
Mechanism Design for Clustering Aggregation by Selfish Systems

Pinata Winoto, Yiu-ming Cheung, Jiming Liu
Department of Computer Science, Hong Kong Baptist University, Hong Kong SAR, China

{pinata, ymc, jiming}@comp.hkbu.edu.hk

Abstract

We propose a market mechanism that can be

implemented on clustering aggregation problem
among selfish systems, which tend to lie about their
correct clustering during aggregation process. Our
study is the preliminary step toward the development
of robust distributed data mining among selfish
systems.

1. Introduction

In almost all the clustering aggregation algorithms,
in order to make the clustering aggregation work, the
locally obtained cluster labels are correctly reported [1,
3, 5, 6, 11, 12, 13, 14]. However, in certain scenarios
in distributed data mining, several systems performing
data clustering locally may not be willing to report
correct labels.

In general, we are interested in the situation where
systems are unwilling to share complete data but
limited information. An example of this setting is
sharing cluster labels of bank customers. Suppose all
banks have common customers who have different
relationships with each bank, which has the
classification of them. However, they will not share the
classification due to privacy issue or in protecting their
interest. Instead, cluster labels are shared.

The interpretation of clustering aggregation results
is solely on the discretion of each bank. How to
implement a mechanism so that each bank will report
true cluster labels and thus to convince more banks to
engage in aggregation activity is the goal of our recent
work. To solve it, we adopt technique which has been
developed in economics for decades and in multi-agent
systems recently: mechanism design.

Our analysis can be applied to selfish systems, such
as e-commerce systems. Our study can also be
extended to the aggregation of multiple classifier
systems. The rest of the paper is organized as follows.
In the next section, we will present related work. Then
in Section 3 is our clustering aggregation framework,

followed by mechanism design issue in Section 4.
Finally, Section 5 provides future work.

2. Related work

2.1. Mechanism design

Mechanism design is a branch of game theory

aiming at designing a game so that it can attain the
(designer’s) social objective after being played for a
certain period or when it reaches an equilibrium state,
assuming all players are rational. The design includes
the assignment of an appropriate set of admissible
strategies and payoff functions to all players.

Despite extensive studies by economists and game
theorists, mechanism design has been studied in
artificial intelligence community as well, especially in
the context of designing multi-agent systems that can
achieve a fair allocation, maximize the total utility
(social welfare), and be immune from deceitful
strategies [2, 9]. In computer science, mechanism
design has been studied in the context of mobile ad hoc
network [7], e-commerce [15], grid computing [4], etc.
In this paper, we apply an ad hoc mechanism for our
distributed clustering aggregation problem.

2.2. Clustering aggregation

Previous work on clustering aggregation aims for

various goals, such as achieving robust results,
reducing cost, protecting privacy, etc. [6, 12]. In earlier
work, various clustering methods are applied to a
dataset where their clustering results are then
integrated to get believably more robust results [13]. In
distributed database, unifying heterogeneous datasets
may not be feasible due to the large size of data.
Hence, a possible solution is to perform clustering
locally by each node to obtain class labels that can then
be integrated to get an aggregate clustering [8, 12].

In most literature researchers considered various
formulations for the problems, with a major goal to
ensure the quality of the final clustering result. These

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.80

695

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.80

695

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.80

695

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.80

703

Seventh IEEE International Conference on Data Mining

1550-4786/07 $25.00 © 2007 IEEE
DOI 10.1109/ICDM.2007.80

703

studies made use of different clustering mechanisms
including distance measurements to form the aggregate
cluster labels. For instance, Fred and Jain [5] use a
single linkage approach to unify the multiple runs from
the k-means algorithm performed locally; Fern and
Brodley [3] use a complete linkage approach in the
aggregation; Gionis et al. [6] and Johnson and
Kargupta [8] also apply agglomerative algorithm in the
aggregation; Topchy et al. [14] treat the clustering
aggregation into a maximum likelihood estimation
problem, and adopt an EM algorithm to locate the final
clustering. Other methods such as dynamic
programming [11], hypergraph method [12], and
voting mechanism [13] are also used to improve the
accuracy of clustering aggregation or to achieve
scalability by reducing computational complexity.

