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Abstract 

 
We propose a market mechanism that can be 

implemented on clustering aggregation problem 
among selfish systems, which tend to lie about their 
correct clustering during aggregation process. Our 
study is the preliminary step toward the development 
of robust distributed data mining among selfish 
systems. 
 
1. Introduction 
 

In almost all the clustering aggregation algorithms, 
in order to make the clustering aggregation work, the 
locally obtained cluster labels are correctly reported [1, 
3, 5, 6, 11, 12, 13, 14]. However, in certain scenarios 
in distributed data mining, several systems performing 
data clustering locally may not be willing to report 
correct labels.  

In general, we are interested in the situation where 
systems are unwilling to share complete data but 
limited information. An example of this setting is 
sharing cluster labels of bank customers. Suppose all 
banks have common customers who have different 
relationships with each bank, which has the 
classification of them. However, they will not share the 
classification due to privacy issue or in protecting their 
interest. Instead, cluster labels are shared.  

The interpretation of clustering aggregation results 
is solely on the discretion of each bank. How to 
implement a mechanism so that each bank will report 
true cluster labels and thus to convince more banks to 
engage in aggregation activity is the goal of our recent 
work. To solve it, we adopt technique which has been 
developed in economics for decades and in multi-agent 
systems recently: mechanism design.  

Our analysis can be applied to selfish systems, such 
as e-commerce systems. Our study can also be 
extended to the aggregation of multiple classifier 
systems. The rest of the paper is organized as follows. 
In the next section, we will present related work. Then 
in Section 3 is our clustering aggregation framework, 

followed by mechanism design issue in Section 4. 
Finally, Section 5 provides future work.  

 
2. Related work 
 
2.1. Mechanism design 

 
Mechanism design is a branch of game theory 

aiming at designing a game so that it can attain the 
(designer’s) social objective after being played for a 
certain period or when it reaches an equilibrium state, 
assuming all players are rational. The design includes 
the assignment of an appropriate set of admissible 
strategies and payoff functions to all players.  

Despite extensive studies by economists and game 
theorists, mechanism design has been studied in 
artificial intelligence community as well, especially in 
the context of designing multi-agent systems that can 
achieve a fair allocation, maximize the total utility 
(social welfare), and be immune from deceitful 
strategies [2, 9]. In computer science, mechanism 
design has been studied in the context of mobile ad hoc 
network [7], e-commerce [15], grid computing [4], etc. 
In this paper, we apply an ad hoc mechanism for our 
distributed clustering aggregation problem. 
 
2.2. Clustering aggregation 

 
Previous work on clustering aggregation aims for 

various goals, such as achieving robust results, 
reducing cost, protecting privacy, etc. [6, 12]. In earlier 
work, various clustering methods are applied to a 
dataset where their clustering results are then 
integrated to get believably more robust results [13]. In 
distributed database, unifying heterogeneous datasets 
may not be feasible due to the large size of data. 
Hence, a possible solution is to perform clustering 
locally by each node to obtain class labels that can then 
be integrated to get an aggregate clustering [8, 12].  

In most literature researchers considered various 
formulations for the problems, with a major goal to 
ensure the quality of the final clustering result. These 
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studies made use of different clustering mechanisms 
including distance measurements to form the aggregate 
cluster labels. For instance, Fred and Jain [5] use a 
single linkage approach to unify the multiple runs from 
the k-means algorithm performed locally; Fern and 
Brodley [3] use a complete linkage approach in the 
aggregation; Gionis et al. [6] and Johnson and 
Kargupta [8] also apply agglomerative algorithm in the 
aggregation; Topchy et al. [14] treat the clustering 
aggregation into a maximum likelihood estimation 
problem, and adopt an EM algorithm to locate the final 
clustering. Other methods such as dynamic 
programming [11], hypergraph method [12], and 
voting mechanism [13] are also used to improve the 
accuracy of clustering aggregation or to achieve 
scalability by reducing computational complexity. 

In these prior works, the reported cluster labels are 
assumed to be correct and not strategically aligned. 
Our work complements them with respect to the 
distributed clustering of privacy data where systems 
may misreport their cluster labels.  
 
