and the
S-list/N-list implementation proposed in Section 4 (referred
to as proposed). As can be seen, the scheduling complexity of
the naive implementation increases rapidly with request
rate. On the other hand, the scheduling complexity of the
proposed implementation grows much slower compared to
that of the naive implementation. Its average performance is
well below 100 for all request rates examined, indicating
good system scalability.

7 CONCLUSIONS AND FUTURE WORK

On-demand data broadcast has attracted a lot of attention
due to its scalability to user population and adaptiveness to
dynamic user access patterns. The scheduling problem for
time-critical on-demand broadcast is becoming increasingly
important with the rapid growth of time-critical informa-
tion services in emerging applications. A new scheduling
algorithm called SIN-� that integrates the urgency and

12 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

Fig. 7. Request drop rates for different data transmission rates. (a) Exponential deadlines, (b) uniform deadlines, and (c) fixed deadlines.

productivity of broadcast items has been proposed in this
paper. An efficient implementation of SIN-� has been
presented to reduce the scheduling complexity. Moreover,
an analytical model has been developed to investigate the
theoretical bound of request drop rate when the request
arrival rate rises towards infinity. The analytical bound has
been used as a yardstick in our experimental evaluation. It
can also be employed to facilitate bandwidth provisioning
in on-demand data broadcast systems.

Trace-driven simulation experiments have shown that
the proposed SIN-� algorithm considerably outperforms
existing algorithms over a wide range of workloads and
approaches the analytical bound when the request arrival

rate is high. In conclusion, SIN-� is an effective yet simple
scheduling algorithm and can be used in practical time-
critical on-demand broadcast systems such as satellite-
based content distribution networks and wireless Internet.

The work reported in this paper is a first step to time-
critical on-demand broadcast scheduling. There are many
research issues that deserve further work. This paper
assumed the data to be broadcast is available on the
broadcasting server; in practice, the data to be broadcast
could reside on some remote servers, for which we plan to
develop push-based caching techniques to speed up data
retrieval and facilitate broadcast scheduling. We also plan to
combine scheduling with indexing to improve energy
efficiency for mobile clients. Another direction for future
research is to investigate soft deadlines where the revenue of
broadcasting an item is represented by a function of latency.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions that improved
the quality of this paper. Jianliang Xu’s work was
supported in part by grants from the Research Grants
Council of Hong Kong, China (Grant Nos. HKBU 2115/05E,
FRG/04-05/I-17, and FRG/04-05/II-21). Xueyan Tang’s
work was supported by a grant from Nanyang Technolo-
gical University (Grant No. CE-SUG 1/04). Wang-Chien
Lee’s work was supported by the US National Science
Foundation under Grant No. IIS-0328881.

XU ET AL.: TIME-CRITICAL ON-DEMAND DATA BROADCAST: ALGORITHMS, ANALYSIS, AND PERFORMANCE EVALUATION 13

Fig. 8. Request drop rates for different relative deadlines. (a) Exponential deadlines, (b) uniform deadlines, and (c) fixed deadlines.

Fig. 9. Scheduling complexity.

REFERENCES

[1] S. Acharya and S. Muthukrishnan, “Scheduling On-Demand
Broadcasts: New Metrics and Algorithms,” Proc. MobiCom ’98,
pp. 43-54, Oct. 1998.

[2] D. Aksoy and M. Franklin, “R�W: A Scheduling Approach for
Large-Scale On-Demand Data Broadcast,” IEEE/ACM Trans.
Networking (ToN), vol. 7, no. 6, pp. 846-860, Dec. 1999.

[3] D. Aksoy, M.J. Franklin, and S. Zdonik, “Data Staging For On-
Demand Broadcast,” Proc. Conf. Very Large Data Bases ’01, pp. 571-
580, Sept. 2001.

[4] M. Arlitt and T. Jin, “A Workload Characterization Study of the
1998 World Cup Web Site,” IEEE Network, vol. 14, no. 3, pp. 30-37,
May/June 2000.

[5] Z. Brakerski, A. Nisgav, and B.P. Shamir, “General Perfectly
Periodic Scheduling,” Proc. 21st Ann. Symp. Principles of Distributed
Computing (PODC ’02), pp. 163-172, July 2002.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web
Caching and Zipf-Like Distributions: Evidence and Implications,”
Proc. IEEE INFOCOM ’99, pp. 126-134, Mar. 1999.

