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Abstract

Clustering ordinal data is a common task in data mining and
machine learning fields. As a major type of categorical data,
ordinal data is composed of attributes with naturally ordered
possible values (also called categories interchangeably in this
paper). However, due to the lack of dedicated distance met-
ric, ordinal categories are usually treated as nominal ones, or
coded as consecutive integers and treated as numerical ones.
Both these two common ways will roughly define the dis-
tances between ordinal categories because the former way
ignores the order relationship and the latter way simply as-
signs identical distances to different pairs of adjacent cate-
gories that may have intrinsically unequal distances. As a re-
sult, they may produce unsatisfactory ordinal data clustering
results. This paper, therefore, proposes a novel ordinal data
clustering algorithm, which iteratively learns: 1) The parti-
tion of ordinal dataset, and 2) the inter-category distances.
To the best of our knowledge, this is the first attempt to dy-
namically adjust inter-category distances during the cluster-
ing process to search for a better partition of ordinal data. The
proposed algorithm features superior clustering accuracy, low
time complexity, fast convergence, and is parameter-free. Ex-
tensive experiments show its efficacy.

Introduction

Ordinal data is usually collected from questionnaires, eval-
uation systems, etc. As a major type of categorical data,
possible values of an ordinal attribute are a limited num-
ber of naturally ordered categories (Agresti 1996; Allen and
Seaman 2007), e.g., {accept, neutral, reject}. In many data
mining and machine learning tasks, it is common to analyze
ordinal data by clustering, in which distance measurement
plays a main role (Ng et al. 2007). Since the values of ordi-
nal data are not quantitative, the distances of ordinal data are
not well-defined. Therefore, ordinal data is usually treated in
either of the following two ways: 1) Directly define the dis-
tances between ordinal categories, and treat ordinal data as
nominal one in the clustering; 2) Code ordinal categories as
consecutive integers, and treat the coded data as numerical
one in the clustering.

In the former way, all the existing distance metrics and
measures that are designed for categorical data can be di-
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rectly used to define the distances for ordinal data. Hamming
Distance Metric (HDM) is the most popular one. However,
its distance is simply binary (i.e., 0 for identical categories
and 1 for different categories), which is too simple to suit-
able for ordinal data. By contrast, Entropy-Based Measure
(EBM) (Barbará, Li, and Couto 2002; Li, Ma, and Ogihara
2004), Association-Based Distance Metric (ABDM) (Le and
Ho 2005), Ahmad’s Distance Metric (ADM) (Ahmad and
Dey 2007), Context-Based Distance Metric (CBDM) (Ienco,
Pensa, and Meo 2012), Object-Cluster Similarity Measure
(OCSM) (Cheung and Jia 2013), and Jia’s Distance Metric
(JDM) (Jia, Cheung, and Liu 2016) attempt to more reason-
ably define the distances by exploiting statistic information
of categories, including frequency probabilities, conditional
probability distributions, and so on. However, they are orig-
inally designed for nominal data only, and the distances de-
fined by them may violate the order relationship among ordi-
nal categories. Most recently, Entropy-Based Distance Met-
ric (EBDM) (Zhang and Cheung 2018) has been proposed,
which adopts cumulative entropy as a measure to simulta-
neously take into account the statistic information and order
relationship for ordinal data distance measurement. Unfor-
tunately, it assumes that all the attributes are equally im-
portant and independent of each other, which may not al-
ways be true from the practical viewpoint. By adopting the
above-mentioned metrics and measures, existing categori-
cal data clustering algorithms, including the conventional
K-Modes (KMD), the representative Weighted K-Modes
(WKMD) (Chan et al. 2004), the state-of-the-art Weighted
OCIL (WOCIL) (Jia and Cheung 2018), etc., will produce
unsatisfactory ordinal data clustering results due to the un-
reasonably defined distances.

In the latter way, categories within the same attribute
are usually coded as consecutive integers according to their
ranking, for example, ordinal categories {accept, neutral,
reject} are coded as {3, 2, 1}. In this way, ordinal data
is converted into numerical one, and the existing numeri-
cal data clustering algorithms, including the conventional
K-Means (KMS), the representative Weighted K-Means
(WKMS) (Huang et al. 2005), the state-of-the-art WOCIL
(Jia and Cheung 2018), etc., are applicable for the cluster-
ing of coded ordinal data. Although the coding effectively
preserves the order information of ordinal data, it unrea-
sonably assigns identical distances to different pairs of ad-

6869



jacent categories that may have intrinsically unequal dis-
tances. For instance, given an ordinal attribute with five cat-
egories {excellent, very-good, good, fair, poor}, the differ-
ence between “excellent” and “very-good” is usually smaller
than the difference between “fair” and “poor”, because the
former two are different in quantity whilst the latter two are
different in quality. Evidently, the simple coding may twist
the natural distances of ordinal attributes, and may thus lead
to unsatisfactory clustering results.