In these prior works, the reported cluster labels are
assumed to be correct and not strategically aligned.
Our work complements them with respect to the
distributed clustering of privacy data where systems
may misreport their cluster labels.

3. Clustering aggregation framework

3.1. Model description

Consider M systems {s1, s2, …, sM}, where each of

them holds a set of private attributes of the common N
records D = {d1, d2, …, dN}. We assume crisp
partition-based clustering. For a system sm holding a
set of attributes of Dm, a partition-based clustering Cm
over D divides Dm into K disjoint sets, e.g. Clusterm1,
Clusterm2, …, ClustermK. Suppose K is the same for all
systems and M ≥ K. Since the cluster label could be
arbitrary, we denote cmn to represent the cluster label
given by system sm to dn, and for the sake of clarity, let
the cluster label be integer; i.e., cmn ∈ K, where K ≡
{1, 2, …, K}. Suppose the notation ~cmn refers to any
cluster label other than that assigned to dn. The cluster
label reported by the system is denoted cmn’, where Cm’
≡ {cm1’, …, cmN’} be the set of all reported labels by sm.
Since a system is competing with others, it may lie by
reporting cmn’ = ~ cmn. Also, let ln(k) be the number of
systems assigning dn to the cluster k, and ln(cmn’) be the
total number of systems reporting dn as the same
cluster as cmn’ including the system m, where Σk∈K ln(k)
= M for any k∈K.

Suppose system sm assigns confidence of clustering
values to dn, denoted by a vector Bmn∈[0,1]K, with
norm |Bmn| ≤ 1, which its elements, denoted by bmn1,
…, bmnK, represent the confidence that dn belongs to
Clusterm1 to ClustermK. In a crisp partitioning, the index
of the greatest element in Bmn represents the cluster

label cmn. Suppose each system uses its own criteria to
generate this private value. Given this, sm may evaluate
a cluster cmn = k in terms of utility, denote umn(bmnk,
γmnk), where bmnk is the k-th element of Bmn and γmnk ∈
R≥0 represents factors other than confidence
considered in the valuation of a clustering on record dn,
e.g. expected profit from a proper action after
clustering. An intuitive yet simple utility function is:

umn(bmnk, γmnk) = bmnk γmnk (1)
Here, an accurate clustering means bmnk → 1, which

causes umn → γmnk. Likewise, umn → 0 when bmnk → 0.
Certainly, this utility function is not canonical to
represent system preference. Rather, we use it in our
analysis because of its simplicity.

3.2. Problems

In prior work, the goal of clustering aggregation
problem is to find a final clustering C such that to
minimize the total number of disagreements between
labels in C and those in C1’, …, CM’, or to maximize
common information between them [12, 13]. Here, we
argue that minimizing disagreement among clusterings
should not be the primary goal in our setting.

First, only if all systems believe that a minimal-
disagreement clustering Cmin approximates the
“ground-truth” clustering C*, then it can be the
ultimate goal of clustering aggregation problem. This
is true only if the following conditions are satisfied: (i)
C* exists; (ii) the probability of error in reported
clustering is less than 0.5; and (iii) we have enough
participating systems [13]. If the number of
participating systems is small or some systems cheat,
then Cmin ≠ C*. Hence, preventing cheat and increasing
participation are very important.

Second, a system shall be granted autonomy in the
processing its own data and standing aside from the
final consensus. In fact, after receiving cluster labels
from other systems, a system sm holds a set of private
attributes of Dm plus C1’, C2’, …, Cm, …, CM’. Since
all systems hold different information, they have
different interpretations. Even when all systems are
truth-tellers, the correctness of a shared cluster label is
still affected by the reliability of the systems in
processing the data. Thus, minimizing disagreement
should not be adopted as the ultimate goal. Instead, a
subjective criterion should be adopted in which each
system is responsible for its own aggregation and
interpretation.

