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Abstract

Preserving differential privacy during empirical risk minimiza-
tion model training has been extensively studied under central-
ized and sample-wise distributed dataset settings. This paper
considers a nearly unexplored context with features partitioned
among different parties under privacy restriction. Motivated
by the nearly optimal utility guarantee achieved by centralized
private Frank-Wolfe algorithm (Talwar, Thakurta, and Zhang
2015), we develop a distributed variant with guaranteed pri-
vacy, utility and uplink communication complexity. To obtain
these guarantees, we provide a much generalized convergence
analysis for block-coordinate Frank-Wolfe under arbitrary
sampling, which greatly extends known convergence results
that are only applicable to two specific block sampling distri-
butions. We also design an active feature sharing scheme by
utilizing private Johnson-Lindenstrauss transform, which is
the key to updating local partial gradients in a differentially
private and communication efficient manner.

Introduction

Empirical risk minimization (ERM) is a fundamental tool
for learning useful models from data that are collected from
individuals, e.g. see (Cheung 2005; Cheung and Zeng 2009;
Wang et al. 2017). To avoid breaching the privacy of the indi-
viduals, privacy protection mechanisms have been considered
to ensure that the adversary cannot infer any individual data
from the output of the learning process. Beginning with the
seminal work (Chaudhuri, Monteleoni, and Sarwate 2011),
which considers private ERM training under the formal sta-
tistical differential privacy notion (Dwork, Roth, and others
2014), various differentially private optimization algorithms
have been developed for training the model with central-
ized datasets (Smith 2011; Kifer, Smith, and Thakurta 2012;
Bassily, Smith, and Thakurta 2014; Talwar, Thakurta, and
Zhang 2014; Jain and Thakurta 2013; Kasiviswanathan and
Jin 2016) and sample-wise distributed datasets (Huang, Mi-
tra, and Vaidya 2015; Nozari, Tallapragada, and Cortés 2016;
Han, Topcu, and Pappas 2017).

Deviating from the above mentioned centralized and
sample-wise distributed settings, we consider the feature-
wise distributed dataset setting. Such setting appears in many
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real applications, where the information describing an indi-
vidual is collected and held by different parties which can
be different sets of sensory systems or different organiza-
tions. For example, a person’s medical records are sensitive
personal information that can be held by several clinics. Al-
though privacy issue has been considered for these vertically-
partitioned datasets (Yunhong, Liang, and Guoping 2009;
Yu, Vaidya, and Jiang 2006; Mangasarian, Wild, and Fung
2008), it has rarely been studied with the more restrict dif-
ferential privacy notion. It would be ideal to make use of all
attributes kept by different parties in a distributed fashion,
while still ensuring differential privacy.

During distributed training, information sourced from user
nodes to the server node, referred to as uplink communica-
tion, are computed based on sensitive individual information.
On the other hand, the information broadcasted by the server
back to users (referred to as downlink communication), by the
post-processing property of the differential privacy (Dwork,
Roth, and others 2014), will maintain differential privacy
even without any privacy protection mechanism as long as
the uplink communication is private. As such, designing pri-
vacy mechanism to prevent adversary from inferring sensitive
individual information by spying on the uplink communica-
tion is the key to private training for distributed dataset. In-
tuitively, minimizing the uplink communication complexity
means less exposure of sensitive data and reduced potential
of personal data leakage. Thus, less uplink communication
would generally require less privacy protection budget for
ensuring differential privacy.

To be specific, we consider the constrained ERM model in
this paper as minx∈M

∑n
i=1 f(x;Di), where Di represents

the i-th sample of the n× d dataset D, where n is the sample
size and d is the feature dimension. With the feature-wise
distributed setting, the n× d data matrix is partitioned verti-
cally with each disjoint partition held by one of the K user
nodes. f(x) is a smooth convex loss function. We assume
the convex compact constraint set M is coordinate separable
as M1×, ...,×Md. In particular, we elaborate the LASSO
problem, where f(x) is the least square loss and M is the
�1-norm ball. For this problem, (Talwar, Thakurta, and Zhang
2015) proposes a centralized private Frank-Wolfe algorithm
(FW) (Jaggi 2013) by adapting the Report-Noisy-Max mecha-
nism (Dwork, Roth, and others 2014) for ensuring differential
privacy. In particular, they prove that the algorithm has nearly
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optimal utility guarantee for the private LASSO task. That is,
no private algorithm has better utility up to a log(n) factor.

