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Abstract

Online feature selection with dynamic features has
become an active research area in recent years.
However, in some real-world applications such as
image analysis and email spam filtering, features
may arrive by groups. Existing online feature selec-
tion methods evaluate features individually, while
existing group feature selection methods cannot
handle online processing. Motivated by this, we
formulate the online group feature selection prob-
lem, and propose a novel selection approach for
this problem. Our proposed approach consists of
two stages: online intra-group selection and on-
line inter-group selection. In the intra-group selec-
tion, we use spectral analysis to select discrimina-
tive features in each group when it arrives. In the
inter-group selection, we use Lasso to select a glob-
ally optimal subset of features. This 2-stage proce-
dure continues until there are no more features to
come or some predefined stopping conditions are
met. Extensive experiments conducted on bench-
mark and real-world data sets demonstrate that our
proposed approach outperforms other state-of-the-
art online feature selection methods.

1 Introduction
High dimensional data present a lot of challenges for data
mining and pattern recognition. Fortunately, feature selection
is an effective approach to reduce dimensionality by eliminat-
ing the irrelevant and redundant features [Guyon and Elisse-
eff, 2003]. Feature selection efforts can be categorized into
two branches: standard feature selection and online feature
selection. The former is only performed after all of the fea-
tures are calculated and obtained, while in some real-world
applications such as image analysis and email spam filtering
[Liu and Wang, 2012], features arrive dynamically. It is very
time-consuming (if not unrealistic) to wait for all of the in-
coming features. So it is necessary to perform feature selec-
tion incrementally in these applications, which is referred to
as online feature selection.

∗Corresponding author.

Online feature selection assumes that features flow into
the model one by one dynamically and the selection is per-
formed at the time they arrive. It is different from the stan-
dard online learning problem which assumes instances arrive
dynamically [Hoi et al., 2012]. Several online feature se-
lection methods have been proposed recently, such as Graft-
ing [Perkins and Theiler, 2003], Alpha-investing [Zhou et al.,
2005], and OSFS [Wu et al., 2013]. The Grafting approach
selects features by minimizing the predefined binomial neg-
ative log-likelihood loss function. The Alpha-investing ap-
proach evaluates the new feature based on a streamwise re-
gression model. The OSFS approach obtains the optimal
subset by the relevance and redundancy analysis. These ap-
proaches can evaluate features dynamically with the arrival of
each new feature, but they present a common limit: existing
online feature selection approaches evaluate the features in-
dividually, thus, they overlook the relationship between fea-
tures which is very important in some real-world data sets.
For example, in image analysis, each image could be rep-
resented by multiple kinds of descriptors (groups), such as
SIFT for shape information and Color Moment for color in-
formation, each of which has a high dimension of features. To
solve this problem, some researchers have studied the group
structure information, such as group Lasso [Wang and Leng,
2008]. However, theses methods limit their applications in
online features selection since they require a global feature
space in advance.

To overcome the weakness of online feature selection ap-
proaches and the limitations of group selection approaches
mentioned above, we propose a new online approach for
group feature selection in a dynamic feature stream, called
Online Group Feature Selection (OGFS). As a group of fea-
tures arrives, we first introduce our criteria based on spec-
tral analysis to select features with discriminative ability, re-
ferred to as online intra-group selection. Second, we refine
the sparse linear regression model of Lasso to find the global
optimal subset after seeing all features in the group, referred
to as online inter-group selection.

With the above motivation, we formulate the problem of
online group feature selection with a feature stream and pro-
pose a solution to this problem in this paper. Our major con-
tributions can be summarized as follows:

• Different from the traditional online feature selection,
we address the problem of online group feature selection
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instead of online individual feature selection. To the best
of our knowledge, this is the first effort that considers the
online group feature selection problem.

• To evaluate the features dynamically, we introduce spec-
tral analysis into the online feature selection and provide
two novel effective criteria.

• Our proposed Online Group Feature Selection (OGFS)
method achieves the best classification accuracy com-
pared with other state-of-the-art methods for online fea-
ture selection.

The rest of the paper is organized as follows. Section 2
presents a review of related work. Section 3 introduces our
framework for online group feature selection. Section 4 re-
ports some experimental results to demonstrate the effective-
ness of the proposed method. We conclude this work in Sec-
tion 5.