[7] G. Buttazzo, M. Spuri, and F. Sensini, “Value vs. Deadline
Scheduling in Overload Conditions,” Proc. IEEE Real-Time Systems
Symp. (RTSS ’95), pp. 571-580, Dec. 1995.

[8] M.-S. Chen, K.-L. Wu, and P.S. Yu, “Optimizing Index Allocation
for Sequential Data Broadcasting in Wireless Mobile Computing,”
IEEE Trans. Knowledge and Data Eng., vol. 15, no. 1, pp. 161-173,
Jan./Feb. 2003.

[9] A. Datta, D.E. VanderMeer, A. Celik, and V. Kumar, “Broadcast
Protocols to Support Efficient Retrieval from Databases by Mobile
Users,” ACM Trans. Database Systems (TODS), vol. 24, no. 1, pp. 1-
79, Mar. 1999.

[10] J. Edmonds and K. Pruhs, “Broadcast Scheduling: When Fairness
is Fine,” Proc. 13th Ann. ACM-SIAM Symp. Discrete Algorithms
(SODA ’02), pp. 421-430, Jan. 2002.

[11] J. Blazewicz et al., Scheduling Computer and Manufacturing
Processes, second ed. Springer, 2001.

[12] H. Everett, “Generalized Lagrange Multiplier Method for Solving
Problems of Optimum Allocation of Resources,” Operations
Research, vol. 11, pp. 399-417, 1963.

[13] C.-L. Hu and M.-S. Chen, “Dynamic Data Broadcasting with
Traffic Awareness,” Proc. 22nd IEEE Int’l Conf. Distributed
Computing and Systems (ICDCS ’02), pp. 112-119, July 2002.

[14] S. Jiang and N.H. Vaidya, “Scheduling Data Broadcast to
Impatient Users,” Proc. MobiDE ’99, pp. 52-59, Aug. 1999.

[15] M. Karlsson and C. Karamanolis, “Choosing Replica Placement
Heuristics for Wide-Area Systems,” Proc. 24th IEEE Int’l Conf.
Distributed Computing and Systems (ICDCS ’04), pp. 350-359, Mar.
2004.

[16] C. Kenyon, N. Schabanel, and N. Young, “Polynomial-Time
Approximation Scheme for Data Broadcast,” Proc. 32nd Ann.
ACM Symp. Theory of Computing (STOC ’00), pp. 659-666, May 2000.

[17] K. Lam and T. Kuo, Real-Time Database Systems: Architecture and
Techniques. Kluwer Publisher, 2001.

[18] D.L. Lee, W.-C. Lee, J. Xu, and B. Zheng, “Data Management in
Location-Dependent Information Services,” IEEE Pervasive Com-
puting, vol. 1, no. 3, pp. 65-72, July-Sept. 2002.

[19] K.C.K. Lee, H.V. Leong, and A. Si, “Semantic Data Broadcast for a
Mobile Environment Based on Dynamic and Adaptive Chunking,”
IEEE Trans. Computers, vol. 51, no. 10, pp. 1253-1268, Oct. 2002.

[20] S. Lee, D.P. Carney, and S. Zdonik, “Index Hint for On-Demand
Broadcasting,” Proc. IEEE Int’l Conf. Data Eng. ’03, pp. 726-728,
Mar. 2003.

[21] V.C.S. Lee, J.K. Ng, J.Y.P. Chong, and K.-W. Lam, “Maintaining
Temporal Consistency in Broadcast Environments,” Proc. IEEE Int’l
Conf. Mobile Data Management (MDM ’04), pp. 284-292, Jan. 2004.

[22] V. Liberatore, “Multicast Scheduling for List Requests,” Proc. IEEE
INFOCOM ’02, pp. 1129-1137, June 2002.

[23] C.L. Liu and J.W. Layland, “Scheduling Algorithms for Multi-
programming in a Hard Real-Time Environments,” J. ACM,
vol. 20, no. 1, pp. 46-61, 1973.