In this paper, we propose a novel k-mode-type Distance
Learning-based Clustering (DLC) algorithm, which dynam-
ically adjusts the inter-category distances during the cluster-
ing process to search for a better partition of ordinal data.
However, a difficulty lies in how to efficiently describe all
the inter-category distances with preserving their order re-
lationship. To tackle this, we only assign weights between
the adjacent categories, and the distance between any two
non-adjacent categories is jointly described by the weights
between them. In this way, for an attribute Ar with vr cat-
egories, only vr − 1 weights are utilized to indicate the
vr(vr−1)

2 inter-category distances with preserving their order
relationship. To tackle another difficulty, i.e., how to reason-
ably adjust the weights, we design a novel measure that com-
putes the expected effectiveness of adjusting a weight for
forming more compact clusters (i.e., the clusters with more
similar intra-cluster data objects). All the weights are jointly
adjusted according to their expected effectiveness measured
in different clusters. According to our design, the nontriv-
ial ordinal data distance learning problem becomes achiev-
able. Because DLC integrates the distance learning and the
clustering process to automatically learn more suitable dis-
tances for the clustering task, it has superior clustering per-
formance. Moreover, it features low time complexity, fast
convergence, and is parameter-free. Extensive experiments
on different real and benchmark datasets show its efficacy.

Related Work

For categorical data distance measurement, HDM is a com-
monly used one. Since the categories of an ordinal attribute
are with different orders, the binary distances produced by
HDM cannot well reflect the difference degrees between dif-
ferent ordinal categories. ADM and ABDM (Ahmad and
Dey 2007; Le and Ho 2005) have been proposed to more
finely define the inter-category distances. They adopt a com-
mon basic idea that two similar categories also have similar
corresponding values on the other attributes. However, they
assume all the attributes are interdependent, which may not
always be true from the practical viewpoint. Thus, CBDM
(Ienco, Pensa, and Meo 2012) is proposed to select relevant
attributes for defining the inter-category distances. Later,
JDM (Jia, Cheung, and Liu 2016) has been proposed, which
further considers the case that all the attributes are indepen-
dent of each other. In the literature, several entropy-based
measures have also been proposed to compute the suitability
of inserting an object into a cluster (Barbará, Li, and Couto
2002; Li, Ma, and Ogihara 2004). The basic idea is that if
a new object is very similar to the objects in a cluster, the
entropy of this cluster will not increase a lot after adopting

the new object. Another measure called OCSM (Cheung and
Jia 2013) has been proposed to indicate the object-cluster
similarity by using the occurrence probabilities of the object
values in the target cluster.

Because all the above-mentioned categorical data metrics
and measures are actually designed for nominal data only,
they will ignore the order information for distance/similarity
measurement of ordinal data. Therefore, a distance metric
called EBDM (Zhang and Cheung 2018) has recently been
proposed for ordinal data clustering. It takes into account
the order information for quantifying the inter-category dis-
tances from the perspective of information theory. Although
its clustering performance is quite good, its effectiveness is
still limited because it assumes that all the attributes are in-
dependent of each other, which is usually unreasonable.

Clustering algorithms can be categorized according to
their suited data type. For categorical data clustering, the
conventional KMD (Huang 1998) is easy to use, but it treats
each attribute equally. Thus, its attribute weighting version
WKMD (Chan et al. 2004) has been proposed to achieve
better clustering performance. However, since they use the
‘modes’ to represent clusters, order relationship among or-
dinal categories will be ignored when computing the object-
cluster distance. The state-of-the-art WOCIL (Jia and Che-
ung 2018) has been recently proposed to further detect po-
tential subspace clusters. Since it adopts OCSM (Cheung
and Jia 2013) as similarity measure for categorical data clus-
tering, it still ignores the order information of ordinal data.
Numerical data clustering algorithms, including the conven-
tional KMS (MacQueen 1967), the representative WKMS
(Huang et al. 2005), the state-of-the-art WOCIL (Jia and
Cheung 2018), etc., are applicable to the coded ordinal data.
Although the order information can be preserved by the cod-
ing, inter-category distances are twisted due to the identical
distances assigned to different pairs of adjacent categories.

Proposed Method
Learning attribute weights has achieved huge success by the
existing clustering algorithms (Chan et al. 2004; Huang et
al. 2005; Jia and Cheung 2018). Assigning a weight to an
attribute is equivalent to assigning identical weights to all
the inter-category distances of this attribute. When the dis-
tances of a dataset are well-defined like the distances of nu-
merical data, weighting each attribute as a whole is reason-
able. However, the inter-category distances of ordinal data
are not well-defined in general (Zhang and Cheung 2018). In
this paper, we assume that the inter-category distances may
have different contributions in forming compact clusters,
and we propose a novel Distance Learning-based Cluster-
ing (DLC) algorithm, which decomposes the task of weight-
ing attributes into sub-tasks of weighting the inter-category
distances of attributes, to achieve more accurate partition of
ordinal data.