2 Related Work
There are two categories of feature selection approaches:
standard feature selection and online methods. Standard fea-
ture selection is performed after all the features are com-
puted. It consists of three categories: filter [Farahat et al.,
2012], wrapper [Das, 2001] and embedded methods [Tibshi-
rani, 1996]. Filter methods usually explore the intrinsic sta-
tistical properties of features. Wrapper methods use forward
or backward strategies to search the whole candidate subsets
and a classifier is directly applied. Embedded methods at-
tempt to find an optimal subset based on a regression model
with specific penalties on coefficients of features. In general,
standard feature selection methods process the features indi-
vidually. Considering some specific applications where the
feature space comes with prior knowledge of group struc-
tures, some standard methods have been developed accord-
ingly, such as group Lasso.

All of the standard methods mentioned above require the
global feature space in advance to perform the selection.
However, in some real-world applications, it is difficult to get
the global feature space. To overcome this problem of stan-
dard feature selection, online feature selection has attracted a
lot of attention in recent years. It assumes that features flow
in one by one and it aims to discard or select the newly gener-
ated feature dynamically. Representative online feature selec-
tion approaches include Grafting, Alpha-investing and OSFS.
Grafting performs the selection based on a gradient descent
technique which has been proven to be effective in pixel clas-
sification. It still requires a global feature space to define the
key parameters in the selection of new features. Hence, it
cannot handle the case that the feature stream is infinite or
with an unknown size. Alpha-investing evaluates the new
feature with a p-value returned by a regression model. If the
p-value of the new feature reaches a certain threshold α, the
feature will be selected. In Alpha-investing, once the features
are selected, they will never be discarded. OSFS selects fea-
tures based on an online relevance and redundancy analysis.
According to the relevance to the class label, input features
could be characterized as strongly relevant, weakly relevant
or irrelevant. Relevant features will be obtained by online

relevance analysis, and redundant features will be removed
by Markov blankets. In OSFS, each time when a new fea-
ture is included, the redundancy of all selected features will
be reanalyzed. To speed up the redundancy analysis, a faster
version of OSFS, called Fast-OSFS, was proposed [Wu et al.,
2013]. Fast-OSFS first analyzes the redundancy of a new rel-
evant feature, then decides whether the redundancy analysis
of the selected feature subset will be performed or not. It is
still inefficient with the increase of selected features. In ad-
dition, all of these online feature selection methods evaluate
features individually, thus, they overlook the prior knowledge
of group information of features.

In contrast to the above existing efforts, we address the on-
line group feature selection problem in this paper. To make
use of the prior knowledge of group information, we pro-
pose an efficient online feature selection framework includ-
ing the intra-group feature selection and inter-group feature
selection, and based on this framework, we develop a novel
algorithm called OGFS.

3 A Framework for Online Group Feature
Selection

We first formalize our problem for online group feature se-
lection. Assume a data matrix X = [x1, · · · , xn] ∈ Rd×n,
where d is the number of features arrived so far and n is
the number of data points, and a class label vector Y =
[y1, · · · , yn]T ∈ Rn, yi ∈ {1, · · · , c}, where c is the number
of classes. The feature space is a dynamic stream vector F
consisting of groups of features, F = [G1, · · · , Gj , · · · ]T ∈
R

∑
dj , where dj is the number of features in group Gj .

Gj = [fj1, fj2, · · · , fjm]T ∈ Rm where fjk is an indi-
vidual feature. In terms of feature stream F and class la-
bel vector Y , we aim to select an optimal feature subset
U = [g1, · · · , gj , · · · , gu]T ∈ R

∑
uj when the algorithm

terminates, where uj is the number of groups arrived so far,
where gj ∈ Rmg , gj ⊆ Gj , mg < m, and gj can be empty.

To solve this problem, we propose a framework for online
group feature selection which has two components: intra-
group selection and inter-group selection. The intra-group
selection is to process features dynamically at their arrival.
That is, when a group of features Gj arrives, we get a sub-
set G′j from Gj . In this part, we design two novel criteria
based on spectral analysis to obtain the subset. In terms of
the features obtained by the intra-group selection, we further
consider the global group information by introducing Lasso
to get an optimal subset gj from G′j , namely the inter-group
selection. In the following subsections, we will provide de-
tails for intra-group selection and inter-group selection.