3. Clustering aggregation framework 
 
3.1. Model description 

 
Consider M systems {s1, s2, …, sM}, where each of 

them holds a set of private attributes of the common N 
records D = {d1, d2, …, dN}. We assume crisp 
partition-based clustering. For a system sm holding a 
set of attributes of Dm, a partition-based clustering Cm 
over D divides Dm into K disjoint sets, e.g. Clusterm1, 
Clusterm2, …, ClustermK. Suppose K is the same for all 
systems and M ≥ K. Since the cluster label could be 
arbitrary, we denote cmn to represent the cluster label 
given by system sm to dn, and for the sake of clarity, let 
the cluster label be integer; i.e., cmn ∈ K, where K ≡ 
{1, 2, …, K}. Suppose the notation ~cmn refers to any 
cluster label other than that assigned to dn. The cluster 
label reported by the system is denoted cmn’, where Cm’ 
≡ {cm1’, …, cmN’} be the set of all reported labels by sm. 
Since a system is competing with others, it may lie by 
reporting cmn’ = ~ cmn. Also, let ln(k) be the number of 
systems assigning dn to the cluster k, and ln(cmn’) be the 
total number of systems reporting dn as the same 
cluster as cmn’ including the system m, where Σk∈K ln(k) 
= M for any k∈K.  

Suppose system sm assigns confidence of clustering 
values to dn, denoted by a vector Bmn∈[0,1]K,  with 
norm |Bmn| ≤ 1, which its elements, denoted by bmn1, 
…, bmnK, represent the confidence that dn belongs to 
Clusterm1 to ClustermK. In a crisp partitioning, the index 
of the greatest element in Bmn represents the cluster 

label cmn. Suppose each system uses its own criteria to 
generate this private value. Given this, sm may evaluate 
a cluster cmn = k in terms of utility, denote umn(bmnk, 
γmnk), where bmnk is the k-th element of Bmn and γmnk ∈ 
R≥0 represents factors other than confidence 
considered in the valuation of a clustering on record dn, 
e.g. expected profit from a proper action after 
clustering. An intuitive yet simple utility function is: 

umn(bmnk, γmnk) = bmnk γmnk     (1) 
Here, an accurate clustering means bmnk → 1, which 

causes umn → γmnk. Likewise, umn → 0 when bmnk → 0. 
Certainly, this utility function is not canonical to 
represent system preference. Rather, we use it in our 
analysis because of its simplicity.  

 
3.2. Problems 
 

In prior work, the goal of clustering aggregation 
problem is to find a final clustering C such that to 
minimize the total number of disagreements between 
labels in C and those in C1’, …, CM’, or to maximize 
common information between them [12, 13]. Here, we 
argue that minimizing disagreement among clusterings 
should not be the primary goal in our setting. 

First, only if all systems believe that a minimal-
disagreement clustering Cmin approximates the 
“ground-truth” clustering C*, then it can be the 
ultimate goal of clustering aggregation problem. This 
is true only if the following conditions are satisfied: (i) 
C* exists; (ii) the probability of error in reported 
clustering is less than 0.5; and (iii) we have enough 
participating systems [13]. If the number of 
participating systems is small or some systems cheat, 
then Cmin ≠ C*. Hence, preventing cheat and increasing 
participation are very important. 

Second, a system shall be granted autonomy in the 
processing its own data and standing aside from the 
final consensus. In fact, after receiving cluster labels 
from other systems, a system sm holds a set of private 
attributes of Dm plus C1’, C2’, …, Cm, …, CM’. Since 
all systems hold different information, they have 
different interpretations. Even when all systems are 
truth-tellers, the correctness of a shared cluster label is 
still affected by the reliability of the systems in 
processing the data. Thus, minimizing disagreement 
should not be adopted as the ultimate goal. Instead, a 
subjective criterion should be adopted in which each 
system is responsible for its own aggregation and 
interpretation.  

Instead of minimizing disagreement, we believe 
that the clustering aggregation problem should 
maximize the social welfare of participating systems, 
viz. maxkΣmΣn umn(bmnk, γmnk). This approach conforms 
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to [10], which argued that the data mining results 
should be valued by the decision makers.  