Problem Description: Let X = {x1, x2, ..., xn} be an
ordinal dataset with n data objects represented by m at-
tributes A1, A2, ..., Am with v1, v2, ..., vm categories, re-
spectively. The vr categories of an attribute Ar are ordered
as or,1 ≺ or,2 ≺ ... ≺ or,vr , where the symbol “≺” rep-
resents that the categories on its right ranked higher (have
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Figure 1: Distances of Attribute Ar (vr = 5).

larger order values) than the categories on its left. The sub-
script of a category or,s represents that it belongs to the rth

attribute and ranked sth among the categories of the rth at-
tribute. The goal of ordinal data clustering is defined as the
problem of minimizing the difference among intra-cluster
data objects, and the objective function Z can be written as:

Z(Q,W) =
n∑

i=1

k∑
j=1

qi,jDw(xi,Cj), (1)

where Q is an n × k partition matrix of X. Since we
assume crisp partition-based clustering, values of Q sat-
isfy

∑k
j=1 qi,j = 1 and qi,j ∈ {0, 1}, i ∈ {1, 2, ..., n}.

Dw(xi,Cj) denotes the weighted object-cluster distance
between an object xi and a cluster Cj . W contains a
set of m vectors {w1,w2, ...,wm}, each of which con-
tains a set of weights describing the inter-category dis-
tances of an attribute. We only assign weights between
adjacent categories as shown in Figure. 1, and describe
the distance between any two categories by adding all the
weights between them. In this way, only vr−1 weights, i.e.,
wr = {wr,1, wr,2, ..., wr,vr−1}, are needed to describe all
the vr(vr−1)

2 inter-category distances of Ar. To avoid the
collapse of order relationship caused by negative weights
and ensure meaningful optimization, the weights satisfy∑m

r=1

∑vr−1
s=1 wr,s = 1 and 0 ≤ wr,s ≤ 1. To minimize

Z, we iteratively solve the following two problems:

• P1: Fix W, minimize Z by adjusting Q;

• P2: Fix Q, reduce Z by adjusting W.

P1 is solved by:

qi,j =

{
1 , if j = argminy Dw(xi,Cy)
0 , else,

(2)

i ∈ {1, 2, ..., n} and y ∈ {1, 2, ..., k}. The weighted object-
cluster distance Dw(xi,Cy) is defined as:

Dw(xi,Cy) =

m∑
r=1

vr∑
s=1

dw(κ(xi,r), s) · uy,r,s, (3)

where κ(xi,r) fetches the order value of xi,r, for example,

if xi,r = or,t, κ(xi,r) = t. uy,r,s =
σor,s (Cy)

σ(Cy)
is the occur-

rence probability of or,s in Cy , where σ(Cy) and σor,s(Cy)
count the number of objects in Cy , and the number of ob-
jects with their rth values equal to or,s in Cy , respectively.

dw(κ(xi,r), s) is the distance between xi,r and or,s, which
is defined as:

dw(κ(xi,r), s) =

{ ∑max(κ(xi,r),s)−1

h=min(κ(xi,r),s)
wr,h , if κ(xi,r) �= s

0 , if κ(xi,r) = s.
(4)

Remarks: The defined distance satisfy dw(s, t) ≤
dw(g, h), if max(g, h) ≥ max(s, t), min(g, h) ≤ min(s, t),
g, s, t, h ∈ {1, 2, ..., vr}. That is, dw(·, ·) guarantees that the
distance between two categories or,s and or,t is not larger
than the distance between another two categories or,g and
or,h that are not ordered between or,s and or,t, which is con-
sistent with the order relationship among categories.

The weighted object-cluster distance defined in Eq. (3)
can finely detect the order differences between xi,r and the
rth values of the objects in Cy based on the present W.
The reasons why we do not use the object-center distance
(MacQueen 1967), object-mode distance (Huang 1998), and
object-cluster similarity (Cheung and Jia 2013) for solving
P1 are discussed below:

• Object-center distance is suitable for data with well-
defined distances. Computing object-center distances for
coded ordinal data will produce incorrect clustering re-
sults as we discussed in the Introduction.

• Both object-mode distance and object-cluster similarity
ignore the order relationship among ordinal categories,
and may thus produce incorrect clustering results.

By solving P1, all the n objects are assigned to their clos-
est clusters based on the present W, and we obtain new Q.
Then, P2 is solved by:

wr,s =
Φr∑m

g=1 Φg
·∑k

j=1

(
bj,r,s

∑vr−1
t=1 bj,r,t

· Bj,r∑k
h=1 Bh,r

)
, (5)

r ∈ {1, 2, ...,m} and s ∈ {1, 2, ..., vr − 1}. bj,r,s
∑vr−1

t=1 bj,r,t
is

the new wr,s computed according to Cj , Bj,r∑k
h=1 Bh,r

weights
the contribution of Cj in deciding all the weights in wr, and

Φr∑m
g=1 Φg

weights the overall importance of wr. According
to Eq. (5), all the weights in W are updated based on the
present Q. In the following, we present the definitions of
bj,r,s, Bj,r, and Φr, and discuss their roles in the learning.

