
Towards	Searchable Blockchain

Jianliang Xu
Hong Kong Baptist University
香港浸会大学计算机系 徐建良

http://www.comp.hkbu.edu.hk/~db/

http://www.comp.hkbu.edu.hk/~xujl/

Blockchain Technology

6/17/19 2

Source: Wikimedia Commons

• Blockchain: Append-only data structure collectively
maintained by a network of (untrusted) nodes

– Hash chain
– Consensus
– Immutability
– Decentralization

https://commons.wikimedia.org/wiki/File:Blockchain_workflow.png

Blockchain Technology

6/17/19

• Blockchain: Append-only data structure collectively
maintained by a network of (untrusted) nodes

– Hash chain
– Consensus
– Immutability
– Decentralization

• Applications
– Digital identities
– Decentralized notary
– Distributed storage
– Smart contracts
– …

Source: FAHM Technology Partners

http://www.fahmpartners.com/solutions/blockchain/

Blockchain Database Solutions

6/17/19 4

SwarmDB

• Increasing demand to search the data stored in the blockchain

• Blockchain database solutions to support SQL-like queries

Blockchain Database Solutions

6/17/19 5

• Increasing demand to search the data stored in the blockchain

• Blockchain database solutions to support SQL-like queries

Issue: relying on a trusted party who can faithfully answer user queries

Secure Blockchain Search
• The assumption of trusted party may not always hold
• Basic solution to integrity-assured blockchain search

• Becoming full node
• High cost

• Storage: to store a complete replicate (200 GB for Bitcoin as of June 2019)

• Computation: to verify the consensus proofs

• Network: to synchronize with the network

• Better solution: becoming light node and outsource query
processing to full node
• Low cost: maintaining block headers only

(<50 MB for Bitcoin)

• Challenge: how to maintain query integrity?

6/17/19 6

Solution #1: Smart Contract

6/17/19 7

• A trusted program to execute
user-defined computation upon
the blockchain
• Smart Contract reads and writes

blockchain data

• Execution integrity is ensured by
the consensus protocol

• Blockchain offers trusted storage
and computation capabilities
• Function as a trusted virtual

machine

Traditional
Computer

Blockchain
VM

Storage RAM Blockchain

Computation CPU Smart
Contract

Solution #1: Smart Contract

6/17/19 8

• Leverage Smart Contract for trusted query processing
• Users submit query parameters to the blockchain
• Miners execute query processing algorithms and

write results into the blockchain
• Users read results from the blockchain

• Drawbacks
• Long latency: long time for the consensus protocol to confirm a block
• Poor scalability: transaction rate of the blockchain is limited
• Privacy concern: query history is permanently and publicly stored in the

blockchain
• High cost: executing smart contracts in ETH requires paying gas to miners

(INFOCOM 2018 requires 4,201,232 gas = 0.18 Ether = 25 USD per query)

Hu S., et al. "Searching an Encrypted Cloud Meets Blockchain: A Decentralized, Reliable and Fair Realization." IEEE INFOCOM.2018.

Solution #2: Verifiable Computation

6/17/19 9

• Verifiable Computation (VC)
• Computation is outsourced to an untrusted service provider

• The service provider returns results with a cryptographic proof

• Users verify the integrity of results using the proof

• Outsource queries to full nodes and verify the results
using VC
• General VC: Expressive but high overhead

• Authenticated Data Structure (ADS)-based VC: Efficient but
customized designs

Our Solutions
• vChain: Enabling Verifiable Boolean Range Queries over

Blockchain Databases (SIGMOD 2019)

• GEM2-Tree: Enabling Gas-Efficient Authenticated Range
Queries in Hybrid-Storage Blockchain (ICDE 2019)

6/17/19 10

vChain: Enabling Verifiable Boolean Range Queries
over Blockchain Databases

6/17/19 11

Cheng Xu, Ce Zhang, Jianliang Xu

ACM SIGMOD 2019

Problem Definition
• Problem: integrity-assured search over blockchain data
• System Model

• Users become light nodes
• Queries are outsourced to full nodes

• Full nodes not trusted
• Program glitches
• Security vulnerabilities
• Commercial interest
• …

• Security requirements:
• Soundness: none of the objects returned as results have been

tampered with and all of them satisfy the query conditions
• Completeness: no valid result is missing

6/17/19 12

vChain – System Overview
• Miner: constructs each

block with additional ADS
to realize VC scheme

• Service Provider: is a full
node and computes the
results, as well as a
verification object (VO)