If we only consider confidence and assume u(x) = 
x, then the problem reduces to maxk ΣmΣnbmnk, namely 
confidence maximization problem. If for all systems 
the confidence value is solely an inverse of 
disagreement, then our problem reduces to the 
minimization of disagreement. Hence, minimizing 
disagreement is a special case of maximizing total 
utility. 

Since the systems are distributed and each has its 
own utility function umn(.), it is hard to maximize total 
utility by a central computation. Indeed, for some 
systems, information behind the reported cluster label 
is more important than the label itself. The problem 
that we want to solve is to find a clustering aggregation 
mechanism to ensure: 
(i) participating systems are more reluctant to lie;  
(ii) it maximizes total utility of participating systems;  
(iii) it promotes the information sharing beyond the 

cluster labels. 
To prevent lying, we design a mechanism with 

transferable utility (e.g. by monetary payment).  
 

4. Mechanism design issues 
 
4.1. Utilities, beliefs and decision structures 

 
Suppose a system’s prior confidence that dn 

belongs to cluster 1 is bmn1
0. Let v ≡ ln(1) be the 

number of systems that say dn belongs to cluster 1, and 
v^ ≡ maxk∈K–{1}(ln(k)) be the largest number of votes 
that it belongs to another cluster, assuming that the 
system is telling the truth. After knowing v and v^, the 
system’s posterior confidence is bmn1

1(bmn1
0, v, v^) 

which is updated independently from its own vote. But 
the posterior expected profit γmn1

1(γmn1
0, v, v^) depends 

on its own vote. The utility function now is 
umn

1 = bmn1
1(bmn1

0, v, v^) γmn1
1(γmn1

0, v, v^)          (2) 

Example 1. Let bmn1
1 = bmn1

0 + (1 – bmn1
0)(v – v^)/M 

and γmn1
1 = γmn1

0(1 – (v – v^)/M), where M is the total 
number of systems. Substituting them into equation (2) 
yields 
umn

1=(bmn1
0+(1–bmn1

0)(v–v^)/M)γmn1
0(1–(v–v^)/M)    (3) 

Figure 1 depicts equation (3) for various bmn1
0∈{0.3, 

0.4, 0.5, 0.6, 0.7, 0.8} and γmn1
0 = 100. The x-axis is 

the marginal voting ratio (v – v^)/M, where the shaded 
area represents negative ratios, i.e. cluster 1 does not 
receive the majority vote. A zero ratio means a tie 
between the candidate and other(s), and +1 or –1 ratio 
means an absolute win or loss. It is shown from the 
figure that an increase of the marginal voting ratio 

causes an increase of the utility when both the 
confidence and the ratio are low (area circled in Figure 
1). However, when the confidence is high (bji

0 = 0.7 or 
0.8), the utility decreases as the marginal ratio 
increases (sharing profit with others).  ■ 

When a system lies, the utility only differs on the 
second term of equation (2), or 

umn
lie = bmn1

1(bmn1, v, v^) γmn1
lie(γmn1

0, v, v^) (4) 
 Taken equation (3) as an example, the following 

utility function shows the effect of lying: 
umn

lie = (bmn1
0+(1–bmn1

0)(v–v^)/M)γmn1
0(1–(v–v^–a)/M) 

(5) 
where a = {1, 2} depending on whether the vote by the 
lying system increases v^ (a = 2) or not (a = 1). 
Nonetheless, umn

lie > umn
1 when γmn1

0 > 0, which means 
all rational systems will lie when the data is profitable. 
However, the gain is insignificant when a/M → 0 or M 
is large, or when γmn1

0 → 0.  
In the rest of our analysis, we assume that the 

system will not lie for not-valuable cluster(s). Without 
loss of generality, suppose our analysis is for the n-th 
record and its cluster label is cmn = 1, which represents 
a valuable cluster. Unless otherwise specified, we 
assume plurality voting in our setting. Lets denote 
cn

majority = 1 when the largest group of participating 
systems (hereafter the majority) agrees that the cluster 
label of record n is 1 after cluster alignment. Let qn1

m
 

be the belief (subjective probability) by sm that cn
majority 

= 1 when it reports the truth (cmn’ = 1), and qn1
– m be the 

same belief when it lies. Depending on the domain, we 
may have various relations between bmn1 and qn1