If adjusting wr,s is expected to achieve better reduction
on Z, then wr,s should be adjusted with a greater strength.
Therefore, the core of Eq. (5), i.e., bj,r,s, is defined as:

bj,r,s =
1

vr(
∑vr

t=s+1

σor,t (Cj)

t−s +
∑s

g=1

σor,g (Cj)

s+1−g )
, (6)

where the denominator measures the expected effectiveness
of shortening the distance between or,s and or,s+1 for re-

ducing Z. More specifically,
∑vr

t=s+1

σor,t (Cj)

t−s measures
the expected effectiveness of shortening wr,s by moving
or,s towards the categories with larger order values. Sim-

ilarly,
∑s

g=1

σor,g (Cj)

s+1−g measures the expected effectiveness
of shortening wr,s by moving or,s+1 towards the categories
with smaller order values.
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Remarks: Larger σor,t(Cj) results in larger∑vr
t=s+1

σor,t (Cj)

t−s in Eq. (6). This describes that mov-
ing or,s towards more values in Cj is surely expected to
achieve a better reduction on Z.

Remarks: Larger 1
t−s results in larger

∑vr
t=s+1

σor,t (Cj)

t−s
in Eq. (6). This describes that moving or,s towards the values
with similar order values to or,s in Cj is expected to achieve
a better reduction on Z. In contrast, two objects with dissim-
ilar order values are more likely to be partitioned into differ-
ent clusters, and shortening the distances between them is
not surely expected to achieve a better reduction on Z.

Remarks: vr in the denominator of Eq. (6) ensures that
the distances from attributes with different numbers of cate-
gories are fairly updated. Otherwise, for a too large (small)
vr, wr will be insufficiently (excessively) updated due to the
large (small) order differences between categories.

We should shorten the distance between or,s and or,s+1

(i.e., reducing wr,s) according to the expected effectiveness
to reduce Z. Therefore, reciprocal of the expected effective-
ness is adopted by Eq. (6). To weight the contribution of Cj

in deciding wr, Bj,r in Eq. (5) is defined as:

Bj,r =

vr−1∑
t=1

1

bj,r,t
, (7)

which is the cluster level expected effectiveness for reducing
Z. Specifically, a higher Bj,r indicates that updating wr ac-
cording to Cj can more effectively reduce Z. To weight the
importance of the whole wr, Φr in Eq. (5) is defined as:

Φr =

k∑
h=1

Bh,r, (8)

which is the total expected effectiveness of wr. Evidently,
wr with larger Φr should be assigned with a greater impor-
tance to better reduce Z. Bj,r and Φr are both defined based
on the expected effectiveness, and they have the consistent
goal for reducing Z in Eq. (5). Therefore, integrating them
in Eq. (5) is reasonable for our learning task. According to
Eq. (8), we simplify Eq. (5) to:

wr,s =

∑k
j=1

bj,r,s·Bj,r
∑vr−1

t=1 bj,r,t∑m
g=1 Φg

. (9)

The training process of DLC is shown in Algorithm 1.
The most common way for treating ordinal data in cluster-
ing analysis is to assign consecutive integers to the ordinal
categories according to their order, which is equivalent to
assigning identical distance “1” to each pair of adjacent or-
dinal categories. Our initialization formula wr,s = 1

m(vr−1)

just adopts this common way for the initialization. The de-
nominator m(vr − 1) ensures that the sum of the initial-
ized distances is equal to the sum of the learned ones. Fig. 2
shows a typical distance learning process of DLC on an or-
dinal dataset with four attributes. The black spots represent
categories, the link between two black spots represents the
distance between two categories, and the vertical axis repre-
sents the number of learning epochs. Distance between any

Algorithm 1 DLC Algorithm
Input: Dataset X, number of clusters k.
Step 1: Set the timestamp by τ = 0; Initialize each row of
Qτ by randomly setting one element at 1 and the remainders
at 0; Initialize Wτ by wr,s = 1

m(vr−1) , r = {1, 2, ...,m},
s = {1, 2, ..., vr − 1};
Step 2: Fix Wτ , iteratively update Qτ according to Eq. (2)
until all the values of Qτ remain unchanged. Then we obtain
Qτ+1. If Qτ+1 �= Qτ , go to Step 3; Otherwise, stop and
Output Qτ and Wτ ;
Step 3: Fix Qτ+1, update Wτ according to Eq. (9). Then
we obtain Wτ+1. Set τ = τ + 1, and go to Step 2;
Output: Qτ and Wτ .