• Query User: is a light
node; uses the VO and
block header to verify the
results

6/17/19 13

System Model of vChain

vChain – Data Model & Queries
• Data Model

• Each block contains several temporal objects {𝑜#, 𝑜%, … , 𝑜'}
• 𝑜) is represented by *𝑡), 𝑉), ⟩𝑊)

(timestamp, multi-dimensional vector, set-valued attribute)

• Boolean Range Queries
• Bitcoin transaction:

<timestamp, transfer amount, {”send address”, “receive address”}>
q =⟨[2019-05, 2019-06], [10, +∞], “send:1FFYc”∧”receive:2DAAf”⟩

• Car rental transaction:
<timestamp, rental price, {”type”, “model”}>

q = ⟨−, [200, 250], “Sedan”∧(“Benz”∨“BMW”)⟩

6/17/19 14

ADS: Merkle Hash Tree (MHT)

6/17/19 15

• Miners: construct the MHT and
embed Nroot into block header

• Full node -> Client:
• Result: {8, 𝑑#}
• 𝑉𝑂 = {{12, 𝑑%}, 𝑁9:}

• Client:
• Retrieve Nroot and verify soundness
• Verify completeness

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒
8 12 17 25

{1, 3, 4, 5}𝑁#: ℎ(𝑑#) 𝑁%: ℎ(𝑑%) 𝑁9: ℎ(𝑑9) 𝑁:: ℎ(𝑑:)

𝑁#%: ℎ(𝑁#|𝑁%) 𝑁9:: ℎ(𝑁9|𝑁:)

𝑁EFFG: ℎ(𝑁#%|𝑁9:)

Data ObjectsQ=[1,10]

𝒅𝟏 𝒅𝟐 𝒅𝟑 𝒅𝟒
8 12 17 25

Limitations:
• An MHT supports only the query keys on

which the Merkle tree is built
• MHTs do not work with set-valued attributes
• MHTs of different blocks cannot be aggregated

Cryptographic Building Block

• Cryptographic Multiset Accumulator
• Map a multiset to an element in cyclic multiplicative group

in a collision resistant fashion

• Utility: prove set disjoint
• Protocols:

• KeyGen(1H)→ (𝑠𝑘, 𝑝𝑘): generate keys
• Setup(𝑋, 𝑝𝑘)→ 𝑎𝑐𝑐(𝑋): return the accumulative value w.r.t. 𝑋
• ProveDisjoint(𝑋#, 𝑋%, 𝑝𝑘)→ 𝜋: on input two multisets 𝑋# and 𝑋%, where
𝑋#⋂𝑋% = ∅, output a proof 𝜋

• VerifyDisjoint(𝑎𝑐𝑐 𝑋# , 𝑎𝑐𝑐 𝑋% , 𝜋, 𝑝𝑘)→ {0,1}: on input accumulative
values 𝑎𝑐𝑐 𝑋# , 𝑎𝑐𝑐 𝑋% and a proof 𝜋, output 1 if and only if
𝑋#⋂𝑋% = ∅

6/17/19 16

Basic Solution
• Consider a single object and Boolean time-window query

• Each block stores a single object 𝑜) = *𝑡), ⟩𝑊)

• ADS generation (Miner)
• Extend the block header with AttDigest
• 𝐴𝑡𝑡𝐷𝑖𝑔𝑒𝑠𝑡 = 𝑎𝑐𝑐 𝑊) = Setup(𝑊), 𝑝𝑘)

• Constant size regardless of number of elements in 𝑊)
• Support ProveDisjoint(·) & VerifyDisjoint(·)

6/17/19 17

Basic Solution

Verifiable Query:

6/17/19 18

Q

Match

Mismatch

• Return 𝑜) as a result
• Integrity is ensured by the

ObjectHash in the block header

• Use AttDigest to prove the
mismatch of 𝑜)

• Example of Mismatch:
• Transform query condition to a list of sets

• q=“Sedan”∧ (“Benz”∨“BMW”) -> {“Sedan”} , {“Benz”, “BMW”}
• Consider 𝑜): {“Van”, “Benz”}

• {“Sedan”}⋂{“Van”, “Benz”} = ∅
• Apply ProveDisjoint({“Van”, “Benz”}, {“Sedan”}, pk) to generate proof 𝜋
• User retrieves AttDigest = acc({“Van”, “Benz”}) from the block header and

use VerifyDisjoint(AttDigest , acc({“Sedan”}), π, pk) to verify the mismatch

Basic Solution

• Support time-window queries
• Find the blocks whose timestamp is within the query window
• Invoke previous algorithm for each object in theses blocks