– m:  
• ∀m, n bmn1 ∝ qn1

– m (consistent belief) 
• ∀m ∃n bmn1 ∝ 1/qn1

m
 (partial inconsistent belief) 

• ∀m,n bmn1 ∝ qn1
– m

 (uncertain belief) 
The first case will be discussed in this paper, while 

the second and third cases are for future work.  
Suppose the minority will be punished to pay the 

majority the amount of y dollars. When a system sm 
lies by reporting cmn’ = K, two possibilities may 

Figure 1. Utility values for various prior 
confidences 
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happen: cn
majority = 1 by probability qn1

–m, or cn
majority ≠ 1 

by probability (1 – qn1
–m). Since the system sm is not a 

majority in the former case, it may be penalized to pay 
y, also by probability qn1

–m; denote the utility in this 
case uC_lie. If the majority does not choose 1, the 
system may receive xl dollars as a reward, i.e. when 
cji

majority = K. Denote the utility in this case uI_lie. Both 
uC_lie and uI_lie can be derived from equation (4) with 
different estimated values of v and v^. Hence, the 
expected utility of sm from lying Ulie is  

Ulie = qn1
–m(uC_lie – y) + qn2

–m(uI_lie – y) +  …  
+ qnK-1

–m(uI_lie – y) + qnK
–m(uI_lie + xl)     (6) 

where qn1
–m + qn2

–m +… + qnK-1
–m + qnK

–m = 1.            (7) 
This equation can be simplified into 

Ulie = qn1
–m(uC_lie – y) + (1 – qn1

–m)(uI_lie + x’)    (8) 
where  

x’ = (–qn2
–my – … – qnK-1

–my + qnK
–mxl) / (1 – qn1

–m)   (9) 
Here, xl and y are transferable utility such as money 
which satisfies a payment property: xl ≥ x’ ≥ –y. In 
budget-balance mechanism, the value of xl is not 
known in advanced, because we do not know the 
number of minority systems.  

Now, when the system sm reports the cluster label 
truthfully (honest), viz. cmn’ = 1, it also faces two 
possibilities: the majority choose cluster 1 or other 
label(s) by probability qn1

m and (1 – qn1
m), respectively. 

Denote the utility in both cases uC_hon and uI_hon, which 
can be derived from equation (2) with different 
estimated values of v and v^. Suppose the system 
receives xh when cn

majority = 1. The expected utility of sm 
from reporting its true label is  

Uhon = qn1
m(uC_hon + xh) +  

qn2
– m(uI_hon – y) +  … + qnK

– m(uI_hon – y)   (10) 
which can be simplified into 

Uhon = qn1
m(uC_hon + xh) + (1 – qn1

m)(uI_hon – y)   (11) 
Note, given equation (8) and (11), a rational system 

may not always lying, even when uC_lie ≥ uC_hon and 
uI_lie ≥ uI_hon.  
 
4.2. Proposed mechanism 

 
The mechanism in Figure 2 provides a basic 

framework for partial truth-telling clustering 
aggregation among multiple selfish systems. A fully 
truth-telling property may be assured when we choose 
an extremely large ymax. However, this may impede the 
participation of systems with less confidence. One may 
suggest a further mechanism to decide this value, 
which is beyond the scope of our current work. 

------------------------------------------------------------------ 
Step 1. All systems bid Y1, …, YN simultaneously, 
where Yn is the set of preferred penalties for record n, 
submitted by all M systems, |Yn| = M. 
Step 2. All systems calculate max(Y1), …, max(YN). 
Any system may decide to withdraw from the 
mechanism after calculating these values. If not, then it 
will proceed to Step 3. 
Step 3. All remaining systems report their clustering 
C1’, C2’,…, CM’ simultaneously. 
Step 4. All systems calculate C locally such that it 
minimizes disagreement with C1’, C2’, …, CM’.  

4.1 Permute label in C1’, C2’, …, CM’ so that they 
are consistently labeled (cluster alignment). 

4.2 For each record dn, use plurality voting to 
determine cn

majority; if it is tie, then leave it 
empty. 

