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Abstract. Sphere has been used for camera calibration in recent years.
In this paper, a new linear calibration method is proposed by using the
common self-polar triangle of sphere images. It is shown that any two of
sphere images have a common self-polar triangle. Accordingly, a simple
method for locating the vertices of such triangles is presented. An algo-
rithm for recovering the vanishing line of the support plane using these
vertices is developed. This allows to find out the imaged circular points,
which are used to calibrate the camera. The proposed method starts
from an existing theory in projective geometry and recovers five intrin-
sic parameters without calculating the projected circle center, which is
more intuitive and simpler than the previous linear ones. Experiments
with simulated data, as well as real images, show that our technique is
robust and accurate.

1 Introduction

Camera calibration is a fundamental task in many computer vision applications,
such as motion estimation and 3D reconstruction. The main task of camera
calibration is to recover the intrinsic and extrinsic parameters. Many calibration
methods have been proposed in the past years. They can be classified into two
categories: calibration with objects [1–3], and self-calibration [4–6].

In the first category, classical calibration techniques require the use of some
highly accurate tailor-made calibration patterns, which are time-consuming and
costly. To overcome this drawback, sphere has been introduced into camera cal-
ibration in recent years because sphere can be easily found in daily life and its
silhouettes can be extracted reliably from image [7]. Besides, it is suitable to
calibrate a camera network. As long as the sphere is placed in the common field
of view of the cameras, its occluding contours are visible from any position [8].

Sphere, as a calibration target, was first used in [9] to recover the aspect ratio
of the two images axes. Later, some nonlinear methods for estimating more cam-
era intrinsic parameters had been presented. In [10], under the assumption of a
zero-skew camera, a multi-step nonlinear approach to estimating four intrinsic
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parameters was presented. In [11], the relation of the image of absolute conic to
the image of sphere was well investigated and camera intrinsic parameters were
recovered by minimizing the reprojection errors nonlinearly. In [8], a semi-definite
programming approach was introduced based on the dual representation of the
sphere image. However, there are some problems in nonlinear methods. In [10],
error is accumulated seriously in the separated steps. In [11], an appropriate ini-
tialization should be given before stating the minimization process. In [8], when
noise is large, there could be no solution sometimes. To avoid these deficien-
cies, from Year 2005, some linear approaches had been introduced. Zhang et al.
[12,13], treated two spheres as a surface of revolution [14] and recovered inter-
nal parameters by using pole-polar constraints on the image of absolute conic.
Ying and Zha [15] interpreted the same constraint presented in [8,11] geomet-
rically, and presented two linear approaches to calibrating the camera by using
double contact points and double-contact theorem. Zhao and Liu [16] developed
a method by treating a sphere as a revolving stick. Recently, Wong [17] has
introduced a stratified approach to recovering extrinsic parameters and intrinsic
parameters by finding special point correspondences. Note that the first calibra-
tion method presented in [15], as well as methods presented in [8,16], require
calculating the projected circle center at the very beginning.

In this paper, we solve the problem of camera calibration using spheres in a
new perspective. We investigate the common self-polar triangle of sphere images
thoroughly and find that vanishing line of the support plane can be determined
by the vertices of such triangles. This allows to find out the imaged circular
points, which are used to calibrate the camera. From this perspective, calculating
the projected circle center at the very beginning is not necessary and conic
homography theory can be interpreted as using the self-dual triangle of sphere
images. Note that the proposed method is totally different from the calibration
method in [13]. In [13], they investigated the plane formed by the camera center
and two sphere centers. They tried to recover the vanishing line of the plane and
vanishing point of the plane’s normal, while our method is trying to recover the
vanishing line of the support plane.

The remainder of this paper is organized as follows. Section 2 briefly intro-
duces some notations and basic equations. Section 3 discusses the common self-
polar triangle of two conics. Section 4 presents our novel calibration method.
Section 5 shows the experimental results of the proposed method on synthetic
and real data sets. Finally, a conclusion is drawn in Sect. 6.