• Example
• Q = “Sedan”∧ (“Benz”∨“BMW”)
• Objects within the time window

• 𝑜#: {"Sedan", "Benz"}, 𝑜%: {"Sedan", "Audi"}, 𝑜9: {"Van", "Benz"}
• Query processing

• 𝑜# is returned as a result
• ProveDisjoint(g) is applied for 𝑜%, 𝑜9

• Mismatch condition “Benz” ∨ “BMW” for 𝑜%
• Mismatch condition “Sedan” for 𝑜9

6/17/19 19

Extension to Range Queries
• Idea: transform numerical attributes into set-valued

attributes

• Function trans(g): transform a numerical value into a set of
binary prefix elements
• trans 4 = {1 ∗, 10 ∗, 100}, ∗ denotes wildcard matching operator

• Range: the minimum set of tree nodes to cover the range

6/17/19 20

• [0, 6] -> {0 ∗, 10 ∗, 110}

• 4 ∈ 0,6 → {1∗, 10∗, 100} ∩
{0∗, 10∗, 110} = {10∗} ≠∅

Batch Verification & Subscription Queries
• Observation: objects may share common attributes that mismatch the

query condition
• Idea: we can aggregate them to speed up query processing

• Intra-Block Index: aggregate objects inside same block using MHT
• Inter-Block Index: aggregate objects across blocks using skip list
• Inverted Prefix Tree: aggregate similar subscription queries from users

6/17/19 21

Batch Verification: Intra Index
• Each block stores multiple objects
• Two objects in a block may share a common attribute that

mismatches the query condition
• Aggregate multiple objects using intra-block MHT index

6/17/19 22

For non-leaf node 𝑛:
• 𝑊' = 𝑊'p ∪𝑊'r
• 𝐴𝑡𝑡𝐷𝑖𝑔𝑒𝑠𝑡' = acc(𝑊')
• ℎ𝑎𝑠ℎ) =
hash hash ℎ𝑎𝑠ℎ'p ℎ𝑎𝑠ℎ'r 𝐴𝑡𝑡𝐷𝑖𝑔𝑒𝑠𝑡')

Batch Verification: Intra Index

6/17/19 23

Example
• Query: "Sedan" ⋀ ("Benz" ⋁ "BMW") -> [{"Sedan"}, {"Benz", "BMW"}]
• ProofDisjoint() for 𝑁y since "Sedan" ∩ "Van", "Benz", "BMW" = ∅
• ProofDisjoint() for 𝑁% since {"Benz","BMW"}∩{"Sedan", "Audi"} = ∅
• Object in 𝑁# is a result
• Client verifies proofs and reconstruct MerkleRoot using VO

• Query Processing
• Top-down traversal
• If node multiset mismatches Q:

• Compute the mismatch proof
• Else

• Continue searching subtrees

Batch Verification: Inter Index
• Objects across blocks may share same attributes

• Employ skip list including multiple skip jumps

• Skip multiple blocks that mismatch the query condition

6/17/19 24

Share same disjoint proof

Iterate the skip list from the maximum jump
If 𝑊{| matches 𝑞, process next 𝐿
Else jump to the 𝐿)-th previous block

Verifiable Subscription Queries
• Observation: A mismatched object can have the same

reason of mismatching for different subscription queries

• Inverted Prefix Tree (IP-Tree)

6/17/19 25

• Grid tree on numerical attributes
• Range Condition Inverted File (RCIF)

• <query, cover type(full/partial)>
• Boolean Condition Inverted File

(BCIF) for ‘full’ queries
• <query condition set, queries>

Verifiable Subscription Queries

• Traverse the IP-Tree top-down
• ProveDisjoint for 𝑞: (mismatch range condition)
• 𝑞# is a result, ProveDisjoint for 𝑞% (mismatch “BMW”)
• ProveDisjoint for 𝑞9 (mismatch “Sedan”)

6/17/19 26

Performance Evaluation
• Evaluation metrics:

• Query processing cost in terms of SP CPU time
• Query verification cost in terms of user CPU time
• Size of the VO transmitted from the SP to the user

• Datasets: 4SQ, WX, ETH
• Numerical range selectivity:

• 10% for 4SQ and WX
• 50% for ETH

• Disjunctive Boolean function size:
• 3 for 4SQ and WX
• 9 for ETH

Performance Evaluation
• Time-Window Query Performance

6/17/19 28

4SQ

WX

ETH

6/17/19 29

• Subscription Query Performance
• With or without IP-Tree

Performance Evaluation

The IP-Tree reduces the SP’s overhead by at least 50% in all cases tested

GEM2-Tree: A Gas-Efficient Structure for
Authenticated Range Queries in Blockchain

6/17/19 30

Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, Byron Choi

IEEE ICDE 2019

Blockchain Scalability

6/17/19 31 31

• Storing any information on chain is
not scalable
• Large size: document, image, etc.