3.1 Online Intra-Group Selection
Spectral feature selection methods have demonstrated excel-
lent performance [Zhao et al., 2010]. Given a data matrix
X ∈ Rd×n, a weighted graph with edges between data points
close to each other is constructed. Let Sb ∈ Rn×n evalu-
ate the between-class distance, and Sw ∈ Rn×n evaluate the
within-class distances. In this work, we only consider super-
vised online feature selection. The between-class affinity ma-
trix Sb and the within-class affinity matrix Sb are calculated
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as follows [Nie et al., 2008]:

(Sb)ij =

{
1
n −

1
ni
, yi = yj ,

1
n , yi 6= yj .

(1)

(Sw)ij

{
1
ni
, yi = yj ,

0, yi 6= yj .
(2)

where ni denotes the number of data points from class i.
Let the feature selector matrix W = [wi, · · · , wm]T ∈

Rd×m where d is the number of features arrived and m is the
number of features selected so far. wi = [wi1, · · · , wid]

T ∈
Rd , where wij = 1 indicates that the j-th feature is selected,
while wij = 0 indicates that the j-th feature is discarded.
Spectral feature selection approaches can be categorized into
subset-level selection and feature-level selection approaches.
The subset-level selection is to find an optimal subset U by
maximizing the following criterion:

F (U) =
tr(WT

U (XLbX
T )WU )

tr(WT
U (XLwXT )WU )

, (3)

whereWU corresponds to the features in subsetU , Lb andLw

are the Laplacian matrices, Lb = Db − Sb, Db is a diagonal
matrix, Db = diag(Sb1); Lw = Dw − Sw, Dw is a diagonal
matrix and Dw = diag(Sw1).

The feature-level spectral feature selection approach eval-
uates feature fi by a score defined below:

s(fi) =
wT

i (XLbX
T )wi

wT
i (XLwXT )wi

. (4)

After calculating scores of all features, the feature-level
approach will select the leading features by the rankings of
scores. As traditional spectral feature selection approaches
rely on the global information, they are not efficient with on-
line feature selection. Hence, we design two novel spectral-
based criteria as follows.

Criterion 1 GivenU ∈ Rb as the previously selected subset,
fi denotes the newly arrived feature, we assume that with the
inclusion of a ”good” feature, the between-class distances
will be maximized, while the within-class distance will be
minimized. That is, feature fi will be selected if the following
criterion is satisfied:

F (U
⋃
fi)− F (U) > ε (5)

where ε is a small positive parameter (we use ε = 0.001 in
our experiments.

However, with the increase of selected features, the crite-
rion defined in Eq. (3) will be more and more difficult to be
satisfied. Hence, to avoid leaving out discriminative features,
we design a second criterion.

Criterion 2 GivenU ∈ Rb as the previously selected subset,
and the newly arrived feature fi, we calculate the score of
feature fi by Eq. (4) which shows the discriminative power
of the feature. If it is a significant feature with discriminative
power, it will be selected.

The significance of a feature can be evaluated by the t-test
[Zimmerman, 1997] defined bellow:

t(fi, U) =
µ̂− s(fi)
σ̂/

√
|U |

(6)

where |U | stands for the number of features in U , µ̂ and σ̂ are
the mean and standard deviation of scores of all the features
in U . If the t-value returned by Eq. (6) reaches 0.05, then
the feature is assumed to be significant among the selected
subset U and will be selected (0.05 is often used to measure
the significance level).

After intra-group selection, we will obtain a subset G′j ∈
Rm′

from the original feature space Gj , G′j ⊂ Gj . As intra-
group selection evaluates the features individually and does
not consider the group information, we will apply inter-group
selection.

3.2 Online Inter-Group Selection
In this subsection, we introduce Lasso to obtain an optimal
subset based on global group information. Given the subset
selected during the first phase G′j = [fj1, fj2, · · · , fjm′ ]T ∈
Rm′

, the previously selected subset of features UT ∈ Rb, the
combined feature space with dimensionality ofm′′ (m′+d =

m′′), a data set matrix X ∈ Rm′′×n, and a class label vector
Y ∈ Rn, β̂ = [β̂1, · · · , β̂m′′ ] ∈ Rm′′

is the projection vector
which constructs the predictive variable Ŷ :

Ŷ = XT β̂ (7)

Lasso chooses an optimal β̂ by minimizing the objective
function defined as follows:

min ||Y − Ŷ ||22
s.t. ||β||1 ≤ λ, Ŷ = XT β̂.