A
1

A
2

A
3

A
4

Figure 2: Typical Distance Learning Process of DLC.

pair of adjacent categories of an attribute is the same before
the learning (Epoch 0). In the learning process, the data is
partitioned according to the present distances, and then the
distances are updated according to the present partition. Af-
ter the learning in Epoch 1 and 2, the DLC algorithm con-
verges, and the final distances are obtained. In practice, ma-
trices F = {f1, f2, ..., fk} recording the occurrence frequen-
cies of categories in each cluster, and matrices L = {l1,
l2, ..., lm} recording the inter-category distances of each at-
tribute, can be maintained to save the computation cost of
DLC. F and L are determined by Q and W, respectively,
and should be updated when Q and W are updated. By
maintaining F and L, results of Eq. (2) and (9) can be di-
rectly read off for saving computation cost.

Time Complexity: Time complexity for obtaining Qτ+1

and updating F is O(InmkV ), where I is the number of
iterations for updating Q, and V = max(v1, v2, ..., vm) is
only adopted to simplify the analysis because the attributes
may have different numbers of categories. Time complexity
for obtaining Wτ+1 and updating L is O(mkV 2). Suppose
Step 3 of Algorithm 1 is repeated E times, the overall time
complexity of DLC is O(E(InmkV + mkV 2)). Since I ,
E, and V are small constants (I × E ≤ 20 according to our
experiments, V � n and V 2 < n for real datasets), the time
complexity of DLC is O(nmk), which is the same as that of
the simplest clustering algorithms.

Space Complexity: During clustering, an n × m matrix
X, an n × k matrix Q, k matrices F = {f1, f2, ..., fk},
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each of which with size m × V , m vectors W =
{w1,w2, ...,wm}, each of which with size V , and m ma-
trices L = {l1, l2, ...lm}, each of which with size V × V ,
should be maintained. Since V is a small constant, the over-
all space complexity of DLC is O(nm+ nk + km).

Discussions: Several issues are discussed below:
• Overlapping Clusters: In general, the overlapping region

has a relatively low density. According to Eq. (9), DLC
will assign larger weights to the low-dense region. Hence,
DLC has the ability to distinguish overlapping clusters.

• High Dimensional Data: Since DLC learns weights ac-
cording to the full-space clusters, reasonableness of the
learned weights may be influenced when processing high
dimensional data composed of subspace clusters.

• Relation with Subspace Clustering: DLC learns weights
by combining the contributions of all the clusters and uses
the learned weights to partition the data in its full-space.
Therefore, DLC is not a subspace clustering algorithm.

Experiments

To evaluate the performance of DLC, we compare it with
11 counterparts, including the state-of-the-art, representa-
tive, and conventional approaches, on 10 real datasets. Ex-
perimental settings are discussed below.

11 Counterparts: KMD-HDM (KMDH), KMD-CBDM
(KMDC), KMD-JDM (KMDJ), KMD-EBDM (KMDE),
WKMD-HDM (WKMDH), WKMD-CBDM (WKMDC),
WKMD-EBDM (WKMDE), and the Categorical version of
WOCIL (CWO) are chosen as Type-1 counterparts (i.e., ap-
proaches formed by combining clustering algorithms and
distance metrics/measures proposed for categorical data).
JDM is not combined with WKMD because they both have
attribute weighting mechanisms that may conflict with each
other during clustering. KMS, WKMS, and Numerical ver-
sion of WOCIL (NWO) adopting Euclidean distance metric
are chosen as Type-2 counterparts (i.e., approaches treat or-
dinal data as numerical one after coding).

10 Datasets: Statistics of the experimental datasets are
shown in Table 1. CS, HR, CE, and NS datasets are col-
lected from the UCI machine learning repository (Dua and
Karra Taniskidou 2017). ES, LE, and SW datasets are col-
lected from the Weka website (Witten et al. 2016). PE and
AE datasets are collected from questionnaires of Shenzhen
University. IS dataset is collected from questionnaires of the
Education University of Hong Kong. Since we focus on or-
dinal data clustering, non-ordinal attributes in AE, CS, HR,
CE, and NS datasets are omitted. Before performing cluster-
ing using the Type-2 counterparts, datasets are pre-processed
by: 1) Coding ordinal categories as consecutive integers ac-
cording to their ranking, and 2) Normalize the coded data
using Z-score normalization.

Three Validity Indices: Clustering Accuracy (CA) (He,
Cai, and Niyogi 2006), Adjusted Rand Index (ARI) (Rand
1971; Gates and Ahn 2017), and Normalized Mutual Infor-
mation (NMI) (Strehl and Ghosh 2002), are chosen for eval-
uating the clustering performance. Values of CA, ARI, and
NMI are in the intervals [0,1], [-1,1], and [0,1], respectively.
Larger values of them indicate better performance.