4.3 C = ∪n∈N { cn
majority }. 

Step 5. For each system sm, if cmn’ ≠  cn
majority, where 

cn
majority is a non-empty value, then it pays max(Yn) 

which is evenly distributed to all systems z  m whose 
czn’ =  cn

majority. 
Step 6. Repeat Step 1 to Step 5 until C1’= C2’ = …= 
CM’, or fewer than two systems remain in the loop. ■ 
------------------------------------------------------------------ 

Figure 2. Proposed mechanism 
 

4.3. Analysis of the mechanism 
 

Consider m ≥ 3 and a system adopts utility function in 
equation (8) and (11). Let uC_lie=uC_hon+∆C and 
uI_lie=uI_hon+∆I, ∆C ≥ 0 and ∆I ≥ 0.  
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where  
∆ = qn1

–m(uC_lie – uC_hon) + (1 – qn1
–m)(uI_lie – uI_hon) ≥ 0.  

The proof of all theorems is omitted here due to 
limited space. From the consistent belief property ln(K) 
and ln(1) are directly proportional to f(qnK

m) and f(qn1
m), 

respectively. For instance, ln(K) → M when qnK
m → 1, 

and decreases to M/K when qnK
m → 0. If we assume 

their relationship in a linear form, we have ln(1) = M[(1 
– 1/K) qn1

m + 1/K] and ln(K) = M[(1 – 1/K) qnK
m + 1/K].  

Theorem 2. Let ln(1) = M[(1 – 1/K) qn1
m + 1/K] and 

ln(K) = M[(1 – 1/K) qnK
m + 1/K], the consistent-belief 

system will tell the truth if 
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    (13) 
where qn1

m ≠ qnK
m and 

∆ = qn1
–m(uC_lie – uC_hon) + (1 – qn1

–m)(uI_lie – uI_hon) ≥ 0 .  

Since qn1
m, qn1

–m, qnK
m, uC_hon, uI_hon, uC_lie, and uI_lie 

are privately known, a mechanism designer can only 
manipulate the penalty y. Note that [(K – 1) qn1

m + 
1][(K – 1) qnK

m + 1] > 0 because K > 1, and qn1
m > qnK

m 
when all other systems are believed to be honest. If the 
system believes that other system(s) is lying, then there 
is a chance that qn1

m < qnK
m, i.e., the majority may vote 

cluster K instead of cluster 1. Hence, the necessary 
condition for qn1

m > qnK
m is all other participants be 

believed honest, which leads to Bayesian Nash 
equilibrium.  

Theorem 3. Suppose for all consistent-belief systems 
ln(1) = M[(1 – 1/K) qn1

m + 1/K] and ln(K) = M[(1 – 1/K) 
qnK

m + 1/K]. Telling the truth is the Bayesian Nash 
equilibrium strategy when uC_hon ≥ uI_hon + ∆ (qn1

m – 
qn1

–m)–1, or qn1
m uC_hon + (1 – qn1

m) uI_hon ≥ qn1
–m uC_lie + 

(1 – qn1
–m) uI_lie. 

Theorem 3 shows the existence of equilibrium 
strategy, which is very important in a mechanism 
design. Note that Theorem 3 holds with or without 
penalty (y ≥ 0). Since uC_hon > uI_hon, uC_lie > uI_lie, uC_lie 

≥ uC_hon and uI_lie ≥ uI_hon, the condition would be 
possibly met when qn1

m is significantly greater than 
qn1

–m, or when the vote by the system counts. When the 
condition is not met, we need a positive penalty to 
ensure equilibrium as shown in Theorems 1 and 2. 

From Theorems 1 and 2 we conclude that a penalty 
y that satisfies inequalities (12) and (13) is needed 
when bnm1 < 1. This penalty should be reasonable to 
maintain the truth-telling property, but not to 
discourage the participation. From an economic 
perspective, systems with a lower confidence about 
their clustering results should pay more for updating 
their confidence.  

To find a reasonable penalty for each record, we 
may ask each system to bid the amount of penalty that 
the minority should pay within a given range, ymn∈ 
[ymin, ymax]. A rational system will bid ymn such that the 
expected ynFinal maximizes Ulie or Uhon whichever is the 
highest. If the mechanism announces max(Yn) to 
determine ynFinal, then each system knows that ymax ≥ 
ynFinal > ymn. In a special circumstance, the system may 
bid its indifferent penalty y* that makes it indifferent 
between lying and telling the truth, i.e. equal to the 
RHS of inequality (12) or (13).  