Instead of minimizing disagreement, we believe
that the clustering aggregation problem should
maximize the social welfare of participating systems,
viz. maxkΣmΣn umn(bmnk, γmnk). This approach conforms

696696696704704

to [10], which argued that the data mining results
should be valued by the decision makers.

If we only consider confidence and assume u(x) =
x, then the problem reduces to maxk ΣmΣnbmnk, namely
confidence maximization problem. If for all systems
the confidence value is solely an inverse of
disagreement, then our problem reduces to the
minimization of disagreement. Hence, minimizing
disagreement is a special case of maximizing total
utility.

Since the systems are distributed and each has its
own utility function umn(.), it is hard to maximize total
utility by a central computation. Indeed, for some
systems, information behind the reported cluster label
is more important than the label itself. The problem
that we want to solve is to find a clustering aggregation
mechanism to ensure:
(i) participating systems are more reluctant to lie;
(ii) it maximizes total utility of participating systems;
(iii) it promotes the information sharing beyond the

cluster labels.
To prevent lying, we design a mechanism with

transferable utility (e.g. by monetary payment).

4. Mechanism design issues

4.1. Utilities, beliefs and decision structures

Suppose a system’s prior confidence that dn

belongs to cluster 1 is bmn1
0. Let v ≡ ln(1) be the

number of systems that say dn belongs to cluster 1, and
v^ ≡ maxk∈K–{1}(ln(k)) be the largest number of votes
that it belongs to another cluster, assuming that the
system is telling the truth. After knowing v and v^, the
system’s posterior confidence is bmn1

1(bmn1
0, v, v^)

which is updated independently from its own vote. But
the posterior expected profit γmn1

1(γmn1
0, v, v^) depends

on its own vote. The utility function now is
umn

1 = bmn1
1(bmn1

0, v, v^) γmn1
1(γmn1

0, v, v^) (2)

Example 1. Let bmn1
1 = bmn1

0 + (1 – bmn1
0)(v – v^)/M

and γmn1
1 = γmn1

0(1 – (v – v^)/M), where M is the total
number of systems. Substituting them into equation (2)
yields
umn

1=(bmn1
0+(1–bmn1

0)(v–v^)/M)γmn1
0(1–(v–v^)/M) (3)

Figure 1 depicts equation (3) for various bmn1
0∈{0.3,

0.4, 0.5, 0.6, 0.7, 0.8} and γmn1
0 = 100. The x-axis is

the marginal voting ratio (v – v^)/M, where the shaded
area represents negative ratios, i.e. cluster 1 does not
receive the majority vote. A zero ratio means a tie
between the candidate and other(s), and +1 or –1 ratio
means an absolute win or loss. It is shown from the
figure that an increase of the marginal voting ratio

causes an increase of the utility when both the
confidence and the ratio are low (area circled in Figure
1). However, when the confidence is high (bji

0 = 0.7 or
0.8), the utility decreases as the marginal ratio
increases (sharing profit with others). ■

When a system lies, the utility only differs on the
second term of equation (2), or

umn
lie = bmn1

1(bmn1, v, v^) γmn1
lie(γmn1

0, v, v^) (4)
 Taken equation (3) as an example, the following

utility function shows the effect of lying:
umn

lie = (bmn1
0+(1–bmn1

0)(v–v^)/M)γmn1
0(1–(v–v^–a)/M)

(5)
where a = {1, 2} depending on whether the vote by the
lying system increases v^ (a = 2) or not (a = 1).
Nonetheless, umn

lie > umn
1 when γmn1

0 > 0, which means
all rational systems will lie when the data is profitable.
However, the gain is insignificant when a/M → 0 or M
is large, or when γmn1

0 → 0.
In the rest of our analysis, we assume that the

system will not lie for not-valuable cluster(s). Without
loss of generality, suppose our analysis is for the n-th
record and its cluster label is cmn = 1, which represents
a valuable cluster. Unless otherwise specified, we
assume plurality voting in our setting. Lets denote
cn

majority = 1 when the largest group of participating
systems (hereafter the majority) agrees that the cluster
label of record n is 1 after cluster alignment. Let qn1

m

be the belief (subjective probability) by sm that cn
majority

= 1 when it reports the truth (cmn’ = 1), and qn1
– m be the

same belief when it lies. Depending on the domain, we
may have various relations between bmn1 and qn1