Table 1: Statistics of the 10 Real Datasets.
Datasets # Ins. # Att. # Class
Photo Evaluation (PE) 66 4 3
Assistant Evaluation (AE) 72 4 3
Caesarian Section (CS) 80 5 2
Internship Survey (IS) 90 3 2
Hayes-Roth (HR) 160 4 3
Employee Selection (ES) 488 4 9
Lecturer Evaluation (LE) 1,000 4 5
Social Works (SW) 1,000 10 4
Car Evaluation (CE) 1,728 6 4
Nursery School (NS) 12,960 8 4

Parameter Settings: The number of clusters k is set
according to the labels of the datasets. For the WKMD-
and WKMS-based approaches, the parameter β for updat-
ing the attribute weights is set at 2 (Chan et al. 2004;
Huang et al. 2005). For JDM, the threshold for selecting
attributes is calculated according to the suggested formula
(Jia, Cheung, and Liu 2016).

Comparative Results1: We compare DLC with the Type-
1 counterparts in Table 2 and Type-2 counterparts in Table 3.
All the results are averaged by 10 runs of the experiments.
The best and second-best results are indicated by boldface
and underline, respectively. Significance test is conducted
between the best and the second-best results by Wilcoxon
signed rank test with 95% confidence interval, and signif-
icant difference is indicated by symbol “•”. Performance
of CBDM-based approaches is not reported on CE and NS
datasets. It is because that the attributes of these two datasets
are independent of each other and CBDM fails to measure
distances for such datasets. Observations: (1) DLC per-
forms the best or the second best on almost all the datasets,
which illustrates the effectiveness of DLC for ordinal data
clustering; (2) In comparison with the Type-1 counterparts,
DLC achieves significantly better CA, ARI, and NMI per-
formance on 5, 8, and 9 datasets, respectively. (3) In com-
parison with the Type-2 counterparts, DLC achieves signifi-
cantly better CA, ARI, and NMI performance on 6, 6, and 5
datasets, respectively.

Effectiveness of the Core Components of DLC: We
evaluate the effectiveness of the two core components of
DLC, i.e., the defined Object-Cluster Distance (OCD) for
solving P1, and the proposed Weights Updating (WU)
scheme for solving P2. Effectiveness of OCD is evaluated
by comparing DLC+OCD (i.e., the version of DLC that only
performs Step 1-2 in Algorithm 1) with KMDH and KMS
that adopt conventional object-mode and object-center dis-
tances, respectively. Effectiveness of WU is evaluated by
comparing the complete version of DLC with DLC+OCD.
Comparison results are shown in Figure 3-5. For simplic-
ity, complete version of DLC and DLC+OCD are denoted as
DLC and OCD, respectively. Observations: (1) By compar-
ing OCD with KMDH and KMS, it can be found that OCD
performs the best on most datasets, which illustrates the ef-

1More comparative results are available at https://drive.google.
com/file/d/1tzYJ3a03hO4QDAQX9IvwyeiQMuetHhzl/view

6873



Table 2: CA, ARI, and NMI Performance of DLC and Type-1 Counterparts.
Index Data KMDH KMDC KMDJ KMDE WKMDH WKMDC WKMDE CWO DLC

CA

PE 0.514±0.07 0.552±0.08 0.486±0.07 0.626±0.06 0.500±0.09 0.561±0.06 0.567±0.10 0.582±0.09 0.620±0.07
AE 0.537±0.08 0.557±0.07 0.526±0.04 0.626±0.09 0.553±0.08 0.551±0.09 0.631±0.10 0.565±0.08 0.676±0.06 •
CS 0.620±0.05 0.615±0.02 0.630±0.00 0.613±0.05 0.594±0.04 0.613±0.03 0.565±0.02 0.612±0.04 0.630±0.04
IS 0.562±0.06 0.534±0.03 0.558±0.02 0.606±0.06 0.547±0.04 0.514±0.01 0.600±0.07 0.542±0.04 0.678±0.07 •
HR 0.414±0.05 0.435±0.03 0.427±0.02 0.455±0.02 0.464±0.04 0.504±0.07 0.529±0.01 0.512±0.04 0.502±0.05
ES 0.361±0.03 0.406±0.03 0.359±0.04 0.401±0.03 0.394±0.03 0.408±0.03 0.401±0.03 0.420±0.04 0.455±0.03 •
LE 0.345±0.03 0.320±0.03 0.323±0.04 0.361±0.03 0.331±0.04 0.332±0.03 0.367±0.04 0.341±0.04 0.362±0.02
SW 0.370±0.03 0.371±0.02 0.359±0.03 0.379±0.03 0.376±0.02 0.378±0.02 0.385±0.02 0.384±0.03 0.418±0.01 •
CE 0.350±0.04 - 0.388±0.04 0.349±0.04 0.363±0.06 - 0.418±0.05 0.334±0.02 0.400±0.06
NS 0.370±0.05 - 0.373±0.05 0.378±0.05 0.390±0.09 - 0.397±0.08 0.293±0.03 0.444±0.08 •