With the above in mind, we propose a distributed private
FW algorithm for solving ERM in an uplink communication
efficient way to obtain the same nearly optimal utility as in
the centralized setting. At first glance, it seems straightfor-
ward by integrating the Report-Noisy-Max for privacy pro-
tection (Talwar, Thakurta, and Zhang 2015) with the existing
distributed FW design. However, such direct combinations
either 1) does not have known differentially private strategy
for communicating active features which are indispensable
for computing local partial gradient under feature-wise dis-
tributed setting (Bellet et al. 2015); or 2) requiring each user
node to have full replication of the entire feature set, which
is undesired as local features need to be communicated with
an extra preprocessing step (Wang et al. 2016). The seem-
ingly different aspects of incapabilities actually attribute to
the same reason: existing randomized block-coordinate FW
(BCFW) algorithms have limited convergence guarantees
that are only applicable under two simple block sampling
distributions. In this regard, this paper makes primarily two
contributions:

1. BCFW under arbitrary sampling: we develop a much
general convergence analysis for BCFW under arbitrary sam-
pling (BCFW-AS). It enjoys greater flexibility than existing
analysis (Lacoste-julien et al. 2013; Wang et al. 2016) whose
analysis is highly dependent on the specific samplings. Fur-
ther, in contrast to existing Expected Separable Overapprox-
imation (ESO) inequality based coordinate descent under
arbitrary sampling algorithms (Richtárik and Takáč 2016b;
Richtárik and Takác 2016a; Qu and Richtárik 2016a; 2016b),
we develop our convergence analysis by introducing a new
notion called expected curvature, which is a more fundamen-
tal quantity for FW algorithms than ESO-based counterparts.

2. Private FW for feature-wise distributed dataset: We
provide an uplink communication efficient private algorithm
based on the BCFW-AS. By adopting our general conver-
gence guarantee, it has guaranteed utility which preserves
the same nearly optimality for the LASSO task as that in
the centralized setting (Talwar, Thakurta, and Zhang 2015).
In addition, compared to the existing work (Heinze-Deml,
McWilliams, and Meinshausen 2017) under the same set-
ting, our method withO(n

2
3 ) has improved the overall uplink

communication complexity in comparison with their O(n).
In the next section, after introducing the notation, we pro-

vide a thorough discussion of known convergence guarantees
for BCFW algorithms, as well as existing private methods
for training under feature-wise distributed setting.

Notation and Background

We use [d] to denote the set {1, 2, ..., d} and use bold charac-
ters A,x for matrices and vectors. A� denotes the transpose
of matrix A. The operator ◦ denotes the Hadamard multipli-
cation, i.e. element-wise multiplication of vectors or matrices
of the same sizes. The superscript is associated with iteration
number, e.g. xt denotes the decision variable at iteration t,
while subscripts is associated with indices of the coordinates
or different parties. For a random subset T of [d], |T | denotes

the cardinality of set P . x(T ) ∈ MT denotes the vector of
length |T | which only keeps the values of x indicated by
T and x[T ] denotes the zero padded one. We use ∇f(x)
to denote the gradient of the loss function f(x) at x and
∇(T )f(x) is the partial gradient taken with respect to sub-
set of coordinates indexed by T . || · ||(Mi) denotes a primal
norm defined on Mi and || · ||∗(Mi)

denotes the associated
dual norm. We use ei to denote the standard basis vector.

Sampling Distributions and Known Convergence
Results for Block Coordinate Frank-Wolfe
Algorithms

We describe related Frank-Wolfe algorithms by interpreting
them as randomized block coordinate Frank-Wolfe under the
corresponding sampling distributions to highlight the associ-
ation of the convergence analysis with the types of distribu-
tions. Table 1 summarizes the previous and our new BCFW
algorithms, samplings and convergence guarantees. We fol-
low the naming convention used in existing arbitrarily sam-
pled coordinate descent papers (Richtárik and Takáč 2016b;
Qu and Richtárik 2016a; 2016b) for referring several com-
mon samplings.
Elementary sampling: (Jaggi 2013) is the conventional de-
terministic FW algorithm using the full gradient per-iteration,
which can be seen as sampling the coordinates under el-
ementary sampling with set [d], i.e. sampling set [d] with
probability one. With the step size γt = 2

t+2 , it guarantees

ht = f(xt) − f(x∗) ≤ 2Cf

t+2 , where x∗ ∈ M denotes an
optimum and Cf is the curvature of f(x) on the whole con-
straint set M, which measures the non-linearity of f(x) on
the entire constraint set M, reflecting the geometric property
of f(x) on M:

Cf := sup
x,s∈M,
γ∈[0,1]

2

γ2

(
f(x+γ(s−x))−f(x)−γ〈s−x,∇f(x)〉

)
.

(1)

The algorithm dFW (Bellet et al. 2015) is a distributed FW
method. During one communication pass, each worker evalu-
ates the partial linear oracle based on the local features and
then sends both the partial linear oracle index and the associ-
ated local duality gap value to the sever node for comparison.
Subsequently, the partial linear oracle with the maximum
local duality gap is selected and sends back to all workers
for the next update. However, the updates of the local partial
gradient requires sharing of “active features” at each com-
munication round. It is unknown how to communicate active
features in a private and communication efficient way.
Uniform serial sampling: (Lacoste-julien et al. 2013) is a
randomized block coordinate Frank-Wolfe (BCFW) method
selecting the block to be updated in each iteration according
to the uniform serial sampling, i.e. samples one block at
each iteration with uniform probability. For analyzing the
convergence, (Lacoste-julien et al. 2013) designs the step size
γt = 2d

t+2d and introduces the product curvature to obtain

ht ≤ 2d(C⊗
f +h0)

t+2d primal gap. The product curvature C⊗
f :=
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∑d
i=1 C

i
f , where Ci

f is the block-wise partial curvature for
measuring the non-linearity on individual Mi,

Ci
f := sup

x,s∈M,
γ∈[0,1]

2

γ2

(
f(x+ γ(s[i] − x[i]))− f(x)

− γ〈s(i) − x(i),∇(i)f(x)〉
)
.