– m:
• ∀m, n bmn1 ∝ qn1

– m (consistent belief)
• ∀m ∃n bmn1 ∝ 1/qn1

m
 (partial inconsistent belief)

• ∀m,n bmn1 ∝ qn1
– m

 (uncertain belief)
The first case will be discussed in this paper, while

the second and third cases are for future work.
Suppose the minority will be punished to pay the

majority the amount of y dollars. When a system sm
lies by reporting cmn’ = K, two possibilities may

Figure 1. Utility values for various prior
confidences

0

20

40

60

80

100

120

-0.95 -0.75 -0.55 -0.35 -0.15 0.05 0.25 0.45 0.65 0.85
(v-v^)/m

ut
ili

ty

0.3
0.4
0.5
0.6
0.7
0.8

697697697705705

happen: cn
majority = 1 by probability qn1

–m, or cn
majority ≠ 1

by probability (1 – qn1
–m). Since the system sm is not a

majority in the former case, it may be penalized to pay
y, also by probability qn1

–m; denote the utility in this
case uC_lie. If the majority does not choose 1, the
system may receive xl dollars as a reward, i.e. when
cji

majority = K. Denote the utility in this case uI_lie. Both
uC_lie and uI_lie can be derived from equation (4) with
different estimated values of v and v^. Hence, the
expected utility of sm from lying Ulie is

Ulie = qn1
–m(uC_lie – y) + qn2

–m(uI_lie – y) + …
+ qnK-1

–m(uI_lie – y) + qnK
–m(uI_lie + xl) (6)

where qn1
–m + qn2

–m +… + qnK-1
–m + qnK

–m = 1. (7)
This equation can be simplified into

Ulie = qn1
–m(uC_lie – y) + (1 – qn1

–m)(uI_lie + x’) (8)
where

x’ = (–qn2
–my – … – qnK-1

–my + qnK
–mxl) / (1 – qn1

–m) (9)
Here, xl and y are transferable utility such as money
which satisfies a payment property: xl ≥ x’ ≥ –y. In
budget-balance mechanism, the value of xl is not
known in advanced, because we do not know the
number of minority systems.

Now, when the system sm reports the cluster label
truthfully (honest), viz. cmn’ = 1, it also faces two
possibilities: the majority choose cluster 1 or other
label(s) by probability qn1

m and (1 – qn1
m), respectively.

Denote the utility in both cases uC_hon and uI_hon, which
can be derived from equation (2) with different
estimated values of v and v^. Suppose the system
receives xh when cn

majority = 1. The expected utility of sm
from reporting its true label is

Uhon = qn1
m(uC_hon + xh) +

qn2
– m(uI_hon – y) + … + qnK

– m(uI_hon – y) (10)
which can be simplified into

Uhon = qn1
m(uC_hon + xh) + (1 – qn1

m)(uI_hon – y) (11)
Note, given equation (8) and (11), a rational system

may not always lying, even when uC_lie ≥ uC_hon and
uI_lie ≥ uI_hon.

4.2. Proposed mechanism

The mechanism in Figure 2 provides a basic

framework for partial truth-telling clustering
aggregation among multiple selfish systems. A fully
truth-telling property may be assured when we choose
an extremely large ymax. However, this may impede the
participation of systems with less confidence. One may
suggest a further mechanism to decide this value,
which is beyond the scope of our current work.

--
Step 1. All systems bid Y1, …, YN simultaneously,
where Yn is the set of preferred penalties for record n,
submitted by all M systems, |Yn| = M.
Step 2. All systems calculate max(Y1), …, max(YN).
Any system may decide to withdraw from the
mechanism after calculating these values. If not, then it
will proceed to Step 3.
Step 3. All remaining systems report their clustering
C1’, C2’,…, CM’ simultaneously.
Step 4. All systems calculate C locally such that it
minimizes disagreement with C1’, C2’, …, CM’.