Index Data KMDH KMDC KMDJ KMDE WKMDH WKMDC WKMDE CWO DLC

ARI

PE 0.096±0.07 0.141±0.08 0.071±0.06 0.240±0.08 0.090±0.08 0.136±0.06 0.148±0.13 0.152±0.10 0.253±0.04
AE 0.113±0.09 0.127±0.06 0.124±0.03 0.236±0.09 0.129±0.07 0.115±0.08 0.247±0.11 0.131±0.08 0.294±0.07 •
CS 0.054±0.04 0.061±0.02 0.068±0.00 0.047±0.04 0.024±0.04 0.040±0.04 -0.002±0.00 0.044±0.03 0.061±0.03
IS 0.004±0.05 -0.004±0.01 0.004±0.01 0.042±0.05 0.001±0.03 -0.014±0.00 0.042±0.06 -0.014±0.02 0.125±0.09 •
HR 0.017±0.03 0.044±0.02 0.035±0.02 0.051±0.02 0.039±0.02 0.068±0.03 0.086±0.00 0.069±0.02 0.106±0.03 •
ES 0.144±0.04 0.216±0.02 0.169±0.02 0.226±0.03 0.189±0.03 0.216±0.02 0.216±0.03 0.176±0.04 0.261±0.03 •
LE 0.042±0.01 0.036±0.02 0.035±0.02 0.060±0.03 0.036±0.02 0.034±0.02 0.067±0.03 0.047±0.03 0.083±0.01 •
SW 0.039±0.02 0.054±0.02 0.038±0.02 0.050±0.02 0.048±0.01 0.057±0.02 0.061±0.01 0.047±0.02 0.098±0.01 •
CE -0.005±0.01 - 0.040±0.03 0.028±0.03 0.008±0.01 - 0.023±0.02 0.014±0.00 0.071±0.05 •
NS 0.050±0.03 - 0.069±0.04 0.066±0.04 0.084±0.10 - 0.098±0.09 0.003±0.00 0.147±0.07 •

Index Data KMDH KMDC KMDJ KMDE WKMDH WKMDC WKMDE CWO DLC

NMI

PE 0.126±0.06 0.170±0.07 0.099±0.06 0.279±0.08 0.136±0.10 0.170±0.08 0.195±0.13 0.218±0.12 0.334±0.03 •
AE 0.156±0.07 0.150±0.08 0.142±0.04 0.260±0.09 0.153±0.08 0.141±0.10 0.269±0.09 0.181±0.10 0.327±0.04 •
CS 0.076±0.04 0.064±0.03 0.086±0.02 0.074±0.03 0.031±0.04 0.035±0.03 0.009±0.01 0.053±0.04 0.085±0.03
IS 0.015±0.02 0.008±0.01 0.014±0.01 0.039±0.04 0.013±0.01 0.004±0.00 0.041±0.06 0.020±0.01 0.097±0.06 •
HR 0.041±0.04 0.056±0.03 0.054±0.02 0.066±0.03 0.055±0.04 0.071±0.02 0.085±0.00 0.072±0.02 0.135±0.05 •
ES 0.276±0.04 0.350±0.02 0.288±0.02 0.381±0.01 0.317±0.03 0.360±0.01 0.370±0.03 0.299±0.04 0.417±0.02 •
LE 0.064±0.02 0.068±0.02 0.063±0.03 0.081±0.04 0.061±0.03 0.065±0.03 0.094±0.04 0.070±0.04 0.135±0.02 •
SW 0.061±0.02 0.077±0.02 0.056±0.03 0.077±0.02 0.067±0.02 0.081±0.02 0.095±0.01 0.074±0.02 0.129±0.01 •
CE 0.042±0.02 - 0.076±0.04 0.069±0.03 0.020±0.02 - 0.045±0.03 0.049±0.02 0.149±0.04 •
NS 0.053±0.03 - 0.073±0.04 0.074±0.04 0.096±0.17 - 0.116±0.08 0.007±0.00 0.182±0.09 •

Table 3: CA, ARI, and NMI Performance of DLC and Type-
2 Counterparts.

Index Data KMS WKMS NWO DLC

CA

PE 0.583±0.06 0.580±0.06 0.602±0.07 0.620±0.07 •
AE 0.606±0.03 0.601±0.03 0.608±0.04 0.676±0.06 •
CS 0.591±0.05 0.610±0.05 0.600±0.05 0.630±0.04 •
IS 0.643±0.07 0.639±0.09 0.639±0.09 0.678±0.07 •
HR 0.497±0.05 0.496±0.05 0.501±0.05 0.502±0.05
ES 0.431±0.03 0.428±0.04 0.438±0.03 0.455±0.03
LE 0.352±0.01 0.347±0.01 0.355±0.01 0.362±0.02
SW 0.419±0.03 0.402±0.03 0.403±0.03 0.418±0.01
CE 0.332±0.02 0.342±0.02 0.363±0.03 0.400±0.06 •
NS 0.389±0.06 0.381±0.07 0.380±0.06 0.444±0.08 •