(2)

τ -nice sampling: AP-BCFW (Wang et al. 2016) is a parallel
and distributed BCFW method, provided that all user nodes
have the full replication of the entire dataset. During one
communication pass, each worker uniformly samples one
block from all blocks for updating and the server node sum-
marizes τ non-duplicate updates (discard duplicate update,
e.g. two worker samples the same node). Under ideal compu-
tational facility, (Wang et al. 2016) analyzes the convergence
by equalizing one communication pass as one iteration of
centralized BCFW selecting blocks for updating according
to τ -nice sampling, i.e. samples τ blocks with uniform prob-
ability. It requires yet another set of step size γt = 2dτ

τ2t+2d

and expected set curvature Cτ
f :=

(
d
τ

)−1 ∑
S⊂[d],|S|=τ C

(S)
f ,

where the set curvature C(S)
f is

CS
f := sup

x,s∈M,
γ∈[0,1],|S|=τ

2

γ2

(
f(x+ γ(s[S] − x[S]))− f(x)

− γ〈s(S) − x(S),∇(S)f(x)〉
)
.

(3)

AP-BCFW is obviously unsuited to the distributed feature
set because it would require copy-and-paste local features to
other nodes before computation, which incurs high commu-
nication cost and raises privacy concern.
(K, τ)-distributed sampling: This is probability the sim-
plest sampling scheme for the distributed optimization tasks
with disjointly divided local blocks, where each user nodes
uniformly sample τ blocks from their local blocks, which
collectively constitutes K × τ random block updates from
K workers. However, existing random BCFWs do not have
convergence guarantee even for this simplest sampling.
Arbitrary sampling: We consider a general BCFW that has
guaranteed convergence under arbitrary sampling with two
minimal assumptions: 1) the sampling is independent across
iterations, i.e. the sampling distribution at the present itera-
tion independent of the sampling of the last iteration; 2) the
sampling is proper that any block has nonzero probability to
be sampled.

Differentially Private Optimization for
Feature-wise Distributed Dataset

The formal definition of differential privacy for a randomized
algorithm ALG with parameter ε and δ is as follows.
Definition 1. ((ε, δ)-Differential Privacy ((ε, δ)-DP)) A ran-
domized algorithm ALG is (ε, δ)-differentially private if,
for all neighboring data sets D and D′, which differ in
only one data sample, we have Pr(ALG(D) ∈ O) ≤
eεPr(ALG(D′) ∈ O) + δ for all outputs O.

Feature-wise distributed private learning: Feature-wise
distributed data is more challenging than sample-wise dis-
tributed dataset under privacy restriction. For the latter set-
ting, each user node has enough information to take local
update (e.g. user can compute the local gradient based on
local data samples) and only the decision variables need
to be communicated. However, for feature-wise distributed
data, apart from the decision variable, additional information
needs to be shared to perform local update (e.g. compute
local partial block-wise gradient). In general, more informa-
tion sent by the user node, more likely sensitive individual
privacy is at risk, which makes the privacy protection design
more challenging. As a largely unexplored setting, to the
best of our knowledge, most recently work in (Heinze-Deml,
McWilliams, and Meinshausen 2017) is the only existing
one to take into account the same differentially private ERM
learning task with disjoint features held by different par-
ties. (Heinze-Deml, McWilliams, and Meinshausen 2017)
proposes to add privacy protection during preprocessing by
communicating perturbed sketched features (Kenthapadi et
al. 2013). Although the uplink communication is one-shot
during the preprocessing and its sketching step partially re-
lieves the high communication complexity in terms of the
feature dimension d, its complexity is still linearly depen-
dent on the sample size n (i.e. O(n)). In comparison, our
method only communicates active features indicated by the
optimization procedure, featuring a “share-at-need” strategy.
As a result, to achieve the nearly optimal utility, the overall
uplink complexity of our method is O(n

2
3 log(n1/3)), which

is more uplink communication efficient.
Private Frank-Wolfe algorithm: (Talwar, Thakurta, and
Zhang 2015) proposes a centralized private FW algorithm
for ERM problem constrained by atomic norm. In each itera-
tion, the FW algorithm greedily selects a linear oracle from
the atomic norm set A (which has a finite number of atomic
norm) by picking the one with the largest duality gap. (Talwar,
Thakurta, and Zhang 2015) selects the iterative linear oracle
by Report-Noisy-Max mechanism (Dwork, Roth, and oth-
ers 2014) (a special variant of the more general exponential
mechanism), which ensures the differential privacy. For the
LASSO task, (Talwar, Thakurta, and Zhang 2015) is proved
to provide nearly optimal utility guarantee. Since the utility
guarantee is based on the convergence analysis, the adapta-
tion of the method to distributed setting is a non-trivial task
due to the missing convergence result for BCFW-AS. Further-
more, with features distributed among user nodes, apart from
the linear oracle evaluation, the gradient computation also
requires additional perturbation for privacy protection, whose
effect on utility demands careful quantization and further
analysis.