(8)

where || · ||2 stands for l2 norm, and || · ||1 stands for l1 norm
of a vector, λ is a parameter that controls the amount of regu-
larization applied to estimators, and λ ≥ 0 [Lu et al., 2012].
In general, a smaller λ will lead to a sparser model. By re-
gression, the component in βi will be set to zero correspond-
ing to feature fi which is irrelevant to the class label. Finally,
the features corresponding to non-zero coefficients will be se-
lected. After inter-group selection, we get the ultimate subset
Uj .

With the combination of the online intra-group and the
inter-group selection, the algorithm of Online Group Feature
Selection (OGFS for short) can be formed.

3.3 OGFS: Online Group Feature Selection
Algorithm

Algorithm 1 shows the pseudo-code of our online group fea-
ture selection (OGFS) algorithm. OGFS is divided into two
parts: intra-group selection (Steps 4-15) and inter-group se-
lection (Step 16). Details are as follows.

In the intra-group selection, for each feature fi in group
Gj , we evaluate features by the criteria defined in Section
3.1. Steps (9-11) evaluate the significance of features based
on criterion 1. With the inclusion of the new feature fi, if
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Algorithm 1 OGFS (Online Group Feature Selection)

Input: feature stream F ∈ Rm∗q , label vector Y ∈ Rn.
Output: selected subset U .

1: U =[], i = 1, j = 1;
2: while ψ(U) not satisfied do
3: for j = 1 to q do
4: Gj ← generate a new group of features;
5: for i = 1 to m do
6: G′j = [];
7: fi ← new feature;
8: /*evaluate feature fi by criterion 1, 2*/
9: if F (fi

⋃
G′j)− F (G′j) > ε then

10: G′j = G′j
⋃
fi;

11: end if
12: if t(fi, U) > 0.05 then
13: G′j = G′j

⋃
fi;

14: end if
15: end for
16: gj ← find the global optimal subset G′j by Eq. (8);
17: U = U

⋃
gj

18: end for
19: end while

the within-class distance is minimized and the between-class
distance is maximized, feature fi is thought to be a “good”
feature and will be added to G′j . Steps (12-14) evaluate the
features according to criterion 2. Based on the selected subset
U , we validate the significance of the feature by t-test. If the
t-value returned by Eq. (6) is larger than 0.05, feature fi is
thought to be significant in discrimination. Then fi will be
added to G′j . After intra-group selection, we get a subset of
features G′j . To implement the global information of groups,
we build a sparse representation model based on the selected
subsetU and the newly selected subsetG′j . An optimal subset
gj will be returned by the objective function defined in Eq.
(8).

In our algorithm, the selected features will be revaluated in
the intra-group selection in each iteration. The time complex-
ity of intra-group selection is O(m), and the time complexity
of inter-group selection is O(q). Thus, our OGFS algorithm,
whose time complexity is linear with the number of features
and the number of groups, is very fast.

The iterations will continue until the performance of ψ(U)
reaches a predefined threshold as follows:
• |U | ≥ k, k is the number of features we need to select;
• accu(U) ≥ max, the predictive accuracy of the model

based on U reaches the predefined accuracy max;
• There are no more features to come.

4 Experiments
In this section, extensive experiments are performed to val-
idate the efficiency of our proposed method. We use the
benchmark data sets with self-defined group feature struc-
ture and two image data sets with pre-existing feature struc-
tures. Several state-of-the-art online feature selection meth-
ods are used for comparison, including Alpha-investing and

Fast-OSFS. The classification accuracy and the compactness
(the number of selected features) are used to measure the per-
formances of the algorithms in our experiments.

We divide this section into three subsections, including an
introduction to our data sets, the experimental setting in our
experiments and the experimental comparison conducted on
the benchmark and real-world data sets. Details are as fol-
lows.

4.1 Data Sets
Our experimental data include benchmark data sets (the first
8 data sets) and real-world data sets (Soccer, the Flower-17
and 15 Scenes) described in Table 1. The column ”groups”
denotes the number of groups. The eight benchmark data sets
are from the UCI repository (the first 4 data sets) and microar-
ray domains1 (colon, prostate, leukemia, and lungcancer) .
The real-world data sets include: 15 Scenes2, the Soccer data
set3 and the Flower-17 data set4. The 15-Scenes data set con-
tains totally 4485 images from 15 categories, with the number
of images ranging from 200 to 400 per class. We take 100 im-
ages per class for training and the rest for testing. In our ex-
periment setup, we use the SPM (Spatial Pyramid Matching)
to partition each image into 21 segmentations and extract lo-
cal information for each patch by the SIFT descriptor. Then
the sparse coding is used for vector quantification [Zhao et
al., 2012]. The Soccer data set contains 280 images from 7
football teams. We take 28 images per class for training and
use the rest for testing. The Flower-17 data set contains 17
categories of flowers. We take 680 images for training and
340 images for testing. For both the Soccer and Flower-17
data sets, we use three descriptors, including PHOG, Color
Moment and texture.