2 Notations and Basic Equations

2.1 The Camera Model

The pinhole camera model is adopted in this paper. In the homogenous coor-
dinate system, let M=[X Y Z 1]T be a world point and m=[x y 1]T be its
image. The imaging process can be represented as

um = K[R|t]M (1)
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where u is a nonzero scale factor, R|t denotes a rigid transformation, and K is
the intrinsic parameter matrix with the following format:

K =

⎡
⎣

αf s u0

0 f v0
0 0 1

⎤
⎦ (2)

In the matrix K, f is the focal length, α is the aspect ratio, (u0, v0) is the
principal point, and s is the skew.

2.2 The Absolute Conic

The absolute conic was first introduced by Faugeras et al. [4] for camera self-
calibration. Let P=[X Y Z 0]T be an infinite world point, the absolute conic is
formed by the points satisfying PTP = 0 in a plane at infinity. The image of the
absolute conic ω (IAC) is the conic K−TK−1 and its dual ω∗ (DIAC) is KKT

[18]. Once IAC or DIAC is determined, K can be easily obtained by Cholesky
decomposition [19].

2.3 The Sphere Image

The image of a sphere is a conic because the occluding contour of a sphere is
always a circle (see Fig. 1). In [8,13], the algebraic relation between a sphere
image and the DIAC is given by

βiC∗
i = ω∗ − oioT

i (3)

where i is used to indicate the sphere index, β is a nonzero scale factor, C∗ is
the dual of the sphere image, and o is the image of the sphere center (projected
circle center). In this paper, when we consider the non-degenerate case, C∗ is
equal to C−1.

3 The Common Self-polar Triangle of Sphere Images

In this section, we show that any two disjoint sphere images have a unique
common self-polar triangle and present one method to find the vertices of the
common self-polar triangle.

3.1 The Pole-polar Relationship

A line l formed by all harmonic conjugates of point x with respect to a conic C
is called the polar of x, and point x is called the pole of l. The algebraic relation
between pole x and polar l with respect to a conic C is given by

x = C−1l (4)

where C−1 is the dual representation of C [18].
If the poles of a conic form the vertices of a triangle and their respective polars

form its opposite sides, it is called a self-polar triangle(see Fig. 2). If a self-polar
triangle is common to two conics, it is called common self-polar triangle (see
Fig. 3) [20].
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Fig. 1. Projection of a sphere

Fig. 2. �ABC is a self-polar triangle with respect to conic C1 when polars of A, B
and C are lines BC, AC and AB, respectively.

3.2 The Common Self-polar Triangle of Sphere Images

The relation of two conics to each other has been well studied in [20–22], espe-
cially with reference to common self-polar triangle of two conics. By considering
two sphere images, we obtain the following proposition.

Proposition 1. Two disjoint sphere images have a unique common self-polar
triangle.

Proof. In [20], there is one important theorem: If two conics intersect in four
distinct points, they have one and only one common self-polar triangle. If they
are tangent in two points, they have an infinite number of common self-polar
triangles, one vertex of which is at the intersection of the common tangents. In
all other cases, two distinct conics have no common self-polar triangle.

Considering two disjoint conics obtained by the image of two spheres, all
four intersection points are imaginary and they fall into two conjugate imag-
inary pairs. Obviously, four intersection points are distinct. According to the
theorem mentioned above, we obtain that two disjoint sphere images have a
unique common self-polar triangle. ��
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Fig. 3. �ABC is the common self-polar triangle of two disjoint conics C1 and C2

when �ABC is a self-polar triangle with respect to both C1 and C2.

3.3 The Vertices of Common Self-polar Triangle

Let the two sphere images be C1 and C2, and if there exists a common pole x
and polar l, the following relationship should be satisfied:

l = C1x

l = λC2x (5)

where λ is a scalar parameter. Subtracting the equations in (5), we get (C1 −
λC2)x = 0. By multiplying the inverse of C2 on both sides, we obtain the
following equation:

(C2
−1C1 − λI)x = 0 (6)

From the equation of (6), we find the common poles for C1 and C2 are the
eigenvectors of C2

−1C1.