4.1 Permute label in C1’, C2’, …, CM’ so that they
are consistently labeled (cluster alignment).

4.2 For each record dn, use plurality voting to
determine cn

majority; if it is tie, then leave it
empty.

4.3 C = ∪n∈N { cn
majority }.

Step 5. For each system sm, if cmn’ ≠ cn
majority, where

cn
majority is a non-empty value, then it pays max(Yn)

which is evenly distributed to all systems z m whose
czn’ = cn

majority.
Step 6. Repeat Step 1 to Step 5 until C1’= C2’ = …=
CM’, or fewer than two systems remain in the loop. ■
--

Figure 2. Proposed mechanism

4.3. Analysis of the mechanism

Consider m ≥ 3 and a system adopts utility function in
equation (8) and (11). Let uC_lie=uC_hon+∆C and
uI_lie=uI_hon+∆I, ∆C ≥ 0 and ∆I ≥ 0.

Theorem 1. The system with consistent belief will tell
the truth if

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

∆+−−>
−

)()1(

))((

1

11
__

Kl
q

l
qM

qquuy

n

m
nK

n

m
n

m
n

m
n

honChonI (12)

where
∆ = qn1

–m(uC_lie – uC_hon) + (1 – qn1
–m)(uI_lie – uI_hon) ≥ 0.

The proof of all theorems is omitted here due to
limited space. From the consistent belief property ln(K)
and ln(1) are directly proportional to f(qnK

m) and f(qn1
m),

respectively. For instance, ln(K) → M when qnK
m → 1,

and decreases to M/K when qnK
m → 0. If we assume

their relationship in a linear form, we have ln(1) = M[(1
– 1/K) qn1

m + 1/K] and ln(K) = M[(1 – 1/K) qnK
m + 1/K].

Theorem 2. Let ln(1) = M[(1 – 1/K) qn1
m + 1/K] and

ln(K) = M[(1 – 1/K) qnK
m + 1/K], the consistent-belief

system will tell the truth if

698698698706706

]1)1][(1)1[(
)(

))((
1

1

11
__

+−+−
−

∆+−−>
−

m
nK

m
nm

nK
m
n

m
n

m
n

honChonI

qKqK
Kqq

qquuy

 (13)
where qn1

m ≠ qnK
m and

∆ = qn1
–m(uC_lie – uC_hon) + (1 – qn1

–m)(uI_lie – uI_hon) ≥ 0 .

Since qn1
m, qn1

–m, qnK
m, uC_hon, uI_hon, uC_lie, and uI_lie

are privately known, a mechanism designer can only
manipulate the penalty y. Note that [(K – 1) qn1

m +
1][(K – 1) qnK

m + 1] > 0 because K > 1, and qn1
m > qnK

m
when all other systems are believed to be honest. If the
system believes that other system(s) is lying, then there
is a chance that qn1

m < qnK
m, i.e., the majority may vote

cluster K instead of cluster 1. Hence, the necessary
condition for qn1

m > qnK
m is all other participants be

believed honest, which leads to Bayesian Nash
equilibrium.

Theorem 3. Suppose for all consistent-belief systems
ln(1) = M[(1 – 1/K) qn1

m + 1/K] and ln(K) = M[(1 – 1/K)
qnK

m + 1/K]. Telling the truth is the Bayesian Nash
equilibrium strategy when uC_hon ≥ uI_hon + ∆ (qn1

m –
qn1

–m)–1, or qn1
m uC_hon + (1 – qn1

m) uI_hon ≥ qn1
–m uC_lie +

(1 – qn1
–m) uI_lie.

Theorem 3 shows the existence of equilibrium
strategy, which is very important in a mechanism
design. Note that Theorem 3 holds with or without
penalty (y ≥ 0). Since uC_hon > uI_hon, uC_lie > uI_lie, uC_lie

≥ uC_hon and uI_lie ≥ uI_hon, the condition would be
possibly met when qn1

m is significantly greater than
qn1

–m, or when the vote by the system counts. When the
condition is not met, we need a positive penalty to
ensure equilibrium as shown in Theorems 1 and 2.