Theorem 4. Given systems with consistent belief under 
Mechanism-1 with a range of allowed penalty [ymin, 
ymax] and ynFinal = max(Yn), then 

(i) Systems with linear or concave function ln(k) 
bid  ymin.  

(ii) Systems with convex function ln(k) may bid ymin, 
ymax or any value within [ymin, ymax]. 

(iii) Systems with sigmoid (S-shape) function ln(k) 
may bid y* or any value within [ymin, ymax]. 

In principle, Theorem 4 shows the difficulty to 
elicit the distribution of y*. If we can elicit the 
distribution of y*, we may optimize Yn so that to 
maximize the truth-telling of systems. A better 
elicitation mechanism is an open problem.  
 
4.4. Simulation results 
 

To analyze and visualize the relationship between 
confidence, maximum penalty and the effectiveness of 
mechanism, we have performed a simulation study. 
We assume seven systems using the mechanism. First, 
we generate a set of 100 synthetic records which may 
be put into two clusters. For each record, we also 
generate its referential cn, bn

0, and γn
0, where cn = 1 

(i.e. all records are valuable), bn
0 > 0 and γn

0 > 0. Then, 
for each system we create its own parameters: cmn, 
bmn

0, γmn
0, v, v^, qn1

–m, qn1
m, and qn2

m. cmn, bmn
0, and γmn

0 

are generated based on their referential value, i.e. by 
randomly change the referential values. When the 
randomization is extensive, we get more heterogeneous 
systems. Then, v, v^, qn1

–m, qn1
m, and qn2

m are generated 
using predetermined formula.  

Our simulation consists of two parts. In Part I, we 
study the effect of various penalties ymax = {1, …, 
100}, where ymin = 0. We also use three groups of 
“true” confidence bn

0, i.e. {low, medium, high}. In Part 
II, we arbitrary change the random parameters to some 
extreme values for stress analysis.  

Figure 3 shows the results of Part I where we 
measure the percentage of truth-telling and accuracy 
against ymax (horizontal axis). The accuracy here refers 
to the correctness of the aggregated labels with respect 
to the referential labels cn. All plotted data are the 
average value from 10 repetitions. 

Two interesting results are observed. First, 
excessive penalty does not increase both the 
percentage of the truth-telling and the accuracy of 
clustering aggregation, as shown by an erratic but 
nearly flat curve when ymax > 19, which is the turning 
point of ymax. Indeed, this turning point is context 
dependant as we observed from the simulation results 
in Part II. Second, both the truth-telling and the 
accuracy are bounded by the system’s prior confidence 
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when ymax > 19, where a higher bn
0 can help to achieve 

better results.  
Moreover, in Part II we also observe that a low 

prior confidence and a high heterogeneity may reduce 
the accuracy to as low as 49%, which may not be 
acceptable for the mechanism designer. Nonetheless, 
our simulation has demonstrated the potential of our 
proposed mechanism in promoting partial truth telling 
in clustering aggregation among selfish systems. 
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Figure 3. The percentage of truth-telling and 
accuracy for various bn0 and ymax 

 
5. Conclusion and future work 
 

In this paper we have presented a mechanism 
design to solve the clustering aggregation problem 
among selfish systems. We have applied game theory 
and market mechanism that are commonly studied in 
micro-economics to solve our problem. Although our 
current analysis focuses on special cases when systems 
have consistent belief, our approaches have opened up 
a new research direction to further promote distributed 
data mining beyond standard assumption that all 
systems are inherently honest. Simulation results 
indicate an optimal penalty may exist for a certain 
setting. This study can be extended by employing 
different voting and payment mechanisms. For 
example, rather than paying a flat penalty, we may set 
the penalty according to the proportion of the number 
of majority to the number of minority. Also, we may 
allow a negotiation on the penalty prior to the 
clustering aggregation. Further analysis to other cases 
including those with partial inconsistent belief, with 
soft clustering, with varying number of cluster labels, 

etc. are open issues. It is also interesting to perform 
further simulation and experiment involving (human) 
decision makers to find a better (partially) incentive 
compatible mechanism. We aim to address these issues 
in the future. 
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