Block-Coordinate Frank-Wolfe under

Arbitrary Sampling

Algorithm Description

Algorithm 1 presents the BCFW-AS algorithm under arbi-
trary proper sampling S . For notational convenience, in this
section, i ∈ [d] can be either single coordinate or block of
coordinates that we do not explicitly differentiate them with
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additional notation, while in the next section it refers to a sin-
gle coordinate. Denote the probability for sampling block i
by pi and collectively by p := {p1, ..., pd}. Let pmin denote
the smallest entry in p.

In each iteration (e.g. t), line 2 samples a random set of
blocks T t from {1, 2, ..., d} according to sampling distri-
bution S. To accommodate the injected noise for privacy
protection in the next section, and also for wider applicability
of BCFW-AS, line 5 allows the partial linear oracle (LO) ŝ(i)
to be evaluated approximately with inexactness parameter
�il , given inexact partial gradient (PG) ∇̂(i)f(x) with param-
eter �ig in line 4. For brevity, ŝ(i) is referred as �il-LO and
∇̂(i)f(x) is referred as �ig-PG. Convergence analysis shows
that as long as the following assumptions hold, BCFW-AS is
still guaranteed to converge:
Assumption 1. (Inexact linear oracle and inexact gradient)
Let γt denote the step size at iteration t, CES

f denote expected
curvature of function f with sampling S .
• Let �il be a constant parameter. The inexact linear oracle

ŝ(i) satisfies,

〈ŝ(i), ∇̂(i)f(x)〉 ≤ min
s(i)∈Mi

〈s(i), ∇̂(i)f(x)〉+
�ilγ

tCES
f

2
.

(4)
• Let �ig be the inexact gradient constant parameter,

∇(i)f(x) be the exact partial gradient at x. The partial
gradient ∇̂(i)f(x) satisfies,

||∇̂(i)f(x)−∇(i)f(x)||∗(Mi)
≤

�igγ
tCES

f

2
, (5)

where || · ||∗(Mi)
is the dual norm of the norm associated

with Mi.
In the above assumption, the constant CES

f is the expected
curvature to be introduced in the next subsection. Step 6
then updates the block i-th decision variable, for i ∈ T t.
Concisely, we can add up ŝti for all i ∈ T t to denote ŝt[T t] =∑

i∈T t ŝt[i]. Then, the total update across all blocks being
sampled can be summarized into,

xt+1
[T t] = xt + γt(ŝt[T t] − xt

[T t]). (6)

Expected Curvature

Before moving to the convergence analysis of BCFW-AS,
this subsection introduces a new notion called expected cur-
vature, which will play a key role in the convergence of the
BCFW-AS in the next subsection. The expected curvature
compactly associates the curvature of the loss function on
various directions, which are randomly sampled according to
the sampling distribution. Intuitively, instead of measuring
the largest deviation of the loss function from its linear ap-
proximation along some particular sets of coordinates, such
a new quantity should be able to measure the maximum devi-
ation “averaged” over various choices of sets of coordinates
selected under the sampling distribution to manifest the in-
teraction of the intrinsic geometric property along different
directions and the distribution of the sampling. We formulate
the intuition by the following expected curvature definition:

Algorithm 1 Block-Coordinate Frank-Wolfe AlgorithmWith
Arbitrary Sampling
Require: Initial feasible variable x0, step sequence γt, sam-

pling distribution S, inexactness parameters �ig and �il ,
estimation of expected curvature CES

f , maximum itera-
tion T ;

1: for t = 0, 1, ..., T − 1 do
2: Generate a random set T t ⊂ [d], following the distri-

bution S;
3: for all i ∈ T t do
4: Compute approximate partial gradient ∇̂(i)f(x

t)
satisfies Eq.(5);

5: Compute approximate partial linear oracle ŝt(i) sat-
isfies Eq.(4);

6: Update xt+1
(i) = xt

(i) + γt(ŝt(i) − xt
(i));

7: end for
8: end for

Ensure: xT ;

Definition 2. (Expected curvature) The expected curvature
of a the loss function f(x) with arbitrary proper sampling S
is defined as,

CES
f = sup

x,s∈M,
γ∈[0,1]

ET ∼S

[ 2

γ2
f(x+ γ(s[T ] − x[T ]))− f(x)

− γ〈s[T ] − x[T ],∇f(x)〉
]
.