From Theorems 1 and 2 we conclude that a penalty
y that satisfies inequalities (12) and (13) is needed
when bnm1 < 1. This penalty should be reasonable to
maintain the truth-telling property, but not to
discourage the participation. From an economic
perspective, systems with a lower confidence about
their clustering results should pay more for updating
their confidence.

To find a reasonable penalty for each record, we
may ask each system to bid the amount of penalty that
the minority should pay within a given range, ymn∈
[ymin, ymax]. A rational system will bid ymn such that the
expected ynFinal maximizes Ulie or Uhon whichever is the
highest. If the mechanism announces max(Yn) to
determine ynFinal, then each system knows that ymax ≥
ynFinal > ymn. In a special circumstance, the system may
bid its indifferent penalty y* that makes it indifferent
between lying and telling the truth, i.e. equal to the
RHS of inequality (12) or (13).

Theorem 4. Given systems with consistent belief under
Mechanism-1 with a range of allowed penalty [ymin,
ymax] and ynFinal = max(Yn), then

(i) Systems with linear or concave function ln(k)
bid ymin.

(ii) Systems with convex function ln(k) may bid ymin,
ymax or any value within [ymin, ymax].

(iii) Systems with sigmoid (S-shape) function ln(k)
may bid y* or any value within [ymin, ymax].

In principle, Theorem 4 shows the difficulty to
elicit the distribution of y*. If we can elicit the
distribution of y*, we may optimize Yn so that to
maximize the truth-telling of systems. A better
elicitation mechanism is an open problem.

4.4. Simulation results

To analyze and visualize the relationship between
confidence, maximum penalty and the effectiveness of
mechanism, we have performed a simulation study.
We assume seven systems using the mechanism. First,
we generate a set of 100 synthetic records which may
be put into two clusters. For each record, we also
generate its referential cn, bn

0, and γn
0, where cn = 1

(i.e. all records are valuable), bn
0 > 0 and γn

0 > 0. Then,
for each system we create its own parameters: cmn,
bmn

0, γmn
0, v, v^, qn1

–m, qn1
m, and qn2

m. cmn, bmn
0, and γmn

0

are generated based on their referential value, i.e. by
randomly change the referential values. When the
randomization is extensive, we get more heterogeneous
systems. Then, v, v^, qn1

–m, qn1
m, and qn2

m are generated
using predetermined formula.

Our simulation consists of two parts. In Part I, we
study the effect of various penalties ymax = {1, …,
100}, where ymin = 0. We also use three groups of
“true” confidence bn

0, i.e. {low, medium, high}. In Part
II, we arbitrary change the random parameters to some
extreme values for stress analysis.

Figure 3 shows the results of Part I where we
measure the percentage of truth-telling and accuracy
against ymax (horizontal axis). The accuracy here refers
to the correctness of the aggregated labels with respect
to the referential labels cn. All plotted data are the
average value from 10 repetitions.

Two interesting results are observed. First,
excessive penalty does not increase both the
percentage of the truth-telling and the accuracy of
clustering aggregation, as shown by an erratic but
nearly flat curve when ymax > 19, which is the turning
point of ymax. Indeed, this turning point is context
dependant as we observed from the simulation results
in Part II. Second, both the truth-telling and the
accuracy are bounded by the system’s prior confidence

699699699707707

when ymax > 19, where a higher bn
0 can help to achieve

better results.
Moreover, in Part II we also observe that a low

prior confidence and a high heterogeneity may reduce
the accuracy to as low as 49%, which may not be
acceptable for the mechanism designer. Nonetheless,
our simulation has demonstrated the potential of our
proposed mechanism in promoting partial truth telling
in clustering aggregation among selfish systems.