4.2 Experimental Settings
We describe the experimental setting here. The threshold pa-
rameter α is set to be 0.5 and 0.05 in Alpha-investing and
Fast-OSFS, respectively. The sparse linear regression model
of Lasso used in the inter-group selection is solved by SPAMS
5 with the parameter λ ∈ [0.01, 0.5].

To simulate online group feature selection, we al-
low the features to flow in by groups. For the eight
benchmark data sets, we define the group structures of
the feature space by dividing the feature space of each
data set as follows. The global feature stream is rep-
resented by F = [G1, · · · , Gi, · · · ], where Gi =
[f(i−1)∗m+1, f(i−1)∗m+2, · · · , fi∗m] with m features. In our
experiments, we can get optimal results if we set m ∈ [5, 10].

For the three real-world data sets, we use pre-existing fea-
ture groups, each of which represents a descriptor. That
is, for the 15 Scenes data set, the global feature stream
F = [G1, · · · , G21]

T ∈ R21∗1024, where Gi ∈ R1024 de-
notes the SIFT descriptor for a local region of the image. For
the Soccer and Flower-17 data sets, the global feature stream

1http://www.cs.binghamton.edu/ lyu/KDD08/data/
2http://www-cvr.ai.uiuc.edu/ponce grp/data/
3http://lear.inrialpes.fr/people/vandeweijer/soccer/soccerdata.tar
4http://www.robots.ox.ac.uk/ vgg/data/flowers/
5http://spams-devel.gforge.inria.fr/
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Table 1: Description of the 11 Data Sets

Data Set #classes #instances #dim. #groups
Wdbc 2 569 31 -

Ionosphere 2 351 34 -
Spectf 2 267 44 -

Spambase 2 4,601 57 -
Colon 2 62 2,000 -

Prostate 2 102 6,033 -
Leukemia 2 72 7,129 -

Lungcancer 2 181 12,533 -

Soccer 7 #train #test 182 3196 84
Flower-17 17 680 340 182 3
15 Scenes 15 1500 2,985 21,504 21

Table 2: Experimental results on benchmark data sets by (a) Alpha-investing, (b) Fast-OSFS, (c) Baseline, and (d) OGFS.

Data Set Alpha-investing Fast-OSFS Baseline OGFS
#dim. accu. #dim. accu. #dim. accu. #dim. accu.

Wdbc 19 0.95 11 0.94 31 0.95 19 0.96
Ionosphere 8 0.90 9 0.93 34 0.92 13 0.94

Spectf 5 0.75 4 0.79 44 0.81 23 0.82
Spambase 44 0.93 84 0.94 57 0.94 27 0.93

Colon 4 0.80 4 2,000 0.84 0.86 49 0.91
Prostate 2 0.89 5 0.91 6,033 0.90 82 0.98

Leukemia 1 0.65 5 0.95 7,129 0.95 52 1.0
Lungcancer 10 0.95 7 0.98 12,533 0.97 93 0.99

F = [G1, G2, G3]
T ∈ R182, where G1 ∈ R168 denotes the

PHOG descriptor, G2 ∈ R6 denotes the Color Moment de-
scriptor, and G3 ∈ R8 denotes the texture descriptor.

The classification of the eight benchmark data sets is based
on three classifiers, k-NN, J48 and Randomforest in Spider
Toolbox6. We adopt 10-fold cross-validation on three classi-
fiers and choose the best accuracy as the final result. For the
real-world data sets, we use the nearest neighbor classifier.

All experiments are conducted on a PC computer with
Windows XP, 2.5GHz CPU and 2GB memory.

4.3 Experimental Results on Benchmark Data
Table 2 shows experimental results of classification accuracy
versus compactness on the eight benchmark data sets.

• OGFS vs. the Baseline
Though the Baseline is based on the global feature
space, our algorithm outperforms Baseline on 7 out of
the 8 data sets on both accuracy and compactness. On
the data set Spambase, our OGFS is only 1% lower than
Baseline but is much more compact. The results show
that OGFS could efficiently select the features with most
discriminative power.