Index Data KMS WKMS NWO DLC

ARI

PE 0.231±0.03 0.216±0.06 0.253±0.07 0.253±0.04
AE 0.255±0.05 0.255±0.05 0.264±0.07 0.294±0.07 •
CS 0.028±0.04 0.045±0.04 0.037±0.04 0.061±0.03 •
IS 0.083±0.08 0.090±0.09 0.090±0.09 0.125±0.09 •
HR 0.087±0.03 0.087±0.03 0.090±0.03 0.106±0.03 •
ES 0.259±0.02 0.249±0.03 0.261±0.03 0.261±0.03
LE 0.085±0.01 0.075±0.02 0.074±0.01 0.083±0.01
SW 0.096±0.01 0.072±0.03 0.073±0.02 0.098±0.01
CE 0.027±0.02 0.031±0.03 0.038±0.05 0.071±0.05 •
NS 0.096±0.08 0.095±0.08 0.086±0.08 0.147±0.07 •

Index Data KMS WKMS NWO DLC

NMI

PE 0.322±0.04 0.302±0.05 0.339±0.06 0.334±0.03
AE 0.323±0.04 0.325±0.05 0.327±0.05 0.327±0.04
CS 0.049±0.03 0.071±0.04 0.061±0.04 0.085±0.03 •
IS 0.076±0.08 0.075±0.08 0.075±0.08 0.097±0.06 •
HR 0.102±0.03 0.102±0.03 0.105±0.02 0.135±0.05 •
ES 0.432±0.01 0.425±0.02 0.431±0.02 0.417±0.02
LE 0.141±0.01 0.125±0.02 0.128±0.01 0.135±0.02
SW 0.122±0.01 0.097±0.04 0.099±0.02 0.129±0.01
CE 0.083±0.04 0.086±0.05 0.109±0.07 0.149±0.04 •
NS 0.121±0.10 0.122±0.10 0.113±0.10 0.182±0.09 •

fectiveness of OCD. (2) By comparing DLC with OCD, it

Figure 3: Average CA of KMDH, KMS, OCD, and DLC.

can be found that DLC obviously outperforms OCD on most
datasets, which illustrates the effectiveness of WU. (3) The
performance of OCD and DLC is almost the same on HR
dataset. By checking the final W obtained by DLC, we find
that the obtained W is very close to the initialized one. This
may be because that the ‘true’ W of HR dataset is very simi-
lar to the initialized one. Therefore, WU cannot learn a better
W in this case. (4) In general, this experiment adequately
illustrates the effectiveness of the two core components of
DLC.

Convergence Study: To evaluate the convergence of
DLC, we run it on all the 10 datasets and record the conver-
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Figure 4: Average ARI of KMDH, KMS, OCD, and DLC.

Figure 5: Average NMI of KMDH, KMS, OCD, and DLC.

gence curves in Fig. 6. The horizontal axis and vertical axis
represent the total number of iterations and the value of the
objective function, respectively. Triangles indicate the start
and end iterations of the learning. Circles indicate the itera-
tions that W has been updated. Observations: (1) After the
updating of W, Z (i.e., the value of the objective function)
is obviously reduced, which indicates the effectiveness of
DLC. (2) DLC spends less than 20 iterations to converge on
all the datasets except on ES. This is because each attribute
of ES has around 10 categories, which leads to the updating
of more weights. Even though, DLC still converges using
not too many iterations (31 in total).

Efficiency Evaluation: We evaluate the efficiency of
DLC by comparing its execution time with that of KMDH,
WKMDH, CWO, KMS, WKMS, and NWO on different-
sized NS datasets (generated by randomly selecting 10%,
20%, ..., 100% instances from the NS dataset) in Figure 7.
Since the computation cost of CBDM, JDM, and EBDM is
similar to or higher than the others, execution time of the
approaches based on them are not reported, which does not
influence the efficiency validation. In general, DLC spends
a little more time than the simplest KMDH and KMS, and
has almost the same execution time as WKMS and NWO.

I E I E

I E I E

I E I E

I E I E

I E I E

Figure 6: Convergence Curves of DLC.
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Figure 7: Execution Time on NS Dataset.

Moreover, the increasing rate of DLC’s execution time is al-
most linear over data size, which is consistent with our time
complexity analysis. In conclusion, DLC is efficient in com-
parison with the state-of-the-art approaches, and it will not
bring much additional computation cost than the simplest
ones.

Conclusion

In this paper, we have proposed an object-cluster distance
measure, which finely quantifies the distance between ob-
ject and cluster by exploiting the order relationship, for or-
dinal data. Based on this measure, we have then developed a
novel DLC algorithm for ordinal data clustering by integrat-
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ing the data partitioning with inter-category distance learn-
ing. Compared with the existing counterparts, DLC learns
more reasonable distances by dynamically adjusting the dis-
tances according to the partitions of the dataset. DLC fea-
tures superior clustering accuracy, low time complexity, fast
convergence, and is parameter-free. Extensive experiments
on different real and benchmark datasets demonstrate the ef-
ficacy of DLC.
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