4 Calibration Theory and Method

Based on the above proposition, this section introduces a linear approach to
solving the problem of calibration.

4.1 Vanishing Line Recovery

By using the vertices of common self-polar triangle of sphere images, vanishing
line of the support plane for the occluding contour can be easily recovered.

Proposition 2. Let C1, C2 and C3 be the images of three spheres S1, S2 and
S3, �ABC be the common self-polar triangle of C1, C3, and �DEF be the
common self-polar triangle of C1, C2, the vanishing line of the support plane for
the occluding contour of S1 is the line AD.

Proof. In Fig. 4, �ABC is the common self-polar triangle of C1, C3, �DEF
is the common self-polar triangle of C1, C2. Let O1,O2 be the imaged sphere
centers of S1, S2. Multiplying the line l = O1 × O2 joining the images of the 2
sphere centers to both sides of (3) gives
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Fig. 4. Vanishing line recovered from vertices of common self-polar triangle of sphere
images.

β1C−1
1 l = ω−1l

β2C−1
2 l = ω−1l (7)

Let β1C−1
1 l = β2C−1

2 l = x, we have that x and l are the common pole and
polar of C1, C2. Based on this, in Fig. 4, it is easy to find that line EF goes
through O1,O2. Similarly, line BC goes through O1,O3. Since A is the pole
of BC and D is the pole of EF, we have that A and point D are all harmonic
conjugates of O1 with respect to C1. According to polar definition described in
Subsect. 3.1, point A and point D should be on the polar of O1. Since point O1

is a projected circle center, its polar should be the vanishing line of the support
plane [20]. From those two facts, we obtain that line AD is the vanishing line.
Using the same way, vanishing lines of the support planes for the occluding
contours of S2 and S3 can be recovered. ��
Here, the procedure for recovering the vanishing line of the support plane is
briefly summarized below:

1. Obtain sphere images C1, C2 and C3.
2. Calculate vertices of the common self-polar triangle for any two sphere images

using (6).
3. Find vertices outside of the sphere images and connect any two of them.

4.2 Calibration Method

As we all know, any circle intersects line at infinity of the support plane in
the circular points and circular points lie on the absolute conic. Accordingly,
in the image plane, the imaged circular points lie on IAC [18]. If the image of
the circle and image of line at infinity are both obtained, we can calculate the
images of the two circular points. One pair of imaged circular points provides two
independent constraints on IAC. Hence three pairs are needed to fully calibrate.
Given three sphere images, we can easily find the self-polar triangle for any two
of them. Based on the propositions above, three vanishing lines can be detected



Camera Calibration Based on the Common Self-polar Triangle 25

Table 1. Experimental results with 1 pixel noise (50 trials)

Approach αf f s u0 v0

Ground-truth 660 600 0.1 320 240

Semi-definite (nonlinear) 655.3167 595.7662 1.9698 319.6274 238.4794

Orthogonal (linear) 655.2565 595.7586 2.0010 319.8414 238.3899

Our approach (linear) 655.2565 595.7192 2.7449 319.8750 238.6999

and the image of the circular points can be calculated. Consequently, a camera
can be calibrated.

The complete calbration algorithm by using the common self-polar triangles
of sphere images consists of the following steps:

1. Obtain sphere images C1, C2 and C3.
2. Recover three vanishing lines by using common self-polar triangles.
3. Find the imaged circular points, and then determine ω and obtain K using

the Cholesky factorization.