• OGFS vs. Alpha-investing
Alpha-investing obtains more compactness than our
OGFS algorithm on 6 data sets, but it loses on 7 out

6http://www.kyb.mpg.de/bs/people/spider/main.html

of the 8 data sets in the accuracy except on the Spam-
base data set. On the Spambase data set, our algo-
rithm achieves the same accuracy as Alpha-investing
while obtaining more compactness. More specifi-
cally, on data sets Colon and Leukemia, the accura-
cies of Alpha-investing are 0.80 and 0.65 while OGFS
reaches up to 0.91 and 1.0. This is because the previ-
ously selected subset will never be revaluated in Alpha-
investing, which affects the selection of the later arrived
features. However, in our algorithm, selected features
will be revaluated in the inter-group selection in each it-
eration. Thus, our algorithm tends to select sufficient
features with discriminative power.
• OGFS vs. Fast-OSFS

Fast-OSFS obtains more compactness on most of the
data sets, but our algorithm is better than Fast-OSFS in
accuracy on 7 out of the 8 data sets with a little compact-
ness loss. More precisely, on the Spambase data set, the
accuracy of our algorithm is slightly lower than Fast-
OSFS, but it selects many fewer features. The reason
is that Fast-OSFS evaluates features individually rather
than in groups. Meanwhile, contrary to Fast-OSFS, our
algorithm facilitates the relationship of features within
groups and the correlation between groups, which will
lead to the optimum of the ultimate subset.

Experimental results on benchmark data sets show that our
algorithm is superior to Alpha-investing and Fast-OSFS in
classification accuracy in most cases, while maintaining the
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Table 3: Experimental results on real-world data sets by (a) Alpha-investing, (b) Fast-OSFS, (c) Baseline, and (d) OGFS.

Soccer Flower-17 15 Scenes
#dim. accu. #dim. accu. #dim. accu.

Alpha-investing 8 0.25 19 0.329 72 0.393
Fast-OSFS 7 0.345 41 0.344 - -
Baseline 182 0.25 182 0.347 21,504 0.654
OGFS 13 0.369 29 0.344 369 0.54

compactness.

4.4 Experimental Results on Real-world Data Sets
The results obtained on real-world data sets with pre-existing
group structures are shown in Table 3. As the original di-
mensionality of the 15 Scenes data set is more than 20,000,
Fast-OSFS (provided by the authors) is out of memory when
performing on this data set. We have the following observa-
tions:

• OGFS vs. the Baseline
OGFS obtains more compactness than Baseline on all
the three data sets. On the Soccer data set, our algorithm
obtains the best accuracy. The accuracy of OGFS on
Flower-17 is only slightly lower than Baseline. Baseline
outperforms OGFS on the 15 Scenes data set, but OGFS
selects many fewer features while obtains the best accu-
racy among all the competing feature selection methods.
• OGFS vs. Alpha-investing

Compared to Alpha-investing, OGFS obtains higher ac-
curacies with a little compactness loss. In particular, on
the 15 Scenes data set, the accuracy of Alpha-investing
is only 0.393, while our method could reach 0.54. The
reason is the same as we mentioned above.
• OGFS vs. Fast-OSFS

OGFS outperforms Fast-OSFS on both compactness and
accuracy on the Soccer data set. On the Flower-17
data set, OGFS and Fast-OSFS obtain the same accu-
racy while our algorithm achieves more compactness.
These results demonstrate that our algorithm is better
than Fast-OSFS when applied on real-world data sets
with pre-existing group structures. The reason is the
same as we analyzed before.

In sum, the above experimental results on real-world data
sets reveal the effectiveness of our algorithm, and indicate
that our algorithm is more suitable for real-world applications
than existing state-of-the-art online feature selection meth-
ods.

5 Conclusion
In this paper, we have formulated the problem online group
feature selection with a feature stream and presented an algo-
rithm called OGFS for this problem. In contrast with tradi-
tional online feature selection, we have considered the situa-
tion that features arrive by groups in real-world applications.
We divided online group feature selection into two stages,
i.e., online intra-group and inter-group selection. Then we
designed two novel criteria based on spectral analysis for

intra-group selection, and introduced Lasso to reduce the re-
dundancy in inter-group selection. Extensive experimental
results on benchmark and real-world data sets have demon-
strated that OGFS is superior to other state-of-the-art online
feature selection methods.
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