• 500KB per TX x 500 TX per sec
=> 2 Gb per sec => 8,000 TB annually

• Off-chain storage:
• Raw data is stored outside of the

blockchain

• A hash of the data is keep on chain
to ensure integrity

Example: BACK ALLEY CODER

http://www.backalleycoder.com/

Blockchain Hybrid Storage

• Pros: high scalability, integrity assured

• Con: only support exact search

• More general queries?

32

Hybrid Storage

Service Provider

Blockchain

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒

𝑘𝑒𝑦, h(𝑣𝑎𝑙𝑢𝑒)

𝑘𝑒𝑦

𝑣𝑎𝑙𝑢𝑒

h(𝑣𝑎𝑙𝑢𝑒)

6/17/19

Data Owner Client

Objective

336/17/19

• Support integrity-assured range queries

• Inspiration: authenticated query processing
• Use the authenticated data structure (ADS) to support queries
• Leverage both smart contract and the SP to maintain the ADS

Hybrid Storage

Service Provider

Blockchain

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒

𝑘𝑒𝑦, h(𝑣𝑎𝑙𝑢𝑒)

𝑄 = [𝑎, 𝑏]

𝑅, 𝑉𝑂��

𝑉𝑂���)'
Data Owner Client

ADS

ADS

System Overview

• Data Owner: send meta-data to blockchain and full data to the SP
• Smart Contract: update on-chain ADS
• Service Provider: maintain the same ADS and process queries
• Client: verify results with respect to the ADS from the blockchain

6/17/19 34

Hybrid Storage

Service Provider

Blockchain

𝑘𝑒𝑦, 𝑣𝑎𝑙𝑢𝑒

𝑘𝑒𝑦, h(𝑣𝑎𝑙𝑢𝑒)

𝑄 = [𝑎, 𝑏]

𝑅, 𝑉𝑂��

𝑉𝑂���)'
Data Owner Client

ADS

ADS

Challenge
• Each on-chain update requires a smart contract transaction

• Transaction fee for smart contract execution
• Modeled by gas for storage and computation (Ethereum)

• Problem: How to design efficient ADS to be maintained by
smart contract under the gas cost model

35

Ethereum Gas Cost Model

6/17/19

Contributions

• A novel Gas−Efficient Merkle Merge Tree (GEM%-Tree)
• Reduce the storage and computation cost of the smart contract

• Optimized version GEM%∗-Tree
• Further reduce the maintenance cost without sacrificing much of the

query performance

366/17/19

Preliminaries
• Authenticated Query Processing

• The DO outsources the authenticated data structure (ADS) to the SP
• The SP returns results and verification object (VO)
• The client verifies the result using VO

• ADS: Merkle Hash Tree (MHT)
• Binary tree
• Hash function combining the child nodes
• VO: sibling hashes along the search path
• Verification: reconstructing the root hash

• Merkle B-Tree (MB-Tree)
• Integrate B-tree with MHT

37

Result: {13,16}

VO: {4, 24, ℎy}

6/17/19

Baseline Solution (1)

38

MB-tree

𝑄 = [10,20]
𝑉𝑂�� = {4,24, ℎy}, 𝑅 = {13,16}

𝑉𝑂���)' = {ℎ�} Client

SP

Smart Contract

• MB-tree
• Maintained by both the smart contract and the SP
• Data update requires writes on the entire tree path

• 𝐶������������� = log� 𝑁 2𝐶��GFE� + 2𝐶�¡�¢�G� + 2𝐹 + 1 𝐶�¤F�¢ + 𝐶���� + 𝐶��GFE�

6/17/19

• Suppressed Merkle B-tree (SMB-tree)
• Observation of MB-tree: only root hash 𝑉𝑂���)' is used

during query processing

• Idea:
• Suppress all internal nodes and only materialize the root node in the

blockchain
• The smart contract computes all nodes of the SMB-tree on the fly and

updates the root hash to the blockchain storage
• The SMB-tree in the SP keeps the complete structure (to retain the

query performance)