(7)
It first calculates the average deviation with various

combinations of proper x, s, γ under the sampling S and
then chooses the largest value calculated from a certain
pair of (x#, s#, γ#) as the expected curvature. In general,
(x#, s#, γ#) may not achieve the maximum partial curva-
ture for every possible combination of blocks under the sam-
pling, yet it ensures the overall supremacy after taking into the
probability of the appearance of the combinations of blocks.
We discuss some properties of the expected curvature by com-
paring it with: 1) Lipschitz smoothness-based ESO quantities
in (Richtárik and Takáč 2016b; Richtárik and Takác 2016a;
Qu and Richtárik 2016b); 2) Various curvatures used by ex-
isting BCFWs under the samplings mentioned on Page 2 The
comparisons show that the expected curvature can be much
smaller than Lipschitz-based ESO constants and also refine
existing curvature constants used in the specific samplings.
For the ease of comparison, we make the same assumption
as the compared methods given by
Assumption 2. There is an n× d matrix A such that for all
x,y ∈ M,

f(y) ≤ f(x)+〈y−x,∇f(x)〉+ 1

2
(y−x)�A�A(y−x).

(8)
Comparison with ESO quantity: Similar to conventional
curvature quantities that have the Lipschitz smoothness con-
stant times the squared diameter of the constraint set as the
upper bound, the expected curvature is upper bounded by the
ESO quantity times the squared diameter given by
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Table 1: Comparison of BCFW convergence results
Sampling pmin Existing result Ours

Elementary with set [d] 1 2(1+δ)Cf

t+2 (Jaggi 2013; Bellet et al. 2015) 2(h0+(1+δ)Cf )
t+2

Uniform Serial 1
d

2d(h0+(1+δ)C⊗
f )

t+2d (Lacoste-julien et al. 2013)
2d(h0+(1+δ)dCEuni·seri

f )

t+2d

τ -nice τ
d

2d(h0+(1+δ)dCτ
f )

τ2t+2d (Wang et al. 2016)
2d(τh0+(1+δ)dCEτnice

f )

τ2t+2dτ

(K, τ)-distributed (Kτ)2

d2 -
2d(Kτh0+(1+δ)dC

E(K,τ)
f )

(τK)2t+2dKτ

Arbitrary pmin -
2(h0+

(1+�)
pmin

CES
f )

pmin·t+2

Proposition 1. Under Assumption 2, we denote the pairwise
probability matrix of arbitrary sampling S by P, the diameter
of Mi by DMi . By choosing β = (β1, ...βd) with βi =
min{σ′(P), σ′(A�A)}||Ai||22, where σ′(P), σ′(A�A) are
the largest normalized eigenvalues of the matrices P and
A�A, then we have CES

f ≤
∑d

i=1 piβiD
2
Mi

.

In the above proposition, βi is exactly one of the ESO
quantity obtained in (Qu and Richtárik 2016b) under the same
assumption. (Qu and Richtárik 2016b) has also provided
many other estimations of βi. We omit those comparisons
because we can also show the same result in a similar fashion.
The proofs can be found in the supplementary material.
Comparison with curvatures of existing BCFW: The next
proposition shows the relationship of the expected curvature
with those used in the existing BCFW algorithms.

Proposition 2. Recall the global curvature Cf of (Jaggi
2013; Bellet et al. 2015) under elementary sampling, the
product curvature C⊗

f of (Lacoste-julien et al. 2013) under
uniform serial sampling, and expected set curvature Cτ

f of
(Wang et al. 2016) under τ -nice sampling as introduced in
Subsection . Then, the following relationships hold,

CEelement
f = Cf , C

Euni·seri
f ≤ 1

d
C⊗

f , CEτnice
f ≤ Cτ

f ,

(9)
where all the left hand side terms denote the expected curva-
ture under the corresponding samplings.

By Proposition 2, the expected curvature is always upper
bounded by the existing specific curvature constants intro-
duced for specific samplings, which will result in refined
convergence results as shown in the next subsection.
Exact form of expected curvature under specific sam-
plings: It is possible to calculate an accurate estimation of
the expected curvature under certain samplings if the prob-
ability is specified, despite its seemingly abstract definition.
We illustrate this with two examples of τ -nice sampling and
(K, τ)-distributed sampling. The latter one will be further
used in the next section to establish the new convergence of
the distributed FW algorithm with disjoint blocks and the
utility of the private distributed FW algorithm.

Proposition 3. Under Assumption 2, the expected curva-
ture under τ -nice sampling satisfies CEτnice

f ≤ τμ1 +

τ(τ − 1)μ2, where μ1 = supi∈[d] ||Ai(si − xi)||22, μ2 =

supi,j∈[d],i 	=j(Ai(si − xj))
�(Aj(si − xj)).

This matches the expected set curvature calculated in
(Wang et al. 2016), based on which they further provide
example curvature quantities for structured SVM and group
fused LASSO.
Proposition 4. Under Assumption 2, the expected curvature
under (K, τ)-distributed sampling satisfies

C
E(K,τ)
f ≤ Kτμ1+Kτ(τ − 1)μ2+K(K− 1)τ2μ3, (10)

where μ1 = supi∈[d] ||Ai(si − xi)||22, μ2 =

supi,j∈Pk,i 	=j(Ai(si − xj))
�(Aj(si − xj)),

μ3 = supi∈Pk1
,j∈Pk2

,k1 	=k2
(Ai(si − xj))

�(Aj(si − xj)).