[24] D.A. Menasce, “Qos Issues in Web Services,” IEEE Internet
Computing, vol. 6, no. 6, pp. 72-75, Nov./Dec. 2002.

[25] E. Pitoura and P.K. Chrysanthis, “Multiversion Data Broadcast,”
IEEE Trans. Computers, vol. 51, no. 10, pp. 1224-1230, Oct. 2002.

[26] StarBand Comm., http://www.starband.com/, 2006.
[27] Hughes Network Systems, DIRECWAY Homepage, http://

www.direcway.com/, 2005.

[28] X. Tang and J. Xu, “QoS Aware Replica Placement for Content
Distribution,” IEEE Trans. Parallel and Distributed Systems, pp. 921-
932, vol. 16, no. 10, Oct. 2005.

[29] J.W. Wong, “Broadcast Delivery,” Proc. IEEE, vol. 76, no. 12,
pp. 1566-1577, Dec. 1988.

[30] J. Xu, W.-C. Lee, and X. Tang, “Exponential Index: A Distributed
Parameterized Index for Data on Air,” Proc. ACM/USENIX
MobiSys ’04, pp. 153-164, June 2004.

[31] P. Xuan et al., “Broadcast On Demand: Efficient and Timely
Dissemination of Data in Mobile Environments,” Proc. IEEE Real-
Time Technology and Applications Symp. (RTAS ’97), pp. 38-48, June
1997.

[32] World Cup 98 Web Site Access Logs, http://ita.ee.lbl.gov/html/
contrib/WorldCup.html, 1998.

Jianliang Xu received the BEng degree in
computer science and engineering from Zhe-
jiang University, Hangzhou, China, in 1998 and
the PhD degree in computer science from the
Hong Kong University of Science and Technol-
ogy in 2002. He is currently an assistant
professor in the Department of Computer
Science at Hong Kong Baptist University. His
current research interests include mobile and
pervasive computing, wireless sensor networks,

and distributed systems. He has published more than 40 technical
papers in these areas in leading journals and conferences, including
ACM SIGMOD, MobiSys, IEEE ICDE, INFOCOM, TKDE, and TPDS. He
has served as a session chair and program committee member for a
number of international conferences including IEEE INFOCOM, IEEE
MDM, and ACM SAC. He is a coeditor of the book Web Content Delivery
(Springer). He is a member of the IEEE.

Xueyan Tang received the BEng degree in
computer science and engineering from Shang-
hai Jiao Tong University, Shanghai, China, in
1998, and the PhD degree in computer science
from the Hong Kong University of Science and
Technology in 2003. He is currently an assistant
professor in the School of Computer Engineer-
ing at Nanyang Technological University, Singa-
pore. He has served as a program committee
member of IEEE INFOCOM ’04 and WWW ’05.

He is a coeditor of the book Web Content Delivery (Springer). His
research interests include Web and Internet (particularly caching,
replication and content delivery), mobile and pervasive computing
(especially data management and delivery), wireless sensor networks,
and distributed systems. He is a member of the IEEE.

Wang-Chien Lee received the BS degree from
the Information Science Department, National
Chiao Tung University, Taiwan, the MS degree
from the Computer Science Department, Indiana
University, and the PhD degree from the
Computer and Information Science Department,
Ohio State University. He is currently an
associate professor of computer science and
engineering at Pennsylvania State University.
Prior to joining the faculty of Penn State, he

spent five plus years as a principal member of the technical staff at
Verizon/GTE Laboratories, Inc. Dr. Lee’s primary research interests lie
in the areas of pervasive and mobile computing, data management,
Internet technologies, wireless networks, and security. He has worked
on building infrastructures to facilitate query processing in various
wireless networks and pervasive computing systems (such as wireless
broadcast systems, peer-to-peer systems, and sensor networks). He
has served as a guest editor for several journal special issues on mobile
database-related topics, including IEEE Transactions on Computers,
IEEE Personal Communications Magazine, ACM MONET, and ACM
WINET. He was a program committee cochair for the First International
Conference on Mobile Data Access (MDA ’99) and the International
Workshop on Pervasive Computing (PC 2000). He is a member of the
IEEE, the IEEE Computer Society, and the ACM.

14 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 1, JANUARY 2006