• 𝐶¥������������� = 𝑁 𝐶�¤F�¢ + log𝑁 g 𝐶¦�¦ + #
�
𝐶���� + 𝐶��GFE� + 𝐶�¡�¢�G�

396/17/19

Baseline Solution (2)

MB-tree vs SMB-tree

406/17/19

Gas-Efficient Merkle Merge Tree
(GEM2-Tree)

• Maintain multiple separate structures
• A series of small SMB-trees: index newly inserted objects
• A full materialized MB-tree: merge the objects of the largest

SMB-trees in batch

41

…

Bulk Insert

SMB-treesMB-tree

New object

6/17/19

An Example

42

Unsorted Sorted

• Exponentially-sized partition space: each contains 1 or 2 SMB-trees
• Partition table stores location range and root hash values
• Key_map stores the key with the storage location (used in update operation)

Exponential size

6/17/19

Insertion
• Example (𝑀 = 2)

43

[1-2] [3-4]

𝑃#

𝑚𝑎𝑥 = 1

• If 𝑃¦�« is not full, insert object to 𝑃¦�«;
• Else merge the two SMB-trees to a bigger

SMB-tree

[1-4]

𝑃#

null [5-6] [7-8]

𝑃%

𝑚𝑎𝑥 = 2

[1-4]

𝑃#

[5-8] [9-10] [11-12]

𝑃%

𝑚𝑎𝑥 = 2

[1-8]

𝑃#

null [9-12] null

𝑃%

[13-14] [15-16]

𝑃9

𝑚𝑎𝑥 = 3

6/17/19

Update and Query Processing
• Updating

• Observation: storage location of each search key is fixed
(key_map)

• The GEM%-tree structure remains unchanged
• Update the value of an existing key with a new value
• Recompute the root hash of the MB-tree or SMB-tree

• Authenticated query processing
• The SP traverses the MB-tree and multiple SMB-trees
• Process the range query on them individually
• Combines the results and VO for each of these trees
• The client uses the VO and results for each of these trees

6/17/19 44

Optimized GEM%−Tree
• GEM%∗-tree: to further reduce the gas consumption

without sacrificing much of the query overhead

• Two-level index structure
• Upper level: split the search key domain into several regions
• Lower level: a GEM%-tree is built for each region 𝐼)
• Only one single MB-tree for the entire GEM%∗-tree

6/17/19 45

Performance Evaluation
• Dataset:

• Synthetic data generated by Yahoo Cloud System Benchmark (YCSB)
• Cardinality: 100M
• Key size: 4 bytes
• Key distribution: uniform/zipfian

• Index parameters
• Maximum size of the smallest SMB-tree, 𝑀 = 8 (word size is 32 bytes

and search key 4 bytes)
• Fan-out of the MB-tree is set to 4 according to the word size 32 bytes

• 𝑓 − 1 𝑙¢ + 𝑓𝑙� < 32byte

• 𝑆¦�« = 2,048 based on the cost analysis of MB-tree and SMB-tree
• Search key domain is split into 100 regions for upper GEM%∗-tree

6/17/19 46

Gas Consumption vs Database Size

• LSM-tree is able to support the database up to 10,000
• Merge cost grows exponentially with level increasing

• Gas reduction of the two proposed indexes
• Optimization is better

• More SMB-trees; efficient bulk insertion thanks to the upper level

6/17/19 47

Authenticated Query Performance

• Compared with the MB-tree, the GEM%-tree retains the query performance
• GEM%∗-tree is slightly worse when the query range is large
• Reduce the gas cost with little penalty on the query performance

6/17/19 48

Summary
• Searchable blockchain meets the increasing demand of

data search

• Two ADS solutions towards searchable blockchain
• vChain: integrity-assured Boolean range search in blockchain

databases
• 𝐆𝐄𝐌𝟐-tree: integrity-assured range search in blockchains

with hybrid storage

6/17/19 49

vChain 𝐆𝐄𝐌𝟐-tree

Future Work

• Extended to more query types
• Top-k, kNN, skyline, similarity queries
• Blockchain-based knowledge graphs

6/17/19 50

• Search on encrypted blockchain data
• GAS-based performance model

• Privacy-preserving query processing
against smart contracts

• Data sharing with fine-grained access
control

Thank You！

6/17/19 51