We close this subsection by repeating the remarks on cur-
vature in (Jaggi 2013) to stress that curvature is a more fun-
damental quantity for FW algorithm due to 1) it can be much
smaller than Lipschitz smoothness based quantity; 2) it is
affine invariant and the analysis applies for arbitrary choices
of norms. Thus, for the analysis of BCFW-AS, it is necessary
to introduce the new expected curvature quantity because it is
more suitable than the existing Lipschitz smoothness related
ESO quantity.

Convergence Analysis for BCFW with Arbitrary
Sampling

Equipped with the expected curvature, this subsection pro-
vides the convergence result of BCFW-AS in Theorem 1, the
proof can be found in the supplement.
Theorem 1. (Convergence result of BCFW-AS) Let Assump-
tion 1 and 2 hold. Let DM denote the diameter of con-
straint set M, |T | denote the maximum sampling set size
among iteration 1, ...t. Take �g = maxi �

i
g, �l = maxi �

i
l ,

� = (DM + |T |)�g + �l|T |). For each t ≥ 0, xt generated
by Algorithm 1 with step size γt = 2

pmin·t+2 satisfies

E[f(xt)]− f(x∗) ≤
2(h0 + (1+�)

pmin
CES

f )

pmin · t+ 2
, (11)

where x∗ denotes an optimum of the problem, h0 := f(x0)−
f(x∗), pmin denotes the minimum entry of probability vector
p, CES

f is the expected curvature for arbitrary sampling S .
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According to Theorem 1, instead of designing the step
size for various sampling schemes case by case, BCFW-AS
introduces a universal choice that only depends on the min-
imum probability entry pmin (note that further line-search
for the step size is also possible as considered in (Jaggi 2013;
Lacoste-julien et al. 2013), but the convergence analysis is
still based on the deterministic step size). This universal step-
size alleviates design complexity, especially when applied to
complex sampling schemes where one may not know full de-
tails of the distribution. In particular, in the distributed private
LASSO application, participating user nodes may have their
own sampling schemes and do not want to reveal, making it
impossible to have full knowledge of the overall sampling
distribution.

To demonstrate the flexibility of the convergence guarantee
provided by Theorem 1, we recover the convergence results
of the previous FW algorithms by simply substituting the
corresponding pmin and expected curvature obtained in the
previous subsection in Eq.(11), which are summarized in
Table 1. In particular, we have

1. Elementary sampling: we obtain the same convergence
rate and dependence on the curvature;

2. Uniform serial sampling: we obtained a slightly refined
convergence result compared to (Lacoste-julien et al. 2013)
since our curvature-related constant is upper bounded by
theirs according to Proposition 2;

3. τ -nice sampling: roughly, we recover a compatible result
to (Wang et al. 2016) that with same convergence rate,
our dependence on the curvature-related constant is better
while the dependence on the initial primal gap is inferior
than theirs;

4. (K, τ)-distributed sampling: we obtain the convergence
for this new sampling by simply substituting pmin =
(Kτ)2

d2 and expected curvature CE(K,τ)
f in Eq.(10), which

shows the generality of Theorem 1.

Finally, we would like to remark that the convergence de-
veloped for arbitrary samplings has the potential to be applied
to developing new BCFW algorithms with guaranteed con-
vergence, like a variant with importance sampling scheme.

Uplink Communication Efficient Differentially

Private BCFW with Distributed Features

This section considers the private LASSO problem for
feature-wise distributed datasets and proposes an uplink com-
munication efficient algorithm based on BCFW-AS algorithm.
Two major components are: 1) Private index computation sub-
routine for computing private linear oracle; 2) Private active
feature sharing required for computing partial gradient with-
out privacy leakage. The algorithm comes with guaranteed
privacy, utility and uplink communication complexity.

Algorithm Description

K user nodes solve the LASSO problem:

min
x

1

2n
||Ax− y||22, s.t.||x||1 ≤ η, (12)

Algorithm 2 Differentially Private Frank-Wolfe Algorithm
with Distributed Features for LASSO

Server Node
Require: Initial feasible variable x0 , step sequence γt, max-

imum iteration T , �1-norm ball size η;
1: for t = 0, 1, ..., T − 1 do

2: Receive ˆidx
t

k and ât
k from K workers;

3: ŝt = η
∑K

k=1 −sign( ˆidx
t

k)e[ ˆidx
t
k]
;

4: xt+1 = (1− γt)xt + γtŝt;
5: q̂t = (1 − γt−1)qt−1 +

γt−1
∑K

k=1 −sign(idxt
k)

1
n â

t−1
|idxt

k|
;

6: Broadcast xt+1 and q̂t to all K workers;
7: end for

Ensure: xT ;
User Node

Require: sampling parameter τ , JL-transform matrix J
7: for t = 0, 1, ..., T − 1 do
8: Receive xt and q̂t from server;
9: Sample τ coordinates T t

k ⊆ Pk randomly;
10: For each i ∈ T t

k , ∇̂if(x
t) = a�

i q̂
t − a�

i y, vi =

∇̂if(x
t) + pert;