20
30
40
50
60
70
80
90

100

1 21 41 61 81Ymax

%
 T

ru
th

-te
lli

ng

high

med

low

0

20

40

60

80

100

1 21 41 61 81Ymax

%
 A

cc
ur

ac
y

high

med

low

Figure 3. The percentage of truth-telling and
accuracy for various bn0 and ymax

5. Conclusion and future work

In this paper we have presented a mechanism
design to solve the clustering aggregation problem
among selfish systems. We have applied game theory
and market mechanism that are commonly studied in
micro-economics to solve our problem. Although our
current analysis focuses on special cases when systems
have consistent belief, our approaches have opened up
a new research direction to further promote distributed
data mining beyond standard assumption that all
systems are inherently honest. Simulation results
indicate an optimal penalty may exist for a certain
setting. This study can be extended by employing
different voting and payment mechanisms. For
example, rather than paying a flat penalty, we may set
the penalty according to the proportion of the number
of majority to the number of minority. Also, we may
allow a negotiation on the penalty prior to the
clustering aggregation. Further analysis to other cases
including those with partial inconsistent belief, with
soft clustering, with varying number of cluster labels,

etc. are open issues. It is also interesting to perform
further simulation and experiment involving (human)
decision makers to find a better (partially) incentive
compatible mechanism. We aim to address these issues
in the future.

6. Acknowledgement

This work is partially supported by a grant from the
Research Grant Council of Hong Kong Government
with the project code HKBU 210306.

7. References

[1] C. Boulis, and M. Ostendorf, “Combining Multiple
Clustering Systems”, in Proc. PKDD’ 04. pp. 63-74.
[2] E. Ephrati and J. Rosenschein, “The Clarke Tax as a
Consensus Mechanism among Automated Agents”, in Proc.
AAAI’91, pp. 173-178.
[3] X. Z. Fern and C.E. Brodley, “Random Projection for
High Dimensional Data Clustering: A cluster Ensemble
Approach”, in Proc. ICML’03, pp. 186-193.
[4] I. Foster, N.R. Jennings, and C. Kesselman, “Brain Meets
Brawn: Why Grid and Agents Need Each Other”, Proc.
AAMAS’04, pp. 8-15.
[5] A.L. Fred and A. K. Jain, “Combining Multiple
Clusterings Using Evidence Accumulation”, IEEE T. Pattern
Analysis and Machine Intell., 27(6), 2005, pp. 835-850.
[6] A. Gionis, H. Mannila and P. Tsaparas. “Clustering
Aggregation”, ACM Tran. KDD, 1(1), 2007, pp. 1-30.
[7] M. Jakobsson, J. P. Hubaux, and L. Buttyan, “A
Micropayment Scheme Encouraging Collaboration in Multi-
hop Cellular Networks”, in Proc. Financial Crypt. ’03.
[8] E.L. Johnson and H. Kargupta, “Collective, Hierarchical
Clustering from Distributed, Heterogeneous Data”, in M.J.
Zaki and C.T. Ho (eds.) Large-Scale Parallel Data Mining,
LNCS 1759, Springer, 2000, pp. 221-244.
[9] N.E. Kfir-Dahav, D. Monderer, and M. Tennenholtz,
“Mechanism Design for Resource Bounded Agents”, in
Proc. ICMAS’00, pp. 309-315.
[10] J. Kleinberg, C. Papadimitriou, and P. Raghavan, “A
Microeconomic View of Data Mining”, Data Mining and
Knowledge Discovery, 2(4), 1998, pp. 311-324.
[11] T. Mielikainen, E. Terzi, and P. Tsaparas, “Aggregating
Time Partitions”, in Proc. KDD’06, pp. 347-356.
[12] A. Strehl and J. Ghosh, “Cluster Ensembles – a
Knowledge Reuse Framework for Combining Multiple
Partitions”, J. of Machine Learning, 3, 2003, pp. 583-617.
[13] A.P. Topchy, M.H.C. Law, A.K. Jain, and A.L.N. Fred,
“Analysis of Consensus Partition in Cluster Ensemble”, in
Proc. ICDM ’04, pp. 225-232.
[14] A.P. Topchy, A.K. Jain, and W. Punch, “A Mixture
Model for Clustering Ensembles”, in Proc. SDM ’04.
[15] H. Varian, “Economic Mechanism Design for
Computerized Agents”, in Proc. First Usenix Workshop on
Electronic Commerce, 1995.

700700700708708

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