5 Experiments and Results

5.1 Synthetic Data

In the computer simulations, the synthetic camera has focal length f = 600,
aspect ratio α=1.1, skew s=0.1, and principal point (u0, v0)=(320, 240). The
image resolution is: 800×600. An image containing three sphere images is gener-
ated. They are uniformly distributed within the image. We choose 500 points on
each sphere image, and gaussian noise with zero-mean and σ standard deviation
is added to these image points. Ellipses are fitted to these images using a least
squares ellipse fitting algorithm. In our experiment, we compare our proposed
approach with a nonlinear semi-definite approach presented in [8] and a linear
orthogonal approach presented in [13]. To evaluate accuracy and robustness of
these methods, we vary the noise level σ from 0 to 6 pixels, and perform 15 inde-
pendent trials, 30 independent trials as well as 50 independent trials for each
noise level. The mean values of these recovered parameters are computed over
each run. The average percentage errors of f are shown in Fig. 5. The errors
of other parameters, which are not shown here, exhibit similar trend. It can be
seen that the errors increase linearly with the the noise level and our method
performed as well as others.

Note that the results between our approach and orthogonal approach are
very similar. When we calculate the average percentage errors, they are almost
the same. That explains why the curves of these two approaches in Fig. 5 are
overlapped. In order to show the little difference clearly, estimated parameters
under different noise level with 50 trials are shown in Tables 1, 2 and 3.
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Fig. 5. (a) The estimated results with 15 trials. (b) The estimated results with 30
trials. (c) The estimated results with 50 trials. Due to the results of our approach
(Circular-point) and orthogonal approach have little difference, the curves of these two
approaches almost overlap.
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Table 2. Experimental results with 2 pixels noise (50 trials)

Approach αf f s u0 v0

Ground-truth 660 600 0.1 320 240

Semi-definite (nonlinear) 649.4490 590.3716 3.5963 320.5770 239.1416

Orthogonal (linear) 649.5920 590.5997 3.7439 320.3166 238.6542

Our approach (linear) 649.5920 590.3723 3.9832 320.6633 233.1286

Table 3. Experimental results with 3 pixels noise (50 trials)

Approach αf f s u0 v0

Ground-truth 660 600 0.1 320 240

Semi-definite (nonlinear) 643.8556 585.5044 5.0356 323.2800 236.9793

Orthogonal (linear) 643.8120 585.4920 4.9911 322.3709 237.8458

Our approach (linear) 643.8120 582.6786 3.4279 324.3849 241.1814

Table 4. Real experiment results

Approach αf f s u0 v0

Zhang (ground truth) 1070 1070 0 359 239

Semi-definite (nonlinear) 1107 1108 1.07 352 230

Orthogonal (linear) 1130 1131 1.19 353 232

Our method (linear) 1121 1122 1.05 352 231

5.2 Real Scene

In the real scene experiment, we used 3 plastic balls as calibration objects. Real
images were taken with a Canon EOS5D CCD camera. The image resolution is
720 × 480. The images of spheres were extracted using Canny’s edge detector
[23], and ellipses are fitted to these images using a least squares ellipse fitting
algorithm. The camera is calibrated with the proposed approach, and results
are compared with semi-definite approach as well as orthogonal approach. The
estimated parameters are listed in Table 4, where the result from the classical
method of Zhang [2] is taken as the ground truth. Figure 6b shows the calibration
pattern used as ground truth.

5.3 Critical Configuration

Note that in some situations, the calibration process fails. First, when spheres
placed near the image centers, the vanishing line of the support plane will be
far away from the image center, which will be recovered badly. Second, when
any two of the support planes are parallel, less constraints can be obtained and
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(a) (b)

Fig. 6. (a) Image of three balls. (b) Image of calibration pattern.

the camera can not be calibrated. However, those situations can be avoided by
carefully placing spheres.

6 Conclusion

We have proposed a very simple calibration algorithms based on the common self-
polar triangles of sphere images, by using a single image of at least three spheres.
We have shown how to locate the vertices of the common self-polar triangle
and how to recover the vanishing line of the support plane. All computations
involved are linear and simple. The experimental results have demonstrated that
the proposed method is accurate and robust. Nevertheless, this paper has yet to
consider the distortion problem, which will leave for our future studies.
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