11: ˆidx
t

k = sign(vi) argmaxi∈T t
k
vi;

12: Send ˆidx
t

k and ât
k = Ja| ˆidx

t
k|
+ ξ to server;

13: end for

with the input matrix A = [a1, ...,ai, ...,ad], where ai

is an n × 1 sparse feature vector with nnz(a) non-zero
entries at most. For simplicity, we assume the features
to be randomly and evenly splitted among user nodes as
A = [A1, ...Ak, ...AK ] and denote the associated coor-
dinate indices as Pk for Ak. To adapt the BCFW-AS to
LASSO with distributed features, each user node k ran-
domly samples τ coordinate T t

k and computes the partial
gradient ∇(T t

k )f(x
t) and then evaluates partial linear oracle

argmax||s(T t
k
)||1≤η〈s(Pk),∇(T t

k )f(x
t)〉. Note that the linear

oracle evaluation amounts to find a direction ±ei, i ∈ T t
k

that has the maximum 〈±ei,∇if(x
t)〉 value. The follow-

ing summarizes the partial gradient computation and linear
oracle evaluation for user k:

for each i ∈ T t
k ,∇if(x

t) = a�
i (

1

n
Axt)− a�

i y; (13)

itk = argmax
i∈T t

k

|∇if(x
t)|, idxt

k = −sign(∇itk
f(xt)) · itk.

(14)

At iteration t, to update the decision variable, the user node
only needs to upload the signed index idxt

k rather than a
full partial decision variable. To compute the partial gradient
∇if(x

t), qt := 1
nAxt cannot be updated by each user in-

dependently based solely on local features, which requires
additional communication (recall that local gradient can be
computed only based on local samples in the sample-wise
distributed setting). However, it can be iteratively updated
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based on the update rule of xt, as

qt = (1− γt−1)qt−1 + γt−1
K∑

k=1

−sign(idxt
k)

1

n
at−1
|idxt

k|
.

(15)
Hence, in order to update qt from qt−1, it suffices to sharing
K local features a ˆidx

t−1
k

. That is, each user node should up-
load the local feature indicated by idxt

k, which is referred to
active feature. Apparently, at most KT nonduplicate active
features need to be communicated across T iterations. Com-
pared with (Heinze-Deml, McWilliams, and Meinshausen
2017) which randomly sketches features at preprocessing
which costs O(n× r log(r)) uplink communication, the ac-
tive feature communication takes a “share-at-need” strategy
which costs only O(n × KT ) communication complexity.
Later, we will show that this strategy indeed has smaller
communication complexity. Two subroutines: private singed
index computing and private active feature sharing, provide
privacy protection to the algorithm. Given privacy budget
(ε, δ), we evenly assign half for each part for simplicity.
A. Private signed index computation: The computation of
idx can be regarded as selecting from 2|T t

k | indices whose as-
sociated value sign(idx)∇|idx|f(x) reaches maximum. This
equivalence suggests the usage of “Report-noisy-max”, a dif-
ferential privacy building block, to provide privacy protection
for the computation of idx. In brief, instead of selecting the
index based on clean associated value, “Report-noisy-max”
selects based on noise-injected associated value. For our prob-
lem, it has the updates as follows:
1. For each i ∈ T t

k , compute noise injected partial gradient
by vi = sign(i)∇if(x)+pert, where pert is a Laplacian

noise: pert ∼ Lap(
(2Gη/Kn)·

√
2T log(1/(δ/2))

( ε
2k )/2 ).

2. Pick ˆidx
t

k = sign(vi∗)i
∗, where vi∗ = maxi∈T t

k
vi.

(Talwar, Thakurta, and Zhang 2015) also uses “Report-noisy-
max” in the centralized FW algorithm for linear oracle selec-
tion, and our private signed index computation is an adapta-
tion to the distributed case. We emphasize that, to develop
private FW under feature-wise distributed setting, a more im-
portant design is how to share the active features in a private
and communication efficient way without deteriorating the
optimal utility guarantee, which is presented below.
B. Private active feature sharing: We propose to commu-
nicate perturbed sketch active features to jointly provide pri-
vacy protection as well as reduce communication cost. For
at
| ˆidx| ∈ Atrans, the user node takes ât

| ˆidx| = Jat
| ˆidx| + ξ,

where J is an m × n Gaussian sketch matrix (Woodruff
and others 2014) (a type of Johnson-Lindenstrauss trans-
formation matrix) and ξ is an m × 1 noise vector with
each entry sampled according to pert ∼ N (0, π2), π =
σ(J)

√
KT

√
2(ln( 1

δ )+ε/2)

nε/2 , where σ(J) is the leading singu-
lar value of J . Analysis shows that m can be as small as
m = Ω( 1

ι2 log
T
δ/2 ) with T = O((nε)2/3) and ι being a

small constant parameter (referred to as JL-parameter), which
greatly reduces the communication cost for sharing the active
features.

We stress that the sketched active feature sharing for reduc-
ing communication cost itself is new to distributed FW type
algorithms, even without privacy protection design. Also, we
provide an analysis to show that, with the provided m, the
algorithm is guaranteed to converge with same O( 1

T ) rate. In
addition, this sketching is also crucial for ensuring optimal
utility guarantee. Note that the gradient inexact parameter is
the much smaller O(log(n)/n) with sketch (see Table 2 and
Theorem 3), compared to that of O(

√
n/n) without sketch.

Hence, the sketched features require much less noise injec-
tion. With inexactness parameter as large as O(

√
n/n), the

optimal utility O((nε)
2
3 ) would be no longer achievable.

The above is main steps taken by the user nodes. As for
the server node, it simplicity updates the decision variable by
adding up partial linear oracles and broadcasts the new deci-
sion variable as well as private active features. The algorithm
is summarized in Algorithm 2.

Analysis

Algorithm 2 comes with guaranteed privacy, utility and uplink
communication complexity.
A. Differential privacy: The sensitive communication
sourced from user nodes is the indices and active features,
both of which are (ε/2, δ/2)-differentially private by Lemma
7 and Lemma 8 in the supplement.

Then, the algorithm is guaranteed to be (ε, δ)-differential
privacy by simple composition property of DP, as summa-
rized by:
Theorem 2. Algorithm 2 is (ε, δ)-differentially private.
B. Utility: The utility is based on the convergence result
of BCFW-AS developed in the previous section with the
sampling being (K, τ)-distributed sampling. As perturba-
tion and sketching are introduced, the gradient and linear
oracle are inexact. The key step is to show Algorithm 2
satisfies Assumption 1 and show that ŝt and ∇̂f(xt) are
�l-LO and �g-PG correspondingly. The following theorem
presents the utility guarantee and the parameters appeared
are summarized in Table 2, where nnz(a) denotes the largest
count of nonzero entries of all features, pmin = p = Kτ

d
is the sampling rate, ι is the JL-transform parameter and
G = 1

n ||A�(Ax− y)||∞ = O(1).
Theorem 3. Let Assumption 1 and 2 hold. Set T =(

C
E(K,τ)
f nε

Cg+Cl

) 2
3

. Algorithm 2 ensures the following expected

excess empirical risk under (ε, δ)-differential privacy,

E[f(xT )]− min
x∈M

f(x)

= O
( (Cg + Cl)

2
3 (C

E(K,τ)
f )

1
3 log(2GηKτn)

p2(nε)
2
3

)
.

(16)

Remark 1. According to Theorem 3, the utility is of order
O( 1

p2(nε)
2
3
). Compared with the utility result O

(
1

(nε)
2
3

)
of

the centralized private FW method (Talwar, Thakurta, and
Zhang 2015), ours has the same dependence on n and ε,
which is nearly optimal for any private algorithm achievable.
Our utility is discounted by the sampling rate-related term,
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Table 2: Summarization of Parameters in Theorem 3
Parameter Formulation

�g O
(

((Kιnnz(a)+K3/2
√

nnz(a)mσ(J)2)/pmin(2η+Kτ))
√
T
√

(log(1/δ)+ε)

nεCES
f γT

)

�l O
(

2Gη
√

32T log(1/(δ/2) log(2GηKτT )/(Kτ)

nεC
E(K,τ)
f γT

)

Cg ((Kιnnz(a) +K3/2
√
nnz(a)σ(J)2)/pmin)

√
(log(1/δ) + ε)

Cl 2Gη
√

32 log(1/(δ/2)

m Ω( 1
ι2 log

T
δ/2 )

which, however, can be regarded as the trade-off between
computational scalability and utility.
C. Uplink communication complexity: The uplink commu-
nication comes from: 1) KT integers for sending the private
index (rather than the entire d× T float local decision vari-
ables x); 2) m×KT for sending the private active features.
Based on T in Theorem 3 and m in Table 2, we have

Corollary 1. Algorithm 2 has uplink communication com-
plexity O( 1ι

2
log(nε)1/3K(nε)2/3).

Remark 2. Compared to the one-shot communication
at the preprocessing proposed by method (Heinze-Deml,
McWilliams, and Meinshausen 2017), our uplink commu-
nication cost has better dependence on the sample size
with O(n2/3 log(n)1/3) than theirs with O(nr log r), which
shows our “share-at-need” feature sharing is more uplink
communication efficient than random sketching at prepro-
cessing.

Conclusion

We have considered private training of ERM model with
the features distributed among user nodes and developed an
uplink communication efficient, utility nearly optimal algo-
rithm based on a new general analysis of BCFW algorithm
under arbitrary sampling. Under the same privacy budget,
our distributed variant features: 1) the same order of nearly
optimal utility guarantee for the LASSO task as centralized
counterpart, and 2) improved overall uplink communication
complexity than the existing methods for the same feature-
distributed setting. To derive the convergence analysis, we
have introduced a universal step size as a new expected curva-
ture notion, which comes with the detailed comparison with
the existing quantities. We have demonstrated the flexibility
of the convergence analysis by recovering exact, refined or
matchable result of existing BCFWmethod under the specific
samplings.
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